
A major near-term medical impact of the genome 
technology revolution will be the elucidation of mecha-
nisms of cancer pathogenesis, leading to improvements 
in the diagnosis of cancer and the selection of cancer 
treatment. Thanks to second-generation sequencing 
technologies1–5, recently it has become feasible to 
sequence the expressed genes (‘transcriptomes’)6,7, 
known exons (‘exomes’)8,9, and complete genomes10–15 
of cancer samples.

These technological advances are important for 
advancing our understanding of malignant neoplasms 
because cancer is fundamentally a disease of the genome. 
A wide range of genomic alterations — including point 
mutations, copy number changes and rearrangements 
— can lead to the development of cancer. Most of these 
alterations are somatic, that is, they are present in cancer 
cells but not in a patient’s germ line16.

An impetus for studies of somatic genome altera-
tions, which are the focus of this Review, is the poten-
tial for therapies targeted against the products of these 
alterations. For example, treatment with the inhibitors 
of the epidermal growth factor receptor kinase (EGFR), 
gefitinib and erlotinib, leads to a significant survival 
benefit in patients with lung cancer whose tumours 
carry EGFR mutations, but no benefit in patients 
whose tumours carry wild-type EGFR17–19. Therefore, 

comprehensive genome-based diagnosis of cancer is 
becoming increasingly crucial for therapeutic decisions.

During the past decades, there have been major 
advances in experimental and informatic methods 
for genome characterization based on DNA and RNA 
microarrays and on capillary-based DNA sequenc-
ing (‘first-generation sequencing’, also known as Sanger 
sequencing). These technologies provided the ability 
to analyse exonic mutations and copy number altera-
tions and have led to the discovery of many important  
alterations in the cancer genome20.

However, there are particular challenges for the 
detection and diagnosis of cancer genome alterations. 
For example, some genomic alterations in cancer are 
prevalent at a low frequency in clinical samples, often 
owing to substantial admixture with non-malignant 
cells. Second-generation sequencing can solve such 
problems21. Furthermore, these new sequencing meth-
ods make it feasible to discover novel chromosomal rear-
rangements22 and microbial infections23–25 and to resolve 
copy number alterations at very high resolution22,26.

At the same time, the avalanche of data from second- 
generation sequencing provides a statistical and com-
putational challenge: how to separate the ‘wheat’ of 
causative alterations from the ‘chaff ’ of noise caused by 
alterations in the unstable and evolving cancer genome. 
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Second-generation 
sequencing
Used in this Review to refer to 
sequencing methods that have 
emerged since 2005 that 
parallelize the sequencing 
process and produce millions 
of typically short sequence 
reads (50–400 bases) from 
amplified DNA clones.  
It is also often known as 
next-generation sequencing.
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Abstract | Cancers are caused by the accumulation of genomic alterations.  
Therefore, analyses of cancer genome sequences and structures provide insights  
for understanding cancer biology, diagnosis and therapy. The application of 
second-generation DNA sequencing technologies (also known as next-generation 
sequencing) — through whole-genome, whole-exome and whole-transcriptome 
approaches — is allowing substantial advances in cancer genomics. These methods  
are facilitating an increase in the efficiency and resolution of detection of each of  
the principal types of somatic cancer genome alterations, including nucleotide 
substitutions, small insertions and deletions, copy number alterations, chromosomal 
rearrangements and microbial infections. This Review focuses on the methodological 
considerations for characterizing somatic genome alterations in cancer and the future 
prospects for these approaches.
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First-generation sequencing
(also known as Sanger 
sequencing or capillary 
sequencing). The standard 
sequencing methodology used 
to sequence the reference 
human (and other model 
organism) genomes. It uses 
radioactively or fluorescently 
labelled dideoxynucleotide 
triphosphates (ddNTPs) as 
DNA chain terminators. Various 
detection methods allow 
read-out of sequence according 
to the incorporation of each 
specific terminator (ddATP, 
ddCTP, ddGTP or ddTTP).

Whole-genome 
amplification
Various molecular techniques 
(including multiple 
displacement amplification, 
rolling circle amplification or 
degenerate oligonucleotide 
primed PCR) in which very 
small amounts (nanograms)  
of a genomic DNA sample  
can be multiplied in a largely 
unbiased fashion to produce 
suitable quantities for genomic 
analysis (micrograms).

Moore’s law
The observation made in 
1965 by Gordon Moore that 
the number of transistors per 
square inch on integrated 
circuits had doubled every 
other year since the integrated 
circuit was invented.

This challenge is likely to be solved in part by system-
atic analyses of large cancer genome data sets that 
will provide sufficient statistical power to overcome  
experimental and biological noise27,28.

In this Review, we discuss the key challenges in can-
cer genome sequencing, the methods that are currently 
available and their relative values for detecting differ-
ent types of genomic alteration. We then summarize the 
main points to consider in the computational analysis 
of cancer genome sequencing data and comment on the 
future potential for using genomics in cancer diagnosis. 
Cancer genome sequencing is a rapidly moving field, 
so in this Review we aim to set out the principles and 
important methodological considerations, with a brief 
summary of important findings to date.

Cancer-specific considerations
Cancer samples and cancer genomes have general char-
acteristics that are distinct from other tissue samples 
and from genomic sequences that are inherited through 
the germ line. These require particular consideration in 
second-generation sequencing analyses.

