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Abstract. Approximately 15-20% of breast carcinomas exhibit 
human epidermal growth factor receptor (HER2) protein 
overexpression. HER2-positive breast cancer (BC) is a hetero-
geneous and aggressive subtype with poor prognosis and high 
relapse risk. Although several anti-HER2 drugs have achieved 
substantial efficacy, certain patients with HER2-positive BC 
relapse due to drug resistance after a treatment period. There 
is increasing evidence that BC stem cells (BCSCs) drive thera-
peutic resistance and a high rate of BC recurrence. BCSCs may 
regulate cellular self-renewal and differentiation, as well as 
invasive metastasis and treatment resistance. Efforts to target 
BCSCs may yield new methods to improve patient outcomes. 
In the present review, the roles of BCSCs in the occurrence, 
development and management of BC treatment resistance 
were summarized; BCSC-targeted strategies for the treatment 
of HER2-positive BC were also discussed.
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1. Introduction

Breast cancer (BC) has gradually replaced lung cancer as 
the most prevalent cancer type (1). BC is divided into four 
subtypes based on the expression status of estrogen receptor 
(ER), progesterone receptor (PR) and human epidermal 
growth factor receptor-2 (HER2) and antigen Ki-67 detected 
by immunohistochemistry: Luminal A, Luminal B, HER2-
positive and triple-negative subtypes (2,3). Luminal A BC 
(ER+ and/or PR+, and HER2-, Ki-67 <14%) is characterized 
by high differentiation, slow growth and the best prognosis (4). 
Luminal B BC (ER+ and/or PR+, and HER2+ or HER2-, 
Ki-67 >14%) is sensitive to endocrine therapy and has a good 
prognosis (5). Triple-negative BC (ER- and PR-, and HER2-) 
is associated with short overall survival (OS) and unfavorable 
prognosis (6). HER2-positive BC (ER- and PR- and HER2+) 
is characterized by high aggressiveness, poor prognosis 
and chemotherapeutic resistance (7,8). HER/erythroblastic 
leukemia viral oncogene homolog (ERBB) is a member of 
the receptor tyrosine kinase signaling family, which includes 
HER1/ERBB1, HER2/ERBB2, HER3/ERBB3 and HER4/
ERBB4 (9). In numerous types of malignant tumor, HER/
ERBB family members exhibit overexpression, amplification 
or mutation, with effects on cell proliferation, migration, 
differentiation and apoptosis (10-13). HER2-positive BC is 
attributed to ERBB2/neu amplification or HER2 transmem-
brane receptor protein overexpression, which affects 15-20% 
of patients with BC (14). Currently, trastuzumab is the primary 
treatment; other targeted drugs [e.g., pertuzumab, neratinib, 
trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan 
(T-DXd)] are also used in clinical treatment (15-18). However, 
drug resistance occurs in numerous patients after treat-
ment (19). Cancer cell escape from drug treatment is related 
to the activities of BC stem cells (BCSCs), which exhibit 
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properties of self-renewal, infinite proliferation and multidi-
rectional differentiation capacities necessary for the metastasis 
and recurrence of BC (20). In the present review, therapies for 
HER2-positive BC and the roles of BCSCs in HER2-positive 
BC treatment resistance were discussed. Recent research 
concerning BCSCs and related signaling pathways that may 
serve as therapeutic targets were also summarized, with the 
intention of providing a basis for inhibiting tumorigenesis and 
the development of HER2-positive BC.

2. Current status of HER2-positive BC treatment

In the clinical treatment of HER2-positive BC, three main 
types of drugs are used: Monoclonal antibodies (e.g., trastu-
zumab and pertuzumab), small-molecule tyrosine kinase 
inhibitors (TKIs; e.g., lapatinib, neratinib and tucatinib), and 
antibody-drug conjugates (T-DM1 and T-DXd) (Table I) (21).

Trastuzumab, a humanized antibody that acts on the 
extracellular domain IV region of the HER2 receptor (22), 
has demonstrated robust efficacy in the targeted treatment of 
HER2-positive BC over the past 20 years (23). Trastuzumab 
promotes cell apoptosis by inhibiting HER2 exocytosis, 
blocking the PI3K/AKT pathway and activating antibody-
dependent cytotoxicity (24). Pertuzumab acts on region II of the 
HER2 receptor to block ligand-dependent HER2 heterodimer 
formation, thereby reducing HER2 intracellular signaling and 
inhibiting the proliferation and invasion of tumor cells (25).

