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Abstract
Over a100 years ago,William Bateson provided, through his observations of the transmission of alkaptonuria in first
cousin offspring, evidence of the application of Mendelian genetics to certain human traits and diseases. His work
was corroborated by Archibald Garrod (Archibald AE.The incidence of alkaptonuria: a study in chemical individual-
ity. Lancert 1902;ii:1616^20) and William Farabee (Farabee WC. Inheritance of digital malformations in man.
In: Papers of the Peabody Museum of American Archaeology and Ethnology. Cambridge, Mass: Harvard University, 1905;
65^78), who recorded the familial tendencies of inheritance of malformations of human hands and feet. These
were the pioneers of the hunt for disease genes that would continue through the century and result in the discovery
of hundreds of genes that can be associated with different diseases. Despite many ground-breaking discoveries
during the last century, we are far from having a complete understanding of the intricate network of molecular
processes involved in diseases, and we are still searching for the cures for most complex diseases. In the last few
years, new genome sequencing and other high-throughput experimental techniques have generated vast amounts
of molecular and clinical data that contain crucial information with the potential of leading to the next major
biomedical discoveries. The need to mine, visualize and integrate these data has motivated the development of
several informatics approaches that can broadly be grouped in the research area of ‘translational bioinformatics’.
This review highlights the latest advances in the field of translational bioinformatics, focusing on the advances of
computational techniques to search for and classify disease genes.
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INTRODUCTION
More than 100 years ago, Archibald Garrod con-

firmed, with his study of the incidence of alkapto-

nuria in men, the Mendelian laws of inheritance of

this disorder. Dr William Bateson, a keen follower of

Mendel, had previously hypothesized that alkapto-

nuria in offspring resulting from mating of first

cousins might be the due to the fact that ‘first cousins

will frequently be the bearer of similar gametes’

dispelling the previous notion that mating of first

cousins in general might lead to the diseases, and

hypothesizing that the disease follows similar

inheritance laws observed by Mendel in plants. Just

after the terms genotype and phenotype were coined

[1], in 1905, William Farabee [2], a recognized

anthropologist, recorded the familial tendencies of

inheritance for malformations of human hands and

feet and also recognized the Mendelian patterns of

inheritance for those anomalies.

It would take over 90 more years of genetic

research to identify mutations in the BRCA1 gene

with clear relationships to familial breast cancer [3].

This breakthrough knowledge has had important

implications for the diagnosis and prognosis of
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cancer and familial forms of other complex diseases.

However, we are still far from resolving the subtleties

involved in the intricate pathways and molecular

relationships responsible for these disorders, in par-

ticular for complex diseases, and, most importantly,

we are still unable to deliver a cure for most diseases.

The shift to large-scale sequencing of individual

human genomes and the availability of new techni-

ques for probing thousands of genes provide new

sources of meaningful medical insights. The infor-

matics issues related to the accession, integration,

visualization and representation of this knowledge

in a systematic manner are quite challenging. On

the other hand, the stakes are high; for instance, by

identifying molecular patterns that characterize each

individual genome and discerning which of these

individual variations is related to a particular disease

or response to treatment, bioinformaticians could

provide the foundations for the development of

tools for the diagnosis, prognosis and personalized

treatment of diseases.

Translational bioinformatics is an emerging field

addressing the computational challenges in biomed-

ical research and the analysis of the vast amount of

clinical data generated from it [4]. It is difficult to

define such a broad field and, due to the inherently

interdisciplinary nature of the research, impossible

to detach translational bioinformatics from other

related fields. The American Medical Informatics

Association (AMIA) has defined the field of

Translational Bioinformatics as:

the development of storage, analytic, and interpre-

tive methods to optimize the transformation

of increasingly voluminous biomedical data, and

genomic data in particular, into proactive, predic-

tive, preventive, and participatory health. Transla-

tional bioinformatics includes research on the

development of novel techniques for the integra-

tion of biological and clinical data and the evo-

lution of clinical informatics methodology to

encompass biological observations. The end prod-

uct of translational bioinformatics is newly found

knowledge from these integrative efforts that

can be disseminated to a variety of stakeholders,

including biomedical scientists, clinicians, and

patients [5].

The combination of novel experimental techniques

with the emergence of translational bioinformatics

has changed how the search for disease genes is per-

formed. In the past, searching for disease genes was

done mainly using positional cloning. In modern

approaches, bioinformatics is an integral part of the

search for disease-associated genes.

Besides the potential impact on personalized

medicine, the field of translational bioinformatics

provides a wide range of tools and resources that

are invaluable in biomedical research. Due to the

space limitations, however, this review will focus

on the latest accomplishments in the hunt for disease

genes.

