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Abstract Terminal restriction fragment length polymor-
phism (T-RFLP) analysis is a popular high-throughput
fingerprinting technique used to monitor changes in the
structure and composition of microbial communities. This
approach is widely used because it offers a compromise
between the information gained and labor intensity. In this
review, we discuss the progress made in T-RFLP analysis
of 16S rRNA genes and functional genes over the last
10 years and evaluate the performance of this technique
when used in conjunction with different statistical methods.
Web-based tools designed to perform virtual polymerase
chain reaction and restriction enzyme digests greatly
facilitate the choice of primers and restriction enzymes for

T-RFLP analysis. Significant improvements have also been
made in the statistical analysis of T-RFLP profiles such as
the introduction of objective procedures to distinguish
between signal and noise, the alignment of T-RFLP peaks
between profiles, and the use of multivariate statistical
methods to detect changes in the structure and composition
of microbial communities due to spatial and temporal
variation or treatment effects. The progress made in T-
RFLP analysis of 16S rRNA and genes allows researchers
to make methodological and statistical choices appropriate
for the hypotheses of their studies.
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Introduction

Several cultivation-independent methods lend themselves to
the analysis of large numbers of samples and offer facile
means to detect differences in the composition and structure
of microbial communities. These methods include finger-
printing techniques based on 16S rRNA genes such as
denaturing gradient gel electrophoresis (Muyzer et al.
1993), automated ribosomal intergenic spacer analysis
(Fisher and Triplett 1999), and terminal restriction fragment
length polymorphism (T-RFLP) analysis (Liu et al. 1997).
These fingerprinting techniques have been successfully
used in numerous studies to explore microbial diversity of
the predominant populations in various habitats and offer
the advantage that they are more amenable to high
throughput and more comprehensive than cultivation-
dependent methods (Rappe and Giovannoni 2003; Torsvik
et al. 2002; Weng et al. 2006).
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T-RFLP analysis is one of the most frequently used high-
throughput fingerprinting methods. Because of its relative
simplicity, T-RFLP analysis has been applied to the analysis
of fungal ribosomal genes (Genney et al. 2006; Johnson et
al. 2004; Kennedy et al. 2005; Lord et al. 2002), bacterial
16S rRNA genes (Hullar et al. 2006; Katsivela et al. 2005;
Noll et al. 2005; Pérez-Piqueres et al. 2006; Rasche et al.
2006; Schmidt et al. 2006; Sessitsch et al. 2001; Thies et
al. 2007), and archaeal 16S rRNA genes (Kotsyurbenko et
al. 2004; Leybo et al. 2006; Lu et al. 2005; Moeseneder
et al. 2001; Ramakrishnan et al. 2000; Weber et al. 2001;
Wu et al. 2006). In addition, T-RFLP has been used for the
analysis of functional genes (Horz et al. 2000; Lueders and
Friedrich 2003; Mintie et al. 2003; Pérez-Jiménez and
Kerkhof 2005; Rich et al. 2003) such as those encoding for
nitrogen fixation (Rösch and Bothe 2004; Tan et al. 2003)
and methane oxidation (Horz et al. 2001; Mohanty et al.
2006). However, most frequently, the technique is used to
amplify small subunit (16S or 18S) rRNA genes from total
community DNA using polymerase chain reaction (PCR)
wherein one or both of the primers used are labeled with a
fluorescent dye. The resulting mixture of rRNA gene
amplicons is then digested with one or more restriction
enzymes that have four base-pair recognition sites, and the
sizes and relative abundances of the fluorescently labeled T-
RFs are determined using an automated DNA sequencer.
Since differences in the sizes of T-RFs reflect differences in
the sequences of 16S rRNA genes (i.e., sequence poly-
morphisms), phylogenetically distinct populations of organ-
isms can be resolved. Thus, the pattern of T-RFs is a
composite of DNA fragments with unique lengths that
reflects the composition of the numerically dominant
populations in the community. While T-RFLP shares
problems inherent to any PCR-based method (Acinas et
al. 2005; Becker et al. 2000; Crosby and Criddle 2003;
Kanagawa 2003; Kurata et al. 2004; Lueders and Friedrich
2003; Polz and Cavanaugh 1998; Qiu et al. 2001;
Reysenbach et al. 1992; Suzuki and Giovannoni 1996;
Terahara et al. 2004; von Wintzingerode et al. 1997; Wang
and Wang 1997), it has been shown to provide a facile
means to assess changes in microbial community structure
on temporal and spatial scales by monitoring the gain or
loss of specific fragments from the profiles (Franklin and
Mills 2003; Lukow et al. 2000; Mummey and Stahl 2003).
When coupled with 16S rRNA clone library construction
and clone sequencing, additional specific information on
the composition of microbial communities can be obtained.

In this review, we evaluate the progress made in T-RFLP
analysis and the associated statistical methods over the last
10 years since the method was introduced (Liu et al. 1997).
We examine methods used to choose primers and restriction
enzymes, distinguish between signal and noise, align T-
RFLP profiles, identify plausible members, and monitor

changes in microbial communities (Fig. 1). Other reviews
have compared T-RFLP analysis to other fingerprinting
techniques, evaluated the reproducibility of T-RFLP pro-
files, discussed some limitations and biases of the method
(Anderson and Cairney 2004; Avis et al. 2006; Blackwood
et al. 2007; Bent and Forney 2008; Clement et al. 1998;
Dorigo et al. 2005; Egert and Friedrich 2003, 2005;
Hartmann et al. 2007; Kitts 2001; Leckie 2005; Marsh
1999, 2005; Osborn et al. 2000; Rösch et al. 2006; Singh et
al. 2006a; Smalla et al. 2007; Thies et al. 2001; Thies
2007), and reviewed multivariate methods to analyze
molecular fingerprints (Ramette 2007).