Lapatinib is a dual-target TKI that acts on HER1/2 to 
inhibit the activation of downstream effectors (MAPK and 
AKT), leading to cell growth arrest and the acceleration of 
tumor cell regression (26,27). In addition, neratinib is an 
oral irreversible inhibitor that acts on HER1/2/4 to suppress 
the phosphorylation of MAPK and AKT, thereby attenuating 
cancer cell proliferation (28). Neratinib has been proven to 
inhibit the trastuzumab-induced upregulation of HER4 and 
enhance sensitivity to trastuzumab by limiting the activity 
of HER4 tyrosine kinase (29). Furthermore, neratinib may 
improve the 2-year disease-free survival in patients with 
early-stage HER2-positive BC (30). Another reversible, highly 
selective TKI is tucatinib, which acts on the intracellular tyro-
sine kinase region of the HER2 receptor (31) to inhibit signal 
transduction downstream of HER2/3 via the MAPK and PI3K/
AKT pathways (32). A phase III trial indicated that tucatinib 
plus capecitabine and trastuzumab significantly prolonged 
progression-free survival and overall survival in patients with 
HER2-positive BC (33). 

T-DM1 is an antibody-drug conjugate formed by conju-
gating trastuzumab to the cytotoxic drug emtansine (i.e., DM1) 
using a linker (34). T-DM1 retains trastuzumab activity and 
simultaneously induces apoptosis by delivering the microtu-
bule inhibitor DM1 to HER2-overexpressing tumor cells (35). 
T-DXd is a novel antibody-drug conjugate composed of 
trastuzumab and the topoisomerase type I inhibitor DXd 
using a linker (36). T-DXd has a high drug-to-antibody ratio 
and favorable membrane permeability. In addition, DXd may 
induce DNA fragmentation. Thus, T-DXd exhibits a robust 
killing effect on HER2-overexpressing tumor cells (37).

Although various targeted drugs are effective, numerous 
patients subsequently exhibit primary or acquired drug resis-
tance, leading to accelerated disease progression (38). Thus, 

there is considerable interest in identifying effective therapies 
for the management of drug resistance.

3. BCSCs and related signaling pathways

BCSCs. CSCs were first confirmed in early studies of leukemia 
models (39). CSCs have the capacity to self-renew, differentiate 
and promote tumorigenic development (40). BCSCs were first 
identified in a xenograft solid tumor in 2003, which caused 
malignant proliferation, invasion, metastasis and recurrence of 
BC (41). Accumulating evidence has indicated the association 
between trastuzumab resistance and BCSCs in HER2-positive 
BC (42,43). BCSC-targeted therapy may be a promising way to 
counteract trastuzumab resistance. 

BCSC phenotypes. BCSCs may be characterized by the distri-
bution of biomarkers on the cell membrane, such as CD44, 
CD24, acetaldehyde dehydrogenase (ALDH)1 and CD133 (44). 
The membrane glycoproteins CD44 and CD24 are promising 
BCSC biomarkers. CD44 interacts with its primary ligand 
hyaluronic acid to activate various signaling pathways, which 
participate in cell proliferation and invasion (45,46). Due to its 
rarity, CD24 expression in BCSCs is usually assessed in combi-
nation with CD44 expression. The CD44+/CD24-/low phenotype 
is a classical BCSC biomarker that may be used to assess distant 
metastasis, recurrence and prognosis (47). Furthermore, the 
plasticity of BCSCs enables them to switch between epithelial-
mesenchymal transition (EMT, mesenchymal-like state) and 
mesenchymal-epithelial transition (epithelial-like state), leading 
to tumor invasion and metastasis (48). It has been reported that 
mesenchymal-like CD44+/CD24-/low cells may be responsible 
for the resistance of HER2-positive BC to trastuzumab (49). 
ALDH1, a cellular lipase present in cells capable of self-
renewal and multilineage differentiation, is an important BCSC 
biomarker (50). Liu et al (51) demonstrated that ALDH1 expres-
sion was positively correlated with breast tumor growth. BCSCs 
exhibit dormant and proliferative states; dormant BCSCs are 
more resistant to antimitotic drugs (52). Another study indicated 
that mesenchymal BCSCs with high CD44+/CD24- expression 
were in the dormant state, whereas epithelioid BCSCs with 
high ALDH+ expression were in the proliferative state (48). In 
the past 10 years, CD44+CD24-/low ALDH+ expression has been 
used as a specific BCSC biomarker, particularly for HER2-
positive BC (53). The population of CD44+/CD24-/low phenotype 
BCSCs significantly increases in HER2-positive MDA-MB-
435 cells than other cell lines (54). CD133+, also known as 
prominin-1, is associated with poor prognosis, angiogenesis, 
lymph node metastasis and HER2 positivity in BC (55,56). 
EPHA5-, a receptor tyrosine kinase, is able to increase BCSC 
properties and increase the resistance of HER2-positive BC to 
trastuzumab (56). Collectively, BCSC phenotypes are closely 
connected to the development of HER2-positive BC. Thus, 
specific phenotypic BCSC-targeted therapies may be a prom-
ising approach to overcome BC and treatment resistance. 