SEARCHING FORDISEASEGENES
This review provides a summary of the computa-

tional approaches related to the search for disease

genes and it is divided into three parts. The first

section is focused on the study of the properties

and characteristics of disease genes. The second sec-

tion provides a description of the methodologies and

the available resources for the identification of disease

genes. Finally, the last section highlights the advances

of the study of specific gene disruptions associated

with diseases, i.e. the analysis of human single

nucleotide polymorphisms (SNPs) and structural

variations.

Characterization of disease genes
The two main intrinsic properties of the genes that

hamper the study of their functions and their associa-

tions with diseases are:

(1) Diseases are caused by the effect of several genes:

for instance, comprehensive studies on mutations

in complex diseases, such as breast cancer [6] or

other types of cancer [7, 8], reported hundreds

of mutated genes. While this is certainly the case

for complex diseases, even simple Mendelian dis-

eases can lead to complex genotype–phenotype

associations.

(2) Genes can often perform several functions (gene

pleiotropy): Mutational analyses of a particular

gene, like the BRAF gene, reveal dozens of

mutational sites that lead to different phenotype

associations to cancer [7].

In addition, environmental factors also make disease

traits difficult to detect and complicate the search for

the genes responsible for such traits. The use of med-

ication or xenobiotic substances is an example of an

environmental variant. For example, it is difficult to

detect whether alcohol-induced toxicity is normal
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to the phenotype, or whether it is a result of the

individual variation in human liver alcohol dehydro-

genase and other enzymes. Other environmental

factors of great relevance to human disease are viruses

and other infectious agents [9, 10]. Environmental

factors, in conjunction with epigenetic regulation

of the genes, might also be responsible for the low

penetrance of certain alleles.

Disease genes are those genes involved in the

causation of, or associated with [e.g. in genome-

wide association studies (GWAS)], the disease. For

example, for cystic fibrosis (CF), the gene CTFR was

mapped to chromosome 7q31-q32 by linkage ana-

lysis in 1985 and later cloned by Francis Collins and

co-workers [11]. The deletion of three base pairs in

CFTR’s nucleotide sequence results in the absence

of a phenylalanine residue at position 508 of the

protein. In the endoplasmic reticulum, CFTR pro-

teins with this deletion are targeted for degradation.

As a result, there is an imbalance of the sodium and

chloride ion concentrations that creates a thick,

sticky mucus layer that leads to chronic infections.

Environmental and genetic factors influence this dis-

ease, and as a result, individuals with the same muta-

tion might have different disease outcomes. Despite

advances in understanding CF, there is still much to

learn and understand about this disease. In particular,

the mechanism for lung disease in CF patients, which

is lethal, is still unknown.

The number of disease genes discovered has been

steadily increasing throughout the years. Figure 1

depicts the growth of disease gene data from 1981

to 2009 (D.Magglot and J.Amberger, personal com-

munication). The analyses of the characteristics that

differentiate disease from non-disease genes have

been used to develop disease classifiers, a research

area of major importance due to the medical rele-

vance of disease genes.

Disease gene properties
Proteins derived from disease genes have been found

to have properties that distinguish them from all

other genes: they are longer [12], more conserved,

phylogenetically extended and without close paralog

[13]. In addition, when compared against house-

keeping genes, they present different patterns of con-

servation, function and DNA coding lengths [14].

Since inherited disease genes are more likely to be

non-essential, one could hypothesize that they arrive

later in the evolution of the human species.

Surprisingly, Domazet-Loso and Tautz [15] studies

showed that non-essential disease genes are of

ancient origin. In agreement with previous findings

about the disease gene length, their analysis also

showed that ancient genes tend to be longer. The

authors, confirming what others had reported, found

no significant differences in the rates of evolution of

disease versus non-disease genes [14]. The question

of evolutionary divergence of disease genes, how-

ever, remains open, with some findings indicating

that there is a higher rate of non-synonymous sub-

stitutions than synonymous ones [16] and others the

opposite [14, 17].

If disease genes were to evolve at higher speed,

could this be just an effect of the weak dominance of

these disease genes? To answer this question, Osada

etal. [18] compared evolutionary rates and the degree

of polymorphism of the dominant and recessive

disease genes. They found a higher rate of non-

synonymous polymorphisms in recessive genes. In

their analysis, the differences in selection intensity

are still significant even after taking into account

the dominance, suggesting that there are significant

differences in the deleterious effect of the dominant

and recessive genes.

