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Abstract
Benzene is a ubiquitous chemical in our environment that causes acute
leukemia and probably other hematological cancers. Evidence for an
association with childhood leukemia is growing. Exposure to benzene
can lead to multiple alterations that contribute to the leukemogenic
process, indicating a multimodal mechanism of action. Research is
needed to elucidate the different roles of multiple metabolites in
benzene toxicity and the pathways that lead to their formation. Studies
to date have identified a number of polymorphisms in candidate
genes that confer susceptibility to benzene hematotoxicity. However, a
genome-wide study is needed to truly assess the role of genetic variation
in susceptibility. Benzene affects the blood-forming system at low levels
of occupational exposure, and there is no evidence of a threshold. There
is probably no safe level of exposure to benzene, and all exposures
constitute some risk in a linear, if not supralinear, and additive fashion.
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EPA: Environmental
Protection Agency

INTRODUCTION

Benzene is widely used in the United States
and ranks in the top 20 chemicals for pro-
duction volume (see ATSDR Toxicological
Profile of Benzene, http://www.atsdr.cdc.
gov/toxprofiles/tp3.pdf ). It is the primary
starting material for chemicals used to make
plastics, resins, synthetic fibers, dyes, deter-
gents, drugs, and pesticides. Natural sources
of benzene include emissions from fires. Ben-
zene is also a component of crude oil, gaso-
line, and cigarette smoke. Occupational expo-
sures in the developing world are sometimes
very high because of the continuing presence
of benzene in industrial solvents and glues. In
the United States, workers continue to be ex-
posed to potentially high levels of benzene in
the chemical industry, in petroleum refineries,
in oil pipelines, on ships and tankers, in auto
repair shops, and in bus garages. Shipping may
be particularly hazardous because there is lit-
tle awareness or regulation, and exposures can
be considerable. For example, on marine ves-
sels benzene air concentrations typically range
from 0.2–2.0 ppm during closed loading and 2–
10 ppm during open-loading operations (121).
The general public is exposed mainly from mo-
bile sources, such as automobiles. The benzene
content of gasoline is, therefore, strictly regu-
lated in the United States and Europe, with lim-
its typically around 1%. The U.S. Environmen-
tal Protection Agency (EPA) recently set new
regulations that will lower the benzene content
in gasoline to 0.62% in 2011 (20).

HISTORICAL OVERVIEW
OF THE HEMATOTOXIC
EFFECTS OF BENZENE

Benzene is the simplest aromatic chemical and
an excellent solvent. Its toxicity to the blood-
forming organs was realized soon after its in-
dustrial use began. In 1897, Santesson described
nine cases of chronic benzene hematotoxicity
(88). The hematotoxic effects of benzene were
further documented in studies by Selling (90)
and Weiskotten (114, 115). This research led

Alice Hamilton (35) and others to warn about
the occupational dangers of benzene (98).

The first case of benzene-associated
leukemia was described by Delore &
Borgomano in 1928 (16). Many leukemia
cases associated with benzene exposure were
reported between 1930 and the 1960s (3, 4, 30,
109), and by 1961 benzene had been identified
as one of two industrial leukemogens, the other
being ionizing radiation (15). Reports of multi-
ple cases of leukemia and other hematological
disorders among shoe workers using benzene
as a solvent and in glues were generated by
Vigliani and colleagues in Italy (23) and by
Aksoy and coworkers in Turkey in the 1960s
and 1970s (1, 2), confirming the association
with leukemia.

TRADITIONAL
EPIDEMIOLOGICAL STUDIES OF
THE CARCINOGENIC EFFECTS
OF BENZENE EXPOSURE

It was not until 1977 that the first positive
finding of increased leukemia risk in an epi-
demiological cohort study of workers in the
U.S. rubber industry was published, by Infante
et al. (43). They reported that workers occu-
pationally exposed to benzene between 1940
and 1949 had at least a fivefold excess risk of
all leukemias and a tenfold excess of deaths
from myeloid and monocytic leukemias com-
bined compared with controls. The environ-
ment of the workers in the study population was
not contaminated with solvents other than ben-
zene, showing that benzene must be the cause.
This study became known as the Pliofilm study
because it investigated workers exposed to ben-
zene in rubber hydrochloride (the Goodyear
trade name for which was Pliofilm) manufac-
turing plants in Ohio. Subsequent follow-ups
of this cohort were published by Rinsky and
coworkers, with the most recent being in 2002,
which reaffirmed the leukemogenic effects of
benzene exposure in this cohort (83, 84). Be-
cause of its importance as the first epidemio-
logical study to provide quantitative estimates
of leukemia risk from benzene exposure, as well
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as its role in the lowering of the Occupational
Safety and Health Administration (OSHA) per-
missible exposure level to 1 ppm, the Pliofilm
study has been the subject of much reanalysis
by consultants to the oil and chemical industry
(e.g., 73, 74) with the intention of influencing
regulatory or legal proceedings as described in
detail by Michaels (68). However, subsequent
studies in China and Australia have confirmed
and expanded on its findings, as described
below.