BCSC-related signaling pathways. Several signaling pathways 
are involved in shaping the properties of BCSCs, including 
the Wnt/β-catenin, Notch and Hedgehog pathways. Pathway 
dysregulation or aberrant activation induces abnormal BCSC 
proliferation, leading to reduced sensitivity to drug therapy 
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and enhancement of BC development (Fig. 1). Thus, a deep 
understanding of these pathways may lead to the discovery of 
novel targeted therapies.

The Wnt/β-catenin signaling pathway is associated 
with the proliferation, migration and chemotherapeutic 
resistance of BCSCs. Wnt proteins usually bind to Frizzled 
receptors (i.e., G-protein-coupled receptors) and low-density-
lipoprotein receptor-related protein 5 or 6 (LRP5/6) to form 
Wnt-FZD-LRP5/6 trimeric complexes in an autocrine or para-
crine manner, leading to catenin stabilization (Fig. 1A) (57). 
Activation of the Wnt/β-catenin pathway promotes EMT, treat-
ment resistance and self-renewal in BCSCs (58). Wu et al (59) 
suggested that upregulated Wnt3 activated the Wnt/β-catenin 
signaling pathway that may lead to trastuzumab resistance 
in HER2-positive BC cells. Cyclin-dependent kinase 12 may 
induce proliferation and tumor recurrence in BCSCs through 
effects on the Wnt/β-catenin pathway, leading to low trastu-
zumab efficacy in the treatment of HER2-positive BC (60). 
Furthermore, high RNA expression levels of Wnt in BCSCs 
led to an increased metastatic rate and shortened the overall 
survival of patients (61).

The Notch signaling pathway has four receptors (Notch1-4) 
and five associated ligands [Jagged-1-2 and Delta-like ligand 
(DLL)-1-4] (Fig. 1B) (62). The Notch pathway is closely 
associated with BC occurrence and progression. Through 
ligand-receptor binding interactions, aberrant Notch activa-
tion promotes aggressiveness and drug resistance in BCSCs. 
Baker et al (63) found that Notch-1 maintained BCSC survival 

by inhibiting phosphatase and tensin homolog, which led to 
drug resistance in HER2-positive BC cells. Pandya et al (64) 
reported that protein kinase C-α reversed trastuzumab resis-
tance in HER2-positive BC by inhibiting Jagged-1-mediated 
notch signaling.

The Hedgehog signaling pathway consists of three ligands 
(Sonic, desert and Indian hedgehog), two receptors [Patched 
(PTCH) and smoothened (SMO)], and the glioma-associated 
oncogene transcription factors (GLI)1-3 (Fig. 1C). He et al (65) 
found that PTCH, SMO, GLI1 and GLI2 were significantly 
upregulated in BCSC-enriched MCF-7 mammosphere 
cells. High GLI1 expression is associated with trastuzumab 
resistance and poor prognosis in HER2-positive BC (66). 
Gupta et al (67) demonstrated that silencing of the GLI2 
gene inhibited HER2-positive BC invasion and metastasis. 
Doheny et al (68) reported that knockdown of SMO inhibited 
BCSC growth, suggesting that Hedgehog pathway inhibitors 
may be useful in BCSC-targeted therapy. In addition, further 
signal transduction pathways, including the Hippo (69), 
TGF-β (70), JAK2/STAT3 (71) and PI3K/AKT/mTOR (72) 
pathways, are closely associated with BCSCs through their 
effects on BC occurrence and progression.