The interaction network of disease genes has been

the subject of many studies [19, 20]. The relevance

of protein interactions in diseases and the develop-

ment of computational tools applied to disease gene

Figure 1: Histogram of cumulative growth of disease
gene discovery. Counts from 1981 to 2005 correspond
to the number of diseases for which the underlying
genetic defect is known.Values for the last 3 years also
include some selected diseases for which a genetic
association has been reported, but no causation has
been shown.
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identification has been previously discussed by Kann

[21]. Protein interaction networks have been studied

for Alzheimer’s disease [22], ataxias and disorders of

Purkinje cell degeneration [23] and for cancer genes

[19]. Genes involved in the same disease have been

found to form subnetworks [24]. Finding functional

modules associated with each disease could reveal

important aspects of the disease mechanisms and

aid in disease classification [25]. Feldman et al. [26]

compared disease genes against essential genes (from

mouse orthologs of human genes) in terms of their

connectivity and found the two set of genes to be

clearly distinct. In their analysis, the authors used a

network of interactions derived from the analysis of

hundreds of articles obtained with the Gene Ways

[27] natural language system. The resulting network

includes almost 13 000 physical interactions and

4458 genes. This work exemplifies the impact of

text mining in the field of translational bioinfor-

matics for the gathering of data from millions of

existing manuscripts.

In addition to the extensive study of the struc-

tured regions of the protein and their effect on dis-

ease, the study of intrinsically disordered regions of

the proteins from disease genes has recently lead to

‘unfoldomics’, or mapping of disordered proteins to

human diseases [28, 29]. A number of intrinsically

disordered proteins have been shown to be associated

with cancer [30], cardiovascular disease [31], diabe-

tes, neurodegenerative diseases [32] and other human

diseases [33, 34].

To summarize, not all the properties that charac-

terize disease genes have been probed or can be

easily explained. Previous studies require functional,

evolutionary and statistical hypotheses to explain the

observations about disease genes. Disease genes

might need to interact with each other and might

also need to be co-expressed as they participate in the

same functional pathways. Fewer paralogs within

the human genome might explain the inability of

the system to compensate for disruptions created

when these genes are modified. Longer genes can

be explained statistically as they will have more pos-

sible sites for mutations. Figure 2 depicts the distri-

bution of lengths of disease and non-disease genes

(from OMIM [35] and RefSeq [35], respectively).

Based on the two-sample Kolmogorov–Smirnov

test statistic, the distribution of lengths for the disease

and non-disease genes are significantly different with

a P-value of 3.0e-21. In addition, we estimated

the number of protein domains (from CDD [36])

of disease genes (from OMIM) to be higher, on aver-

age, than non-disease genes (Kolmogorov–Smirnov

test statistic with a P-value 1e-6).

Disease gene prioritization
Large-scale experiments generate lists of several

hundreds of disease gene candidates, and it is still

a challenge to identify the disease genes among

them. Certain gene properties, as described above,

differentiate disease genes and have been used as the

bases for computational tools to prioritize disease

gene candidates derived from these experiments.

Table 1 provides a sample of the most recent publicly

available sites that offer tools to rank disease gene

candidates. All of these approaches are based on the

integration of different sources. A summary of the

data sources used by these methods and a brief

description of the results are provided subsequently.

Data sources
Protein interaction (PPINT): It has been observed that

disease genes are highly connected with other genes

from the same disease. Differences in the network

properties, such as higher connectivity, have been

used to generate several gene-prioritization tools

[12, 37–45]. PPINT is a feature that has been

integrated with other gene properties into most of

the tools highlighted in Table 1.

Gene function (gene ontology): Disease genes are

expected to share common functional properties,

as annotated in the gene ontology (GO) [46].

Figure 2: Distribution of length of proteins from
disease and non-disease genes (black and gray, respec-
tively). Disease genes (from OMIM [99]) are significantly
longer than non-disease genes (RefSeq [35]).
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This hypothesis was tested and validated in a set of

disease genes from OMIM for each of the three

branches of GO, namely biological process, cellular

components and molecular function [47]. Goh et al.
[47] showed that the GO homogeneity in each

branch of GO is significantly higher for each disorder

compared with random. Therefore, most methods

for gene prioritization will increase the score of the

candidate gene that share GO annotation with other

genes from the same disease [48].

Pathway (PATH): As with functional annotation,

disease genes are, as it is with functional annotation,

most likely to share common pathways as annotated

in KEGG [49], Reactome [50], BioCarta [51],

BioCyc [52], GenMAPP [53], MSigDB [54] and

others.

Gene expression (GEXP): Disease genes are expected

to be co-expressed; thus gene expression data can be

used in combination with GO, PPINT and other

features described in this section to increase the

performance of gene-prioritization methods [45].

In addition, the availability of gene-expression data

with clinical phenotypes has generated many

approaches for the integration of these data, all

with enormous potential for the diagnosis and prog-

nosis of cancer and other complex diseases [55–63].

A full description of the advances in microarray

analysis is beyond the scope of this manuscript.

Protein domain (PDOM): Candidate disease genes

might have functions that are more similar to those

of known disease genes [64]. The function affected

might be due to the protein domains, which

represent the functional units of the proteins. The

presence of a certain domain when genes with that

particular domain are enriched in the disease, has

been used as an indication of the association of that

gene with the disease.