Characteristics of cancer samples for genomic analysis. 
Cancer samples differ in their quantity, quality and purity 
from the peripheral blood samples that are used for germ-
line genome analysis. Surgical resection specimens tend 
to be large and have been the mainstay of cancer genome 
analysis. However, diagnostic biopsies from patients with 
disseminated disease tend to contain few cells — as surgi-
cal cure is not possible in these cases, minimizing biopsy 
size is a safety consideration. Therefore, the quantity of 
nucleic acids available may be limiting; obtaining sequence 
information from such biopsies will require decreasing the 
minimum inputs for second-generation sequencing. An 
alternative approach to sequencing from small samples is 
whole-genome amplification, but this method does not pre-
serve genome structure and can give rise to artefactual 
nucleotide sequence alterations29.

Nucleic acids from cancer are also often of lower 
quality than those purified from peripheral blood. One 
reason for this is technical: most cancer biopsy and 
resection specimens are formalin-fixed and paraffin-
embedded (FFPE) to optimize the resolution of micro-
scopic histology. Nucleic acids from FFPE specimens 
are likely to have undergone crosslinking and also may 
be degraded30. Second-generation sequence analy-
sis of FFPE-derived nucleic acids can require special 
experimental 31 and computational methods to han-
dle an increased background mutation rate32,33. A sec-
ond reason for this difference in nucleic acid quality is 
biological: cancer specimens often include substantial 
fractions of necrotic or apoptotic cells that reduce the 
average nucleic acid quality, therefore, experimental 
methods should also be adapted to account for this. The 
many-fold coverage made possible by second-generation 
sequencing, however, can allow high-quality data to be 
produced from lower quality samples21.

Finally, cancer nucleic acid specimens are less pure 
than specimens used to analyse the inherited genome, 
especially in terms of genomic DNA purity. The samples 

generally used for germline genome analysis — periph-
eral blood mononuclear cells — are known to be hetero-
geneous only at the rearranged immunoglobulin and T 
cell receptor loci in a subset of cells. By contrast, a cancer  
specimen contains a mixture of malignant and non-
malignant cells and, therefore, a mixture of cancer and 
normal genomes (and transcriptomes). Furthermore, 
the cancers themselves may be highly heterogeneous 
and composed of different clones that have different 
genomes34. Cancer genome analytical models must take 
these two types of heterogeneity (cancer versus normal 
heterogeneity and within-cancer heterogeneity) into 
account in their prediction of genome alterations.

Structural variability of cancer genomes. Cancer 
genomes are enormously diverse and complex. They 
vary substantially in their sequence and structure com-
pared to normal genomes and among themselves. To 
paraphrase Leo Tolstoy’s famous first line from Anna 
Karenina: normal human genomes are all alike, but every 
cancer genome is abnormal in its own way.

Specifically, cancer genomes vary considerably in 
their mutation frequency (degree of variation compared 
to the reference sequence), in global copy number or 
ploidy, and in genome structure. These variations have 
several implications for cancer genome analysis: the 
presence of a somatic mutation is not enough to establish 
statistical significance as it must be evaluated in terms 
of the sample-specific background mutation rate, which 
can vary at different types of nucleotides (discussed 
further below). The analysis of mutations must also be 
adjusted for the ploidy and the purity of each sample 
and the copy number at each region. For example, if 50% 
of the tumour DNA is derived from cancer cells and a 
mutation is present on 1 of 4 copies of chromosome 11,  
the frequency of that mutation will be 12.5% in the 
sample. Similar considerations apply to the detection of 
somatic rearrangements.

To identify somatic alterations in cancer, comparison 
with matched normal DNA from the same individual is 
essential. This is largely owing to our incomplete knowl-
edge of the variations in the normal human genome; to 
date, each ‘matched normal’ cancer genome sequence 
has identified large numbers of mutations and rear-
rangements in the germ line that had not been previously 
described11–15,35. In the future, the complete characteriza-
tion of many thousands of normal human genomes may 
obviate this need for a matched normal sample.

Experimental approaches
Second-generation sequencing technologies are based 
on the simultaneous detection of nucleotides in arrayed 
amplified DNA products originating from single DNA 
molecules36. Specific methods include picotitre-plate 
pyrosequencing3,5, single-nucleotide fluorescent base 
extension with reversible terminators1 and ligation-
based sequencing2,4. Thanks to advances in sequencing 
approaches that include these technologies, the number of 
bases that can be sequenced for a given cost has increased 
one millionfold since 1990, more than doubling every year,  
which is twice as fast as Moore’s law for semiconductors37.
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Chromatin 
immunoprecipitation
A technique used to identify 
the location of DNA-binding 
proteins and epigenetic marks 
in the genome. Genomic 
sequences containing the 
protein of interest are enriched 
by binding soluble DNA 
chromatin extracts (complexes 
of DNA and protein) to an 
antibody that recognizes the 
protein or modification.

Over-sampling
Reading the same stretch of 
DNA sequence many times to 
gain a confident sequence 
read-out.

Shotgun sequencing
Sequencing randomly derived 
fragments of the whole 
genome. The order and 
orientation of the sequences 
are determined by mapping 
individual reads back to a 
reference or through assembly 
of overlapping sequences into 
larger contigs of sequence.