4. Mechanism of BCSCs involvement in HER2-positive BC 
resistance

Increasing evidence has indicated that BCSCs accelerate BC 
progression due to their stem cell properties, drug resistance 

Table I. Current targeted drugs and mechanisms of action for HER2-positive breast cancer.

Type/drug Target Mechanism of action (Refs.)

Monoclonal antibodies   (22,24)
  Trastuzumab HER2 Inhibition of exocytosis of HER2
  Blocking of the PI3K/AKT signaling pathway 
  ADCC 
  Pertuzumab HER2 Blocking of ligand-dependent HER2 (25)
  heterodimer formation
  Reduction of HER2 intracellular signaling 
  TKIs 
  Lapatinib HER1 Inhibition of MAPK and AKT activation (27)
 HER2 
  Neratinib HER1 Inhibition of MAPK and AKT phosphorylation (28,29)
 HER2
 HER4 
  Tucatinib HER2 Inhibition of MAPK and PI3K/AKT pathways (31,32)
 HER3  
 ADC  
  T-DM1 HER2 Inhibition of tubulin polymerization (34,35)
  Retainment of trastuzumab activity
  Delivery of DM1 to tumor cells 
  T-Dxd HER2 Retainment of trastuzumab activity (36,37)
  Induction of DNA fragmentation 

ADCC, antibody-dependent cytotoxicity; TKIs, tyrosine kinase inhibitors; MAPK, mitogen-activated protein kinases; ADC, antibody-drug 
conjugate; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; HER2, human epidermal growth factor receptor.
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and immune evasion (73). In the following chapter, the mecha-
nisms of the involvement of BCSCs in the treatment resistance 
of HER2-positive BC is discussed. There are several possible 
mechanisms BCSCs participate in to induce HER2-positive 
BC resistance, including the tumor microenvironment, ABC 
transporters and non-coding RNAs. 

BCSC microenvironment affects BCSC drug resistance. 
The BCSC microenvironment mainly consists of cytokines, 
the extracellular matrix (ECM), vascular microenvironment 
and bone marrow microenvironment. Cytokines (e.g., IL-6, 
IL-8 and TGF-β), are secreted by cancer-associated fibro-
blasts (CAFs), endothelial cells (ECs), mesenchymal stem 
cells (MSCs) and tumor-associated macrophages, regulating 
drug resistance by activating BCSC-related signaling path-
ways (74-76). Mao et al (77) demonstrated that CAFs induce 
trastuzumab resistance by secreting IL-6 to expand BCSCs and 
activate multiple pathways in HER2-positive BC (Fig. 2A). The 
ECM forms a protective membrane at the periphery of a cluster 
of cancer cells; this physical barrier weakens drug penetration 
and protects BCSCs from drug elimination (78). Collagen is 
the main structural protein in the ECM, and collagen type 
I α1 (COL1A1) promotes cell proliferation and drug resis-
tance in BC (Fig. 2B) (79). Hanker et al (80) indicated high 
COL1A2 expression was related to lower clinical response to 
trastuzumab by regulating PI3K/AKT signaling in patients 
with HER2-positive BC. The ECM also regulates the ability 