Gene regulation (REG and TFBS): Genes within the

same gene-regulation network are expected to

affect similar diseases. Thus, similarities in transcrip-

tion factor binding sites (TFBSs) have been also

incorporated into several of the approaches high-

lighted in Table 1.

Sequence properties (SEQ: LEN, GSTRU): Sequence

properties such as gene and protein length or struc-

ture could distinguish disease genes from non-disease

genes (see previous section). Sequence similarity has

also been incorporated into the ENDEAVOUR

gene-prioritization tool.

Expression and phenotypic data from orthologs (ORTH,
MOUSE): Functional information about genes in

other species is the only source for functional infor-

mation when the human data is not available or

impossible to produce. Thus, studies on model orga-

nisms are key to biomedical progress. ToppGene

[65] incorporates mouse data, and van Driel et al.
[66] includes several other species into the

GeneSeeker method.

Other ontologies used: The other ontologies used

are eVOC anatomical ontology [67] and mammalian

phenotype ontology (MP) [68] are used in

CAESAR. The disease ontology (DO) information

(http://diseaseontology.sourceforge.net) provides

hierarchical organization for disease types based on

Table 1: Resources for gene prioritization

Name Citation Website Data type

ToppGene Chen et al. [65] toppgene.cchmc.org PPINT,GO, PATH, PDOM,GEXP, TXT, TFBS, MOUSE
PhenoPred Radivojac et al. [70] www.phenopred.org PPINT,GO, STR, SEQ
CGPRIO Furney et al. [74] bg.upf.edu/cgprio PCONS,GSTRU,PDOM, PPINT,REG
CAESAR Gaulton et al. [80] visionlab.bio.unc.edu/Caesar TXTþGO, MOUSE,GEXP,eVOC, MP, PDOM
GenTrepid George et al. [79] www.gentrepid.org PPINT, PATH, PDOM
ENDEAVOUR Aerts et al. [78] www.esat.kuleuven.be/endeavour PATH, PPINT, PDOM,GEXP,GO, TFBS, SEQ, TXT
SUSPECTS Adie et al. [77] www.genetics.med.ed.ac.uk/suspects GO,PDOM,GEXPþ Prospectr
PROSPECTR Adie et al. [75] www.genetics.med.ed.ac.uk/prospectr LEN,PHYL
Prioritizer Franke et al. [74] pcdoeglas.med.rug.nl/prioritizer GO,PATH,PPINT,GEXP

The table summarizes the data types used to develop the different approaches for gene prioritization highlighted here and their abbreviations as
found in themain text: PPINT, PATH,PDOM,GO,GEXP, gene^disease associations extracted frombiomedical literature (TXT),TFBS, information
about orthologous sequences from mouse (MOUSE), structure (STR) and sequence (SEQ) similarity, DOs, conservation at the protein level
(PCONS), gene regulation (REG), gene structure (GSTRU), eVOC anatomical ontology (eVOC),MP, gene length (LEN) andphylogenetic information
(PHYL).
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the Unified Medical Literature system (UMLS)

[69]. The DO was incorporated into PhenoPred to

cluster similar diseases into higher levels of aggrega-

tion, improving the confidence on PhenoPred

predictions [70].

Text mining (TXT): There are over 19 million bio-

medical records in PubMed today [71], and this

repository constitutes one of the best sources of

information about disease genes. In addition to

CAESAR (see below), several other approaches

have been used to integrate text-mining tools with

disease ontologies to derive gene–disease associations

[43, 72].

Overview of the methods
Methods for gene prioritization rely on the informa-

tion provided by one or more of the experimental

techniques described above. Therefore, the amount

and quality of the available experimental data gener-

ated by these techniques is a major limitation of

the gene-prioritization techniques. For instance,

protein–protein interaction-based methods suffer

from the incompleteness and low quality of the

data currently available for interaction networks

in mammals. Another source of uncertainty is the

disease mapping information used to train and eval-

uate the computational methods, for it is of variable

resolution and expected to contain large numbers

of false positives. Furthermore, gene-prioritization

methods have been hampered by the complexity

and difficulty in creating functional and disease

ontologies. Methods that rely on text mining, also

face the difficulties inherited from natural language

processing, such as issues related with extracting gene

names from the biomedical literature [73].

Prioritizer, developed by Franke et al. [74] is avail-

able for download in their site (Table1). Franke et al.
[74] studied the effect of using three different gene

networks—GO, PPINT and GEXP—to correctly

rank the disease genes for a set of 96 disorders with

409 known disease genes. Combining PPINT and

GEXP, a better ranking was achieved than what

could have been obtained randomly. The method

showed considerable improvement (represented by

an increase in the area under the ROC curve)

when GO was added. The best ranking of disease

genes was reached when the three types of data were

combined. The authors used the combination of all

sources to prioritize genes in artificial susceptibility

loci and found a 2.8-fold increase in the chance

of detecting disease genes with respect to random

selection.