The application of second-generation sequencing 
has allowed cancer genomics to move from focused 
approaches — such as single-gene sequencing and array 
analysis — to comprehensive genome-wide approaches. 
Second-generation sequencing can be applied to cancer 
samples in various ways. These vary by the type of input 
material (for example, DNA, RNA or chromatin), the 
proportion of the genome targeted (the whole genome, 
transcriptome or a subset of genes) and the type of vari-
ation studied (structural change, point mutation, gene 
expression or chromosomal conformation). In this 
section, we briefly introduce the main approaches to 
second-generation sequencing of cancer and their asso-
ciated experimental considerations. Chromatin immuno-
precipitation followed by sequencing (ChIP–seq) is an 
important complement to cancer genomics but is not 
discussed as it has been reviewed elsewhere38. Key whole-
genome sequencing studies to date are summarized  
in TABLE 1.

Compared with previous sequencing methods, 
which are analogue, second-generation sequencing is 
digital: it is possible to count alleles at any nucleotide or 
reads at any alignable position in the genome. Its digital 
nature gives rise to one of the key features of second-
generation sequencing, the ability to over-sample the 
genome or other nucleic acid compartment that is tar-
geted10. Over-sampling provides highly accurate sequence 
information by providing enough signal to overcome 
experimental noise and also allows detection of muta-
tions and other genome alterations in heterogeneous  
samples such as cancer tissues.

Whole-genome sequencing. The first whole cancer 
genome sequence was reported in 2008, a descrip-
tion of the nucleotide sequence of DNA from an acute 

myeloid leukaemia compared with DNA from normal 
skin from the same patient10. Since then, six more 
complete sequences of cancer genomes together with 
matched normal genomes have been reported11–15,35, 
and this number will grow rapidly.

Complete sequencing of the genome of cancer tis-
sue to high redundancy, using germline DNA sequence 
from the same patient as a comparison, has the power to 
discover the full range of genomic alterations — includ-
ing nucleotide substitutions, structural rearrange-
ments, and copy number alterations — using a single 
approach10–15,35. Therefore, whole-genome sequencing 
provides the most comprehensive characterization 
of the cancer genome but, as it requires the greatest 
amount of sequencing, it is the most costly. Alternative, 
lower-cost approaches include shotgun sequencing with 
incomplete coverage (for example, less than 30-fold 
coverage; see below) — which is sufficient to identify 
somatic rearrangements in the genome22,39 and copy 
number alterations22,26 — and exome and transcriptome 
sequencing, which are described below.

The major potential of whole-genome sequencing 
for cancer is the discovery of chromosomal rearrange-
ments. Previously, there were no systematic approaches 
to study solid tumours that have complex karyotypes. 
Therefore, until recently it was thought that chromo-
somal translocations were rare in epithelial tumours and 
found only in haematological malignancies in which 
they could be observed with cytogenetic methods40,41. 
However, the discoveries of the transmembrane protease 
serine 2 (TMPRSS2)–ERG translocations in prostate 
carcinoma42 and the echinoderm microtubule-associated 
protein like 4 (EML4)–anaplastic lymphoma recep-
tor tyrosine kinase (ALK) translocations in non-small 
cell lung carcinoma43 have changed that view.

Table 1 |	Whole-genome sequencing studies of cancer

Study Method Cancer	type Number	
of	samples	
sequenced

Aberration	type	 Refs

Ley et al., 
2008

Deep single-end 
whole-genome sequencing

AML 1 Point mutations, insertions, deletions 10

Campbell et al., 
2008 

Shallow paired-end 
whole-genome sequencing

Lung 2 Deletions, amplifications, tandem duplications, 
interchromosomal rearrangements

22

Stephens et al., 
2009

Shallow paired-end 
whole-genome sequencing

Breast 24 Deletions, amplifications, tandem duplications, 
interchromosomal rearrangements, inversions

39

Pleasance et al., 
2010

Deep paired-end 
whole-genome sequencing

Melanoma 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements

12

Pleasance et al., 
2010

Deep paired-end 
whole-genome sequencing

Small-cell lung 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements 

13

Mardis et al.,  
2009

Deep paired-end 
whole-genome sequencing

AML 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements

11

Shah et al., 
2009

Deep paired-end 
whole-genome sequencing

Breast 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements

15

Ding et al., 
2010

Deep paired-end 
whole-genome sequencing

Breast 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements, inversions

35

Lee et al., 
2010

Deep paired-end 
whole-genome sequencing

Lung 1 Point mutations, insertions, deletions, amplifications, 
interchromosomal rearrangements, inversions

14

AML, acute myelogenous leukaemia.
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Figure 1 |	Depth	of	coverage	and	physical	coverage.	To illustrate considerations 
regarding depth of coverage and physical coverage, a rearrangement between human 
chromosome 1q21 and chromosome 2q12 is shown. Sequenced DNA fragments are 
represented by coloured bars: single-end sequencing is shown in a; paired-end 
sequencing is shown in b and c, in which the bars and the dashed lines indicate the 
sequenced ends and unsequenced part, respectively. Blue bars map to chromosome 1 
and purple bars to chromosome 2. Three different scenarios (a–c) are depicted that 
vary in the length of the DNA fragments that are sequenced. In each scenario, the 
sequence and physical coverage at the rearrangement site is shown below. Sequence 
coverage represents the number of sequenced reads that cover the site; this affects 
the ability to detect point mutations. Physical coverage measures the number of 
fragments that span the site; this affects the ability to detect the rearrangement,  
based on paired reads that map to different chromosomes. In cases in which the entire 
fragment is sequenced, as in a, the sequence and physical coverage are the same.

Jumping library
A method of library 
construction in which the 
genome is divided into large 
fragments using a rare cutter 
enzyme. Fragments are 
circularized and DNA 
sequences are read from  
the ends of the fragment, 
without reading the 
intervening sequence.