After President Nixon’s visit to China in
1972, China became much more open to trade
with the west and became much more industri-
alized. The manufacturing of shoes and leather
goods increased dramatically, along with expo-
sure to benzene through its use as a solvent
and as a contaminant in glues. Reports of sig-
nificant health problems associated with ben-
zene in workplaces in China soon began to
appear. These reports led to pioneering stud-
ies of benzene-exposed workers in China by
Songnian Yin and colleagues of the Chinese
Academy of Preventive Medicine (CAPM), who
identified more than 500,000 workers exposed
to benzene (124). A follow-up survey of 28,460
benzene-exposed and 28,257 unexposed work-
ers from 1972 through 1981 found an increased
risk of mortality due to leukemia [standardized
mortality ratio (SMR) = 5.7] (123). In 1987,
the U.S. National Cancer Institute (NCI) be-
gan collaborating with the CAPM team to iden-
tify all incident cases of hematologic neoplasms
and related disorders in an expanded study co-
hort of 74,828 benzene-exposed and 35,805 un-
exposed workers employed from 1972 through
1987 in 12 cities in China (37, 122). The study
confirmed increased risks of acute myeloid
leukemia (AML) and other malignant and non-
malignant hematopoietic disorders associated
with benzene exposure and found evidence for
hematopoietic cancer risks at levels substan-
tially lower than had previously been estab-
lished. In contrast to the findings among rubber
hydrochloride workers, the NCI-CAPM study
showed excess risk at relatively low levels of ex-
posure (<10 ppm average and <40 ppm-years

CAPM: Chinese
Academy of Preventive
Medicine

NCI: National
Cancer Institute

AML: acute myeloid
leukemia

NHL: non-Hodgkin
lymphoma

MDS:
myelodysplastic
syndromes

OR: odds ratio

cumulative) but found a relatively modest dose-
response effect, with proportionally smaller in-
creases in risk at increasing levels of exposure.
The study also reported that workers with 10
or more years of benzene exposure had a rela-
tive risk (RR) of developing non-Hodgkin lym-
phoma (NHL) of 4.2 [95% confidence interval
(CI) 1.1–15.9] and an excess risk of myelodys-
plastic syndromes (MDS) (36, 37, 104). This
study considerably expanded the health effects
associated with benzene beyond AML and sug-
gested benzene produced effects at levels lower
than previously thought. It has again been the
subject of much criticism by industry consul-
tants to which the NCI-CAPM investigators
have responded (36). They will soon report on
an additional 10 years of follow-up through
1997.

Glass and coworkers performed a nested
case-control study of lympho-hematopoietic
cancer nested within the existing Healthwatch
cohort study to examine the role of benzene ex-
posure (26, 28, 36). Cases identified between
1981 and 1999 (n = 79) were age-matched
to five control subjects from the cohort. Each
subject’s benzene exposure was estimated us-
ing occupational histories, local site-specific in-
formation, and an algorithm using Australian
petroleum industry–monitoring data. This ex-
posure assessment is probably the best of any
epidemiological study of benzene to date (25,
27). Matched analyses showed that the risk of
leukemia was increased at cumulative exposures
above 2 ppm-years and with intensity of expo-
sure of highest exposed job more than 0.8 ppm.
Risk increased with higher exposures; for the
13 case-sets with greater than 8 ppm-years cu-
mulative exposure, the odds ratio (OR) was
11.3 (95% CI 2.85–45.1). The risks for acute
nonlymphocytic leukemia (ANLL) and chronic
lymphocytic leukemia (CLL) were raised for
the highest exposed workers. A cumulative ex-
posure of >8 ppm-years was associated with
a sevenfold significantly increased risk specif-
ically of ANLL. No association was found be-
tween NHL or multiple myeloma and benzene
exposure, but this finding may have been due
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Table 1 Current issues in the risk assessment of benzene

Is it only acute myeloid leukemia that is produced by benzene?
What is the mechanism(s) of benzene carcinogenicity?
Are there susceptible subpopulations?
What is the dose-response curve? Is it linear, and is there a functional
threshold?

to limited follow-up. The Glass et al. study is
important because it found an excess risk of
leukemia associated with cumulative benzene
exposures and benzene exposure intensities that
were considerably lower than reported in pre-
vious studies. Furthermore, no evidence was
found of a threshold cumulative exposure be-
low which there was no risk. However, it has
been suggested that the high incidence of CLL
may be due to a surveillance bias (29).