Another tool, PROSPECTR, uses an alternating

decision tree which has been trained to differentiate

between genes ‘likely to be involved in disease’ and

‘genes unlikely to be involved’ in disease [75].

The method uses gene properties that are character-

istic of disease genes (see previous section) to provide

each gene with a score, which is a measure of con-

fidence in the classification. In a test set of 675 genes

from the Human Gene Mutation Database [76],

and 675 picked at random from Ensembl (had no

association with disease), PROSPECTR performed

with a sensitivity of 0.71 and a specificity of 0.58.

SUSPECTS adds an extra layer to PROSPECTR,

using GO annotation, protein domain and gene

expression data to rank and score each gene [77].

The program scores each gene of the test set based

on its relationship to the networks in the training set.

Similarly, ENDEAVOUR uses a larger set of over

12 data sets (listed in Table 1) and order statistics to

score and rank genes from the test set [78]. The test

set of disease genes used to benchmark SUSPECTS

was, on average, within the top 13% of the candi-

dates, while results using ENDEAVOUR indicate

that disease genes from a test set of 200 genes

ranked 13 on average, representing a 7- and 9-fold

enrichment over random classifiers for each method,

respectively.

GenTrepid uses two methods: common module

profiling (CMP), based on similarity of protein-

domain composition, and common pathway scan-

ning (CPS), based on common protein interactions

and metabolic pathways among disease genes [79].

George et al. [79] found the two methods to be

complementary, with the combination of the two

approaches yielding the best performance. However,

a meta-analysis combining both methods into a

consensus would have decreased the performance

compared to using both methods independently.

When used side by side, the two methods were

reported to have a sensitivity of 0.52 and a specificity

of 0.97 in a benchmark of 170 genes (29 diseases)

representing a 13-fold enrichment in disease genes.

In other words, a list of 100 gene candidates could be

reduced to 8 with significant cost and time reduction

in the posterior experimental analysis of these candi-

date genes.

CAESAR, developed by Vision and co-workers

[80], is a tool primarily based on text mining of dis-

ease information mainly from review articles and the
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integration of other gene data (Table 1). The authors

have addressed the challenge of analyzing complex

traits, In their study of 18 genes complex human trait

susceptibility genes, CAESAR selected 7 of the genes

within the top 2% of the ranked genes. From almost

15 000 genes, 16 of the 18 genes were ranked with

a median rank of 549.5. This represents a 67-fold

average enrichment.

PhenoPred, developed by Radivojac et al. [81]

studies the network of interactions and functional

relationships of the target protein and detects its

local neighborhoods in the network. The authors

devised a supervised approach to find local signatures

of the disease and find new candidate genes that

are not necessarily in close proximity to the known

disease genes. PhenoPred can be queried using

a gene or a disease name. If the input is a gene,

the program will return a list of diseases that the

gene could be associated with (based on the

network properties of the genes known for that

disease). If starting with a disease name, the program

retrieves all the genes predicted to be related to

the disease. In both cases, PhenoPred provides a

similarity score that represents the chance of the

gene–disease association to be true. The authors

showed that this approach works best when com-

bined with the molecular function of the query

gene and physicochemical properties of its protein

product.

ToppGene Suite [65] integrates a vast number of

genomic data from humans and mice (Table 1). This

state-of-the-art resource includes ToppFun and

ToppGene methods that can be used for the analysis

of gene functional enrichment and for the prioritiza-

tion of disease gene candidates, respectively. It uses a

fuzzy-based similarity measure between the genes in

the training and test set based on their semantic

annotation. It also derives the probability (P-value)

that each annotation is related to the gene in ques-

tion, using random sampling of the whole genome.

The authors analyzed 20 gene–disease associations

from five disorders (from recently reported GWAS)

and found that ToppGene ranked 19 of 20 candidate

genes within the top 20%. The mean rank for

ToppGene was 6.8 (excluding diseases that lacked

interaction data [65]).

Lastly, CGPRIO, a tool recently developed by

Furney et al. [82] is based on gene properties such

as length and structure for identifying those features

that characterize cancer genes. Based on distinguish-

ing features, a naı̈ve Bayes model is used to classify

genes as proto-oncogene or tumor suppressor genes

(Table 1).

From the user’s perspective, the most desirable

features for these methods are:

(i) Online availability: all the methods in Table 1

are freely available and can be interactively

used within their websites, with the exception

of CAESAR and Prioritizer, which are down-

loadable from their sites as stand-alone

applications.

(ii) Advanced interface for input of training and test

sets: the option of a custom-made list of genes

for training is highly desirable for biologists

(input of ENDEAVOUR and ToppGene).