In addition to rearrangements between unique, align-
able sequences, whole-genome sequencing may be able 
to detect other types of genomic alterations that have 
not been observable using previous methods. Among 
the most important of such events are somatic mutations 
of non-coding regions, including promoters, enhancers, 
introns and non-coding RNAs (including microRNAs), 
as well as unannotated regions. Other novel types of  
alterations in cancer may include rearrangements  
of repetitive elements, and recent studies have suggested 
that active retrotransposons in the human genome might 
contribute to cancer, so whole-genome sequencing  
would be informative in this regard44,45.

Two important issues to consider when planning 
whole-genome sequencing experiments are depth of 
coverage and physical coverage. Sequence depth is meas-
ured by the amount of over-sampling: typically, to detect 
nucleotide alterations with high sensitivity, the 3 billion 
bases of the human genome are covered at least 30-fold 
on average, requiring the generation of 90 billion bases of 

sequence data per sample10–15,35. For cancer samples, this 
number needs to be increased to account for the decreased  
purity and often increased ploidy of each sample.

Physical coverage is important for detecting rear-
rangements and this detection is aided by analysis of 
‘paired reads’. In standard shotgun library methods, the 
fragments of DNA are typically 200–400 bases long, and 
second-generation sequencing technologies currently 
yield 50–100 base reads from each end of a fragment 
(known as paired reads). The expected distance between 
the paired reads is used to uniquely place the reads  
on the reference genome and unexpected read pairing 
can be used to detect structural anomalies.

The distance between the paired reads can be 
increased to thousands of bases by the creation of jumping 
libraries, which can be constructed by generating large 
circular fragments of DNA4,13. This leads to higher physi-
cal coverage of the genome with less sequence cover-
age and, consequently, lower cost. For example, with 
3 kb spacing between pairs, the physical coverage of the 
genome is 10 times higher than with 300 bp inserts, so 
equivalent physical coverage can be obtained with 10 
times less sequence coverage (FIG. 1). Although powerful 
for the detection of structural rearrangements, the jump-
ing library approach has two main limitations. First, with 
less total sequence, the coverage at any given position is 
lower, therefore the sensitivity to observe base changes 
such as point mutations is correspondingly lower. 
Second, the jumping library approach requires large 
quantities of high-quality input DNA, which may not 
be possible with all clinical cancer samples, especially 
those derived from FFPE specimens.

Exome sequencing. Targeted sequencing approaches 
have the general advantage of increased sequence cov-
erage of regions of interest — such as coding exons of 
genes — at lower cost and higher throughput compared 
with random shotgun sequencing, Most large-scale 
methods for targeted sequencing use a variation of a 
hybrid selection approach (FIG. 2): nucleic acid ‘baits’ are 
used to ‘fish’ for regions of interest in the total pool of 
nucleic acids, which can be DNA46–49 or RNA50. Any sub-
set of the genome can be targeted, including exons, non-
coding RNAs, highly conserved regions of the genome 
or other regions of interest.

Analysis of selected sets of exons using capillary-based 
sequencing has been a powerful and effective approach 
to focus DNA sequencing efforts on the coding genes of  
greatest interest. For example, capillary sequencing  
of exons from specific gene families has led to the discov-
ery of activating somatic mutations in various cancers, 
such as the BRAF serine–threonine kinase51, the EGFR, 
ERBB2, fibroblast growth factor receptor 2 (FGFR2), 
JAK2, and ALK receptor tyrosine kinases52–66, and the 
PIK3CA and PIK3R1 lipid kinase subunits28,67. Whole-
exome sequencing with capillary sequencing allowed the 
analysis of all known coding genes in colorectal, breast and 
pancreatic carcinomas and glioblastoma68–71. These studies 
have led to the discovery of somatic mutations in iso-
citrate dehydrogenase 1 (IDH1) in glioblastoma69 and of 
germline mutations in the gene encoding partner and 
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Figure 2 |	Sequence	capture	for	cancer	genomics.	A schematic diagram of hybrid selection to capture specific 
regions of the genome from tumour DNA (left panel, blue) and normal DNA (right panel, red). DNA from the starting 
material (the ‘pond’) is sheared and hybridized to oligonucleotides that are specific for the regions of interest (for 
example, exons in genes from a particular pathway or the whole exome; the ‘baits’). The baits have a tag that allows 
them to be isolated (for example, by immobilization on beads). The captured DNA is eluted, prepared into sequencing 
libraries, sequenced and aligned to the bait sequences. Because this technique allows greater depth of coverage for 
the regions of interest, somatic mutations in the tumour DNA can be detected from admixed populations containing 
tumour and normal DNA-derived reads.
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localizer of BRCA2 (PALB2) in patients with pancreatic 
carcinoma72, among other important findings.

However, second-generation sequencing is a more 
efficient and comprehensive technology for whole-
exome sequence analysis than capillary-based sequenc-
ing and is becoming increasingly routine8,9. Because the 
exome represents only approximately 1% of the genome, 
or about 30 Mb, vastly higher sequence coverage can be 
readily achieved using second-generation sequencing 
platforms with considerably less raw sequence and cost 
than whole-genome sequencing. For example, whereas 
90 Gb of sequence is required to obtain 30-fold aver-
age coverage of the genome, 75-fold average coverage is 
achieved for the exome with only 3 Gb of sequence using 
the current state-of-the-art platforms for targeting73. 
However, there are inefficiencies in the targeting proc-
ess. For example, uneven capture efficiency across 
exons can mean that not all exons are sequenced and 
some off-target hybridization can occur. These inef-
ficiencies are likely to be ameliorated as sequencing  
and capture technology continue to improve.

