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Abstract River-groundwater interactions are at the core of a wide range of major contemporary

challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of

biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state

of the art approaches in characterizing andmodeling river and groundwater interactions. Our review covers a

wide range of approaches, including remote sensing to characterize the streambed, emerging methods to

measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant

to the river-groundwater interface. We discuss approaches for automated calibration, and real-time

modeling, which improve the simulation and understanding of river-groundwater interactions. Although the

integration of these various approaches and disciplines is advancing, major research gaps remain to be filled

to allow more complete and quantitative integration across disciplines. New possibilities for generating

realistic distributions of streambed properties, in combination with more data and novel data types, have

great potential to improve our understanding and predictive capabilities for river-groundwater systems,

especially in combination with the integrated simulation of the river and groundwater flow as well as

calibration methods. Understanding the implications of different data types and resolution, the development

of highly instrumented field sites, ongoing model development, and the ultimate integration of models and

data are important future research areas. These developments are required to expand our current

understanding to do justice to the complexity of natural systems.

1. Introduction

Streams and rivers are a major component of the water cycle, and they also shape landscapes, transport

mass, and energy and provide ecosystem services. As a result, they have been studied by scientists from a

wide range of disciplines, including hydrogeology and hydrology [Sophocleous, 2002], biology and ecology

[Boulton and Hancock, 2006; Hancock et al., 2005], geomorphology [Lane et al., 2003; Poole, 2010], sedimen-

tology [Packman and MacKay, 2003; Rosenberry and Pitlick, 2009a], and chemistry [Dahm et al., 1998]. The

approaches and methods employed in these disciplines differ, and it is therefore not surprising that vastly

different perspectives, as well as methodological approaches, have evolved. Moreover, the spatial scales ana-

lyzed span many orders of magnitude (see Figure 1). The “hyporheic scale” (1–100 m) describes the spatial

scale of the transition zone where hyporheic flow occurs (as indicated in the close-up figure on the right).

The “reach scale” (100 to more than 1000 m) refers to the spatial scale dominated by the ambient ground-

water conditions. The “catchment scale” (typically greater than kilometers) refers to even larger scales and

corresponds to the whole catchment in which regional flow occurs. The numbers provided serve as an

indication only. There is no universally accepted quantitative definition of these spatial scales.

However, despite all of these different scales and perspectives, a common denominator in the different dis-

ciplines is the streambed. The streambed constitutes the interface between the river and groundwater, and it

controls river-groundwater interactions. It also consists of contrasting physical, chemical, and biological

environments. While current water management tends to use efficient yet simplified models, there is a trend

toward using integrated surface and subsurface hydrological models (ISSHMs) for managing water resources

at the catchment scale. These approaches rely on improved conceptualization and characterization of the

streambed [Paniconi and Putti, 2015].

A range of review and research articles have focused on the physical, chemical, and biological processes as

well as the physical properties in streambeds [e.g., Boano et al., 2014, Constantz, 2016]. These studies have
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uncovered numerous interactions and feedback mechanisms between hydraulic, sedimentological, biotic,

and chemical processes in the streambed. For example, the deposition of fine sediments can lead to the

reduction (streambed clogging or colmation) of the hydraulic conductivity of the streambeds [Schalchli,

1992] which affect river-groundwater interactions. The growth of biofilms also reduces the hydraulic

conductivity of the streambed [Battin and Sengschmitt, 1999; Ulrich et al., 2015]. Apart from biofilm growth,

other biological processes can give rise to complex physical interactions and feedback mechanisms in

streambeds. Song et al. [2007], for example, observed high values of hydraulic conductivities in the shallow

streambed and associated these findings with increased invertebrate activities. The importance of a

holistic consideration of hydrology, hydrogeology, sedimentology, and ecology is increasingly being

recognized in various contexts, e.g., in the context of streambed habitats [Stubbington, 2012; Groll et al.,

2016], river restoration [Beechie et al., 2010], and the transport and fate of contaminants [Boano et al., 2014].

The scientific analysis of river-groundwater interactions across all relevant spatial scales is critical for solving a

wide range of contemporary challenges that are illustrated with a few examples in Figure 1. Water quality

issues arise from point sources such as a water treatment plant or diffuse sources such as the widespread

application of pesticides [Lapworth et al., 2012]. In both cases, the contamination will follow the river-

groundwater interactions and affect both groundwater and streams [Meals et al., 2010]. Groundwater

abstraction near rivers or the diversion of river water can reduce streamflow, with critical consequences for

ecological systems [Poff and Zimmerman, 2010]. Modifications to the stream (e.g., through channelizing rivers

or instead revitalizing them) can significantly influence river-groundwater interactions by, for example, redu-

cing hyporheic exchange [Boano et al., 2014].

As the streambed is the controlling interface between surface water and groundwater, one would expect that

simulations of the exchanges and interactions reflect these complexities and that the means for assessing

uncertainties related to model simplifications are developed. In fact, significant research efforts have recently

increased toward the development of spatially distributed hydrologic models that fully integrate surface and

subsurface water flow. Distributed in this context means that parameters are spatially and temporally distrib-

uted, rather than a lumped systemmodel where the hydrologic system is treated as a black box. Paniconi and

Putti [2015] provided a detailed review of those integrated surface and subsurface hydrological models which

are based on the blueprint presented by Freeze and Harlan [1969] for a physically based hydrologic response

model (see Tutorial 1). On a conceptual basis, physically based models have widely been used to understand

the basic physics of between rivers and aquifers [Banks et al., 2011; Brunner et al., 2009; Doble et al., 2012;

Figure 1. Schematic representation of an anthropogenically modified catchment. The interaction between groundwater

and surface water creates numerous challenges related to water quality, quantity, and ecology. The figure illustrates the

nested spatial scales of river water and groundwater interactions. (left) The reach scale is illustrated. (right) Hyporheic scale

is shown. The technological advances and modeling approaches discussed in this paper provide information across a wide

range of scales, and are aimed at a better characterization of the surface (e.g., through drones), the subsurface (e.g.,

hydraulic observations of water table dynamics or hydraulic properties of the streambed and its conceptualization in

numerical flow models), and at measuring exchange fluxes between the surface and the subsurface.
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Shanafield et al., 2012; Xie et al., 2014] and have assisted in assessing the reliability of field methods [McCallum

et al., 2010; Su et al., 2016]. Based on the original Freeze and Harlan blueprint, Partington et al. [2017] pro-

posed an updated blueprint for a model capable of simulating the interactions and feedback mechanisms

between hydraulic and sedimentological processes. Further extensions of the original blueprint that could,

for example, integrate biological processes are possible.

However, despite these recent advances in the field of numerical models, current modeling practice is still far

away from incorporating the full complexity of surface water and groundwater interactions. The current con-

ceptualization of streambeds in numerical models that simulate surface water and groundwater interactions

is greatly simplified at all relevant spatial scales. Streambeds are routinely simulated as static, homogeneous

entities [Partington et al., 2017; Irvine et al., 2012]. Moreover, the types, quantities, and the quality of observa-

tion data used in the conceptualization and calibration of numerical models are typically limited to a small

number of observed river stage levels and hydraulic heads in adjacent aquifers or river discharge rates.

The simplified conceptualization of complex surface water-groundwater interactions creates major uncer-

tainties that potentially remain undiscovered given limited field observations that are used in the modeling

process. Other unresolved issues in current modeling practice are the appropriate level of complexity to

incorporate in a model regarding processes, scale, and heterogeneity.

There have been, however, dramatic improvements in a variety of scientific disciplines that have not yet

found their way into ISSHM. The focus of this review is integrated hydrological modeling and hydraulic char-

acterization of alluvial river-groundwater systems. The main contribution of this paper is a review of advances

in measurement techniques, geostatistics, and inverse methods and the new possibilities and applications

that might allow an improved characterization of the streambed and river-groundwater interactions. We also

consider methods that may not appear to be directly related to ISSHM at first glance but have the potential to

lead to model improvements (e.g., the development of a miniaturized gas chromatographer, medical tomo-

graphy, or cloud computing). We finally provide a subjective prognosis for this field of research and describe

the current challenges and future opportunities.

This review paper describes methodological advances focused on river-groundwater interactions across the

streambed and within the main channel. We acknowledge that in many rivers, substantial hydrological

exchange occurs in the riparian zone and alluvial floodplains with coarse sediments.While wedo not focus expli-

citly on advances that specifically pertain to broader interactions across riparian zones and floodplains, we

anticipate that the methods discussed in this paper are likely to be broadly applicable to those environments.

2. Advances in Characterizing the Physical Environment of River-Aquifer Systems

2.1. Approaches to Characterize the Geological and Morphological Properties of Streams

2.1.1. Hydraulic Conductivity of the Streambed: From Point Observations to 3-D Structures

Hydraulic conductivity K (L T�1), with L representing length and T representing time, is the ratio of water flow

velocity to hydraulic gradient [Fetter, 2001]. It is a measure of the ease or ability of a fluid to flow through a

porous medium and is a function of the properties of the porous medium (solid matrix) and the fluid flowing

within it. It is therefore a lumped parameter that integrates the permeability of a porous medium with the

fluid viscosity and density. High values are found in coarse sediments such as sand and gravel, while finer

materials, such as silt and clay, exhibit low values. Heterogeneity of the hydraulic conductivity in the

streambed has been identified as a crucial issue for hyporheic zone research [Boano et al., 2010] as well as

riparian zone and floodplain dynamics [Camporeale et al., 2013].

Hydraulic conductivity is an important parameter relevant to essentially all fields of surface water and

groundwater interactions, including ecological, biogeochemical, and hydraulic processes in the hyporheic

zone [Boano et al., 2014]. Hydraulic conductivity also controls large-scale exchange fluxes across the

streambed (e.g., reach scale or catchment scale) and is thus required in the estimation of exchange fluxes

with hydraulic methods (see section 2.3.2). Streambeds are likely to exhibit large anisotropy in hydraulic

conductivity [Gelhar, 1993; Salehin et al., 2004; Sawyer and Cardenas, 2009; Yager, 1993]. Rosenberry and

Pitlick [2009b] highlighted the importance of both vertical and horizontal flow processes in the streambed,

reinforcing the need to quantify both horizontal and vertical streambed hydraulic conductivities.

Hydraulic conductivity is an essential parameter for ISSHMs, but estimating its value is probably one of the

most challenging endeavors in conceptualizing streambeds in numerical models. Three main types of
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challenges can be identified: spatial heterogeneity, transience, and the scale dependency of any particular

measurement. Calver [2001] reviewed dozens of measured and calibrated hydraulic conductivities of stream-

beds and demonstrated that values typically vary between 10�10 and 10�2 m/s. In a more recent contribu-

tion, Stewardson et al. [2016] compiled data from point measurements of streambed hydraulic conductivity

and reported reach-average values between 10�5 and 10�3 m/s. Like Calver [2001], Stewardson et al.

[2016] noted that sections of a streambed could essentially be impermeable with hydraulic conductivities

as small as 10�10 m/s, 5 orders of magnitude smaller than the lowest reach-scale averaged value. A further

challenge in assessing the hydraulic properties of streambeds is transience. Colmation processes reduce

K at and near the sediment-water interface, while erosion processes tend to cause an increase of K. Gianni

et al. [2016] compiled data of transience of hydraulic conductivity and concluded that variations up to 3

orders of magnitude can occur between erosion and deposition cycles. Finally, the approaches to estimating

hydraulic conductivities operate on different spatial scales in both the vertical and horizontal directions

[Sebok et al., 2015]. The influence of combiningmeasurements with different spatial scales has so far not been

quantified and creates challenges for reconciliation of model with field data and vice versa.

A range of methods has been proposed to measure hydraulic conductivity at a given location directly (“point

estimates”). A widely used direct method is through imposing a known hydraulic gradient between two

points and then measuring the resultant fluid fluxes. The hydraulic conductivity can then be inferred through

Darcy’s law. Thismethod is the underlying principle of slug tests, seepagemeter tests, and permeameter tests.