Additional input options such as those found

in SUSPECTS and GeneTrepid (including

disease name or keywords within the gene

description) facilitate the analysis when no

customized training set is available.

(iii) Clear summary of the results with an overall

ranking of the genes: some methods like

ToppGene and SUSPECTS provide both a

measure of the likelihood that the gene is

responsible for the disease or associated with

the training set and also a clear visualization

of the results of ranking the genes with each

feature used in the process.

In summary, the methods for disease gene prioritiza-

tion have led to an improvement in the detection of

disease genes and to an increase in our knowledge

about the integration of the several data sources for

gene function and disease association. However,

these methods can only be as accurate as the data

they are based upon, which is an important issue,

given the low quality of some of the experimental

data on which they rely (e.g. protein–protein inter-

action data is incomplete and unreliable). Producing

good ontologies for complex processes and improv-

ing the methods for mining and integrating the

multisource data are difficult tasks that, unless

addressed, will continue to severely limit the progress

of gene-prioritization techniques.

Computational approaches for the
analysis of disease mutations
Recent advances in sequencing techniques are gen-

erating data about individual human genomes at

a relatively low cost. The identification of disease-

related SNPs derived from large-scale techniques has
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the potential to create personalized tools for the

diagnosis, prognosis and treatment of diseases.

Mutations in the genomic code often produce

changes in the protein sequence, leading to diseases.

The key to approaches that identify disease muta-

tions lies in distinguishing between SNPs that are

functionally relevant from those that are not. For

the non-synonymous SNPs within coding regions

(coding nsSNPs), methods rely on the study of the

functional disruptions produced in the protein. An

in-depth discussion of the online resources available

for the analysis of SNPs can be found in Karchin’s

recent review article [83]. Here, I discuss the recent

advances in computational methodologies developed

for the analysis of coding nsSNPs and, briefly, for the

analysis of structural variants.

Analysis of SNPs
Large-scale GWAS and human-sequencing projects

are producing hundreds of SNPs with putative rele-

vance to cancer [84] and other diseases (see review

[85]). Some of these sequence disruptions in the

protein produce changes in the stability, regulation,

ability to interact or to be modified, and are ulti-

mately associated with the disease. Computational

approaches developed to prioritize SNPs can

reduce the number of experimental trials by focusing

on sites that are functionally relevant. Ideally, one

would also like to deduce from the analyses of

SNPs the mechanistic changes produced by the

mutation and the cause of the disease. Methods

used to predict whether a mutation is deleterious

combine structural, conservation and/or other

sequence properties that identify the mutational site

as a potential site. The properties used in these

approaches are highlighted below.

Protein structure
Disease mutations have been found to affect the

stability of the proteins [86] or to cause protein

aggregation [87]. It has been shown by several

authors that the impact of the coding nsSNPs can

be investigated by studying the 3D structure of the

protein [88–94]. Polyphen, a method developed by

Sunayev and colleagues [95], relies on functional

annotation and structure predictors for evaluating

the deleteriousness of the SNPs.

Conservation
Early studies showed that disease mutations are

located in conserved sites [94, 96]. Conservation

across species is often an indication of functional

relevance. One of the earlier approaches, SIFT, com-

bined conservation with physicochemical properties

of the amino acids to produce a list of mutations that

are not tolerated at a particular protein site [89].

Protein domain
Location of the mutation within a particular

protein domain is also critical to predicting deleteri-

ous effects. Clifford et al. [97] incorporated a score

based on the protein domain’s position specific scor-

ing matrix (PSSM). The score, or logR.E-value, is

calculated as the log10 (E-value_variant/E-value_

canonical), where the E-values are generated from

the domain’s alignment of the variant and canonical

proteins using HMMer [98]. The logR.E-value is

a measure of how a particular mutation affects the

total score of the alignment to the domain’s PSSM.

The authors found that this measure is a good

predictor of whether or not the SNP is deleterious.

Recently, Kann and co-workers have mapped all

human SNPs and disease mutations (from OMIM

[99] and Swiss-Prot [100]) to their corresponding

protein domain sites. We have created a freely avail-

able resource for the domain mapping of domain

mutations, the DMDM site. A screenshot of the

DMDM protein domain webpage for the DNA-

binding homeodomain is depicted in Figure 3.

DMDM aggregates all the information about

human mutations and provides coordinates of all

mutations within the human domains. DMDM is

available at http://bioinf.umbc.edu/DMDM and

can be used to identify domain sites with high inci-

dence of disease mutations.