The higher coverage of the exome that can be affordably  
achieved for a large number of samples makes exome 
sequencing highly suitable for mutation discovery in 
cancer samples of mixed purity. In addition, the hybrid 
selection approach will be particularly powerful for 
diagnostic analysis of the cancer genome; for diagnosis, 
there may be interest in sequencing specific oncogenes74 
and/or tumour suppressor genes at very high coverage in 
samples with a low percentage of tumour cells21.

Transcriptome sequencing. Second-generation sequencing 
of the transcriptome (RNA-seq) — as cDNA derived 
from mRNA, total RNA or other RNAs such as micro-
RNAs    — is a powerful approach for understanding can-
cer. Transcriptome sequencing is a sensitive and efficient 
approach to detect intragenic fusions, including in-frame 
fusion events that lead to oncogene activation6,7,75,76. 
Transcriptome sequencing can also be used to detect 
somatic mutations but finding a matched normal sample 
for comparison is a challenge, as normal tissue is unlikely 
to express exactly the same genes as the tumour sample. 
Furthermore, mutation detection in genes expressed at 
low levels is hampered owing to lack of statistical power. 
Also, the possibilities of reverse transcriptase errors 
and RNA editing15 need to be considered. Nevertheless, 
important somatic nucleotide substitution mutations 
have been discovered by transcriptome sequencing, most 
notably recurrent mutations in the forkhead box L2 gene 
(FOXL2) in ovarian granulosa cell tumours77.

RNA-seq also allows analysis of gene expression pro-
files and is particularly powerful for identifying tran-
scripts with low-level expression, which means that these 
transcripts can be included in tumour classification 
metrics78. RNA-seq may soon be competitive with oligo-
nucleotide microarray technologies in terms of the cost 
and efficiency of gene expression analysis. Furthermore, 
transcriptome sequencing provides the advantage of not 
being limited to known genes but can also include the 
detection of novel transcripts, alternative splice forms 
and non-human transcripts.

Detecting classes of genome alterations
In contrast to previously available genome technologies, 
such as first-generation sequencing and array-based 
methods, second-generation sequencing methods can 
provide a comprehensive picture of the cancer genome 
by detecting each of the major alterations in the cancer 
genome (FIG. 3). Here we describe the analysis of each 
type of alteration briefly.

Somatic nucleotide substitutions and small insertion 
and deletion mutations. Nucleotide substitution muta-
tions are the most common known somatic genomic 
alteration in cancer, occurring typically at the rate of 
about one somatic nucleotide substitution per million 
nucleotides12,13,15,28,79; insertion and deletion mutations 
are approximately tenfold less common in most can-
cer specimens. However, the rate of mutations varies 
greatly between cancer specimens. For example, ultra-
violet radiation-induced melanomas have on the order 
of ten mutations per million bases12 and hypermutated 
tumours with defects in DNA repair genes can reach 
rates of tens of mutations per million bases28,79. By con-
trast, haematopoietic malignancies can have less than 
one mutation per million bases10,11. Therefore, statistical 
analyses to assess mutation significance must take these 
sample-to-sample variations into account.

Various computational methods have been devel-
oped to determine the presence of somatic mutations 
using second-generation sequence data80. The detection 
of somatic mutations in cancer requires mutation call-
ing in both the tumour DNA and the matched normal 
DNA, coupled with comparison to a reference genome 
and an assessment of the statistical significance of the 
number of counts of the mutation in the cancer sequence 
and its absence in the matched normal sequence. False-
positive genome alteration calls are of two types: inac-
curate detection of an event in the tumour, when the 
tumour and normal are both wild-type; and detection of 
a germline event in the tumour but failure to detect it in 
the normal. Different sources of noise contribute to the 
two types of false positives. The first type of error can 
be due to machine-sequencing errors, incorrect local 
alignment of individual reads and discordant alignment 
of pairs. Stochastic errors such as machine errors can 
be eliminated by high-level over-sampling of tumour 
and normal DNA sequence with sufficiently stringent 
statistical thresholds for mutation calling. The second 
type of false-positive mutation calls are caused by fail-
ures to detect the germline alleles that differ from the 
reference sequence in the normal sample, mostly owing 
to insufficient coverage.

In general, the most common cause of false-negative  
mutation calls is insufficient coverage of the cancer 
DNA. As discussed above, increased over-sampling may 
be required to overcome sample admixture, tumour het-
erogeneity and variations in ploidy (genome-wide and 
local).

The identification of candidate mutations associated 
with cancer then leads to two questions: is the specific 
mutation or the set of alterations in a particular gene 
statistically significant across all samples, and is the 
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Transformation assay
The measurement of cell 
phenotypes to assess 
oncogenic changes.

Digital karyotyping
A method to quantify  
DNA copy number. Short 
sequence-derived tags that 
cover the genome are used to 
read-out relative copy number.

alteration functionally significant? Across a set of sam-
ples, statistical significance of a gene (or an alteration) 
can be assessed by comparison to the sample-specific 
background mutation rates in the specific nucleotide 
context (for example, background rate of C-to-T tran-
sitions in CG dinucleotides often differs from the rate 
of mutations in A nucleotides27,28) and correcting for 
multiple hypotheses testing (that is, the higher chance 
of observing unlikely events when looking across many 
genes). Various computational tools have been devel-
oped to attempt to assess functional significance of a 
mutation. These tools predict the effect of an amino 
acid change on the protein structure and function, and 
some tools (for example, SIFT, CanPredict, PolyPhen 
and CHASM81–85) aim to distinguish ‘driver’ from ‘pas-
senger’ alterations. In general, experimental validation 
of the function of mutations by approaches such as 
transformation assays86 is the most powerful method; 
however, functional validation is limited because there 
is no suite of functional assays that are suitable for 
assessing all the types of pathways that can be altered 
in cancer.