The advantages and disadvantages of seepage meter and permeameter tests are discussed in review papers

by Kalbus et al. [2006] and Landon et al. [2001]. Landon et al. [2001] emphasized that if a low-permeability layer

(clogging layer) is present, its position must be known for a reliable design of the test and the subsequent

analysis. Practical difficulties for these methods arise in deep rivers, or in rivers with large flow velocities.

Field permeameters, seepage meters, or hydraulic gradient methods yield estimates of vertical hydraulic

conductivity, while slug tests give horizontal hydraulic conductivity [Landon et al., 2001]. A few methods

can provide an estimate of both horizontal and vertical hydraulic conductivities. For example, Chen [2000]

designed an L-shaped standpipe to measure horizontal hydraulic conductivity and, for the test cases

presented, found that the horizontal hydraulic conductivity was 3 to 4 times larger than the vertical one.

Kelly and Murdoch [2003] proposed the constant rate well test that allows estimation of horizontal and vertical

hydraulic conductivities of sediments through inversion of an analytical solution. It is also important to note

that the representative volume of these estimates is small.

The application of hydraulic approaches can also be challenging in the presence of thin clogging layers such

as biofilms. An interesting approach to qualitatively identify areas of high and low hydraulic conductivities

related to biological clogging was suggested by Claret and Boulton [2009]. They demonstrated that microbial

activity and biogeochemical gradients along subsurface flow paths were smaller where hydraulic

conductivity was high and vice versa. Quantifying the properties of the clogging layer is challenging, and very

few studies have attempted to do so. Blaschke et al. [2003] and Ulrich et al. [2015] collected streambed

samples using freezecores from a perennial river and identified clogging layers.

Freezecoring is a promising approach to obtain largely undisturbed sediment samples that can reveal the in

situ heterogeneity. Humpesch and Niederreiter [1993] described this approach in detail and provided instruc-

tions to obtain 20 cm samples of vertical riverbed down to a depth of 10 m. In this method, liquid nitrogen is

injected for 30–40min into a hollow lance that has previously been rammed into the sediments. Alternatively,

carbon dioxide can be used instead of liquid nitrogen [Franchini and Zeyer, 2012]. Note that freezecoring has

practical limitations in rivers containing warm water as well as in compacted cobble-bed rivers. Liernur et al.

[2017] reviewed to what extent the freezecoring process itself affected the integrity of the core and showed

that there are disturbed zones in the proximity of the lance (see also Figure 2). Strasser et al. [2015] obtained

freezecores from streambeds and built permeameters around cut-out subsections of the core, at a sufficient

distance from the lance where the core was not disturbed. They measured horizontal and vertical hydraulic

conductivities and compared their results with various other approaches for estimating hydraulic conductiv-

ities, including grain-size analysis (see below) as well as in situ permeameter tests. While they observed a good

agreement with permeameter tests, they highlighted inconsistencies with grain-size-based approaches.

Freezecores from streambeds have also been combined with tomography techniques such as X-ray

“Computer Tomography Scanning” (CT scanning) (Figure 2), which provides the information required to
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reconstruct “pore-scale” network models of connectivity [Liernur, 2016; Liernur et al., 2017]. In this approach,

numerous X-ray images of the sample are taken from different angles, which allows the reconstruction of a

3-D image. Helliwell et al. [2013] provided a review of the applications of X-ray computed tomography in soil

sciences. A comprehensive overview of the principles of CT-image acquisition was provided by Ketcham and

Carlson [2001]. In hydrology, X-ray CT-based pore networks have been used to estimate hydraulic conductivity

under varying hydraulic conditions [Périard et al., 2016]. Other researchers used pore-scale networks obtained

from X-ray CT scans for “computational fluid dynamics” simulations. A recent special issue of the journal

Advances in Water Resources on pore-scale modeling provided numerous examples of how such

approaches can help to improve our understanding of fluid dynamics in porous media [Lunati et al., 2016].

The combination of freezecoring and X-ray CT techniques paves the way for a better understanding of the

pore-scale organization of sediments in the streambed. Pore-scale numerical modeling can further assist in

understanding how the structure of the streambed influences the hydraulic properties on a small scale.

The grain-size distribution provides an alternative approach to estimate hydraulic conductivity, taking advan-

tage of the intrinsic link between grain-size distributions and hydraulic properties. Relationships between

hydraulic properties and grain-size distributions were recognized early in hydrological science [Alyamani

and Sen, 1993; Schlichter, 1905; Vukovic and Soro, 1992]. However, relating hydraulic conductivity to grain-size

distribution is not straightforward [Alyamani and Sen, 1993]. Odong [2007] applied different methods for the

same samples and identified large variation in estimates of hydraulic conductivity. More recently, Song et al.

[2009] determined the hydraulic conductivity in the field using permeameter tests and compared the results

with estimates obtained from grain-size distributions. All grain-size-based methods overestimated the

hydraulic conductivity, a result consistent with the previously mentioned study of Strasser et al. [2015]. A

Figure 2. An example of a conductivity-temperature-depth scan of a freezecore obtained in the floodplain of a restored

section of the Thur river in Switzerland. The left image shows a vertical cross-section (height: 60 cm, width: 20 cm) which

allows identifying the areas that have been influenced by ramming in the lance into the streambed. The images on the

right show pores with a diameter above a certain threshold of the same freezecore. The top image is a view from above; the

lower image is a vertical subsection. Images on the right: Liernur [2016]; Image on the left: Liernur et al. [2017].
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further limitation of the “classical” grain-size approaches was highlighted by Chen [2000], who points out that

estimation of hydraulic conductivity by grain-size analysis precludes the consideration of anisotropy.

Additionally, grain-size analysis cannot consider preferential pathways, which can be important in stream-

beds (see Figure 2 for an example).

Nevertheless, recent studies suggested obtaining grain-size distributions based on image analysis because it

can provide valuable information on conductivity patterns at the top of the streambed. Image-based analysis

of the top of the streambed will often have to be combined with methods that provide information on the

vertical structure as well (e.g., through freezecoring) as the top layer of the streambed often features a differ-

ent sedimentary composition than the underlying sediments because of armoring and other geomorpholo-

gical processes. The potential for using image analysis to obtain granulometric features was discussed in

Francus [2004]. Automated grain-size analysis approaches have since evolved rapidly, as discussed by

Cislaghi et al. [2016]. Owing to the rapid developments of unmanned aerial vehicles (UAVs) and miniaturiza-

tion of sensors and cameras, the efficiency and spatial resolution of image acquisition methods have also

greatly improved, even in areas where accessibility is an issue. Langhammer et al. [2017], for example, repeat-

edly overflew river sections to identify changes in granulometry due to flood depositions. Such spatially

distributed information on grain size can be integrated into geostatistical frameworks (see Tutorial 2).

Geophysical methods can also provide a map of the structure of the subsurface. Hydrogeophysical tools

based on electrical resistivity and electromagnetic induction methods are gaining popularity in streambed

studies [Rubin and Hubbard, 2005]. Crosbie et al. [2014] used a geophysical characterization of the streambed

to evaluate information from a losing disconnected river. The spatial coverage and thickness of the riverbed

clay layer, a key control on infiltration, was mapped using electrical resistivity surveys. Wojnar et al. [2013]

undertook an assessment of geophysical surveys as a tool to estimate riverbed hydraulic conductivity.

Vertical hydraulic conductivity was estimated using some methods at varied scales, including seepage

meters, slug tests, and heat and water flow river-aquifer modeling. These estimates were compared with stra-

tigraphic information using resistivity, electromagnetic, and seismic data. The paper concluded that geophy-

sical methods could not be used alone to determine appropriate ranges of vertical hydraulic conductivity.

Both hydrogeological and geophysical methods are required to determine the correlation between resistivity

data and hydraulic conductivity data. Crook et al. [2008] installed electrodes directly into the streambed to

obtain images of electrical resistivity. Their approach allowed the thickness and continuity of a highly perme-

able gravel layer to be mapped. Slater et al. [2010] combined electrical imaging with distributed temperature

sensing methods to characterize river-groundwater interactions. Geophysical methods are also increasingly

used to map hyporheic processes [e.g., Ward et al., 2010; Toran et al., 2012]. Binley et al. [2015] reviewed the

emergence and development of hydrogeophysics, including emerging techniques and future opportunities

in hydrogeophysics, for improved understanding of subsurface processes over multiple scales. Many of the

ideas presented are likely to be relevant in streambed hydrological applications.

Approaches for estimating hydraulic properties based on controlled forcing to the system through abstract-

ing groundwater, such as pumping tests, have been used for decades in hydrogeology. Such pumping tests

have been further developed to provide information on the heterogeneity of the subsurface, through

hydraulic tomography approaches such as those described by Illman [2014]. However, using pumping tests

to infer streambed properties remains a challenge. An approach to rapidly identify changes in hydraulic

properties across the stream-aquifer interface was proposed by Gianni et al. [2016]. It uses the variations of

the water table measured in a piezometer close to a stream in response to changes in river dynamics. The

approach is based on an analytical solution assuming a rectangular stream geometry, and that the changes

in hydraulic properties are related to the deposition of fine particles or the development of biofilms, and not

to significant changes in streambed topography.

Several authors have proposed a combination of methods and approaches to capture the heterogeneity of

hydraulic properties and its effect on flow and transport in streambeds. Schmidt et al. [2006] characterized

spatial heterogeneity in streambeds using measurements of streambed temperature at different depths.

Schornberg et al. [2010] systematically evaluated the effects of streambed heterogeneity on estimates of

exchange fluxes from thermal depth profiles. D. H. Käser et al. [2014] provided a detailed description of many

aspects of streambed structure, including hydraulic conductivity, gradient, topography, and exchange fluxes.

Other noteworthy examples are Karan et al. [2014], who measured hydraulic conductivity, temperature

Reviews of Geophysics 10.1002/2017RG000556

BRUNNER ET AL. RIVER-GROUNDWATER INTERACTIONS 823



profiles, and hydraulic gradients at a large number of locations along the Holtum stream in Denmark.

Rosenberry and Pitlick [2009a] measured vertical and horizontal hydraulic conductivities, seepage rates,

hydraulic gradients, and shear stress and related their results to the bedforms present.

Because it exhibits such a wide range of possible physical values over short distances, measuring hydraulic

conductivity remains a major challenge. The heterogeneity and anisotropy, as well as transient nature of

streambeds, still cannot be captured satisfactorily with existing approaches. However, any estimate of

hydraulic conductivity provides very useful information that can be integrated into geostatistical frameworks

(see upcoming section on geostatistics and Tutorial 2] and provides critical information to estimate states and

parameters of hydrological models. If more robust relations between grain-size analysis and hydraulic

properties can be developed, image-based approaches that provide grain-size distributions across the

surface of the streambed could be better integrated into such statistical analyses and the subsequent quan-

titative flow modeling approaches.

2.1.2. River Bathymetry

Accurate measurements of streambed bathymetry are critical for simulating a variety of hyporheic processes

[Boano et al., 2014]. Bathymetry is also required to simulate surface water hydrodynamics. The application of

accurate bathymetric information is not limited to numerical models. For example, Thoma et al. [2005] com-

pared digital elevation models created at different times for a given location and estimated sedimentary

volume change over time.

Several studies demonstrated that it is possible to map streambed bathymetry through shallow water using

standard photogrammetric techniques [Carbonneau et al., 2006; Westaway et al., 2003]. Despite promising

results, Hilldale and Raff [2008] identified several limitations in the application of these techniques, including

the different sensitivity to depth of different color bands. The limitations of other common methods (e.g.,

“acoustic Doppler current profiler”, an acoustic method applied in Dinehart and Burau [2005]) are also dis-

cussed by Hilldale and Raff [2008] and compared to the potential of obtaining highly accurate river bathyme-

tries over large areas using airborne lidar data (e.g., reach or even catchment scale). They demonstrated using

various field cases that the quality of bathymetry was comparable to terrestrial lidar systems and river bathy-

metry obtained using photogrammetry.