Advances in T-RFLP methodology

Choice of primers

Ideally, primers chosen for T-RFLP analysis should be
specific to the targeted taxonomic group yet sufficiently
general so that they can amplify all bacterial populations
that are of interest. There are no known primers that satisfy
both of these criteria. For example, an in silico analysis of
sequences done using the Probe Match tool of the
Ribosomal Database Project (RDP) shows that the bacterial
primer 8fm potentially amplifies only 76–98% of the
bacterial 16S rRNA gene sequences in the RDP database
(Table 1; Marsh et al. 2000). Worse still, this analysis does
not take into account that sequence databases only contain a
fraction of the extant bacterial diversity, which suggests that
commonly used primers such as 8fm are far from universal.
In addition, the 8fm primer is not 100% specific to bacteria
because the primer also matches 19 16S rRNA archaeal
genes of the 19,300 archaeal 16S rRNA gene sequences
that were in GenBank (http://www.ncbi.nlm.nih.gov/Gen
bank/) as of June 2007. Although there is no perfect primer,
tools such as the primer-prevalence tool (Shyu et al. 2007)
on the Microbial Community Analysis (MiCA) website
(http://mica.ibest.uidaho.edu/) and the Probe Match tool
(Marsh et al. 2000) found on the Ribosomal Database
Project website (http://rdp.cme.msu.edu/) facilitate the
choosing of primers because they allow researchers to
compare the specificity and selectivity of different primer
sets based on sequences in the database. A limitation is that
neither tool is equipped for the analysis of archaeal
sequences.

The use of only one fluorescently labeled primer may
result in underestimating the microbial diversity in a sample
because different bacterial populations can share the same
terminal restriction fragment length for a particular primer–
enzyme combination (Marsh et al. 2000). This problem is
reduced if two labeled primers are used; the premise being
that some populations that cannot be resolved with one
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primer might be distinguished on the basis of additional
information provided from the terminal fragment generated
by a second labeled primer (Liu et al. 1997). The resolution
of populations can be enhanced even further through the
use of three or more labeled primers. Zhou et al. (2007), for
example, amplified 16S rRNA genes of human vaginal
communities by amplifying 16S rRNA genes in two
separate PCR reactions that employed two differentially
labeled forward primers in combination with the same

reverse primer. After digestion, the restriction products
were combined prior to analysis.

Multiple primers can also be used in the same PCR
reaction to study communities that contain different taxa,
and this is referred to as multiplexing. For example, Singh
et al. (2006b) analyzed soil microbial communities using
three different primer sets that targeted bacteria, archaea,
and fungi (Fig. 2). The authors evaluated the performance
of this multiplexing by comparing T-RFLP profiles of

Fig. 1 Steps in the analysis of microbial community composition
based on terminal restriction site length polymorphism analysis of 16S
and 18S rRNA genes. Choose the primers, restriction enzymes, and
electrophoresis method to be used to resolve fluorescently labeled
DNA fragments (Step 1). Once the electropherograms have been
obtained, the signals (peaks) are distinguished from baseline noise
using one of four methods: (a) fixed percentage threshold, (b) variable
percentage threshold, (c) iterative process of standardizing the profiles
in respect to the smallest total peak height, or (d) an iterative process
that defines signals as being three standard deviations from a mean of
zero (Step 2). Finally, the fragment profiles are aligned by: (a) using a
fixed detection window, (b) a defined fragment size range, or (c) a

hierarchical clustering procedure (Step 3). Which steps are followed
next depends on the objectives of the study. If the objective is to
identify and classify microbial community members in individual
samples, then (Step 4) web-based tools such as PAT, TRUFFLER, and
APLAUS can be used. If the objective, however, is to assess
differences in microbial communities (Step 5), PCA, MDS, SOM,
AMMI, which are described in the text, can be used to visualize these
differences (Step 6), while significant groups can be identified through
cluster analysis using clustering criteria such as cubic clustering
criterion, pseudo F-test, and model-based procedures (Step 7), or the
observed differences can be linked to variation in the environments
using CCA and RDA (Step 8)
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separate PCR reactions that used taxon-specific sets of
primers to profiles based on multiplex PCR containing all
three primer sets (Fig. 3). In addition, they investigated the
effect of pooling individual PCR products before digestion
with restriction enzymes. The results showed that profiles
resulting from individual reactions, multiplexing, and
pooled PCR products were consistent with one another in
respect to the number, position, and relative intensity of
peaks that represent the different microbes in samples.

Choice of restriction enzymes

The discrimination of bacterial populations by T-RFLP
analysis relies on detecting 16S rRNA gene sequence
polymorphisms using restriction enzymes (Liu et al.
1997). Typically, enzymes that have four base-pair recog-
nition sites are used due to the higher frequency of these
recognition sites. It has been shown by several groups that
the use of more than one restriction enzyme facilitates the
resolution of bacterial populations (Liu et al. 1997; Marsh
1999). This is due to the fact that different bacterial
populations can share the same terminal restriction frag-
ment length for a particular primer–enzyme combination
but not others (Marsh et al. 2000).

The ability of different restriction enzymes to resolve
unique sequences has been examined in studies of gene
sequence databases, communities with different richness,
and iterative random sampling from a derived database of
T-RFs (Engebretson and Moyer 2003; Moyer et al. 1996).
Engebretson and Moyer (2003) evaluated 18 restriction
enzymes and found that BstUI, DdeI, Sau961, and MspI
most often resolved individual populations in their model
communities. For communities with more than 50 opera-
tional taxonomic units (OTUs), none of the restriction

enzymes resolved more than 70% of the total OTUs. The
authors concluded that T-RFLP can most efficiently be used
for communities with low or intermediate richness.