Copy number. Array-based measurements have proven 
to be a powerful approach to determine the pattern 
of copy number alterations in cancer, from the gain 
or loss of chromosome arms to focal amplifications 
and deletions that might range from tens of kilobases 

to tens of megabases in size87–94. Sequence-based 
approaches to copy number were applied even before 
the development of second-generation sequencing 
technologies, using digital karyotyping approaches95,96, 
which are based on sequencing large numbers of short 
sequence tags97.

Second-generation sequencing methods offer sub-
stantial benefits for copy number analysis, including 
higher resolution (up to the level of the single-base 
insertion or deletion) and precise delineation of the 
breakpoints of copy number changes22,26,98. The digital 
nature of second-generation sequencing allows us to 
estimate the tumour-to-normal copy number ratio at 
a genomic locus by counting the number of reads in 
both tumour and normal samples at this locus. Unlike 
array-based measurements, counting sequences does 
not suffer from saturation and therefore allows accu-
rate estimation of high copy number levels. It is, how-
ever, affected by sequencing biases caused by sequence  
context, such as GC content.

Genome-wide sequence-based methods are par-
ticularly valuable for copy number changes of between 
approximately 100 and 1000 bases — reflecting the 
maximum size that can be easily detected by PCR-based 
locus-specific sequencing and the minimum current 
resolution limit of array technologies, respectively. Copy 
number measurements by sequencing also allow defini-
tion of the sequence on the other side of the breakpoint. 
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Figure 3 |	Types	of	genome	alterations	that	can	be	detected	by	second-generation	sequencing.	Sequenced 
fragments are depicted as bars with coloured tips representing the sequenced ends and the unsequenced portion of 
the fragment in grey. Reads are aligned to the reference genome (for example, mostly chromosome 1 in this example). 
The colours of the sequenced ends show where they align to. Different types of genomic alterations can be detected, 
from left to right: point mutations (in this example A to C) and small insertions and deletions (indels) (in this example a 
deletion shown by a dashed line) are detected by identifying multiple reads that show non-reference sequence; 
changes in sequencing depth (relative to a normal control) are used to identify copy number changes (shaded boxes 
represent absent or decreased reads in the tumour sample); paired-ends that map to different genomic loci (in this 
case, chromosome 5) are evidence of rearrangements; and sequences that map to non-human sequences are 
evidence for the potential presence of genomic material from pathogens.
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Directed sequencing
Sequencing only subsets of the 
genome, for example, particular 
genes or regions of interest.

High-coverage or low-coverage whole-genome sequenc-
ing is feasible for analysis of copy number alterations  
in cancer22,26.

Chromosomal rearrangements. Before second-generation 
sequencing technology, there was no systematic method 
to identify chromosomal rearrangements in cancer 
genomes, except in cases of relatively simple genomes 
such as those of leukaemias, lymphomas and sarcomas, 
in which recurrent rearrangements could be detected 
by cytogenetics. The complex genomes of epithelial 
cancers proved refractory to such approaches. The first 
two major recurrent translocations to be identified in 
epithelial cancers, the TMPRSS2–ERG translocation 
in prostate cancer and the EML4–ALK translocation in 
non-small cell lung cancer, were discovered by 
informatic and functional approaches42,43. Second-
generation sequencing analysis of genomes13,22,39,99 and 
transcriptomes6,7,75 has now been shown to allow sys-
tematic description of the rearrangements in a given 
cancer sample. Extension of these approaches to large 
numbers of samples should lead to the discovery of 
the major recurrent translocations in cancer. Indeed, a 
recent study has identified recurrent translocations of 
the BRAF and CRAF genes in prostate carcinomas76.

Among the rearrangements that can be detected by 
second-generation sequencing98 are: intrachromosomal 
rearrangements, including inversions, tandem dupli-
cations and deletions; insertions of non-endogenous  
sequences, including viral sequences; reciprocal and 
non-reciprocal interchromosomal rearrangements; 
and complex rearrangements, including combina-
tions of these various events39. Using current tech-
nologies, rearrangements within long highly repetitive 
sequences such as Alu and LINE elements or centro-
meres present a major challenge and often cannot be 
detected.

Of the second-generation sequencing strategies, 
whole-genome sequencing is the most comprehensive 
but most costly approach, albeit made less sequence-
intensive by the use of jumping libraries that provide 
high physical coverage. Transcriptome sequencing is 
highly cost efficient but is limited to the detection of 
coding fusion transcripts and would fail to detect, for 
example, the immunoglobulin–MYC rearrangements 
of Burkitt’s lymphoma100. Exome sequencing has lim-
ited use for chromosomal rearrangement discovery, as 
it will only find those rearrangements that are within 
or near exons.

Microbe discovery methods. In addition to somatic 
alterations that are modifications of the normal human 
genome, many cancers are caused by microbial infec-
tions. A classic example is human papillomavirus, 
which can cause cervical cancer101. However, neither 
array methods nor directed sequencing approaches can 
identify new examples of microbial genomes that have 
inserted into the human genome in cancer samples.