Apart from these three important studies,
there have been many other epidemiological
studies of the carcinogenicity of benzene, which
are too numerous to review here. For reviews,
see recent articles in References 10, 48, and
120. The consensus clearly shows that benzene
causes AML/ANLL and MDS, even at rela-
tively low doses, and that AML often arises sec-
ondary to MDS. However, a series of questions
important to the risk assessment of benzene
remain (Table 1).

IS IT ONLY ACUTE MYELOID
LEUKEMIA THAT IS PRODUCED
BY BENZENE?

The evidence for other forms of leukemia apart
from AML being caused by benzene expo-
sure as well as different forms of NHL has
grown steadily over the years. Lymphomas
were reported long ago in experimental ani-
mals given long-term exposure to benzene. Be-
cause all leukemias arise in the stem and pro-
genitor cells of the bone marrow, which are
clearly damaged by benzene, there is a biologi-
cally plausible basis for suggesting benzene as a
causal factor for acute lymphoblastic leukemia
(ALL) and chronic myeloid leukemia (CML).
Some studies of benzene-exposed workers have

reported such an increased risk, but the assess-
ment of the association of benzene with these
malignancies is hampered mainly by their rarity
and is certainly stronger for ALL than CML.
Several epidemiological studies, including the
above study by Glass et al. (26), have reported
an association between benzene exposure and
CLL. The main problems in assessing the risk
of CLL are the different disease classifications
used by investigators over time, the fact that
the disease is present with only very low inci-
dence in Asians, and the lack of specific infor-
mation on CLL in most studies. CLL is now
classified as a form of NHL along with multi-
ple myeloma because they are now considered
subclassifications of mature B-cell neoplasms
(107). Mechanistic and molecular epidemiol-
ogy studies may contribute to our understand-
ing of the association of benzene with these
neoplasms. For example, both CLL and mul-
tiple myeloma have precursor forms: Almost
all CLL patients are preceded by a monoclonal
B-cell lymphocytosis precursor state (54), and
monoclonal gammopathy of undetermined sig-
nificance (MGUS) is a common precursor to
myeloma (116). Demonstration that these pre-
cursors were elevated in benzene-exposed pop-
ulations would add support to the hypothesis
that benzene was causatively linked to CLL and
myelomagenesis, as has recently been shown for
certain pesticides (55).

Epidemiological studies on the association
between benzene and NHL have produced
mixed results. For example, in the NCI-CAPM
cohort study discussed above, a relative risk of
4.7 (95% CI 1.2 to 18.1) for NHL was reported
(37). In contrast, Sorahan et al. reported a rel-
ative risk of 1.00 for NHL in a cohort study
of benzene-exposed workers in England and
Wales (100). The reasons for these discrepan-
cies are not entirely clear but could be related to
differences in study populations, exposure lev-
els, lack of statistical power, and study designs
leading to biases such as the healthy worker ef-
fect. We systematically reviewed the evidence
relating to benzene and NHL and noted prob-
lems of bias due to the healthy worker effect
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(95). We performed formal meta-analysis of
studies of NHL and occupational exposure to
benzene in work settings other than refineries
and formal meta-analysis of NHL and refin-
ery work, a setting that has historically been
associated with benzene exposure (101). These
were done separately because refinery work can
be associated with many chemical exposures
other than benzene. In 22 studies of benzene ex-
posure, the summary relative risk for NHL was
1.22 (95% CI 1.02 to 1.47; p = 0.01). When
studies that likely included unexposed subjects
in the exposed group were excluded, the sum-
mary relative risk increased to 1.49 (95% CI
1.12 to 1.97, n = 13), and when studies based
solely on self-reported work history were ex-
cluded, the relative risk rose to 2.12 (95% CI
1.11 to 4.02, n = 6). In refinery workers, the
summary relative risk for NHL in all 21 studies
was 1.21 (95% CI 1.00 to 1.46; p = 0.02). When
adjusted for the healthy worker effect, this rel-
ative risk estimate increased to 1.42 (95% CI
1.19 to 1.69) (101). The finding of elevated rel-
ative risks in studies of both benzene exposure
and refinery work provides further evidence
that benzene exposure is associated with an in-
creased risk of NHL. There are many similar-
ities between cancer chemotherapy drugs and
benzene in their abilities to produce both AML
and NHL. Both appear to be highly efficient
at producing AML with high relative risks and
both also produce NHL, but with lower rela-
tive risks and a longer latency period than for
AML (49). The lower relative risks observed
may be due to the fact that NHL is a diverse set
of tumors and that benzene and chemotherapy
drugs produce only certain subtypes of NHL.