In silico digestion to evaluate the ability of restriction
enzymes to discriminate between sequences can be done
using tools such as the T-RFLP analysis program (TAP) T-
RFLP (http://rdp8.cme.msu.edu/html/TAP-trflp.html) and
MiCA (http://mica.ibest.uidaho.edu/) for 16S rRNA genes
and the ARB implemented tool TRF-CUT for functional
genes (http://www.mpi-marburg.mpg.de/downloads/, Ricke
et al. 2005). TAP T-RFLP is located on the RDP website,
and it facilitates the choice of restriction enzymes by an in
silico digest of all 16S rRNA genes in the database while
using different primer–enzyme combinations (Marsh et al.
2000). TAP T-RFLP matches a chosen forward or reverse
primer to every sequence of the database, and all the
sequences that match the primer are digested in silico by
the chosen restriction enzyme(s). The analysis provides
answers to the following questions: (i) what enzyme(s) best
discriminate phylotypes for estimates of population diver-
sity, (ii) what enzyme(s) provides the best resolution of the
targeted phylogenetic groups, and (iii) what primer–enzyme
(s) combinations are best for a particular data set? The
default output shows the results within RDP’s phylogenetic
hierarchy. In addition, the results can be ordered by
sequence name or terminal fragment size. While TAP T-
RFLP is a powerful tool to acquire a first impression of
how well different restriction enzymes can resolve phylo-
types, it also has certain limitations. It only allows one
primer–enzyme combination to be specified, the data
cannot be sorted, and the output cannot be printed or
exported to other programs (Shyu et al. 2007). In contrast,
MiCA allows the user to specify both forward and reverse
primers, the number of mismatches between a primer and

Table 1 Prevalence of primer target sequences in the Ribosomal Database Project II release 9 database

Primera Primer sequence (5′-3′) No. sequences
in database with
target sequence

No. sequences
(0 mismatches)

Fraction of
total sequences

No. sequences
(2 mismatches)

Fraction of
total sequences

8F-Eub AGAGTTTGATCCTGGCTCAG 74495 46389 0.62 71996 0.97
8fm-Eub AGAGTTTGATCMTGGCTCAG 74495 56498 0.76 72634 0.98
49F-Eub TNANACATGCAAGTCGRRCG 192557 136297 0.71 188399 0.98
334F-Eub CCAGACTCCTACGGGAGGCAGGC 268238 19 7.08 E-05 246469 0.92
341F-Eub CCTACGGGAGGCAGCAG 272435 244267 0.9 266479 0.98
519F-Univ CAGCAGCCGCGGTAATAC 264039 222076 0.84 254083 0.96
786F-Eub GATTAGATACCCTGGTAG 238996 188904 0.79 227388 0.95
536R-Eub GWATTACCGCGGCKGCTG 268202 222455 0.83 252867 0.94
926R-Eub CCGTCAATTCCTTTRAGTTT 199516 147271 0.74 190894 0.96
1113R-Eub GGGTTGCGCTCGTTG 179777 137433 0.76 174470 0.97
1404R-Eub GGGCGGWGTGTACAAGGC 127580 76505 0.6 121241 0.95
1406R-Univ ACGGGCGGTGTGTRC 125548 108930 0.87 124112 0.99
1511R-Eub GYTACCTTGTTACGACTT 44577 39399 0.88 43970 0.99

a Primer numbering is based on Escherichia coli 16S rRNA gene.
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the target sequences, choice of up to three restriction
enzymes, and choice of the database to be used. The tool
uses a query program that connects to the database, and it
analyzes the data based on the parameters specified. The output
is written in PHP, plain text, or comma separated value format.
The drawback of these outputs is that they can be very large
and difficult to interpret. An alternative is Restriction Endonu-
clease Picker (REPK; http://rocaplab.ocean.washington.
edu/tools/repk), a program that automatically determines sets

of restriction enzymes that differentiate user-designated
sequences (Collins and Rocap 2007). The user input is a
trimmed FASTA-formatted file that contains the sequences to
be used for in silico analysis. After uploading the FASTA file,
restriction enzymes can be selected from a list based on the
latest REBASE database, or they can be defined by the user.
Settings such as the minimum and maximum terminal
fragment length allowed and the minimum threshold for the
number of groups each enzyme must be able to distinguish

Fig. 2 Outline of the
procedure for multiplex TRFLP
(M-TRFLP) analysis. Primers
for different taxa were labeled
with different fluorophores
which are depicted using
dots of different colors. The
fluorophores used in this study
were 6-carboxyfluorescein
(FAM; blue), VIC (green),
NED (yellow), and PET (red;
reprinted with permission from
the American Society of
Microbiology and based on
Singh et al. 2006b)
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(referred as the enzyme stringency filter) can be specified.
The selected sequences are digested in both directions using
all the restriction enzymes chosen. The sizes of the terminal
fragments are determined and a matrix is generated. Terminal
fragment sizes that are within a specified cutoff are ‘binned’
and considered the same size. Next, the program determines
whether bins contain only sequences from a single bacterial
group or sequences from different groups, meaning the
enzymes chosen failed to discriminate between bacterial
groups. The enzymes that do a sufficiently good job of
differentiating among bacterial groups are identified using the
enzyme stringency filter and saved in a final output. Collins
and Rocap (2007) state that REPK is particularly useful if
members of a certain taxonomic group must be distinguished
or if populations found in a previously characterized habitat
must be differentiated.