Posttranslational modifications
Mutations that affect post-translational modifications

might produce a gain or loss of function causative

of disease. In a recent study of cancer mutations,

Radivojac et al. [81] found that mutations predicted

to have an effect on phosphorylation function are

enriched in somatic cancer data. These results suggest

that both gain and loss of phosphorylation might be

important features for identifying cancer mutations,

especially drivers. This approach was generalized

to incorporate other post-translational modifica-

tions (methylation, glycosylation, ubiquitination)

together with functional site predictors (e.g. catalytic

residues, DNA-binding residues) towards prob-

abilistically identifying molecular mechanisms of

disease [101].
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Modern approaches integrate multiple molecular

features and have been applied to genes from several

diseases [102–107]. However, there are still discre-

pancies among the predictions from the different

approaches. In addition, with the exception of the

phosphorylation function, these approaches are

unable to provide hypotheses for the actual cause

of the disease.

Figure 3: Screenshot of a protein domain page from the DMDM website.The query result for the homeodomain,
a DNA-binding protein domain, is depicted. For each position of the protein domain, the weblogo is shown aligned
to a histogram indicating the number of SNPs and disease mutations known in all the human proteins aligned to
the domain (from 318 human proteins). In addition, bars underneath each position indicate the functional sites of
the domain (e.g. DNA-binding site). The cursor shows data for domain position number 4 for which 12 mutations
associated with disease (from OMIM [99] and Swiss-Prot [100]) and one SNP (from dbSNP [138]) are known. The
data show only a subset of the results.
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Analysis of non-coding SNPs
In addition to the study of coding SNPs, other com-

putational approaches (only briefly mentioned here)

focus on SNPs within the non-coding regions of the

genome. Non-coding SNPs could be located within

TFBSs, microRNA-binding motifs, regulatory-

potential sequences or splice sites, and account for

most of the human variation found in GWAS [108].

Because SNPs located within the TFBS of a gene

may affect the level or timing of the gene expression,

computational methods that identify the TFBS-

SNPs are valuable resources for selecting candidate

regulatory polymorphisms of biomedical signifi-

cance. An example of such an approach is

RAVEN [109], which combines phylogenetic foot-

printing and TFBS prediction to identify variations

in candidate cis-regulatory elements. Other methods

like UTRScan [110] and FASTSNP [111] also focus

their analysis on SNPs within the non-coding

regions. UTRScan can be used for the analysis of

50- and 30-UTR of eukaryotic mRNAs. UTRScan

relies on user-submitted experimental data about the

biological activity of functional patterns of UTR

sequences to predict whether a particular UTR

SNP has functional relevance [110]. FASTSNP has

been used to identify intronic SNPs that may lead to

defects in RNA and mRNA processing. FASTSNP

is based on a decision tree principle to predict

whether the SNP has an effect on the TFBS of

the gene [111]. SNPs located within two base pairs

of an intron–exon junction, or at exonic splicing

enhancer (ESE) or exonic splicing silencer (ESS)-

binding sites may disrupt mRNA splicing and

severely affect proein function [111]. Methods such

as ESEfinder or RESCUE ESE can predict ESE

motifs [112, 113]. ESS sites can also be predicted

using the FAS-ESS method [114]. An excellent

review of the different approaches used to predict

and identify functional polymorphisms within

microRNA-binding sites was provided by Chen

et al. [115].

Analysis of structural variants
The study of variations of the human genome is

not limited to the analysis of SNPs. Other structural

variants can also be linked to diseases (see articles

[116, 117] and reviews [118, 119]). These structural

variants include duplications, inversions and deletions

that can currently be identified by array comparative

genomic hybridization (aCGH) and paired-end

mapping [120–127]. Addressing the need for a

common framework of reference for structural vari-

ant comparison, Raphael and co-workers proposed

a computational approach for the localization

of the breakpoints of these modifications [128].

They introduced an algorithm for the identification

of data from aCGH and paired-end mapping

and provided a framework for comparing structural

variants across the different techniques. Advances in

the analysis of structural variants will have great

implications for the analysis of the human-genome

and cancer-genomesequencing projects in the near

future.

CONCLUSIONS
The study of disease genes has evolved from basic

assumptions that genes follow Mendelian laws to

modern computational techniques that are capable

of providing insight on hundreds of genes and

discriminate particular mutations associated with

diseases. The major breakthroughs in the field have

lead to general knowledge of the functional,

networking and evolutionary properties of disease

genes as well as to the identification of genes

for specific diseases. Our understanding of the

molecular interactions within systems and the

phenotypes they are capable of causing could still

change dramatically, e.g. by devising the role of

microRNAs in normal regulation and disease

regulation. Bioinformaticians are addressing the chal-

lenges created by the availability of molecular

and clinical data produced by new techniques.

Integration of data from regulation, interaction and

other functional activity of the genes has become

essential in medical research.