of BCSCs to boost growth and survival, thereby contributing 
to therapeutic resistance (81). Through their multidirectional 
differentiation potential, BCSCs may differentiate into ECs, 
which allows participation in angiogenesis and alteration of the 
vascular microenvironment (Fig. 2C) (82). Hori et al (83) found 
that HER2-positive BC cells exhibit vasculogenic mimicry in 
the angiogenic microenvironment after complete trastuzumab 
resistance. Additional studies have demonstrated that increased 
expression of stemness markers, such as octamer-binding tran-
scription factor 4 (Oct4), aldehyde dehydrogenase 1 (ALDH1) 
and CD44 in BCSCs promote BC cell growth and treatment 
resistance (84-86). In the bone marrow microenvironment, 
extracellular vesicles released from MSCs may be internal-
ized by BCSCs, promoting drug resistance in BC cells (87). 
Kim et al (88) reported that the IL-6-JAK1-STAT3-Oct-4 
signaling pathway in the bone marrow microenvironment was 
able to convert non-BCSCs into BCSCs by regulating BCSC-
associated Oct-4 gene expression. In addition, the hypoxia 
environment increased the population of BCSCs and induced 
trastuzumab resistance in HER2-positive BC cells (89,90). 
Lee et al (91) found that hypoxia-inducible factor-1α promoted 
BCSC aggregation and tumor recurrence. Furthermore, 
the expression levels of multiple BCSC biomarkers [e.g., 
ATP-binding cassette G member 2 (ABCG2), sex-determining 
region Y-box 2, Krüppel-like factor 4 and CD44+/CD24-/low] 
are upregulated under hypoxic conditions, contributing to 
increased drug resistance in BC cells (Fig. 2D) (92).

Figure 1. BCSC-related signaling pathways and their inhibitors. (A) Wnt signaling pathway and its inhibitors. The trimer composed of Wnt protein, frizzled 
receptors and LRP5/6 receptors mediates the stable expression of β-catenin, forming the classic Wnt/β-catenin signaling pathway. The inhibitors of this pathway 
include Wnt protein inhibitors and Frizzled receptors inhibitor. (B) Notch signaling pathway and its inhibitors. The Notch signaling pathway is activated when 
the Notch receptor binds to ligands on adjacent cell membranes. Subsequently, γ-secretase is responsible for cutting the proteins in the transmembrane domain 
and releasing the NICD into the cytoplasm. NICD eventually enters the nucleus and regulates the transcriptional activity of target genes. Inhibitors of this 
pathway include GSIs and MABs. (C) Hh signaling pathway and its inhibitors. Binding of Hh ligands to PTCH results in SMO disinhibition, which leads to 
activation of GLIs. Activated GLIs enter the nucleus and promote target gene transcription. The main inhibitors of this pathway are SMO inhibitors and GLI 
inhibitors. The above signaling pathway inhibitors are effective therapies targeting BCSCs, which may inhibit proliferation, invasion and metastasis of BCSCs. 
BCSCs, breast cancer stem cells; Hh, hedgehog; GSIs, γ-secretase inhibitors; MABs, monoclonal antibodies; NICD, Notch intracellular domain; LRP5/6, LDL 
receptor-related protein 5 or 6; PTCH, Patched receptor; SMO, smoothened receptor; GLIs, glioma-associated oncogenes.
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Drug pump effect of ABC transporter facilitates drug resis-
tance among BCSCs in HER2-positive BC. ABC transporter 
overexpression is an important factor that contributes to 
multidrug resistance in HER2-positive BC (93). Through the 
drug discharge pump mechanism, ABC transporters mediate 
intracellular drug outflow and help to decrease intracellular 
drug concentrations, thereby enhancing drug resistance in 
BCSCs (94). ABCG2, a representative member of the ABC 
transporter family, has a vital role in the development of 
multidrug resistance in HER2-positive BC (Fig. 2E) (95). 
Němcová-Fürstová et al (96) indicated higher expression 
of ABCG2 protein in paclitaxel-resistant SK-BR-3 cells. 
Furthermore, inhibition of the Wnt pathway may attenuate 
ABCG2 expression (97). Overall, the drug pump effects of 
ABC transporters facilitate drug resistance among BCSCs in 
HER2-positive BC. 