An issue related to the successful use of lidar measurement is water clarity. According to Hilldale and Raff

[2008], lidar can be applied to two or three times the Secchi depth. One Secchi depth corresponds to the

depth where the Secchi-disk (a plain white, circular disk with 30 cm in diameter) is no longer visible to

humans. In a review on mapping of river topography using remote sensing, Feurer et al. [2008] noted that

mapping of shallow rivers also remains a challenge but points out that airborne lidar is an emerging and

highly promising technique. Notably, lidar has also been used from boats [Alho et al., 2009]. A key limitation

of the classical lidar systems is the scatter of the signal due to the presence of water. A new generation of

bathymetric lidar technology was presented by Mandlburger et al. [2011] to address this limitation. The laser

operates in a spectral range matching the transmittance window of water and can be mounted on a small

plane or helicopter. The newly developed lidar system can be applied to up to one unit of Secchi depth.

The horizontal resolution is dependent on the height and speed during acquisition. Under optimal condi-

tions, it allows the generation of streambed topography with a spatial resolution of around 20 cm by

20 cm. This resolution is, however, still insufficient for studies on invertebrates or microbial processes.

Developments in sensor technology have facilitated data acquisition for fluvial systems, as demonstrated in

the review by Marcus and Fonstad [2008]. Sensors and data acquisition have further advanced, for example,

lidar approaches [Harpold et al., 2015] as well asmultispectral, hyperspectral, and thermal imaging approaches

[Carbonneau and Piégay, 2012]. Developments in UAV and sensor technologies make remote sensing

approaches more cost-effective, with a higher spatial resolution, while enabling a high acquisition frequency,

even at sites that are difficult to access. A high acquisition frequency is a great advantage in dynamic systems

such as rivers and streams, and it enables detection ofmorphological changes [Cook, 2017]. Lidar sensors have

also been miniaturized to the extent that they can be mounted on small UAV systems. For example, a UAV

developed by ALTIGATOR can be equipped with a lidar developed by the company YELLOWSCAN (http://

www.yellowscan.fr/news/news-release). The total weight of the entire system is only 5.6 kg, and it can fly

autonomously up to 25 min. Also, high-resolution cameras can be used in photogrammetric approaches to

generate digital elevation models of floodplains. An example of such data is shown in Figure 3.
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2.2. Geostatistical Modeling of Geological Structures

Geostatistics, which is essentially advanced data interpolation, is used to represent the heterogeneity of

hydraulic properties of aquifers and streambeds. New methods are being developed to model the heteroge-

neity of geological structures, extending the spectrum of methods that were reviewed extensively by

Koltermann and Gorelick [1996] and de Marsily et al. [2005]. The development is driven by the need to produce

more realistic models from a geological point of view, with a better representation of observed spatial

connectivity patterns [Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003; Kerrou et al., 2008; Renard

and Allard, 2013]. Following the classification proposed by Koltermann and Gorelick [1996], two main types

of heterogeneity models are discussed here: “structure-imitating” and “process-imitating.”We focus this sec-

tion on advances related to these two models that are relevant to fluvial or alluvial geological environments

and that have been published after 2005.

2.2.1. Structure-Imitating Models

“Structure-imitating models” are based on stochastic and geometric techniques and aim to reproduce

structures and patterns observed in the field. An example in this category are “object-based models.”

While the first object-based models used simple objects such as ellipses to represent geological structures

[Allen, 1978; Jussel et al., 1994], recent models include much more complex parametric shapes and

Figure 3. Topography (implemented in a numerical model) of the Emme River (meter above mean sea level), Switzerland,

during low flows as an example of a UAV application. The images show a stretch 500 m long and 250 m wide. The two

images are based on photogrammetry and show streambed topography (left) before and (right) after a major flood event

that modified the streambed. The timing of the image acquisition was critical, as photogrammetry only works for dry

streambeds and the Emme River only dries up a few days a year. UAVs provided the flexibility to acquire the data within

24 h after the river dried up. Organizing a helicopter or a plane on such short notice is often impossible.
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relationships between objects. In one

example, Ramanathan et al. [2010]

modeled braided rivers by stacking

archetypal polyhedrons for the different

sedimentological units in the system

and used a hierarchy of scales

(Figure 4). The relationship between

the various scales and units is chosen

to mimic field observations. The

method allows the integration of a

broad spectrum of knowledge for a

given type of sedimentological environ-

ment. However, it requires specific

developments for each type of sedi-

mentological environment and cannot

easily be conditioned to borehole or

geophysical data. As a result, practi-

tioners generally use other methods.

One of the most widely used alternatives to object-based models in hydrogeology is T-PROGS, which stands

for Transition PRObability Geostatistical Software [Carle and Fogg, 1997]. T-PROGS is designed for the geosta-

tistical analysis and stochastic generation of geological units, also called facies. T-PROGS first calculates the

transiograms, which is the probability of transition between facies, using borehole data or outcrop observa-

tions. In the context of river-groundwater interactions, geophysical surveys and freezecores (see section 2.1)

can also provide facies information to generate transiograms. With the transiograms, multidimensional

sequences of geological facies can then be simulated. T-PROGS has been the most extensively used method

in the context of large-scale (e.g., catchment scale) river-groundwater interactions over the last years [Engdahl

et al., 2010; Fleckenstein et al., 2006; Frei et al., 2009]. It is flexible, rather simple to implement, and can be easily

conditioned to field observations [Fogg et al., 2000; Fleckenstein and Fogg, 2008;Weissmann et al., 2015].

T-PROGS can generate artifacts when simulating facies because it uses indicator cokriging. The multinomial

categorical simulation has been developed to avoid these artifacts [Allard et al., 2011], but it has not yet been

applied to river-groundwater interaction studies. Another alternative to T-PROGS is the “Plurigaussian model”

[Armstrong et al., 2003], which offers greater control on the relationships between the geological facies as

well as on trends of proportions of facies. The Plurigaussian model is an extension of the “truncated

Gaussian technique” [Matheron et al., 1987] that has been used recently to generate heterogeneity patterns

and investigate their impact on hyporheic flow using both numerical and laboratory experiments [Fox et al.,

2016]. Mariethoz et al. [2009] presented an application of the plurigaussian model to a fluvial environment.

Among the “structure-imitating models,” “Multiple Point Statistics” (MPS) offers an interesting alternative

[Comunian et al., 2012; Hu and Chugunova, 2008; Straubhaar et al., 2011; Strebelle, 2002; Mariethoz and

Caers, 2015]. It is more flexible than the object-based models and allows the generation of conditional simu-

lations that can reproduce a wide range of realistic geological structures. In practice, the user must provide a

training image, which corresponds to a conceptual geological model. In 2-D, the training image represents

the spatial patterns that are expected to occur. It can be drawn by hand, derived from field observations at

an analog site (e.g., Figure 5), or obtained by another model. For example, the 3-D block obtained by the tech-

nique of Ramanathan et al. [2010] and displayed in Figure 4 could be used as a training image. Also, image

analysis combined with grain-size analysis (see section 2.1) could form the basis to generate a training image

for spatial patterns of riverbed hydraulic conductivity. The training image is much richer than any covariance

or two-point based transition probabilities model. MPS consists of deriving high-order statistics from the

training image and then simulating random fields. These fields can be conditioned to local or global data

such as probability maps derived from geophysical surveys [Straubhaar et al., 2016] or hydraulic conductivity

measurements at different scales, which for riverbeds could range from freezecores to pumping tests.

Figure 6a shows one realization obtained using the Direct Sampling MPS method [Mariethoz, 2009] with

the training image displayed in Figure 5. Figure 6a illustrates that the channels of high conductivity (shown

in white) are well connected. Traditional geostatistical techniques allow to accurately reproduce the

Figure 4. An example of simulated heterogeneity for a braided river

system modeled by the method of Ramanathan et al. [2010]. Image

from Ramanathan et al. [2010]. The yellow color represents boundaries of

units of the highest hierarchical levels. The unit bars are represented in

orange color. The other colors are used to visualize the different

sedimentological units.
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histogram and variogram of the original

image but without generating the high

connectivity (see Figure 6b). The two

simulations have the same first-order

statistics (Figures 6c and 6d), but if used

as input for flow and transport

simulations, they behave very differ-

ently (Figures 6e, 6f, and 6g) as shown

by Mariethoz [2009]. Furthermore,

obtaining or designing the training

image for a specific case can be a

practical limitation.

One of the main interests in the MPS

approach is that it can be used to gener-

ate a heterogeneity model directly

based on detailed mapping of sedimen-

tary structures. For example, Bayer et al.

[2011] mapped the heterogeneous dis-

tribution of fluvioglacial deposits in a

gravel pit close to Basel, Switzerland, at

the scale of several meters with a resolu-

tion of 5 cm. Based on these data,

Comunian et al. [2011] generated realis-

tic 3-Dmodels of heterogeneity using a combination of classical geostatistics and MPS. Similarly, newways of

acquiring data from digital outcrop mapping with lidar can be integrated into that approach [Klise et al., 2009;

Pickel et al., 2015].

2.2.2. Process-Imitating Models

“Process-imitating models” offer another alternative to simulate the heterogeneity of aquifers or streambeds

[Coulthard and Van deWiel, 2012]. A rather diverse set of process-imitatingmodels has been developed. Some

are focused on the evolution of the geomorphology of the system [e.g., Davy and Lague, 2009] andmodel the

processes of erosion/transportation at the scale of the landscape. Other models have been developed to

describe the final heterogeneity of the aquifer. Solving the complete set of flow and erosion-deposition equa-

tions at the catchment scale with the appropriate paleo-boundary conditions is extremely demanding, and

approximate solutions have been proposed. For example, Anderson et al. [1999] used a random walk algo-

rithm to generate two-dimensional braided river channel patterns through time. Teles et al. [2001] have devel-

oped an “agent-basedmodel” for the simulation of fluvial systems and applied it to the Rhône River in France.

More recently, event-based models were proposed for meandering systems. They mix “process-based”

equations describing the movement of rivers with simple probabilistic rules and sedimentary concepts

[Cojan et al., 2004; Lopez et al., 2001; Pyrcz et al., 2009]. The geometry of the resulting three-dimensional

models (Figure 7) is controlled by parameters such as the rate of aggradation, the sediment load, or the slope

of the alluvial plain.

MPS can also be used within a process-imitating model to extract spatiotemporal statistics from a series of

successive lidar measurements of the topography of an active braided system. This can be used then to

simulate the evolution of realistic successive topographies [Pirot et al., 2014]. The technique can be combined

with principles of sediment transport, erosion, and deposition to mimic the formation of a braided deposit

and the resulting heterogeneity [Pirot et al., 2015a].

2.3. Field Approaches for Assessing Hydrodynamics and Exchange Fluxes

2.3.1. Measuring Stream Stage, Depth, and Volumetric Discharge

Parameters such as stream stage (the elevation of the water table in the stream at a given location), depth,

and discharge are essential for capturing stream dynamics. Stream depth can be calculated from the stream

stage if the bathymetry of the stream is known. From a modeling point of view, stream stage is the surface

domain analog to hydraulic head in the subsurface. The discharge of a stream provides crucial information

Figure 5. Training image derived from a Landsat 7 image of the Lena

Delta (Russia). The coordinates are expressed in number of pixels. The

gray scale represents the log10 of hydraulic conductivity values derived

from the satellite image. This is a conceptual model of possible geological

heterogeneity used to demonstrate the application of Multiple Point

Statistics (see Figure 6). Image from Mariethoz [2009].
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on the water balance of a catchment. Furthermore, discharge is of critical importance for sediment and

erosion processes.