Although web-based tools and studies based on in silico
experiments provide insight into the ability of restriction
enzymes to resolve bacterial groups, the output from these
tools should be used with caution. Investigators must
remember that only a small fraction of the total bacterial
diversity has been described and sequence databases are
incomplete. Consequently, it is likely and even probable
that samples will contain phylotypes that are not repre-
sented in any database. We recommend that primer–enzyme

combinations chosen based on in silico analyses should be
empirically evaluated to confirm that they best resolve the
constituent populations in the samples to be analyzed.

Resolution of terminal fragments

Differences in the length and abundance of fluorescently
labeled T-RFs in a sample are usually determined by
capillary or polyacrylamide gel electrophoresis wherein
the electrophoretic mobility of the T-RFs are compared to
those of known size in an internal standard. The actual sizes
of T-RFs are estimated by interpolation using algorithms
such as the Local Southern algorithm that are available in
software packages such as GeneScan and GeneMapper. The
abundance of each T-RF is determined based on fluores-
cence intensity and expressed as either peak height or peak
area. Generally speaking, T-RFLP analysis using capillary
gel electrophoresis is more precise and reproducible than
analyses done using polyacrylamide gels (Behr et al. 1999).
Even so, run-to-run variability (generally ±1 bp) results in
small size discrepancies even among terminal fragments of
the same bacterial populations and therefore fingerprints
need to be aligned. Fragment sizes are generally assigned to
categories of operational taxonomic units or “bins”. Each
bin may actually include more than one phylotype depend-

Fig. 3 Profiles obtained for
archaeal, bacterial, and fungal
communities by M-TRFLP and
individual TRFLP analyses for a
single sample. a Profile gener-
ated by M-TRFLP analysis for
bacterial (green), fungal (blue),
and archaeal (yellow but
appears black on GeneMapper)
communities together using
multiplex PCR. TRFLP profiles
generated for the same sample
from PCR products obtained
using only b bacterium-
specific, c fungus-specific, and
d archaeon-specific primers in
separate PCR reactions
(reprinted with permission
from the American Society of
Microbiology from Singh et al.
2006b)
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ing on the species complexity of the community being
analyzed, the phylogenetic relatedness of the populations
present, and the resolving ‘power’ of the primers and
enzymes used. A disadvantage of capillary systems is that
they employ electrokinetic sample injection, in which
charged molecules are injected into capillaries by applying
an electric field (Behr et al. 1999). This can result in the
preferential injection of smaller molecules, so salts and
primers from the PCR reactions (Osborne et al. 2005;
Tiquia et al. 2005) or the digestion reactions (Berg et al.
2005; Hoshino et al. 2006) should be removed prior to
sample analysis.

Accurate fragment size determination is important,
especially if the goal is to infer a plausible community
composition from T-RFLP profiles. Plausible community
compositions are determined using web-based tools, in
which the sizes of T-RFs in a profile are matched with
T-RF sizes derived in silico from the 16S rRNA gene
sequences of phylotypes in a database. Sometimes, howev-
er, this is not straightforward because pseudo T-RFs
(partially single-stranded amplicons) may be formed during
PCR (Egert and Friedrich 2003, 2005) and different
fluorophores can affect the electrophoretic mobility of
fragments in different ways causing errors in determining
fragment sizes (Tu et al. 1998). Although DNA fragment
analysis by capillary electrophoresis is very precise (±1 bp),
it is not necessarily accurate, a fact that is not widely
known. In our experience, DNA fragments labeled with a
fluorescein dye, such as 6FAM and HEX, migrate faster
than DNA fragments labeled with a rhodamine dye such as
ROX. The latter one is often used to label internal size
standards. As a result, the sizes of terminal fragments
labeled with HEX or 6FAM can be underestimated.
Unfortunately, it is not easy to adjust for differences in
migration behavior because the magnitude of the discrep-
ancy is not constant across fragment sizes. For fragment
sizes smaller than 100 bp, it is up to 11 bp (Hahn et al.
2001), it decreases to 2–3 bp for fragment sizes of about
500 bp, and then increases again for fragment sizes larger
than about 700 bp (Shyu et al. unpublished data).
Discrepancies between true and observed T-RF sizes can
also be caused by the purine content (Kaplan and Kitts
2003). Furthermore, the performance of the algorithms used
to size call the T-RFs deteriorates as the DNA fragment size
increases. The commonly used Local Southern algorithm
assumes that the migration time of fragments increases
linearly with fragment size, but this is not true, and so the
size calling of larger DNA fragments is more likely to be
erroneous (Shyu et al. unpublished data). Currently, there is
no solution to correct for these migration discrepancies that
arise due to the use of different fluorophores, and users
should take this into account when using T-RFLP data to
determine the community composition.

Distinguishing signal from noise

As a first step in the analysis of T-RFLP profiles, the signal
has to be distinguished from electronic noise. Differently
said, the baseline has to be determined. Programs such as
GeneScan and GeneMapper determine where a peak starts
and ends, its height, and area, but the true baseline must be
determined by the researcher. Ideally, the procedure used to
distinguish signal from noise would be an automated
objective approach that determines the true signal in each
profile since the electronic noise varies from run to run.
Either peak height or area can be used to distinguish signal
from noise, and both have advantages and disadvantages
(Kitts 2001; Lueders and Friedrich 2003). Several
approaches to define baselines have been developed
including fixed threshold (Lueders and Friedrich 2003;
Osborn et al. 2000), proportional threshold (Dunbar et al.
2001; Osborne et al. 2006; Sait et al. 2003), and statistical
determination of the threshold (Abdo et al. 2006).