German researchers have concluded that
benzene could cause any malignant hemato-
logic disease because these diseases all arise
from damaged omnipotent stem cells (9). More
recently, Beelte et al. convened a committee
of experts to evaluate the international liter-
ature (10). They concluded that “all kinds of
myeloid and lymphoid malignancies including
their prestages can be caused by occupational
benzene exposure” (p. 197).

EVIDENCE FOR AN
ASSOCIATION WITH
CHILDHOOD LEUKEMIA

Multiple studies have shown an increase in
childhood leukemia risk in relation to air
pollution sources emitting benzene, such as
gas stations and traffic. For example, a re-
cent nationwide study in France of 765 acute
leukemia cases and 1681 controls found that
acute leukemia was significantly associated with
residence next to gasoline stations or automo-
tive repair garages (OR 1.6, 95% CI 1.2 to
2.2) (12). Furthermore, in a study of the area
around Houston, Texas, census tracts with the
highest benzene levels, estimated by EPA mod-
els, had elevated rates of all leukemias (RR =
1.37; 95% CI 1.05, 1.78), with the association
being stronger for AML (117). More studies
of pediatric cancers are needed that include
estimates of environmental benzene exposure,
rather than surrogate exposures such as prox-
imity to gasoline stations or traffic.

Recent mechanistic work adds support to
the potential association between benzene ex-
posure and childhood leukemia. Because the
genotoxic action of benzene metabolites on
pluripotent bone marrow precursor cells ap-
pears promiscuous, producing multiple genetic
abnormalities, it seems probable that benzene
exposure can initiate both AML and ALL by
causing the chromosomal rearrangements and
mutations that are on the causal pathway to
these malignancies. For childhood ALL and
AML, studies have shown that the disease is
usually initiated in utero because the leukemic
translocations and other genetic changes are
present in blood spots collected at birth (32,
66, 118, 119). Thus, exposure of the mother,
and perhaps the father, to benzene could be
just as important as childhood exposures in pro-
ducing childhood AML and ALL, as has been
suggested by epidemiological studies (67, 89,
92, 106). Supporting this hypothesis are ani-
mal studies demonstrating that in utero expo-
sure to benzene increases the frequency of mi-
cronuclei and DNA recombination events in
hematopoietic tissue of fetal and postnatal mice
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(6, 57). Studies also show that oxygen radicals
play a key role in the development of in utero–
initiated benzene toxicity through disruption
of hematopoietic cell signaling pathways (6).
These studies support the idea that genotoxic
and nongenotoxic events following benzene ex-
posure may be initiators of childhood leukemia
in utero.

MECHANISMS OF BENZENE
CARCINOGENICITY:
MECHANISMS OF MYELOID
LEUKEMIA DEVELOPMENT

AML and MDS are closely related diseases of
the bone marrow that arise de novo in the gen-
eral population or following therapy with alky-
lating agents, topoisomerase II inhibitors, or
ionizing radiation [therapy-related AML and
MDS (t-AML and t-MDS)] (75, 76). Occupa-
tional exposure to benzene is widely thought to
cause leukemias that are similar to t-AML and
t-MDS (44, 56, 128). AML and MDS both arise
from genetically altered CD34+ stem or pro-
genitor cells in the bone marrow (70) and are
characterized by many different types of recur-
rent chromosome aberrations (71, 76). These
aberrations often result in the genetic muta-
tions that produce leukemia. Cytogenetic anal-
ysis of chromosome number and structure has
therefore become important in diagnosing and
treating MDS and AML (71, 76). The chromo-
some aberrations and gene mutations detected
in therapy-related and de novo MDS and AML
are very similar, although the frequencies with
which they are observed in different subtypes
may differ (75). Hence, therapy-related and de
novo MDS and AML are considered very sim-
ilar diseases (75).

At least three cytogenetic subtypes of AML
and MDS are commonly observed.

1. Unbalanced aberrations. Cases with un-
balanced chromosome aberrations, pri-
marily 5q–/–5 or 7q–/–7 and +8, rep-
resent the first subtype (75, 76). They
often present with a complex karyotype
and point mutations of p53 or AML1 and

are common after therapy with alkylating
agents.