Measuring stream depth in the field is straightforward, with electronic pressure transducers and loggers, and

new and inexpensive designs are continuously being developed [e.g., Greswell et al., 2009; Riley et al., 2006].

The project “crowdwater” (crowdwater.ch) hosted by the University of Zurich provides a Web-based service

to allow anyone to collect, via a smartphone app, hydrological data such as water levels, streamflow, and

soil moisture.

Marcus and Fonstad [2008] reviewed key papers dedicated to the application of remote sensing for measur-

ing stream depth. Estimating depth using remote sensing creates several challenges, and it appears that its

Figure 6. Comparison between Multiple Point Statistics and variogram based geostatistics. (a) One simulation obtained

with the Direct Sampling (DS) MPS method. The gray level represents the value of the log10 of the hydraulic conductivity

in m/s. (b) One simulation generated using Sequential Gaussian Simulation (SGS). (c) Comparison of histograms of

simulated values. (d) Comparison of experimental omnidirectional variograms. (e) Comparison of contaminant break-

through curves at the outflow boundary. The contaminant is flowing from the left to the right. (f and g) Comparison of the

maps of contaminant distribution at t = 250 h, for the case that contaminants were injected along the left boundary (inflow

boundary) at t = 0 h. The gray color legend represents the contaminant concentrations. Images and caption text slightly

modified after Mariethoz [2009].

Reviews of Geophysics 10.1002/2017RG000556

BRUNNER ET AL. RIVER-GROUNDWATER INTERACTIONS 828



application has been, until now, not straightforward. Irregular channel morphology, substrate, and in-stream

vegetation are some of the factors that complicate the analysis. Yan et al. [2015] compiled current and past

satellite missions that can be used for flood extent monitoring and stream stage, with a focus on coarse

resolution (>10 m) and low-cost remote sensing data. Jiang et al. [2017] provided a comprehensive review

on satellite-based radar altimetry, with a focus on the hydrological applications of CryoSat2. This satellite is

very interesting because it operates with a narrow intertrack distance of 7.5 km at the equator, allowing

for a much higher spatial resolution compared to other satellite-based altimetry approaches. On the

downside, the repeat orbit of this satellite is 369 days, which is significantly longer than the short repeat

orbits of other satellites [Jiang et al., 2017]. A comprehensive review of satellite altimetry missions with a

compilation of precisions and biases is provided by Asadzadeh Jarihani et al. [2013]. Grimaldi et al. [2016]

also reviewed medium- to high-resolution (centimeter-resolution) remote sensing-based approaches

(including spaceborne and airborne) on water levels in the context of flood modeling. Both satellite and

airborne altimetry can be integrated into data-assimilation approaches (see section 3.1).

A range of classical approaches are available to estimate discharge, including dilution gauging, velocity-area

methods, or direct volumetric measurement for small streams [Dingman, 2014]. Rantz [1982] provided a

comprehensive overview and discussion of numerous methods that allow discharge to be quantified. If

rating curves (e.g., the relation between stream depth and discharge) are available, discharge can be calcu-

lated using stream stage.

Lidar has been successfully used to model rating curves of streams. Nathanson et al. [2012], for example, esti-

mated rating curves with a fluidmechanics-basedmodel constrained with topographic data from an airborne

lidar scanning. Similarly, Lyon et al. [2015] investigated the potential for airborne laser scanning to derive

stream rating curves. They concluded that it is theoretically possible to derive rating curves based on lidar

data. Lidar systems are now available that can be mounted to UAVs, therefore greatly increasing the applic-

ability of lidar approaches (see section 2.1).

An innovative approach to measure discharge based on surface flow velocity was developed by the

PHOTRACK company (http://www.photrack.ch/what.html). Their approach uses webcams and smartphones

that extract surface flow velocities using 3-D particle tracking approaches. By integrating ordinary mobile

phones, available data on discharge measurements can be significantly increased, especially through citizen

science, the collection, and analysis of scientific data by members of the community, often working on a

project in collaboration with scientists (see, for example, the project video for the Themi River Catchment

in Tanzania https://www.youtube.com/watch?v=WUDlVXvGeOI).

2.3.2. Estimation of Exchange Fluxes Between Rivers and Groundwater

Estimating exchange fluxes—the exchange of water (e.g., volumetric flow rate or flux) between groundwater

and a river (and vice versa)—is important for many reasons. Groundwater fluxes into surface water systems

are important for supporting ecological habitats in rivers [Boano et al., 2014]. Groundwater fluxes also

influence the flow regime, which is a master driver of processes and biota in rivers, riparian zones, and flood-

plains [Poff et al., 2010]. In summer, base flow derived from groundwater can often be the most significant

component of river flow [Cook, 2013]. Losing rivers can provide an important focused point source of

recharge to the groundwater system [Winter et al., 1998].

Figure 7. An example of a 3-D simulation of a meandering system using the events-based model of Lopez et al. [2001].

Image source modified after Linde et al. [2015].
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From a modeling perspective, information on the rate of volumetric water exchange can be used to calibrate

and constrain hydrological models. Flux can be computed using Darcy’s law, through knowledge of hydraulic

conductivity and head gradient. Measuring this exchange flux independently or directly offers the advantage

that hydraulic conductivity does not need to be known a priori. Similarly, determining a flux independently or

directly contributes to constraining a model. Exchange fluxes can be simulated directly in a model (e.g., simu-

lating solute transport in the model directly) or indirectly (by computing the flux outside the model using

independent methods and then comparing the results with the modeled fluid flux). Tutorial 3 provides an

example. Finally, a knowledge of exchange flux between groundwater and a river offers the potential advan-

tage that it will average over larger scales as the measurement usually is representative of larger scales, such

as the reach scale or catchment scale (see Figure 1).

There is a variety of methods available for estimating exchange fluxes between a river and aquifer [Cook,

2013; Rosenberry and LaBaugh, 2008]. Each method will have an inherent level of uncertainty, and the critical

issue is to determine an appropriate level of uncertainty in a specific application. Themost reliable and robust

approach likely depends on the spatial scale of the application as well as the specific research question.

Framing each problem and investigation in the context of a clear scale requirement is prudent. Available

methods to estimate exchange fluxes include seepage meters, monitoring wells, and thermal methods

[Rosenberry and LaBaugh, 2008]. These methods typically apply at small scales on the order of meters. The

approaches outlined in this section cover all scales: at the very local scale flux estimates can be made using

a seepage meter; at the river/reach scale using tracers and stream gauges and at the regional scale using

river-groundwater interaction models. Similarly, we can also distinguish hydraulic and tracer/chemical-

based approaches.

Seepage meters represent a hydraulic approach to measuring “point-scale” river-groundwater exchange flux.

Rosenberry and LaBaugh [2008], similar to Murdoch and Kelly [2003] and Shinn et al. [2002], point out that

hyporheic exchange fluxes complicate the interpretation of flux measurements with seepage meters in flow-

ing water. The reason is that water discharging into the river can be either groundwater, re-emerging river

water, or a mixture of both [Kalbus et al., 2006]. New designs are being developed to reduce the effect of

reemerging water [e.g., Rosenberry, 2008]. Studies using seepage meters also reveal very large variations in

the values of fluxes that may be measured in both spatial (over meters) and temporal (over days and weeks)

terms in a given river or wetland system. Reconciling local measurements with the larger-scale (e.g.,

catchment-scale) water balance remains a challenge.

Batlle-Aguilar and Cook [2012] studied a larger reach scale using a hydraulic approach, which consisted of

blocking off a section of a stream and adding water to the stream to induce a head gradient and measure

infiltration loss. It is expected that their measurements are far more reliable and representative of the infiltra-

tion across a larger area than measurements made at a very local scale using an infiltrometer or seepage

meter. The approach has some practical limitations, such as the need for a large volume of water, as well

as the impact of blocking off a stream for any downstream user. There are also expected to be logistical

challenges and limitations applying this method on large/wide rivers where there is a significant pre-existing

flow rate.

Tracer/chemical-based approaches provide an alternative to hydraulic-based approaches for flux estima-

tions. Cook [2013] reviewed methods for estimating groundwater inflow to rivers using river chemistry

surveys. He concluded that environmental tracer methods can provide sound estimates of groundwater

discharge at a scale and accuracy that is not possible with most other methods. The tracers that have been

employed include electrical conductivity (EC), stable isotopes of deuterium and 18-O, chlorofluorocarbons

(CFCs), and 222-Radon. The successful application of the tracer approach for estimating exchange fluxes

requires a significant difference in tracer concentration between groundwater and river water. Depending

on the tracer used, it is theoretically possible to resolve groundwater discharge rates as low as 2–5 mm/d

using a chemical tracer approach [Cook, 2013].

Automated and semiautomated continuous sampling allows river chemistry and hydraulics to be measured

at unprecedented spatial and temporal scales. It is now relatively straightforward for continuous sampling

systems to provide information on river stage, EC, pH, temperature, and dissolved oxygen. Studies now

use transient information for tracers such as EC [Vogt et al., 2010] and radon [Stieglitz et al., 2010] to quantify

the nature of river-groundwater interaction and associated exchange fluxes. A continuous automated
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sampling of other tracers such as CFCs

and 14-C is currently not possible but is

a key area for future development. The

use of multiple tracers, sampled con-

tinuously through time, will provide

important information with which to

constrain and test models of river-

groundwater interaction.

Brennwald et al. [2016] developed a new

system for on-site environmental gas

analysis (Figure 8). They developed a

portable (i.e., it can be easily carried by

two people) and autonomous mass

spectrometric system (“miniRuedi”) for

quantification of the partial pressures

of He, Ne (in dry gas), Ar, Kr, N2, O2,

CO2, and CH4 in gaseous and aqueous

matrices in environmental systems. The

utility of this system was illustrated in

applications relating to lake-atmosphere

exchange and gas emissions from the

seafloor. With an analytical uncertainty

of 1–3%, this portable and autonomous

device opens up enormous possibilities

formeasuring gas tracers in riverbed sys-

tems as a necessary precursor for esti-

mating properties of the riverbed itself

and river-groundwater exchange.

Heilweil et al. [2016] examined methane emissions in a coastal plain stream. They injected dissolved gasses

(methane and krypton) into the stream to quantify methane losses at the catchment scale, thereby illustrat-

ing the utility of dissolved-gas tracers for estimating stream methane fluxes at a larger catchment-scale in

contrast to point-scale measurements.

Interpretation of temperature data is becoming commonplace in quantitative river-groundwater interaction

[e.g., Vogt et al., 2012; Hatch et al., 2006; Keery et al., 2007; Molina-Giraldo et al., 2011], and new technologies

are therefore applied to measure stream temperature. For example, “Fiber-optic Distributed Temperature

Sensing” allows temperature to be measured along an optical fiber of up to several kilometers in length

(and therefore up to the reach scale) with a spatial resolution of about 1 m and a temporal resolution on

the order of minutes. Examples of this technology applied to river-groundwater interactions were given in

Henderson et al. [2009], Selker et al. [2006], and Tyler et al. [2009].

Besides being a key factor for stream ecology [Caissie, 2006], the thermal regime of a river can also be used to

quantify the interaction between the river and the aquifer. The potential and limitations of such thermal

methods were discussed in a series of review articles [Anderson, 2005; Constantz, 2008; Stonestrom and

Constantz, 2003; Webb et al., 2008], and a special issue of Hydrological Processes was dedicated to thermal

methods in river-groundwater interaction [Hannah et al., 2008]. As pointed out by Cardenas et al. [2008], most

previous studies considered a few point measurements of temperature and assumed that these values are

representative for the entire stream. The scale issue is key again. Recent technological advances allow this

assumption to be overcome and to work at the necessarily larger scales. Airborne thermal remote sensing

has successfully been applied in some studies [Cherkauer et al., 2005; Loheide and Gorelick, 2006; Torgersen

et al., 2001]. Airborne data allow mapping the spatial distribution of temperature along the stream. Webb

et al. [2008] cited studies that address issues associated with image calibration and spatial resolution in the

context of airborne thermal mapping. An additional limitation of airborne methods is that data represent

the top of the water column. If the stream is not well mixed in the vertical direction, the measurements

Figure 8. Figure and figure caption obtained directly from Brennwald

et al. [2016]. (top) Schematic overview and (bottom) photo of the

miniRuedi mass-spectrometer system (see also Table 1): 6-port inlet

selector valve (S), capillary (C), inlet valve (V), quadrupole mass spectro-

meter (QMS), turbomolecular pump (TP), and diaphragm pump (DP). The

inlet selector valve and the quadrupole mass spectrometer are controlled

by a computer. The photo shows the miniRuedi mounted in a wheeled

hardshell suitcase for transport and protection.