The simplest approach to distinguish signal from noise is
to impose a fixed detection threshold that is some arbitrarily
chosen value, e.g., 50 or 100 fluorescence units (FU).
Employing a high detection threshold such as 100 FU
(Osborn et al. 2000) insures that the number of peaks
attributable to noise is very low, but risks excluding small
reproducible peaks (Dunbar et al. 2001). In addition, setting
a fixed detection threshold assumes that profiles of samples
are not subject to experimental variation that results from
loading and detection efficiency. Dunbar et al. (2001) have
shown that threshold cannot be arbitrarily set beforehand
because the optimum threshold varies from sample to
sample. Because the assumptions inherent in using a fixed
detection threshold do not hold and because better
approaches are available, we do not consider it to be a
valid approach.

A more sophisticated approach is to use a constant
percentage threshold (Sait et al. 2003). To do this, a matrix
of all T-RFs and their peak areas that are present in sample
profiles from a given study is generated. If a T-RF is not
present in a particular profile, an area of zero is assigned.
The dataset is then standardized by computing the
proportion of the total area for each peak in a profile. To
determine the baseline, a percentage threshold is chosen in
such a way that the correlation between total peak area and
number of peaks is minimized. The reasoning behind trying
to minimize the correlation between number of peaks and
total peak area is to control for differences due to variation
in the amount of DNA injected. A strong correlation
between the total peak area and number of peaks suggests
that the larger number of peaks above the threshold results
from a higher amount of DNA injected and not because of
an increased richness of numerically abundant populations
in a sample.
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Dunbar et al. (2001) introduced a method that also
addresses the problem that injecting different amounts of
DNA may affect the apparent number and relative
abundance of phylotypes represented in a T-RFLP profile.
The method uses the profile with the smallest total peak
height as a basis for normalizing the total peak heights of
all other profiles. To accomplish this, the total peak height
of each profile is calculated including only peaks with a
height larger than 25 fluorescent units. The smallest total
peak height for any sample in the dataset is divided by the
total peak height for each remaining sample to produce a
correction factor for each profile. This correction factor is
used to adjust the peak height of the profile, and by doing
so, adjust for differences on the amount of DNA injected.
For example, assuming that 20,000 FU is the smallest total
peak height, a profile with a total peak height of 40,000 FU
would have a correction factor of 0.5. Accordingly, each
peak height of the latter profile would be multiplied by 0.5.
After this correction, some peaks will fall below the
threshold of 25 FU and are eliminated. A new total peak
height is then calculated for each profile and the process is
repeated until each of them equals the smallest total peak
height. The authors indicate that using a threshold of 25 FU
fails to eliminate all noise from the data, and this affects
further statistical comparisons. Therefore, only peaks that
are present in all replicates of a sample after standardization
were included in further comparisons. This approach is well
thought through although the constant baseline value (25
FU) is subjectively chosen.

Electronic noise varies among profiles, so using the same
percentage threshold to eliminate noise in all profiles is not
appropriate. Therefore, Osborne et al. (2006) proposed the
use of a variable percentage threshold to address this issue.
As in Sait et al. (2003), the method of Osborne et al. (2006)
attempts to minimize the correlation between total peak
area and the number of peaks. In this method, a percentage
threshold is individually determined for each profile so that
the weakest relationship between the number of peaks and
the total peak area results. Osborne et al. (2006) compared
their method to the two procedures developed by Sait et al.
(2003) and Dunbar et al. (2001) and concluded that their
method was better able to distinguish signal and noise
because replicate profiles were grouped most precisely.

A new statistical method has been developed to provide
signal/noise discrimination based on statistical theory
(Abdo et al. 2006). Using this procedure, the data are
standardized by dividing the area of each peak by the total
peak area of that particular sample. The standard deviation
of the dataset is then computed assuming that the true mean
is zero. Peaks with a relative area larger than three standard
deviations from the mean are identified as true signal and
are removed. This process is reiterated until no more ‘true’
peaks are identified. This method indirectly accounts for the

variation in the injected DNA through profile standardiza-
tion, which results in reducing some of the smaller peaks
such that they are indistinguishable from noise. Still, this
method can be more sensitive to identifying smaller peaks
than the other described methods, which may result in
slight differences in the observed richness of phylotypes in
profiles. Although these differences have minimal impact
on analyses using Euclidian distances based on peak area or
height, analyses based on presence/absence matrices can
amplify the effect of such richness differences and might
produce inaccurate results.

Alignment of profiles

Run-to-run variability in T-RFLP analysis causes slight
differences in the estimated sizes of T-RF fragments from
the same bacterial phylotype. Because of this run-to-run
variability, fingerprints need to be aligned before further
statistical analyses can be done. The methods used to assign
fragment sizes to length categories (bins) include nearest
integer rounding, manual binning (Blackwood et al. 2003),
and clustering-based statistical approaches (Abdo et al.
2006; Dunbar et al. 2001; Hewson and Fuhrman 2006;
Ruan et al. 2006). The use of statistical approaches is far
superior to rounding to the nearest integer or manual
binning because so long as parameter choices are made
based on empirical data and applied consistently, the
automated procedures allow an objective analysis of large
data sets with statistical justification.

The rounding method is the simplest method. The
estimated fragment size is rounded to the nearest integer
and each integer is treated as a bin. This method suffers
from the limitation that the reproducibility of DNA
fragment analysis by capillary electrophoresis is ±0.5 bp
(Dunbar et al. 2001) so identical fragments in separate runs
could be placed in different bins. For example, a fragment
of 100.4 bp in one profile would be placed into a 100 bp
bin, while the same fragment in a different profile could be
measured to be of 100.6 bp, which would be rounded to the
101 bp and placed in a different bin. Since the difference
between the two fragment sizes is just 0.2 bp, they probably
should be grouped into a single category. Because of this
problem, the rounding method is not an appropriate way to
align T-RFLP profiles.