2. Balanced rearrangements. Cases with the
recurrent balanced translocations [e.g.,
t(11q23), t(8;21) and t(15;17)] or inver-
sions [e.g., inv(16)] represent the second
subtype and arise, at least in the therapy-
related subset, as illegitimate gene re-
combinations related to the inhibition of
topoisomerase II (75).

3. Normal karyotype. Cases with a normal
karyotype comprise the third subtype and
often harbor mutations of NPM1, inter-
nal tandem duplications of FLT3, and/or
point mutations or altered methylation
status of C/EBPα (75).

Within these three cytogenetic categories
there are at least eight different genetic path-
ways to MDS and AML, as defined by the spe-
cific chromosome aberrations present in each
(Pathways I–VIII in Figure 1). As more infor-
mation is revealed about the molecular cyto-
genetics of leukemia, it seems likely that nu-
merous other pathways to AML and MDS
will be discovered. For example, recent un-
biased high-resolution genomic screens have
identified many genes that were not previ-
ously implicated in AML and which may be
relevant for pathogenesis, along with many
known oncogenes and tumor suppressor genes
(58, 64, 111).

An important role for epigenetic changes is
also emerging in the development of leukemia.
Functional loss of the CCAAT/enhancer binding
proteinα (C/EBPα), a master regulatory tran-
scription factor in the hematopoietic system,
can result in a differentiation block in granu-
lopoiesis and thus contribute to leukemic trans-
formation (24). Recent work has shown that
epigenetic alterations of C/EBPα are a fre-
quent event in AML (34). C/EBPα can also steer
miRNA-223 expression, which is vital in gran-
ulocytic differentiation (22).

Referring to Figure 1, extensive evidence
indicates that benzene can induce AML via
Pathways I, II, and IV and demonstrates con-
siderable support for Pathway V. There is some
evidence for Pathway III but little information
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regarding Pathways VI–VIII. Benzene expo-
sure has been associated with higher levels of
chromosomal changes commonly observed in
AML, including 5q–/–5 or 7q–/–7, +8, and
t(8;21) in the blood cells of highly exposed
workers (97, 127, 129). Its metabolites also pro-
duce these same changes in human cell cultures,
including cultures of CD34+ progenitor cells
(96, 102). This research provides strong evi-
dence for benzene’s role in the production of
AML by Pathways I, II, and IV (Figure 1).

Pathways III, IV, and V are related to the
inhibition of the DNA-related enzyme topo-
isomerase II (topo II), which is essential for the
maintenance of proper chromosome structure
and segregation. There are different types of
topo II inhibitors. Epidophyllotoxins, such as
etoposide, cause chromosome damage and kill
cells by increasing physiological levels of topoi-
somerase II-DNA cleavage complexes (17).
These drugs are referred to as topoisomerase
II poisons to distinguish them from catalytic
inhibitors of the enzyme because they con-
vert this essential enzyme to a potent cellular
toxin. Other drugs, such as merbarone, act as
inhibitors of topo II activity; however, in con-
trast to etoposide, they do not stabilize topo II-
DNA cleavable complexes but are still potent
clastogens both in vitro and in vivo (112).

Several studies have shown that benzene in
vivo and its reactive benzene metabolites hy-
droquinone (HQ) and 1,4-benzoquinone (BQ)
in vitro inhibit the functionality of topo II
and enhance DNA cleavage (13, 60). Bioacti-
vation of HQ by peroxidase to BQ enhances
topo II inhibition (19). Indeed, BQ is a more
potent topo II inhibitor than is HQ in a
cell-free assay system (7, 42). These findings
demonstrate that benzene, through its reac-
tive quinone metabolites, can inhibit topo II
and probably cause leukemias with chromo-
some translocations and inversions known to be
caused by topo II inhibitors, including AMLs
harboring t(21q22), t(15;17), and inv(16) in a
manner consistent with Pathways IV and V (69,
75). The evidence for rearrangements of the
MLL gene through t(11q23) via Pathway III in
benzene-induced leukemia is less convincing

HQ: hydroquinone

but may occur through an apoptotic pathway
(108).

AML can arise de novo via Pathways VII
and VIII without apparent chromosome ab-
normalities, but molecular analysis has revealed
many genetic changes in these apparently “nor-
mal” leukemias, including mutations of NPM1,
AML1, FLT3, RAS, and C/EBPα (Figure 1) (21,
64). Research is needed to clarify the ability of
benzene and its metabolites to produce muta-
tions of the types found in these leukemias.