Reviews of Geophysics 10.1002/2017RG000556

BRUNNER ET AL. RIVER-GROUNDWATER INTERACTIONS 831



must be interpreted with care. This issue is expected to be especially severe in large rivers that stratify.

Measurements of temperature profiles in the river can provide some indication on the vertical mixing of

rivers. Munz et al. [2016] determined the geometry of subsurface water flow around in-stream geomorpho-

logical structures by analysis of riverbed temperatures. They concluded that by using measured temperature

time series in vertical profiles, the method has strong potential for characterizing the spatial patterns and

temporal dynamics of complex subsurface flow geometries.

Schneidewind et al. [2016] developed a new one-dimensional approach to quantify vertical water flow in

streambeds using temperature data from different depths. Using additional analyses, nonvertical compo-

nents of flow could be quantified.

Recently, Xie et al. [2016] examined the uncertainty of different tracer methods in a large river system for

estimating river-groundwater interaction. Results showed that temperature and radon profile methods are

complementary at a given point, but that river chemistry methods are superior to temperature methods at

the reach scale.

More generally, it is worth noting that several authors have studied river-groundwater interactions using

combinations of approaches. González-Pinzón et al. [2015] compared multiple approaches to quantify

GW-SW exchange at multiple scales. Rosenberry et al. [2016] combined temperature-based methods with

seepage-meter measurements to constrain streambed thermal parameters and refine temperature-

based values.

At the reach scale, river gauging stations may provide an appropriate approach to determine the fluxes that

exist along the river reach. Tracer and velocity gauging methods are briefly reviewed in Kalbus et al. [2006].

Recent examples and discussions of the challenges of inferring river-groundwater interaction through dis-

charge measurements can be found in Payn et al. [2009] and Ruehl et al. [2006]. A noteworthy development

in many countries is that data of thousands of stream gauges are available, many of them in real time. For

example, in the U.S., such data are available at the following link: https://waterdata.usgs.gov/nwis/sw. An

informative document providing an overview of applications using such data is found at https://pubs.usgs.

gov/fs/2012/3054/fs2012-3054.pdf. For Switzerland, a website of the environmental office provides real-time

data of several hundred discharge stations, as well as historical data and a comprehensive statistical analysis

including return periods (http://www.hydrodaten.admin.ch/de/stationen-und-daten.html). Many other coun-

tries provide similar services, including New Zealand, Australia, Canada, and numerous European countries.

Such real-time data provide useful information on catchment dynamics and can be combined with data

assimilation methods (see section 3.1).

3. Current Conceptualization of Streambeds in Integrated Surface and Subsurface
Hydrological Flow Models

The integrated surface and subsurface hydrological flow models mentioned in the introduction, which are

based on the Freeze and Harlan [1969] blueprint, have the capability to account for heterogeneous surface

and subsurface properties. Tutorial 1 illustrates the example of the numerical model HydroGeoSphere

[Therrien et al., 2009; Aquanty, 2016] and shows how such models are conceptualized. However, the spatial

discretization for large-scale (e.g., catchment scale) simulations is often too coarse to represent streambed

heterogeneity [D. Käser et al., 2014]. Streambeds are thus implicitly assumed to be homogeneous. Even in

small-scale simulations (e.g., reach scale or hyporheic scale), streambed heterogeneity is mostly ignored

except for a small number of notable exceptions such as the work presented by Cardenas et al. [2004],

Fleckenstein et al. [2006], Frei et al. [2009], Irvine et al. [2012], and Bardini et al. [2013].

In addition to studies that focused on fluid flow, other model applications investigated the impact of

streambed heterogeneities on mass or energy transport. Brookfield et al. [2009] applied an integrated surface

and subsurface hydrological flowmodel, HydroGeoSphere, to simulate fluid flow and heat transport in a river

reach. They represent the streambedmaterial with homogeneous hydraulic properties. They compared simu-

lated to observed riverbed temperatures and concluded that the calibration of their model could be

improved by incorporating small-scale heterogeneities. Schornberg et al. [2010] simulated the influence of

streambed heterogeneity on heat transport and demonstrated that although mild heterogeneity can be

represented with a uniform model, pronounced heterogeneity of streambeds must be accounted for in a
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model to characterize water exchange between surface and subsurface properly. Kurtz et al. [2014] presented

riverbed heterogeneity for the simulation of flow and heat transport between the river Limmat (Switzerland)

and the aquifer. The interaction was calculated by a one-way coupled model and heterogeneity was

represented by a limited number of zones (five) which had different riverbed hydraulic conductivities. In this

specific case, temperature data contributed less to improving characterization of riverbed hydraulic conduc-

tivities than groundwater levels.

3.1. Calibration and Uncertainty Characterization of ISSHM

As it is not possible to characterize environmental systems perfectly, ISSHMs require calibration [Anderson

et al., 2015]. The prediction of groundwater flow with a numerical simulation model therefore requires first

to solve an inverse problemwhere the available observations are used to estimate unknown parameters such

as hydraulic conductivity or surface roughness of the streambed.

Carrera and Neuman [1986] formulated a statistical framework for calibrating different types of parameters

which can be applied to the calibration of large-scale groundwater and river flow models (e.g., catchment

scale) where the number of parameters to be estimated is less than the number of data points. When there

are more parameters than data points, the inverse estimation problem is not well posed and unstable unless

some mathematical regularization method is employed. In the 1980s, the geostatistical approach was devel-

oped and provided an alternative approach for model calibration. Posing inverse problems in a geostatistical

framework can avoid problems with unstable and nonunique solutions [Kitanidis and Vomvoris, 1983]. Further

building on the geostatistical approach, Monte Carlo (MC)-type inverse modeling methods were developed.

These methods generate multiple equally likely solutions to the inverse problem, conditioned on state and

parameter measurements. Examples are the sequential self-calibration method [Gomez-Hernandez et al.,

1997] and the Pilot Points Method [e.g., Lavenue et al., 1995]. However, although MC-type inverse methods

are suited for calibration of river-groundwater models, none of these methods has been extended to handle

coupled river-groundwater models. The reason being that adjoint state equations from the ISSHM have to be

derived and solved to calculate the derivatives of the objective function with respect to the parameters in an

efficient way. Deriving and solving adjoint state equations is a formidable task for ISSHM. Therefore, alterna-

tive calibration methods, which do not require derivatives of an objective function with respect to para-

meters, are of interest.

Data assimilation (DA) methods assimilate measurement data sequentially (instead of simulating them in a

batch, like inverse modeling methods) and are less affected by overparameterization. These methods can

also be used for parameter estimation. The most prominent DA method, the ensemble Kalman filter (EnKF)

[Evensen, 1994; Burgers et al., 1998], relates measurement data (like hydraulic head, groundwater tempera-

ture, river discharge, and/or soil water content) to model states (e.g., matric potential and river levels) and

model parameters (e.g., hydraulic conductivity and leakage coefficients) with help of a covariance matrix,

which is estimated numerically from a large number of stochastic realizations. If measurement data do not

contain information on certain states or parameters, for example, because those states and parameters are

far separated in space from the measurement locations, covariances are close to zero, and those measure-

ment data will not update the states and parameter values. The advantage of EnKF and other DA techniques

is that the full posterior probability density function of all states and parameters is determined, at a relatively

limited cost compared with inverse MC techniques [Hendricks Franssen and Kinzelbach, 2009].

EnKF (and other DA techniques) have two further advantages over inversemodelingmethods. First, measure-

ments that become available in real time can be assimilated in an online river-groundwater model. Models

calibrated with historical information tend to deviate from the measured values when applied to true predic-

tion exercises. Second, DA techniques also allow updating parameters that vary over time. A prominent

example for river-groundwater models is the leakage coefficient, which is subjected to temporal variations

related to, for example, floods. Kurtz et al. [2012] investigated to what extent EnKF can update time-

dependent leakage coefficients. They used EnKF in combination with adaptive inflation [Anderson, 2007]

and found that EnKF, with some delay, can detect temporal changes of riverbed hydraulic conductivities.

However, very fast and short-term changes would remain undetected. Although EnKF is robust against non-

linear model dynamics and non-Gaussianity of the states and/or parameters (because the linearization is

made over the ensemble and not around the optimum, see Nowak [2009]), its performance is only optimal

for linear Gaussian models.
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Different methods have been reported in the literature that would be able to calibrate also non-multi-

Gaussian distributions of riverbed properties, as can be generated by MPS. Examples are the conditional

probabilities method [Capilla et al., 1999], the gradual deformation method [Hu, 2000; Hu et al., 2001; Jenni

et al., 2007; Capilla and Llopis-Albert, 2009], the probability perturbation method [Caers, 2003; Caers and

Hoffman, 2006], and the representer method extended to handle multimodal transmissivity distributions

[Janssen et al., 2006]. Janssen et al. [2006] estimated jointly hydraulic conductivities and the leakage between

aquifers, which is an estimation problem not very different from a river-groundwater problem. More recent

developments include the moving window approach [Alcolea and Renard, 2010], the iterative spatial resam-

pling [Mariethoz et al., 2010], and the ensemble pattern matching method [Zhou et al., 2012; Li et al., 2015]. A

detailed bibliographical review about those methods is given by Linde et al. [2015]. Concerning sequential

data assimilation methods, some promising results have been achieved with EnKF for non-multi-Gaussian

parameter fields for groundwater flow [Sun et al., 2009; Zhou et al., 2011; Li et al., 2012; Xu et al., 2013], with

better results as compared to classical EnKF. The particle filter [Gordon et al., 1993] is an interesting alternative

that allows the optimal combination of river-groundwater model predictions and measurement data, for

arbitrary parameter distributions and strongly nonlinear models.

Some studies estimated the properties of spatially heterogeneous riverbeds with EnKF. All these studies

focused on the reach scale (approximately kilometer scale in these cases). Hendricks Franssen et al. [2011]

assimilated groundwater level data with the help of EnKF and updated both hydraulic conductivities and

leakage coefficients for five different zones for the upper Limmat valley aquifer in Switzerland. Leakage

coefficients were also estimated by EnKF for a limited number of zones by Rasmussen et al. [2015, 2016].

They also showed in a synthetic setup an improved characterization of leakage coefficients with this method.

Other studies estimated spatial distributions of leakage coefficients. Kurtz et al. [2013] showed that spatially

variable distributions of leakage coefficients can be updated with EnKF by assimilating groundwater level

data and that the characterization of river-aquifer exchange fluxes is more improved with this simulation

strategy than updating leakage coefficients for a few zones in which the river reach is divided. Finally,

Tang et al. [2015] also estimated spatially variable distributions of leakage coefficients by assimilating

groundwater level data with EnKF in a synthetic study. In this case, it was investigated whether non-

multi-Gaussian patterns of leakage coefficients could be identified with groundwater level data and whether

the spatial pattern of the leakage coefficients was important for the stream-aquifer exchange. Tang et al.

[2015] found that the spatial orientation of the leakage coefficients had a relatively minor influence on the

river-aquifer exchange fluxes and that an erroneous assumption of a multi-Gaussian distribution (instead

of the true non-multi-Gaussian distribution) of leakage coefficients had only a slightly negative impact on

the system analyzed.