In contrast to rounding to the nearest integer, manual
binning allows an experienced analyst to make intelligent
choices in ambiguous cases. Manual binning introduces the
possibility of subjective bias, and it has no high throughput
capability; therefore, it is not recommended.

Hewson and Fuhrman (2006) describe a binning tech-
nique wherein profiles are aligned based on multiple bin
windows of a fixed size. In their example, Hewson and
Fuhrman used a bin window of 10 bp. If one excludes
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fragment sizes smaller than 50 bp due to primer dimer
peaks, then the first bin would contain all fragments of 50–
59 bp, the second would contain all fragments with a size of
60–69 bp, and so on. The alignment is done several times,
and each time the starting point of the window is shifted by
1 bp. In the second round of alignment, all fragment lengths
from 51–60 bp, 61–70 bp, etc., are considered identical.
The number of times the alignment is done equals to the
size of the bin window, and in this example, it would be ten
times (It should be noted that this method was developed
for the analysis of data from fragment analysis using
polyacrylamide gels and not capillary gel electrophoresis.
This results in a larger run-to-run variability of fragment
sizes; thus, large bin windows were proposed). For each
frame, all pairwise similarities among the profiles are
calculated, an unweighted pair-group method with arithme-
tic mean (UPGMA) tree is generated based on the maximum
pairwise similarities among profiles, and this tree is used to
draw conclusions about differences in microbial community.
The performance of the binning method has only been
evaluated based on samples with unknown community
structure, and therefore, the ability of this approach to
determine true differences in microbial communities remains
unknown. An extension of this binning method has been
developed by Ruan et al. (2006) to allow different bin
window sizes depending on the fragment size because the
reproducibility of fragment length measurements varies
with fragment size (Brown et al. 2005).

The alignment of profiles based on a defined fragment
size range, for example ±0.5 bp, was introduced by Dunbar
et al. (2001). Because this analysis was done using capillary
gel electrophoresis, all fragment lengths that differed less
than 0.5 bp were considered identical and binned. However,
as discussed above, a potential drawback to this approach is
that in some cases, peaks with a size difference less than 0.5
bp can reproducibly occur in replicate profiles of the same
sample. To address this problem, Dunbar et al. (2001)
limited the maximum number of peaks that can be assigned
to one bin to the number of profiles being aligned. This
method is preferable to the method developed by Hewson
and Fuhrman (2006) because by Dunbar’s method, the
decision as to whether two fragments are binned is based on
the differences in the sizes of two fragments and not
whether they fall within a preset fixed bin window.

Abdo et al. (2006) implemented hierarchical clustering to
align T-RFLP profiles. This method is similar to the one
described by Dunbar et al. (2001) though there is no limit to
the number of fragments that can be in a bin. First, all
fragment lengths from all fingerprints of interest are pooled,
sorted, and duplicate fragment sizes are removed. Then
hierarchical clustering using average linkage (UPGMA) is
performed to identify fragments with lengths close enough to
being binned (e.g., within a radius of ±1 bp). The clustering

procedure starts by selecting the two fragments that have the
smallest difference in size. These two fragments are grouped
and form a bin that is represented by their average fragment
size. This procedure continues to group fragments into bins
until no more fragments or bins that have a size difference
less than the defined radius. If fragments within a sample are
binned together, their areas are summed and treated as a
single peak. A benefit of this procedure is that the validity of
this method was tested based on defined simulated data that
were generated to mimic real data.

Identifying populations in microbial communities

There are several web-based tools available that allow users
to identify plausible members of microbial communities
based on T-RFLP data (Kent et al. 2003; Shyu et al. 2007;
Wise and Osborn 2001). The tools differ as to whether they
automatically combine the results of profiles from several
restriction digests, account for both forward and reverse
primer, account for the relative abundances of fragments,
and allow for mismatches between primer sequence and
templates. Allowing for mismatches is important because
sequences that have a small number of mismatches with the
primer sequence may still amplify in PCR reactions. What
follows are short descriptions of some web-based tools that
can be used to identify plausible members of a microbial
community based on T-RFLP data.

A phylogenetic assignment tool (PAT) developed by
Kent et al. (2003) uses a default database produced by
using MiCA that contains the T-RFs predicted from an in
silico analysis of 16S rRNA sequences using the bacterial
16S rRNA gene primer 8F and one of several restriction
enzymes with tetrameric recognition sites. Custom-generated
databases can be used as well. The T-RFs predicted from
when a given primer–enzyme combination is used to
match the empirically determined fragment lengths to
those predicted from various phylotypes in the database.
The ability of PAT to correctly determine community
composition is increased by the analysis of multiple
digests because species that are not resolved by a given
restriction enzyme may be resolved by a different enzyme.
The resolution of PAT could be further enhanced if T-RF
sizes could be predicted from both the 5′ and 3′ ends of
amplified fragments, but this is not a feature of the
program. The method was validated by using T-RFLP in
conjunction with sequencing cloned 16S rRNA genes to
assess the variability of bacterial community structure
throughout the water column of a humic lake. The
taxonomic classes identified by T-RFLP and clone library
analysis matched well. TRUFFLER is a program similar
to PAT except sequences are retrieved from the European
Molecular Biology Laboratory DNA database and mis-
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matches between primer sequences and templates are
allowed. The authors reported that there were discrep-
ancies between predicted and actual fragment sizes (1–2
bp) but that overall, there was a good level of agreement
(Wise and Osborn 2001). APLAUS is an algorithm that
allows the definition of a bin size to address the problem
of size calling errors caused by factors such as differences
in migration behavior of the different fluorophores (Shyu
et al. 2007). As with PAT, it allows the comparison of one
or more T-RFLP profiles to the outcome of an in silico
analysis of the database with the same primer–enzyme
combination as used in the experiment (Shyu et al. 2007).
An important difference is that data from the analysis of
samples with multiple primer–enzyme combinations can
be evaluated simultaneously, which narrows the possibil-
ities for members of the community.