The ability of benzene and/or its metabolites
to induce epigenetic changes related to the de-
velopment of leukemia, such as altered methy-
lation status of C/EBPα, is unclear at this time. A
recent study reported that hypermethylation in
p15 (+0.35%; p = 0.018) and hypomethylation
in MAGE-1 (−0.49%; p = 0.049) were associ-
ated with very low benzene exposures (∼22 ppb)
in healthy subjects, including gas station atten-
dants and traffic police officers, although the
corresponding effects on methylation were very
low (11). Further study of the role epigenetics
plays in the hematotoxicity and carcinogenic-
ity of benzene is warranted, including stud-
ies of aberrant DNA methylation and altered
microRNA expression.

Although benzene and its metabolites are
clearly capable of producing multiple forms
of chromosomal mutation, including vari-
ous translocations, deletions, and aneuploidies,
these are usually insufficient as a single event to
induce leukemia. Other secondary events, such
as specific gene mutations and/or other chro-
mosome changes, are usually required (33, 61).
Thus, benzene-induced leukemia probably be-
gins as a mutagenic event in the stem or pro-
genitor cell, and subsequent genomic instability
allows for sufficient mutations to be acquired
in a relatively short time period. Studies have
shown that the benzene metabolite HQ is sim-
ilar to ionizing radiation because it induces ge-
nomic instability in the bone marrow of sus-
ceptible mice (31). Recent findings showing the
importance of DNA repair and maintenance
genes, such as WRN, in genetic susceptibility
to benzene toxicity also support this mechanism
(52, 82).
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Thus, benzene exposure can lead to multiple
alterations that contribute to the leukemogenic
process. Benzene may act by causing chromoso-
mal damage (aneuploidy, deletions, and translo-
cations) through the inhibition of topo II;
disrupting microtubules; generating oxygen
radicals that lead to point mutations, strand
breaks, and oxidative stress; causing immune
system dysfunction that leads to decreased
immunosurveillance (14, 59); altering stem
cell pool sizes through hematotoxicity (45);
inhibiting gap-junction intercellular communi-
cation (85); and altering DNA methylation and
perhaps specific microRNAs. This multimodal
mechanism of action suggests that the effects of
benzene on the leukemogenic process are not
singular and can occur throughout the process.
This finding implies that both background and
added exposures from occupation and hobbies
will have similar impacts on the process and
that the effects will be additive. Thus, given
the high background exposure to benzene as
a combustion by-product in our environment,
it seems unlikely that any practical threshold
exists, and the effects of each molecule of
benzene will be additive in a linear fashion.

METABOLISM OF BENZENE AND
ITS RELEVANCE TO BENZENE
CARCINOGENICITY

Benzene must be metabolized to become car-
cinogenic (86, 99). Its metabolism is summa-
rized in Figure 2. The initial step involves cy-
tochrome P450 (CYP)-dependent oxidation of
benzene to benzene oxide, which exists in equi-
librium with its tautomer oxepin. Most benzene
oxide spontaneously rearranges to phenol (PH),
which is either excreted or further metabolized
to HQ and 1,4-BQ. The remaining benzene
oxide is either hydrolyzed to produce catechol
(CA) and 1,2-BQ or reacts with glutathione
to produce S-phenylmercapturic acid (SPMA).
Metabolism of oxepin is thought to open the
aromatic ring, yielding the reactive muconalde-
hydes and E,E-muconic acid (MA). Human ex-
posures to benzene at air concentrations be-

tween 0.1 and 10 ppm result in urinary metabo-
lite profiles with 70%–85% PH, 5%–10% each
of HQ, MA, and CA, and less than 1% of SPMA
(47). Benzene oxide, the BQs, muconaldehydes,
and benzene diol epoxides (formed from CYP
oxidation of benzene dihydrodiol) are elec-
trophiles that readily react with peptides and
proteins (8, 39, 65, 110) and can thereby inter-
fere with cellular function (94). It remains un-
clear what role these different metabolites play
in benzene carcinogenicity, but BQ formation
from HQ via myeloperoxidase in the bone mar-
row may be key (94). Considerable evidence in-
dicates that this pathway plays an important role
in BQ formation because the BQ-detoxifying
enzyme NQO1 protects mice against benzene-
induced myelodysplasia (46, 62) and protects
humans against benzene hematotoxicity (87).
However, this protection does not rule out ad-
verse effects from other metabolites.