Other data assimilation studies for integrated surface-subsurface flow models did not estimate leakage coef-

ficients but showed the potential of other data for improving the modeling of surface-subsurface flow. In

particular, the assimilation of river discharge was used to update the states of both the surface and subsur-

face domain. Given the fact that only states are updated and not parameters in these applications, the main

potential lies in the short-term improvement of predictions. EnKF was, for example, applied in combination

with the integrated hydrological model CATHY (CATchment Hydrology). This model simulates two-way inter-

actions between groundwater flow and surface water flow [Paniconi and Wood, 1993]. Camporese et al. [2009]

assimilated streamflow data and pressure head data in a synthetic experiment (small catchment scale of

~1 km) and found that although discharge data are important for improving river states, the characterization

of pressure distributions in the subsurface was hardly improved by it. Pasetto et al. [2012] reached a similar

conclusion for a similar synthetic v-titled catchment example; in this case, sequential data assimilation was

performed by the particle filter. Bailey and Bau [2010] followed a different approach and also updated hydrau-

lic conductivities. They used the Ensemble Smoother to assimilate measurements. The Ensemble Smoother

can be seen as an extension of EnKF because measurements from multiple time steps (including past time

steps) are used simultaneously for conditioning. Bailey and Bau [2010] did not use a fully coupled model

and assimilated piezometric heads, cumulated groundwater return flows, and hydraulic conductivity data.

This study was for a river reach of ~1 km length. In a follow-up work, Bailey and Bau [2012] used the fully

coupled model CATHY in combination with the synthetic v-tilted catchment example of ~1 km length and

assimilated piezometric head and water level data. They found that the combination of both data types gave

the best predictions. This different conclusion (compared to Camporese et al. [2009]) might be related to the
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different algorithms and updating strategies used in the different studies. These studies with the assimilation

of discharge data were all synthetic and linked to the reach scale. However, in practice, the applicability at the

catchment scale would also be possible and even bemore promising, as real-time predictions would bemore

relevant for larger scales. The studies with these integrated models could also be extended to include more

complex interactions between river and aquifer including heterogeneous riverbeds, but this was not subject

to study yet.

Another data type, relevant for studies on stream-aquifer interaction, is stream stage. Radar altimetry can

obtain stream stage. As explained before in this paper, currently radar altimetry is only possible for broad

rivers (with the exception of CryoSat2), and the low temporal frequency of information only makes applica-

tions at the very large catchment scale possible. The following examples for assimilation of radar altimetry

data were therefore on the large catchment scale of 105–106 km2. Pereira-Cardenal et al. [2011] assimilated

radar altimetry data from ERS2 and Envisat by EnKF and found a considerable model improvement for a his-

torical testing period. Michailovsky et al. [2013] assimilated radar altimetry data for the Brahmaputra River in

Southern Asia with the extended Kalman filter. Michailovsky and Bauer-Gottwein [2014] applied a similar

methodology for the Zambezi River. Assimilation of river stage information from altimetry is now limited

to the large catchment scale, but a higher spatial and temporal resolution would allow applications at the

smaller basin scale in the future. River stage measurements can also be assimilated and be useful for even

smaller scales like the reach scale. However, such applications are not yet common in the scientific literature.

In the surface hydrology literature, data assimilation approaches were also used to improve predictions of

rainfall-runoff models that include a groundwater component. However, river-groundwater interactions

are not explicitly modeled in these simulation codes, and the main focus is on improving river discharge pre-

dictions. One example is the work of Lee et al. [2011] where soil moisture and river discharge data are both

assimilated in the Sacramento model [Burnash et al., 1973] using a variational data assimilation approach.

Another example is the synthetic study by Xie and Zhang [2010] to assimilate the same data types and eva-

potranspiration data (with EnKF) in the Soil and Water Assessment Tool model [Gassman et al., 2007]

using EnKF.

We showed that river-groundwater models can be constrained with sequential DA assimilating river-aquifer

head differences, river discharge, river stage, and/or temperature data. Further interesting data for calibration

of river-groundwater models are data we presented before in section 2.1, such as, for example, stream-

aquifer exchange fluxes, as measured by seepage meter, infiltrometer, or environmental tracers. These data

are also suited for calibrating heterogeneous riverbeds at the hyporheic scale of 100–101 m.

In general, sequential data assimilation methods are suited and flexible to estimate model parameters at

different scales, but the measurement data have to be informative about a particular scale. Consequently,

the hyporheic scale requires many small-scale measurement data for model calibration. Although at this scale

parameter estimation and data assimilation might seem of less interest, they can be important for process

understanding. Data assimilation procedures can consider different uncertainty sources simultaneously

and could allow at this scale for better disentangling uncertainty related to parameter values and model

structure. On the other hand, at the large scale (e.g., catchment scale or even on a “continental scale”) it is

important to assimilate measurement data that exhaustively cover the area of interest or have a strong inte-

grative nature. High-quality remote sensing data and river discharge data frommany gauging stations would

be very informative at those scales. Only a high-density network of in situ observations, combined with good

quality remote sensing data, would allow getting more insight on the role of riverbeds for the exchange of

water between rivers and aquifers at those scales. A limitation of sequential DA methods is that a large

ensemble is required to approximate the prior and posterior probability density functions of the unknown

states and parameters correctly. If the ensemble is too small, the uncertainty will be underestimated over

time. This can partly be counterbalanced by methods like localization and inflation, which allow also applica-

tions with smaller ensembles.

To develop targeted and efficient field campaigns, inverse approaches can be used to identify key observa-

tion data. For example, Brunner et al. [2012] combined pareto methods with linear approaches to calculate

predictive uncertainty as well as parameter identifiability. The linear approaches employed allow identifying

the data worth of observations under consideration of their measurement accuracy, even before the actual

measurement is carried out. Data worth in this context means the potential of an observational data type
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or data point to reduce the uncertainty of a prediction of interest. An example of the application of linear

methods is provided by Schilling et al. [2014], who quantified data worth of tree rings (used as a proxy for eva-

potranspiration) in a model simulating the feedback between river-groundwater interactions and vegetation.

3.2. Computational Power

Computational power continues to increase rapidly, and the computational power available through grid or

cloud-computing approaches and the parallelization of numerical models are bringing environmental

modeling and uncertainty assessment to an entirely new level [Renard et al., 2009]. Physically based models

such as ParFlow (PARallel FLOW) are now fully parallelized. Kollet et al. [2010] used ParFlow to simulate an

area of 1000 km2with more than 8 billion cells. The model was run on an IBM Blue-Gene supercomputer with

a total of 294,912 processors and 144 TB of memory. Such large-scale modeling efforts continue to be

expanded. For example, Maxwell et al. [2015] used ParFlow to simulate groundwater and surface water

processes across most of the continental United States.

Inverse approaches such as BeoPEST available on the PEST homepage (www.pesthomepage.org) support

two communication protocols (TCP/IP and MPI) to communicate between the master model and the slaves.

Given that model calibration and uncertainty analysis typically require hundreds or thousands of model runs,

the distribution of these computationally demanding tasks to multiple processors allows for the calibration of

complex and highly parameterized models.

Cloud-computing technology provides an interesting alternative to the acquisition of a computer cluster.

One of the first applications for cloud computing in hydrogeological modeling was published by Hunt

et al. [2010]. They provided a good overview of the types and services of cloud computing and discussed

some of the commercially available resources and point out that through cloud computing the user has

virtually unlimited access to computing power. Kurtz et al. [2017] presented a cloud-based modeling system

that integrates real-time data acquisition, physically based modeling of surface, and groundwater flow using

HydroGeoSphere combined with data assimilation for real-time decisions on water management.

4. Discussion and Prognosis

This paper has reviewed recent advances in characterizing and modeling river and groundwater interactions

and has described emerging field and modeling based approaches. Several models have been developed

based on the Freeze and Harlan [1969] blueprint. The original blueprint presented a vision that was exclu-

sively hydraulic in nature. Today, current and emerging challenges show that there is a myriad of questions,

problems, and challenges that will lead to an evolution in the original blueprint. These include, but are not

limited to, ecological and water quality questions. Different questions demand different answers. Different

answers require different methodologies that must be employed at different scales. There are many emer-

ging tools and approaches that are now available and ready to be put into widespread practice. We do

not contend that every tool should be used all the time. However, awareness, familiarity, and open mind

to the potential benefits of the range of advanced approaches now available for measuring, conceptualizing,

understanding, and predicting river-groundwater interactions afford new and exciting possibilities that were

not even conceived of a decade ago. These approaches will, in turn, lead to the development of the next

generation of approaches that continue to advance this discipline of hydrologic science.

We offer some reflections and prospects about science, management, and policy that relate to this discipline

of hydrologic science. These include, but are not limited to, the following:

1. Understanding the implications of different data types and resolution: Hydrologic decision making is fun-

damentally about understanding the likelihood (or risk) that something bad may happen. A better under-

standing of uncertainty and how it can be reduced by introducing different data types and at different

spatial and temporal resolution will be critical in assessing the benefit-cost ratio of collecting different

data at different scales. Given financial constraints, an ability to better define data types that are needed

to make robust predictions to answer different questions at different scales will rely on better understand-

ing how using different data types and resolution can reduce uncertainty and ultimately help us to make

better predictions. This is important because many of the tools and techniques discussed in this review

are new and will not easily be employed in practice unless the benefits are clearly quantified and under-

stood. Understanding how different data types and their resolution relate to prediction uncertainty and
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outcomes is of paramount importance and will critically influence the choice of both conceptual and

numerical model simplicity-complexity.

2. Instrumented field sites: We need a series of highly equipped and long-term sites where river-

groundwater interaction is investigated, ideally in different climatic regions, so that researchers from dif-

ferent universities and institutes could join efforts to understand river-groundwater interactions better.

This would allow us to develop and obtain international high-resolution spatial and temporal data sets.

In our view, sites that only focus on hydrological, or hydrogeological or ecological parameters are not suf-

ficient for a thorough understanding. Similarly, longer-term longitudinal measurements and studies are

also required. Often the funding involved to establish highly equipped and long-term sites is large and

shared sites funded by different institutions and agencies may assist. Hydrological sites exist and are

becoming more popular (e.g., CZO sites in the U.S. and TERENO sites in Germany). These new sites could

be added to other programs such as the Long Term Ecological Research (LTER) sites (https://lternet.edu).

Although river-groundwater interaction is associated with large water, energy, and solute fluxes between

compartments in a special and sensitive ecosystem, river-groundwater interaction is, in general, not the

main focus at those sites. Integrating LTER work with nutrient programs like “The Lotic Intersite Nitrogen

Experiments” [LINX collaborators, 2014] is an example of successful ecological research collaboration and

provides an important opportunity to develop interdisciplinary research collaboration in many areas,

including hydroecological research.

3. Model development and improvement: It was indicated that physically based models for the interaction

between river and groundwater are of great interest to advance science. Increasing computer power

allows one to simulate these processes at a higher spatial and temporal resolution and to do rigorous

quantitative uncertainty analysis. Physically based hydrological models can to a certain extent account

for processes occurring at scales smaller than the grid scale. An example is preferential flow which can

be handled without an explicit representation of the preferential flow network. However, the role of che-

mical and biological processes in controlling streambed permeability, and hence the interaction between

rivers and groundwater, is not well captured by most models. Neither is the role of erosion and sedimen-

tation events which also influence the permeability of the riverbeds. It might be important to capture

these processes with the models, but these processes are not always important, and it is difficult to know

how important they are. This will depend on the nature of the problem being considered and the asso-

ciated spatiotemporal scales. We argue that for model development and improvement field sites with

dense observation networks are of vital importance and that geostatistics or model-data fusion techni-

ques like ensemble Kalman filter can help in this process.