Ideally, one would like to create the framework

for the integration of the experimental, biological

and clinical data with existing molecular data and

to provide experimental validation of the computa-

tional findings. An example of such an approach is

the work by Leach et al. [129] that introduced a

knowledge-based system that combines reading,

reasoning and reporting methods to facilitate analysis

of experimental data, which was then applied to the

analysis of a large-scale gene expression array data sets

relevant to craniofacial development. Their tool,

Hanalyzer, provided functional hypotheses regarding

the role of four genes (Apobec2, E430002G05Rik,

Hoxa2, Zim1) in the development of the murine
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tongue. Experimental validation of these results indi-

cated that all four were expressed in the tongue.

Further analysis will be required to determine if

these genes have specific roles in tongue develop-

ment and function, and if they act as specific markers

for individual components of the intrinsic and

extrinsic tongue musculature.

Recently the relations between diseases, pheno-

type and mechanisms have been exploited in an

attempt to identify potential new applications for

already approved drugs, which could accelerate

drug development and reduce overall costs [130].

Data from several pharmaceutical knowledge sources

(Drug Bank, Anatomical Therapeutic Chemical

Classification) and molecular networks (BIND,

BioGRID, KEGG, HPRD) were aggregated using

the Resource Description Framework (RDF) stan-

dard. The linked ensemble was analyzed for all asso-

ciations between genes, phenotypes, diseases, clinical

symptoms, drug mechanisms and indications; rela-

tions showing substantially greater disease to drug

associations via phenotypes and mechanisms were

ranked and investigated in more detail. One strong

association found was between systemic lupus

erythematosus and the breast cancer drug

Tamoxifen.

Studies in yeast and other model organisms have

led to the development of techniques for the inte-

gration of functional data in humans. Troyanskaya

and colleagues [131] have recently introduced a

Bayesian integration system to provide functional

maps for human data. The functional maps are avail-

able at http://function.princeton.edu/hefalmp and

allow for interactive visualization of large-scale

experimental data. Another example of integration

of experimental data is the work of Califano and

co-workers [132] on the identification of post-

translational modulators of transcription factor activ-

ity and the integration of networks from multiple

sources. For this purpose, the authors created

the Modulator Inference by Network Dynamics

(MINDy) algorithm [132] and the interactome

dysregulation enrichment analysis (IDEA) algorithm.

MINDy was recently applied to analyze the inter-

face between signaling pathways and transcriptional

networks in human B cells [133]. The IDEA algo-

rithm is focused on the search for interactions

(instead of genes) that might affect the disruption

causing the diseases, and integrates data from

different sources, including protein interactions.

It has been successfully used to predict oncogenes

and molecular perturbation targets in B-cell

lymphomas [134].

REMARKSABOUT FUTURE
DIRECTIONS
The completion of the human genome has changed

the way the search for disease genes is performed.

In the past, the approach was to focus on one or a

few genes at a time. Now, projects like the cancer

genome atlas exemplify the efforts to systematically

analyze all the gene alterations involved in different

cancer types [84]. The next step is to produce a com-

plete picture of the mechanistic aspects of the diseases

and the design of drugs against them. For that, a

combination of two approaches will be needed: a

systematic search and in-depth study of each gene.

The future of the field will be defined by new

techniques to integrate large bodies of data from

different sources and to incorporate functional infor-

mation into the analysis of large-scale data. The

response of bioinformatics to new experimental

techniques brings a new perspective into the analysis

of the experimental data, as demonstrated by the

advances in the analysis of data from microarray

and other technologies. It is expected that this

trend will continue with novel approaches to

respond to new techniques, such as next-generation

sequencing technologies. For instance, the availabil-

ity of large numbers of individual human genomes

will promote the development of computational

analyses of rare variants, including the statistical

mining of their relations to lifestyles, drug interac-

tions and other factors.

Biomedical research will also be driven by our

ability to efficiently mine the large body of existing

and continuously generated biomedical data. Text-

mining techniques, in particular, when combined

with other molecular data, can provide information

about gene mutations and interactions and will

become crucial to stay ahead of the exponential

growth of data generated in biomedical research.

Another field that is benefiting from the advances

in mining and integration of molecular, clinical

and drug analysis is pharmacogenomics [135–137].

In silico studies of the relationships between human

variations and their effect on diseases will be key to

the development of personalized medicine.

In summary, translational bioinformatics has

already transformed the search for disease genes and

has the potential to become a crucial component of

other areas of medical research.
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Key Points

� Some properties of the disease genes can distinguish them from
other genes: they are longer, with fewer paralogs and more
homologs in other species.

� Disease genes tend to interact with each other and to be
co-expressed. Also, their network of interaction is significantly
different than that of the housekeeping genes.

� Mutations in disease genes can be identified by their ability to
disrupt the gene function or structure. The study of sequence
conservation, structure and other gene properties provides the
basis for in silico methodologies to predict whether a mutation
is deleterious.

� Integration of expression, interaction, evolutionary and
sequence data constitutes one of the most powerful tools
in translational bioinformatics.
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