Benzene is most likely metabolized initially
to PH and MA via two enzymes rather than
just one CYP enzyme, and the putative high-
affinity enzyme is active primarily below 1 ppm
(79). Because CYP2E1 is the primary enzyme
responsible for mammalian metabolism of ben-
zene (72, 105), it is reasonable to assume that
the low-affinity enzyme is responsible for ben-
zene metabolism mainly at higher levels of ex-
posure. CYP2F1 and CYP2A13 are reasonable
candidates for the high-affinity metabolic en-
zymes, which are active at environmental lev-
els of exposure below 1 ppm (77, 79, 91). In-
terestingly, these CYPs are highly expressed in
the human lung. Despite much research, more
work is needed to elucidate the different roles
of multiple metabolites in benzene toxicity and
the pathways that lead to their formation.

EMERGING ROLE OF THE ARYL
HYDROCARBON RECEPTOR

The aryl hydrocarbon receptor (AhR) is known
mainly as the mediator for the toxicity of cer-
tain xenobiotics. However, this transcription
factor has many important biological functions,
and emerging evidence indicates that it has
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a significant role in the regulation of
hematopoietic stem cells (HSCs) (40, 93). AhR
expression may be necessary for the proper
maintenance of quiescence in HSCs, and AhR
downregulation is essential for the stem cells to
“escape” from quiescence and undergo subse-
quent proliferation (93). This hypothesis im-
plicates the AhR as a negative regulator of
hematopoiesis to curb excessive proliferation.
This, in turn, prevents the premature exhaus-
tion of HSCs and sensitivity to genetic alter-
ations, thus preserving HSC function over the
organism’s life span. However, AhR dysregula-
tion may result in the altered ability of HSCs
to sense appropriate signals in the bone mar-
row microenvironment, leading to hematopoi-
etic disease.

Inoue and colleagues have shown that AhR-
knockout (KO) mice do not show any hemato-
toxicity after benzene exposure (125). Follow-
up studies showed that mice that had been
lethally irradiated and repopulated with mar-
row cells from AhR-KO mice essentially did not
have signs of benzene-induced hematotoxicity
(41). The most likely explanation for these find-
ings is that the absence of AhR removes HSCs
from their quiescent state and makes them sus-
ceptible to DNA damage from benzene expo-
sure and subsequent cell death through apop-
tosis. Further research is needed to examine the
effects of benzene and its metabolites on cycling
and quiescent HSCs.

SUSCEPTIBLE SUBPOPULATIONS

Aksoy (1) reported striking variation in benzene
toxicity among workers with comparable levels
of occupational exposure. The reasons under-
lying this variation are unknown. Part of the
variation may be caused by biological factors
such as gender, age, genetics, and amount of
adipose tissue, with the remainder being due to
environmental influences such as routes of ex-
posure, physical activity, coexposures, smoking,
alcohol consumption, and dietary habits.

Studies to date have identified a number
of single-nucleotide polymorphisms (SNPs)
in candidate genes that appear to confer

SNP: single
nucleotide
polymorphism

susceptibility to benzene hematotoxicity. The
first ones identified were related to metabolism,
including polymorphisms in cytochrome P450
2E1 (CYP2E1), NAD(P)H:quinone oxidore-
ductase 1 (NQO1), myeloperoxidase (MPO),
glutathione-S-transferases (GSTs), and micro-
somal epoxide hydrolase (mEH) in Figure 2.
The role of metabolizing enzyme polymor-
phisms was reviewed by Dougherty et al. (18) in
2008. They concluded that the polymorphisms
produced a modest effect on the biomarkers
of benzene exposure and effect analyzed in 22
studies; GSTM1 and GSTT1 showed some
consistent associations.

In a study of 1395 SNPs in 411 cancer-
related genes on lowered white blood cell
(WBC) counts in benzene-exposed workers,
highly significant findings were clustered in
genes (BLM, TP53, RAD51, WDR79, and
WRN) that play a critical role in DNA re-
pair and genomic maintenance (52). In vitro
functional studies revealed that deletion of
SGS1 in yeast, equivalent to lacking BLM and
WRN function in humans, caused reduced
cellular growth in the presence of the toxic
benzene metabolite HQ, and knockdown of
WRN increased susceptibility of human lym-
phoid TK6 and myeloid HL60 cells to HQ
toxicity (52, 82). Thus, SNPs in genes involved
in DNA repair and genomic maintenance play
an important role in susceptibility to benzene-
induced hematotoxicity. Other possible associ-
ations with DNA repair and genome mainte-
nance include the recent findings that polymor-
phisms in the p53-dependent genes p21 and
p14(ARF) may play a role in susceptibility to
chronic benzene poisoning (103).