4. Integrating models and data: This review focussed on integrating models and data. To do this, it is also

important to improve the representation of processes at the stream-aquifer interface. Inverse modeling

or data assimilation can also detect systematic deviations between model predictions and measured

values. Systematic deviations could, for example, be related to specific conditions like flood events. The

detection of such systematic deviations could be used as a feedback loop to improve models and include

new processes. It is of special interest if certain systematic deviations are repeatedly found at different

highly equipped sites that provide observation data across the different spatial scales. In this context, it

is important that computational power increases rapidly and we have access to unprecedented types

and quantity of data. This will allow the integration of additional data types and in larger quantities into

models and at a higher temporal and spatial resolution. This integration of data into models also requires

improved algorithms for multivariate data assimilation which can handle better non-Gaussian measure-

ment data and are better at simultaneously handling multiple data types.

5. Management and policy drivers for next generation science: Current management and policy issues

including, but not limited to, the water-food-energy-environment nexus, impacts of climate change on

water resources, impacts of population growth on water requirements, water quality and health, environ-

mental and ecological impacts of water abstraction, coal seam and shale gas and hydraulic fracturing,

mining and energy, and nuclear waste disposal demand interdisciplinary approaches. They also demand

strong management and policy underpinned by rigorous science. These contemporary and pressing

societal issues demand new answers to new questions, and they demand new scientific approaches.

More specifically, consider two examples that were illustrated in Figure 1, namely, drinking water quality

(contamination) and environmental flow regimes. Some jurisdictions require that the vulnerability of

drinking water sources to contamination be determined. When the source is surface water, it ultimately
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requires that flow paths of groundwater entering the stream be known, since groundwater contaminants

could enter the stream. Identifying the origin of groundwater entering the stream, linked to potential

sources of groundwater contamination, is a challenging issue. Environmental flow regimes are another

pressingmatter that require sophisticated attention. Because base flow can represent a significant portion

of the total flow to a stream (reaching 100% during drought), groundwater quantity and quality are very

important for the viability of ecosystems in streams. The concept of environmental flow regimes extends

well beyond the amount of water that flows in a river system or a minimum flow required to preserve eco-

system functions. An environmental flow regime encompasses the entire flow system and its spatiotem-

poral patterns. This includes the frequency and magnitude of flows as well as how long flow lasts. This

understanding underpins river ecosystem health. The advances proposed here will be required to

correctly define, understand, and predict environmental flow regimes as well as improve predictions of

the impact of variations in groundwater quality and quantity on the health of river ecosystems. Water

quality/contamination and environmental flow regimes are just two such examples where the

approaches described in this paper are likely to have interesting and important applications. There are

many others. New emerging management and policy issues require the latest scientific advances, and

others not yet conceived, to solve them. Robust policy, management, regulation, and compliance cannot

be achieved without such scientific developments and application.

This paper has reviewed recent advances in characterizing streambeds to improve the integrated simulation

of surface and groundwater flow and has described emerging field and modeling-based approaches. It has

demonstrated that there are many new techniques available for characterizing streambeds and modeling

surface water groundwater exchanges. Raising awareness of these methods is a necessary precursor for

applying them in practice and future research. What is abundantly clear from this review is that there are

many tools and approaches—many that are currently not in widespread use—that are available and ready

to be put into practice. This echoes views by others [e.g., Simmons et al., 2012]. Our toolbox is filled with excit-

ing tools that are both interesting and important and that will be critical for advancing both hydrologic

research and application. Determining when and how to use these tools and approaches will depend on

key matters including the question to be solved and the nature and scale of the problem. This will require

careful consideration on a case by case basis. It is difficult to offer generalized solutions. Let us experiment

bravely and boldly with all the tools in our toolbox. This is sure to help advance hydrologic science and prac-

tice, reduce what appears to be a growing gap between them [Simmons et al., 2012], and ultimately forge

new and exciting research frontiers.

4.1. Tutorial 1: Integrated Surface and Subsurface Hydrologic Model

The blueprint presented by Freeze and Harlan [1969] proposed to represent water transmission and storage

in a hydrologic system by a distributed system model. Instead of relying on separate models that decouple

surface water flow and groundwater flow, as was done at that time, they suggested representing the various

components of the water cycle shown in Figure T1.1 in a single model, by simultaneously solving surface

water and groundwater flow. Examples of such models include CATHY [Paniconi et al., 2003],

HydroGeoSphere [Therrien et al., 2009; Aquanty, 2016], PARFLOW [Kollet and Maxwell, 2006], OpenGeoSys

[Kolditz et al., 2012], or MIKE SHE [Havnø et al., 2005; Refsgaard and Storm, 1995] which is now further devel-

oped by DHI-WASI (www.wasy.de/).

This tutorial presents the main components of a typical ISSHM by using the HydroGeoSphere model as an

example. The continuity equations for subsurface and surface flow, as well as the relationships between

water fluxes and energy gradient, are presented.

Similar to most other ISSHMs, the continuity equation used in HydroGeoSphere to represent variably

saturated groundwater flow in a porous medium (subsurface) is the 3-D Richards’ equation

�∇∙qþ Γo ¼
∂θsSw

∂t

where Γo represents the volumetric flux of water exchange per unit volume (L3 L�3 T�1) between the surface

and the subsurface, θs is the porous medium porosity (L3 L�3), and Sw is its water saturation (L3 L�3). Darcy’s

law gives the groundwater flux q (L T�1) according to

q ¼ �K ∙kr∇ ψ þ zð Þ
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where K is the hydraulic conductivity of the porous medium (L T�1), kr is its relative permeability (�), and ψ

and z are the subsurface pressure head (L) and elevation head (L), respectively.

Surface, or overland flow, is described by the following 2-D diffusion wave approximation of the St.

Venant equation

�∇∙doqo þ doΓo ¼
∂ϕdo

∂t

where do is the water depth at the surface (L), ϕ is an equivalent saturation function (�) for the surface that

can account for the presence of microtopography and flow obstructions at a scale smaller than the discreti-

zation scale, and qo is the surface water flux (L T�1) given by

qo ¼ �
d2=3o

nΦ1=2
∙kro∇ do þ zoð Þ

where n is a surface roughness coefficient (L�1/3 T); Φ is the surface water gradient (�); kro is an equivalent

relative permeability function (�) that, similarly to function ϕ, can account for the presence of microtopogra-

phy and flow obstructions; and zo is ground surface elevation (L).

In HydroGeoSphere, the control volume finite element method is used for the 3-D discretization of the

subsurface flow equation and the 2-D discretization of the surface flow equation. A 3-D and a 2-D mesh

are therefore both generated. The 2-D mesh representing the surface domain corresponds exactly to the

top of the 3-D mesh, therefore creating nodes that belong to both the surface and the subsurface flow

domains (dual nodes), as illustrated in Figure T1.2.

The 2-D and 3-D flow equations are solved simultaneously. Both equations are nonlinear, and the Newton-

Raphson linearization technique is used for the solution. Fluid exchange Γo between the surface and subsur-

face domain is computed at the dual nodes during the flow solution. Fluid exchange can be represented by

assuming continuity of potential at the dual nodes, with the water depth do being equal to the subsurface

pressure head ψ. Another representation that does not rely on that assumption represents fluid exchange

with the following equation

doΓo ¼ KSOkrso ψ � doð Þ

Figure T1.1. Components of the water cycle considered in the Freeze and Harlan blueprint [the figure is taken from

Jyrkama [2003]].
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where KSO is the hydraulic conductivity of the interface between the surface and subsurface (L T�1) and krso is

the relative permeability of that interface (�).

Because of the surface flow continuity equation used in HydroGeoSphere, which requires that the whole

surface is discretized with 2-D elements, there is no need to define a priori the surface drainage network. If

the surface topography is discretized with enough precision and if appropriate surface flow properties

(surface roughness) are used to represent channels or streams, the solution of the surface flow equation

during the simulation can satisfactorily reproduce the drainage network (as illustrated in Figure T1.3).

Other ISSHMs use different continuity equations for surface flow, which leads to different discretization

procedures. For example, the CATHY model [Paniconi et al., 2003] couples the 3-D Richards’ equation for

subsurface flow to a 1-D diffusive wave approximation to surface flow and it requires the definition of a

drainage network using one-dimensional coordinates to represent single hillslopes or channels.

In a numerical model such as HydroGeoSphere, it is possible to define spatially variable properties for the

surface and subsurface elements, which allows representation of heterogeneous streambeds [Brunner and

Simmons, 2012]. However, the representation of small-scale streambed heterogeneities (i.e., the hyporheic

scale) requires very fine spatial discretization, which can generate models with a very large number of

elements and nodes. The model run times can become very large such that they could represent a computa-

tional hurdle to represent small-scale streambed heterogeneity.

4.2. Tutorial 2: Geostatistics and River-Groundwater Interactions

All geostatistical methods treat the variability of a given physical property as a stochastic process [Matheron,

1962; Journel, 1989; Chiles and Delfiner, 2012]. Consider variable Z(x), which is a property varying in space as a

function of position vector x. Variable Z can be continuous and represent the permeability, porosity, or

thickness of a streambed. It can also be discrete and represent categorical data such as sediment type or

the presence or absence of streambed clogging. Variable Z can also represent a vectorial or tensorial quantity

such as the hydraulic conductivity tensor or a parameterized grain-size distribution. Usually, Z(x) can only be

Figure T1.2. Illustration of a discretized river-groundwater model for the 480 km
2
Geer Basin, Belgium (Figure taken from

Goderniaux et al. [2009]). The surface flow domain is discretized in 2-D with triangular elements, and the subsurface flow

domain is discretized in 3-D with triangular prisms (6-node elements). The 2-D domain is shown separately here, but it

corresponds exactly to the top of the 3-D subsurface mesh.
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measured at a discrete, and often small, number of locations xi with i ∈ {1, ⋯ , n}. Raw measurements there-

fore consist of n values of Z: Zi= Z(xi) with i ∈ {1, ⋯ , n}.

A fundamental assumption in geostatistics is to represent property Z as a random function instead of a deter-

ministic function. A random function is fully described by the joint statistical distribution of values of Z(x) at

any locations. When this distribution is defined, one can derive from it the probability of occurrence of any

value of Z at any location and conditioned to all measured values. In practice, most geostatistical methods

represent the joint distribution as a multi-Gaussian distribution function, which is the Gaussian distribution

function extended to multiple dimensions to account for any number of joint variables. The motivation for

using a multi-Gaussian distribution function is that the resulting equations are analytically tractable and their

parameterization only requires the mean value and a covariance model.

It is straightforward to estimate the mean value and covariance model from field measurements Zi using

statistical techniques such as maximum likelihood or the method of moments. Having estimated these

parameters, one can then use kriging to represent the spatial variability of the expected value of Z(x) at

any location. Kriging produces smoothly varying maps that honor measurements andminimize the expected

value of the estimation error at any spatial location. However, those maps represent only the variability of the

expected value of Z(x), E(Z(x)), but do not adequately represent the spatial variability of the underlying

variable Z(x).

Techniques other than kriging are required to quantify the impact of the variability of Z on another process,

for example, river-groundwater interactions, that cannot be expressed as a linear function of Z(x). The most

common techniques include Monte Carlo simulations and stochastic simulations [Delhomme, 1979]. Instead

of generating a single map that represents the expected value of Z(x) at any location, these techniques aim to

generate an ensemble of possible realizations Zω(x), with ω being an index over a (possibly infinite) number

of maps that can be generated by the statistical random function. These realizations are conditioned to point

measurements, and they adequately represent the spatial variability of the property of interest, or more

precisely the spatial variability of the random process whose parameters have been inferred from the data.

These maps are not expected to be accurate locally, but they display a structure that is consistent with the

statistics derived from the data.