Although these tools can be used to gain insight to the
possible members of microbial communities, there are
several caveats one should be cognizant of when imple-
menting them. First, DNA fragments labeled with different
fluorophores may differ in electrophoretic mobility (Tu et
al. 1998). Second, electrophoretic mobility can be influ-
enced by sequence composition (Kaplan and Kitts 2003).
Both of these will introduce discrepancies between the
empirically determined and actual fragment sizes. Third,
only a small percentage of 16S rRNA gene sequences are
now archived in databases. Therefore, misidentification
may result from the fact that known sequences in the
database have the same sequence polymorphisms as novel
and unknown sequences in the sample (Blackwood and
Buyer, 2007). Even with these limitations, there are certain
cases in which data from T-RFLP analysis of microbial
communities can be used in conjunction with web-based
tools to an advantage. For example, it is possible to
presumptively identify and monitor specific bacterial
populations within a microbial community so long as the
sizes of the corresponding T-RFs are verified a priori.
Nilsson and Strom (2002) developed a database that
contains 16S rRNA gene sequences of fish pathogens. This
database can be searched to presumptively identify com-
mon fish pathogens based on the T-RF lengths obtained
with a defined primer pair and six restriction enzymes.

Monitoring changes in microbial communities

Advances in T-RFLP analysis make it possible to process
many samples using multiple primer–enzyme combina-
tions. The extensive datasets that result are too complex and
noisy to be analyzed subjectively so statistical methods
must be used.

We divide this discussion into three sections because in
general, the objectives of studies that use T-RFLP can be

divided into three categories: (a) visualizing relationships
among fingerprints using principal component analysis
(PCA; Clement et al. 1998; LaMontagne et al. 2002;
Pereira et al. 2006; Pesaro et al. 2004; Pett-Ridge and
Firestone 2005; Schwartz et al. 2007; Wang et al. 2004),
multi-dimensional scaling (MDS; Denaro et al. 2005; Pett-
Ridge and Firestone 2005; Terahara et al. 2004), self-
organizing maps (SOM; Dollhopf et al. 2001), and additive
main effects and multiplicative interactions (AMMI;
Culman et al. 2006); (b) identifying significant groups
using cluster analysis (Blackwood et al. 2003; Dickie et al.
2002; Fedi et al. 2005; Magalhaes et al. 2008; Moeseneder
et al. 1999; Pesaro et al. 2004; Polymenakou et al. 2005;
Schwartz et al. 2007; Smalla et al. 2007; Zhou et al. 2007)
and model-based approaches (Tang et al. 2007); and (c)
linking differences among the microbial communities to
variation observed in the environments sampled using
canonical correspondence analysis (CCA; Cao et al. 2006;
Grüter et al. 2006; Magalhaes et al. 2008) and redundancy
analysis (RDA; Blackwood and Paul 2003).

Visualizing relationships among microbial communities

PCA, MDS, SOM, and AMMI are useful methods to
visualize similarities or dissimilarities among microbial
communities. All four methods reduce the dimensionality
of the data, which are then plotted in two–three dimensions.
PCA uses a set of new variables (linear combinations of the
original variables) to describe as much of the variance in
the data as possible with as few variables as possible
(Johnson 1998). The so-called first principal component—
the first new variable—embodies the largest amount of
variation in the data. The second principal component,
which is orthogonal to the first principal component, takes
into consideration the second largest amount of variation
and so on (see Johnson 1998, for a more complete
description). MDS can be divided into metric and nonmet-
ric procedures. Metric MDS is also known as principal
coordinate analysis. To construct a plot for metric MDS, all
pairwise distances of all profiles are first computed. Then,
the multidimensional distances are plotted in two–three
dimensions in such a way that the original distances among
the profiles are reflected as accurately as possible. In
contrast to metric MDS, nonmetric MDS is based not on
the metric distances between profiles but on the ranks of the
distances between profiles. Importantly, MDS has a
goodness of fit test that indicates how well the generated
plot reflects the relations among the original data (Young
1987). Rees et al. (2004) extended the use of MDS to test
for significant differences among groups through the
analysis of similarity and they implemented similarity
percentage analysis to calculate the contribution of individ-
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ual T-RFs to the dissimilarity between samples. SOMs,
which have been used in a few studies to analyze T-RFLP
data (Dollhopf et al. 2001), organize data onto a two-
dimensional grid. Each node on the grid is described by a
model, and the models of neighboring nodes are more
similar to each other than those located further away. Each
T-RFLP profile is associated with a model on the grid that
explains the structure of the profile, and accordingly,
similar profiles will be organized more closely together on
the grid than less similar profiles. For a detailed description,
see Kohonen (2000). In comparison to PCA, SOM seems
better able to detect differences between profiles that
contain a large number of peaks (Dollhopf et al. 2001).
Depending on the objective of the study, AMMI (Gauch
1992) can be more useful than PCA, MDS, and SOMs
because it focuses on the differences in the response of
bacterial populations to treatments (Culman et al. 2006).
AMMI is a combination of analysis of variance and PCA.

There are limitations that should be considered when
using these methods. PCA and MDS have the disadvantage
that two–three dimensions may not be sufficient to reflect
differences among the profiles accurately if the data
structure is too complex. A limitation of PCA, MDS, and
SOM is that none of them provide statistical support for the
differences observed among microbial communities. None-
theless, these methods can be seen as useful exploratory
methods that give an impression on similarities and
dissimilarities of microbial communities.