The other class of genetic polymorphisms
associated with benzene toxicity is in cytokine
and chemokine genes. Associations have been
reported with SNPs in VEGF, IL-1A, IL-4,
IL-10, IL-12A, VCAM1, and lowered WBC
counts (53) and with an SNP in TNF-alpha
and chronic benzene poisoning (63). Addi-
tional studies are needed to confirm these
associations.

Thus, genetic polymorphisms that confer
susceptibility to benzene toxicity should be
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taken into account when assessing the risks of
benzene exposure. Select combinations of ge-
netic polymorphisms may increase susceptibil-
ity of individuals and/or population subgroups.
However, gene-gene interactions are not yet
analyzed in well-designed studies that incorpo-
rate multiple biological end points and multi-
ple genes, and a genome-wide study is needed
to truly assess the role of genetic variation in
conferring susceptibility.

WHAT IS THE DOSE-RESPONSE
CURVE? IS IT LINEAR AND IS
THERE A FUNCTIONAL
THRESHOLD IN THE
LOW-DOSE REGION?

Although there is undoubtedly a causal link
between benzene exposure and leukemia, the
shape of the exposure-response relationship
is controversial, particularly at low doses at or
below 1 ppm in air. Indeed, when considering
regulatory actions, litigation, and potential
clean-up costs in the billions of dollars, this
uncertainty represents a major challenge for
environmental toxicology and epidemiology.
Recent action by the U.S. EPA to reduce cancer
risks from mobile sources underscores this
point (see 20). In justifying its decision to lower
the benzene content of gasoline, the EPA cited
studies pointing to supralinear (greater-than-
proportional) production of benzene-related
protein adducts at air concentrations below
1 ppm (80, 81). Such behavior would likely
result from saturation of the metabolism of
benzene to benzene oxide-oxepin. Because
the EPA had previously assumed that human
benzene metabolism proceeded according to
nonsaturating (first-order) kinetics at exposure
concentrations well above 10 ppm, saturation
of metabolism below 1 ppm “could lead to
substantial underestimation of leukemia risks”
in the general population (20).

Traditional epidemiology is unlikely to de-
termine the shape of the dose-response curve
for benzene-induced leukemia in the low-dose
region, although the Glass et al. study shows
effects at 1–2 ppm in air and no sign of a

threshold. Chronic animal toxicity studies are
also unlikely to be informative for two rea-
sons: (a) no accepted animal model of benzene-
induced leukemia exists at the present time,
and (b) low-dose studies would require a pro-
hibitively large number of animals. In situa-
tions like this, where traditional epidemiology
and toxicology are of limited value, investiga-
tors have proposed that nontumor data such as
biological markers (biomarkers) be employed in
the risk-assessment process (5).

The most appropriate biomarker of
leukemia risk appears to be lowered WBC
counts because this factor has been associ-
ated with an increased risk of hematological
malignancies. Ward et al. (113) found no
evidence of a threshold for hematotoxic effects
of benzene and suggested that exposure to
<5 ppm benzene could result in hematologic
suppression. Occupational exposure decreased
WBC count in petrochemical workers exposed
to <10 ppm benzene (126), and Qu et al.
reported that depressions in blood cell counts
in benzene-exposed Chinese workers were not
only exposure dependent, but also significantly
different in the lowest exposed group (at or
below 0.25 ppm) compared with unexposed
subjects (78). In a large study of more than 400
workers, hematotoxicity occurred in workers
exposed to <1 ppm benzene (51). Further anal-
ysis of this data showed a linear monotonicity
of the association between lowered blood cell
counts and benzene exposure by spline regres-
sion analyses (50). Thus, the literature shows
that benzene affects the blood-forming system
at low levels of occupational exposure, at or
below 1 ppm, and that there is no evidence of a
threshold. As a result, the threshold limit value
has recently been lowered by the ACGIH to
0.5 ppm, and various government agencies and
scientific bodies have recommended the 8-hour
time-weighted average standard be lowered
to 0.1 ppm. The latest research indicates that
there is likely no safe level of exposure to
benzene and that all exposures constitute some
risk in a linear, if not supralinear, and additive
fashion. Public health agencies should act
accordingly.
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Figure 1

Genetic pathways to myeloid leukemia (adapted from Reference 76).
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Figure 2

Simplified metabolic scheme for benzene showing major pathways and metabolizing enzymes leading to toxicity. CYP2E1,
cytochrome P450 2E1; GST, glutathione-S-transferase; NQO1, NAD(P)H:quinone oxidoreductase 1; MPO, myeloperoxidase;
UDPGT, uridine diphosphate glucuronyl transferase; PST, phenol sulfotransferase; mEH, microsomal epoxide hydrolase.
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