In the 1990s, several authors pointed out that spatial structures generated from a multi-Gaussian statistical

distribution have some systematic features that may not realistically represent the connectivity of subsurface

materials [e.g., Gómez-Hernández andWen, 1998]. A wide range of alternative geostatistical models was there-

fore developed to address this issue, including the multiple-point statistics approach that radically changed

the underlying principles of geostatistics. Themain ideas behindmultiple-point statistics were (1) to abandon

the multi-Gaussian framework and use a nonparametric approach to increase flexibility in the type of statis-

tical distributions, (2) to consider patterns from several points simultaneously (the multiple points) and aban-

don covariances that are limited to pairs of points, and (3) to derive the multiple point statistics from a

complete training data set (the training image) instead of the limited discrete field data from a given site.

Multiple-point statistics have been used to model the topography of the Waimakariri River in New Zealand,

where the training data set is the river topography measured using lidar (Figure T2.1). With the traditional

geostatistical approach, the parameters of a theoretical covariance model are inferred from these measure-

ments to model the topography. With MPS, one can directly learn the spatiotemporal patterns from the

dense data set (Figure T2.1a). The user provides the training data and specifies some parameters controlling

the algorithm, such as the number of neighbors, the secondary variables to describe the trends, or the

maximum difference between patterns. Those parameters often have to be adjusted according to the

complexity of the training image and the type of patterns to be modeled. Some recommendations are

provided in Meerschman et al. [2013].

A practical limitation of MPS methods is that getting the training data is not always simple, especially for

modeling three-dimensional subsurface heterogeneity. An alternative is to use a process-based or object-

based model to generate a training data set or to use analog physical experiments in the laboratory, which

is, however, not always feasible. One can also combine various modeling methods to populate 3-D domains

with realistic patterns. Figure T2.2a shows an example where a 3-D hydraulic conductivity distribution was

generated by stacking successive topographies modeled with MPS based on the approach of Pirot et al.
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[2014]. Additionally, geological rules for filling volumes with reasonable assumptions about the sediment

grain size were specified.

The resulting patterns compare favorably with those observed on outcrops. They also contain interesting

features such as cross-bedding or inclined beds, with alternating principal directions of anisotropy that influ-

ence the overall physical properties of the system and could, for example, trigger helicoidal flow [Stauffer,

2007; Chiogna et al., 2016]. These processes could occur in streambeds and influence hyporheic flow and

mixing in a manner that has yet to be studied.

Finally, because multi-Gaussian geostatistics are implicitly used in most inversion or data assimilation techni-

ques, results of geophysical inversion, hydraulic tomography, or thermal inversion often show a multi-

Gaussian spatial structure and therefore look like Figure T2.2b. These inversions cannot be used as training

data sets for an MPS approach. However, different methods exist to integrate geological constraints on the

spatial structure within the inversion procedure (see review by Linde et al. [2015]). For example, the prior

distribution of parameters can be assumed to follow an MPS model and the inversion results may be more

geologically realistic and potentially used as a training data set. These new methods may lead to a better

understanding of the internal heterogeneity of streambeds in a first step and toward a better understanding

of the impact of these structures on river-groundwater interactions in a second step.

4.3. Tutorial 3: State-of-the-Art Surface Water-Groundwater Interaction Modeling Case Study:

Lehstenbach Catchment in Southeastern Germany

ISSHMs are being increasingly used to solve hydrological problems. A key outstanding issue has been how to

quantify streamflow generation mechanisms. The groundwater component of streamflow, in space and time,

can be estimated using tracers and hydraulic approaches, or with numerical models [Partington et al., 2012].

Partington et al. [2011] developed a Hydraulic Mixing Cell (HMC) model and coupled it to an ISSHM. The HMC

model is based on the water balance in the stream and uses the subsurface/surface fluid exchanges along the

Figure T1.3. (left) Observed drainage network and (right) surface water depth (on a logarithmic scale) simulated with the HydroGeoSphere model for the

Saint-Charles River catchment, Quebec, Canada (figure taken from Cochand [2014]).
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stream that are calculated by the ISSHM. The HMCmodel therefore allows the determination of groundwater

flow components using only the flow solution of the ISSHM. Because the method uses only hydraulic

information calculated by the ISSHM, it does not require the simulation of tracers in a solute transport

model as was done in Jones et al. [2006].

Partington et al. [2013] applied the HMC

model coupled to an ISSHM to the

Lehstenbach catchment in southeast-

ern Germany, shown in Figure T3.1

(Figure 4 of the original paper). The

figure illustrates the spatial complexity

in the catchment, which contains

significant topographic variations that

complicate the rainfall-runoff-stream

generation processes. An ISSHM was

applied at two contrasting scales: a

smaller riparian wetland of area 210 m2

and a larger catchment of area 4.2 km2.

A large storm event was simulated in

the catchment, and the ISSHM was

employed to determine the spatial and

temporal variabilities of surface satura-

tion, exchange flux, and surface water

depth prior to the storm, at the peak of

the storm, and 2 days after the storm,

as shown in Figure T3.2 (Figure 9 of the

original paper). This figure shows the

complex spatial and temporal patterns

that evolve in the hydrologic response

in the system and in surface water-

groundwater interaction. Further, the

ISSHM allows the quantitative spatial

Figure T2.2. Comparison of (a) the three-dimensional heterogeneity

patterns generated by the pseudo-genetic method proposed by Pirot

et al. [2015a] with (b) a more parsimonious multiGaussian model. The

color represents hydraulic conductivity values. The red color corresponds

to high values and the dark blue to low values. The domain has a length of

280 m, a width of 110 m, and a thickness of 10.5 m (caption and images

modified from Pirot et al. [2015b]).

Figure T2.1. Simulation of topography using Multiple-Point Statistics (MPS]. (a and b) Waimakariri River (New Zealand) bed

topography measured with lidar at two successive dates. Figures T2.1a and T2.1b are used as training images. The color

represents the altitude, red are high values, and blue are low values. (c and d) Simulated successive topographies using

MPS and conditional probability distributions derived from partial resampling of the two training images. The MPS

algorithm uses the patterns of channels and bars that are visible in each image, as well as the complex spatial relationship

between the two images, which allows realistic modeling of channel or bar migration, erosion, filling of trough, etc. (caption

and images modified from Pirot et al. [2014]).
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and temporal prediction of exchange

fluxes, where a positive exchange flux

indicates groundwater flow to the

stream and a negative value indicates

that the stream is losing water to the

aquifer through infiltration.

Figure T3.3 (Figure 10 of the original

paper) shows the hyetograph, discharge

hydrographs simulated at the outlet,

and theHMC fractions in surface-storage

across the catchment. In the smaller-

scalewetlandmodel, complex processes

were simulated using microtopographic

information across the wetlands.

Groundwater discharge to the wetland

surface (GW-WL) is shown in

Figure T3.4 (Figure 7 of the original

paper). Wetland HMC fractions at 20

Figure T3.1. Text of the caption directly from the original publication of

Partington et al. [2013]. Model spatial discretization of the Lehstenbach

catchment and distribution of the stream, wetland, and forest areas (the z

axis is exaggerated by a factor of 5). Model observation points are at

locations 1–6 and at the outlet.

Figure T3.2. Text of the caption directly from the original publication of Partington et al. [2013]. (a) Simulated surface satura-

tion, (b) exchange flux, and (c) surface water depth, before the storm, at the storm peak and 2 days after the storm peak. A

losing section on the right armof the stream is highlighted in the third frameof Figure T3.2b. Positive values of exchangeflux

indicate groundwater discharge to the surface, and negative values indicate infiltration of surface water to the subsurface.
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(during the storm event) are shown. In these figures, a GW-WL fraction of 0.5 tells us that 50% of the water in

the cell was generated by groundwater discharge to the wetland surface. The model results show the

wetland filling and the significant component of groundwater discharge to the wetland during the storm

event. In both the regional-scale catchment model and smaller wetland model, the combined use of an

ISSHM together with the HMC method represents state-of-the-art modeling in surface water-groundwater

interaction studies. This application illustrates the current power of ISSHM’s for modeling and analyzing

surface water-groundwater interactions.

ISSHMs are being increasingly used in hydrologic research, but Liggett et al. [2015] observed that solute trans-

port in ISSHMs is largely unexplored. They noted that previous studies where solute transport is simulated

have focused on smaller scales, simple systems, and spatial domains and have largely tended to underutilize

field data sources. Liggett et al. [2015] simulated flow and solute transport in the Lehstenbach catchment,

where high-resolution dissolved organic carbon (DOC) observations were available and provided a powerful

way to analyze solute transport mechanisms. In particular, DOC transport and export from the wetland during

a rainfall event was analyzed. The study included a sensitivity analysis to examine the way in which solute

Figure T3.3. Text of the caption directly from the original publication of Partington et al. [2013]. (a) Hyetograph,

(b) separated simulated discharge hydrographs at the outlet, and (c) the HMC fractions in surface-storage across the

catchment. Note that simulated overland flow from the forest was negligible (<0.2%) in contributing to streamflow and so

is not shown in Figure T3.3b.
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transport conditions across the surface-subsurface boundary influenced model results. Advective exchange

only, advection plus diffusion, advection plus full mechanical dispersion, and subsurface dispersivity were

included in the sensitivity analysis. Figure T3.5 (Figure 7 of the original paper) shows the simulated total

DOC mass flux at the catchment outlet obtained using the various interface transport conditions and with

various values of subsurface dispersion. It is clear that there is a significant influence of dispersion both

across the surface-subsurface interface and from the subsurface dispersion. Results from Figure T3.5 show

a wide range of solute transport behavior. This range represents a significant challenge for solute transport

simulations and, in the absence of a detailed understanding of the appropriate processes at the

representative scales, may lead to nonunique solute transport results.

Liggett et al. [2015] reported that the ISSHM correctly captures some, but not all observed catchment beha-

viors. For example, the model correctly simulates the observed solute discharge at the catchment outlet and

Figure T3.4. Text of the caption directly from the original publication of Partington et al. [2013]. Wetland HMC fractions at

day 20 (during the storm event). In-stream and overland flow generating mechanisms shown are (a) groundwater dis-

charge to the channel, (b) groundwater discharge to the wetland surface, (c) rainfall to the channel, and (d) rainfall to the

wetland. (e) The remaining initial water and (f) the reset fraction for reset cells are also shown.
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the observed increasing discharge from

wetlands that occurs with increased

stream discharge. However, the slope

of the concentration-discharge plots

was not well represented in the model.

While solute transport measurements

and behavior potentially and theoreti-

cally assist with constraining model

behavior and better understanding

constituent physical processes (and the

decomposition of the stream hydro-

graph), it also introduces a range of

additional solute transport parameters

into the analysis. These include disper-

sion and diffusion at the surface-

subsurface interface and subsurface dis-

persion. Also important are the spatial

patterns of the solute transport initial

conditions—in this case, DOC. The initial

condition for DOC concentration in the

river and aquifer will be important

determinants of subsequent spatial

and temporal behavior of the DOC concentrations throughout the model. These represent the initial “end-

member” concentrations that are subject to transport, both advection and dispersive mixing. Introducing

solute transport into the simulation increases complexity, but the potential for solute transport to offer

advantages for understanding and constraining both hydraulics and transport behavior in a catchment is

significant. This potential will be strongly dependent on obtaining solute transport field data, at appropriate

scales, for constraining and validating solute ISSHMs. Furthermore, these approaches could be useful in

hydroecological studies. For example, they could be used to relate to ecosystem studies that look at

biological DOC uptake (for comparisons with a model where no uptake is included).

These state-of-the-art studies are currently demonstrating the tremendous power and utility of ISSHMs in

hydrologic research and for studying surface water-groundwater interaction. While it is evident that the

Freeze and Harlan [1969] “Blueprint for a physically-based, digitally-simulated hydrologic response model” is

now the basis for the latest and emerging generation of ISSHMs, it is also evident that the inclusion of solute

transport in ISSHMs remains largely unexplored and poorly understood. It thus represents a key line of future

research development and application inquiry.
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