Computational subtraction of the sequence from 
a sample from the human reference genome25,95,102,103 
can detect non-human sequences and thereby identify 

novel microbial infections associated with human 
disease. This method was theoretically demonstrated 
with first-generation sequencing methods but its prac-
tical application requires the higher sequence depth 
of second-generation sequencing. Computational 
subtraction of second-generation sequencing of the 
transcriptome has now been used successfully to dis-
cover the Merkel cell polyomavirus in a rare human 
skin cancer23.

Some of the challenges in discovering novel microbial  
infections include low concentration of the micro-
bial agent, possible ‘hit-and-run’ mechanisms of  
disease causation (in which the microbe is necessary  
for disease initiation but is no longer present in the can-
cer), quality issues with second-generation sequenc-
ing that cause artefacts that do not match the human 
genome and incompleteness of human genome ref-
erence sequences. These limitations, with the excep-
tion of the hit-and-run mechanism, are likely to be 
addressed by improvements in sequencing technology 
that decrease error rates and increase coverage.

Computational issues
Tools for computational analysis need to develop rap-
idly to keep up with the huge quantity of experimen-
tal data produced by second-generation sequencing. 
Many of the computational tools for second-generation 
sequencing were developed for analysing non-cancer 
samples for human population genetic studies104–107. 
Although computational analysis of cancer genomes 
can use many of these tools, there are additional 
challenges that are unique to cancer. The three main 
issues are: the need to simultaneously analyse data 
from the tumour and patient-matched normal tissue 
to identify rare somatic events (for example, somatic 
single nucleotide variations are ~1,000 times less fre-
quent than germline variants); the ability to analyse 
very different and highly rearranged genomes; and 
the ability to handle samples with unknown levels of 
non-tumour contamination and heterogeneity within 
the tumour. TABLE 2 provides a summary of software 
packages.

Alignment and assembly. Before the data can be ana-
lysed, reads must be aligned to the specific chromo-
some, position and DNA strand from which they are 
most likely to have originated. At present, these align-
ments are performed against reference human genomes 
using methods developed for normal samples, such as 
MAQ108, BWA109, SSAHA2 (REF. 110), Bowtie111, SOAP2 
(REF. 112), SHRiMP113, BFAST114 and others. Methods 
differ in terms of their ability to accurately map noisy 
reads, paired-end reads, long versus short reads and in 
their computational efficiency. The choice of method 
depends on the sequencing platform, data quality and 
computational resources.

The uniqueness of every cancer genome and the 
difficulty of correctly assigning rearranged sequences 
from homologous regions mean that de novo assembly 
of cancer genomes, although computationally complex, 
is likely to become the most powerful approach.
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Mutation detection. As somatic genome alterations 
are rare, any method that detects mutations in cancer 
must do so with low false-positive rates. For example, 
as noted above, somatic single nucleotide variations 
occur at rates on the order of one somatic mutation 
per million bases, therefore the false-positive rate 
for any mutation detection method should ideally be  
considerably lower than 10–6 errors per base.

Recently, the first report of a method specific for 
somatic mutation calling, SNVMix, has been pub-
lished80, and additional tools are in development. 
Systematic analysis of false-positive and false-negative  
rates of the different methods based on real cancer 
data is yet to be performed. Alternatively, a naive 
somatic mutation caller can be built by independently 
applying a germline single-sample mutation caller to 
the tumour and normal data sets; somatic events are 
those detected in the tumour and not detected in the 
normal data. Germline analyses are more mature and 

there are a host of mutation-calling tools available, 
such as Samtools104, UnifiedGenotyper107, VarScan105 
and others.

Somatic mutation calling is more complex than 
germline mutation calling because cancer samples vary 
in their purity and ploidy. A key parameter defined for 
each mutation is its allelic fraction — the expected frac-
tion of reads in the tumour that harbour the mutation 
among all reads that map to the same genomic location. 
The allelic fraction captures the local complexity of the 
tumour genome, the non-tumour contamination levels 
and any mutation-dependent experimental or alignment 
bias, and is also affected by the ploidy of the tumour 
and the copy number of the region. In germline analy-
sis, most mutations have an allelic fraction of either 1/2 
for heterozygous events or 1 for homozygous events. By 
contrast, somatic mutations may have any value above 
0 up to 1. Clearly, the false-positive and false-negative 
rates not only depend on the coverage in the tumour 

Table 2 | Computational tools for cancer genomics

Category Method URL Comments Refs

Alignment MAQ http://maq.sourceforge.net Used by most cancer genome 
papers so far

108

BWA http://bio-bwa.sourceforge.net Replacing MAQ. Considerably 
faster

109

ELAND http://www.illumina.com 117

SSAHA2 http://www.sanger.ac.uk/resources/software/ssaha2 Used to validate location of reads 39,110

Bowtie http://bowtie-bio.sourceforge.net/index.shtml 111

SOAP2 http://soap.genomics.org.cn 112

SHRiMP http://compbio.cs.toronto.edu/shrimp 113

Corona Lite http://solidsoftwaretools.com/gf/project/corona Used for SOLiD

BFAST http://bfast.sourceforge.net Mainly used for SOLiD 114 

Mutation calling SNVMix http://www.bcgsc.ca/platform/bioinfo/software/SNVMix 80

CASAVA http://www.illumina.com/software/genome_analyzer_
software.ilmn

117

Samtools http://samtools.sourceforge.net 104

Unified 
genotyper

http://www.broadinstitute.org/gsa/wiki/index.php/
Unified_genotyper

107

VarScan http://varscan.sourceforge.net 105

Indel calling Pindel http://www.ebi.ac.uk/~kye/pindel 106

Copy number analysis CBS http://www.bioconductor.org 
https://r-forge.r-project.org/R/?group_id=702