Identifying groups of microbial communities

Cluster analysis and Bayesian model-based analysis can be
useful if the purpose of the analysis is to identify groups of
similar profiles and offers the advantage of providing a
measure of statistical support for each inferred cluster.
Cluster analysis is based on computing pairwise distances
between all profiles using a distance measure such as
Euclidean and Bray–Curtis distance. Profiles are then
clustered using a clustering algorithm such as single,
complete, or average linkage to group profiles so that
profiles within a group are more similar than profiles of
distinct groups (Johnson 1998). To determine whether
groups (clusters) are statistically significant, methods such
as cubic clustering criterion (CCC) and pseudo F-test can
be applied (Abdo et al. 2006). An extension of simple
cluster analysis has been described by Abdo et al. (2006). It
utilizes the outcome of cluster analysis to determine how
many samples and which samples within each cluster
should be used for the construction of clone libraries. This
allows an investigator to describe a known proportion of
total diversity present in samples of the cluster (Abdo et al.
2006). This is a useful objective procedure to minimize the

number of samples that must be analyzed in detail by
sequencing cloned genes.

A model-based Bayesian statistical tool (T-BAPS) was
developed by Tang et al. (2007) to cluster microbial
communities. T-BAPS operates by implying a priori that a
certain number of groups exist based on a model that
describes the probability that any of the observed profiles
belongs to a group. Using a Markov chain Monte Carlo
method, the parameters of the model for that particular
number of groups are determined. T-BAPS is run multiple
times assuming a different number of groups each time.
Bayesian information criterion Monte Carlo approximations
are then used to compare the models of the different runs to
determine the model that describes the data best, and this
model reflects the optimal number of groups (Raftery et al.
2006). Using both simulated and real data, it has been
shown that T-BAPS performs better than standard cluster
analysis. Unfortunately, Tang et al. (2007) do not state what
was done to distinguish between signal and noise, or how
profiles were aligned to account for run-to-run variation,
and the authors assumed the data were normally distributed,
which is not always the case for T-RFLP data. The
advantage of model-based methods such as T-BAPS over
many distance-based clustering techniques is that model-
based procedures provide a measure of statistical support
for each inferred cluster.

Linking changes among microbial communities
to observed changes in the environment

CCA (Cao et al. 2006; Grüter et al. 2006) and distance-
based RDA (Blackwood and Paul 2003) have been used to
link the observed changes in microbial community structure
to differences in environmental conditions. These methods
differ in that RDA uses linear combinations of environ-
mental variables to describe observed changes in commu-
nity profiles, whereas CCA uses a bell-shaped relationship
between microbial communities and environmental varia-
bles. The details of CCA and RDA are described in Ter
Braak (1986) and Legendre and Anderson (1999), respec-
tively. In their study, Grant and Ogilvie (2003) stated that
redundancy analysis may not be appropriate if no strong
environmental gradient is expected, in which case, explor-
atory ordination techniques are more applicable. We believe
that this is not necessarily true and that it depends on the
aim of the study. If the objective is to test if there is a
correlation between changes in communities and variation
in the environment, then RDA and CCA are both
appropriate. If changes in microbial communities and
changes in the environment are correlated, further studies
can be done to determine which environmental factors are
most strongly correlated with changes in the microbial
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communities. Although methods such as RDA and CCA
give some statistical support to determine whether samples
from different treatments or localities have different
community structures, there is a need for methods that
allow better inference from T-RFLP data. Model-based
methods are promising because they can deal with common
characteristics of T-RFLP data such as nonnormal distribu-
tion and sparseness of data.

Distance measures

Many of the statistical approaches discussed above are
based on measures that determine the similarity among
profiles (distance measures). There are many different
distance measures to choose from (Johnson 1998; Legendre
and Gallagher 2001; Tullos 1997) and the choice of the
distance measure used may greatly influence the results of
the analysis. In the analysis of T-RFLP data using distance
measures, there are two things to consider: (a) should the
abundances of individual phylotypes be included as an
important variable or should only the presence or absence
of fragments be used and (b) should the absence of a peak
in two samples be regarded as a similarity between them or
have no impact on the distance between two profiles.
Euclidean distance, the Morisita–Horn index, and Hellinger
distance incorporate abundance, whereas measures such as
Jaccard and Dice’s coefficient only take into account
presence/absence of T-RF sizes. Whether abundance is
included in the analysis depends on whether the objective
of the study is of a purely qualitative or a quantitative
nature. If changes in abundance are included in the
analysis, only standardized abundances should be used
due to the run-to-run variation (Liu et al. 1997; Osborn et
al. 2000). The simple matching coefficient incorporates the
absence of a T-RF in two profiles as a similarity, whereas
indices such as Jaccard and Bray–Curtis only account for T-
RFs that are present in two profiles as a similarity between
the two profiles. We suggest that similarity indices should
be used in which the absence of a bacterial population in
one of two profiles does not impact the distance between
the profiles. This is because the failure to detect a
population in a profile may not mean that it is absent from
a sample but rather below the detection threshold.

Conclusion

Great progress has been made in T-RFLP analysis of 16S
rRNA and functional genes. Technical developments such
as implementing capillary gel electrophoresis and the use of
multiple labeled primers and restriction enzymes resulted in
an improved reproducibility and resolution of T-RFLP

profiles, while web-based tools facilitate the choice of
primer and enzymes. Various statistical methods for data
analysis are being developed and used for the analysis of T-
RFLP and this permits more expansive data sets to be
objectively analyzed. These advances have greatly in-
creased the utility of T-RFLP in studies of microbial
community ecology.
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