CBS used on tumour/normal 
ratios calculated in fixed windows

118

SegSeq http://www.broadinstitute.org/cgi-bin/cancer/
publications/pub_paper.cgi?mode=view&paper_id=182

26

Prediction of mutation 
functional effect

SIFT http://blocks.fhcrc.org/sift/SIFT.html
http://sift.jcvi.org

81

Polyphen-2 http://genetics.bwh.harvard.edu/pph2 83

XVAR http://xvar.org 119

CHASM 85

Visualization CIRCOS http://mkweb.bcgsc.ca/circos Essentially all papers use CIRCOS 
to display genomic events

120

IGV http://www.broadinstitute.org/igv IGV is used to display genomic 
events and for manual review

A list of additional alignment methods with a brief description of each is constantly updated at http://en.wikipedia.org/wiki/List_of_sequence_alignment_software.

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 11 | OCTOBER 2010 | 693

© 20  Macmillan Publishers Limited. All rights reserved10

http://maq.sourceforge.net
http://bio-bwa.sourceforge.net
http://www.illumina.com
http://www.sanger.ac.uk/resources/software/ssaha2
http://bowtie-bio.sourceforge.net/index.shtml
http://soap.genomics.org.cn
http://compbio.cs.toronto.edu/shrimp
http://solidsoftwaretools.com/gf/project/corona
http://bfast.sourceforge.net
http://www.bcgsc.ca/platform/bioinfo/software/SNVMix
http://www.illumina.com/software/genome_analyzer_software.ilmn
http://www.illumina.com/software/genome_analyzer_software.ilmn
http://samtools.sourceforge.net
http://www.broadinstitute.org/gsa/wiki/index.php/Unified_genotyper
http://www.broadinstitute.org/gsa/wiki/index.php/Unified_genotyper
http://varscan.sourceforge.net
http://www.ebi.ac.uk/~kye/pindel
http://www.bioconductor.org
https://r-forge.r-project.org/R/?group_id=702
http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=182
http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=182
http://blocks.fhcrc.org/sift/SIFT.html
http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2
http://xvar.org
http://mkweb.bcgsc.ca/circos
http://www.broadinstitute.org/igv
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software


Free serum DNA
DNA that is cell-free and is 
circulating in the bloodstream. 
It typically refers to tumour 
DNA that can be isolated  
in the blood.

and normal tissue of the mutated site, but also strongly 
depend on the allelic fraction. Methods to determine 
the allele-specific copy number have been developed 
for SNP arrays115 and are currently under develop-
ment for second-generation sequencing data; these 
methods will allow determination of allelic fractions  
of mutations.

Validation of mutation and rearrangement calls. 
Accurate estimation of false-positive and false-nega-
tive rates is a challenge in itself. False-positive rates can 
be estimated by validation of the event using an ortho-
gonal technology. For example, a common method for 
validation of single nucleotide variations and insertions 
or deletions is to use a genotyping assay such as mass 
spectrometric analysis74. However, this technology was 
designed for germline analysis and is not sufficiently 
sensitive to validate mutations with low allelic frac-
tions. Therefore, current efforts are focused on apply-
ing deep targeted second-generation sequencing to 
validate the events. False-negative rates are even more 
complicated to estimate as one needs a set of known 
true-positive mutations for comparison, which are not  
readily available.

For validating rearrangements, the current meth-
ods require PCR amplification of the region surround-
ing the rearrangement followed by sequencing of this 
region. Therefore, they are not high-throughput.  
A developing concept is to capture the rearranged sites 
using a similar protocol to the exon capture approach 
and apply deep sequencing. Sequential application 
of validation methods to computational analysis of 
the genome will lead to iterative improvements in 
methods for the initial calling of genome alterations 
in cancer.

The future of cancer genomics
It is likely that second-generation sequencing methods 
will continue to transform cancer genomics, leading 
to the comprehensive discovery of all the major altera-
tions in the cancer genome, followed by the application 
of comprehensive sequencing approaches to cancer 
diagnostics. Computational analysis will become a  
central part of these discovery and diagnostic efforts.

The major challenge will be to make biological sense 
of the mountains of genomic data. This will require 
computational, biological and clinical analyses of the 
genome data. The computational analyses will assess 
reproducibility and statistical significance; the biological 
analyses will assess links to pathways and the functional 
relevance of mutated genes to cancer; and the clinical 
analyses will assess relationships of genome alterations 
with cancer epidemiology, histology, prognosis and 
response to therapy.

Perhaps the biggest impact of second-generation 
sequencing of cancer genomes will be in cancer diag-
nostics. Comprehensive characterization of genomic 
abnormalities has not previously been feasible because of 
sample processing and purity requirements. Specifically, 
digital counting of mutant alleles helps to overcome the 
challenges of low tumour quantity, normal cell admix-
ture in the tumour, heterogeneity of tumour genomes 
and variable ploidy. In the long run, second-generation 
sequencing is likely to allow diagnosis from ever smaller 
samples, eventually including circulating tumour cells116 
and free serum DNA99. Information databases that connect 
genomic findings with clinical parameters to ascertain 
the relevance of the genome alterations are also required 
to realize the potential of cancer genomics. These devel-
opments are likely to potentiate accurate genome-based 
diagnosis for an ever wider set of patients with cancer.
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