Other important drug resistance factors. In the past 10 years, 
the involvement of non-coding RNAs in HER2-positive BC 
resistance via regulation of BCSCs (Fig. 2F) has attracted 
considerable attention. Ye et al (98) found that microRNA 
(miR)-221 was able to induce BCSC proliferation, thereby 
reducing the sensitivity of HER2-positive BC to drug therapy. 
Elevated expression of long non-coding RNAs [lncRNAs; 
e.g., LINC00578, LINC00668 and SEMA3B antisense RNA 
1 (SEMA3B-AS1)] in HER2-positive BC enhanced BCSC 

stemness (99). In addition, the expression levels of lncRNA 
H19 (100), lung cancer-associated transcript 1 (101) and 
terminal differentiation-induced non-coding RNA (102) were 
observed to be higher in HER2-positive BC tissues than in 
normal breast tissues. Conversely, miR-375 and lncRNA 
growth-arrest-specific 5 attenuated the proliferation and drug 
resistance capacities of tumor cells (103,104). Numerous 
metabolic factors are associated with BCSC involvement 
in HER2-positive BC resistance. For instance, group XVI 
phospholipase A2, a promoter associated with phospholipid 
metabolism, contributes to the maintenance of BCSC charac-
teristics and may serve as a BCSC biomarker (105). Pyruvate 
dehydrogenase kinase 1, produced during glycolysis, signifi-
cantly increases the numbers of ALDH+ BCSCs and promotes 
BC progression (106). Fox et al (107) found that targeted 
HER2 therapy led to the activation of nuclear factor erythroid 
2-related factor 2 in dormant tumor cells by modulating redox 
potential and nucleotide metabolism. DNA damage repair 
(DDR) is a prevalent phenomenon in BCSCs, where it facili-
tates repair after reactive oxygen species-mediated damage 
to DNA (108,109). Overexpression of poly[ADP-ribose] 
polymerase 1 was reported to enhance tolerability to DNA 
damage in trastuzumab-resistant HER2-positive BC (110). In 
addition, certain DNA damage sensor proteins, such as the 
DNA-dependent protein kinase catalytic subunit, the ataxia-
telangiectasia-mutated kinase and the ataxia-telangiectasia 

Figure 2. Mechanism of BCSCs in human epidermal growth factor receptor-positive BC resistance. (A) Cancer-associated fibroblasts, endothelial cells, 
mesenchymal stem cells and tumor-associated macrophages secrete a variety of cytokines to regulate cellular drug resistance. (B) The presence of extracellular 
matrix may weaken the penetration of anticancer drugs into cells and its main structural protein COL1A1/2 may promote cell proliferation and drug resistance. 
(C) BCSCs differentiate into vascular endothelial cells. (D) In the hypoxic environment, increased expression of HIF-1α, ABCG2, CD44+/CD24-/low led to 
drug resistance of BCSCs. (E) ABC transporter mechanism. ABCG2 is one of the ABC transporters, which may excrete anticancer drugs and lead to drug 
resistance in cells. (F) Other drug resistance factors such as ncRNAs, metabolic factors and DNA damage response. BCSCs, breast cancer stem cells; CAFs, 
cancer-associated fibroblasts; COL1A1/2, collagen type I α1/2; ABC, ATP-binding cassette; ABCG2, ABC cassette G member 2; HIF, hypoxia-inducible 
factor; lncRNA, long noncoding RNA; miR, microRNA.
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and Rad3-related kinase, are also involved in the DDR (111). 
Therefore, the inhibition of DDR signaling may enhance 
BCSC sensitivity to chemotherapy and substantially improve 
the prognosis of patients. 

5. BCSC-targeted therapeutic strategies

Wnt/β-catenin signaling pathway inhibitors. Porcupine 
is a critical enzyme involved in Wnt ligand secretion and 
acylation (112). LGK974 (Wnt974) is a specific membrane-
bound porcupine inhibitor that suppresses the Wnt/β-catenin 
signaling pathway, thereby inhibiting BCSC self-renewal and 
migration (113). Jang et al (114) reported that cwp232228, a 
small-molecule inhibitor, impaired the growth of BCSCs and 
BC cells by blocking the Wnt/β-catenin pathway; the inhibi-
tory effect was more noticeable in BCSCs than in BC cells. In 
addition, OMP-18R5, a monoclonal antibody targeting the Wnt 
pathway by blocking Frizzled receptors, provides an effica-
cious approach for BC treatment (115). Mu et al (116) reported 
that dickkopf-associated protein 2 induced apoptosis in 
BCSCs by regulating the Wnt signaling pathway. Furthermore, 
numerous Wnt inhibitors have been used in preclinical studies. 
For instance, salinomycin limits BC invasiveness and reduces 
BCSC resistance to drug treatment (117).

Notch signaling pathway inhibitors. Mutations in the Notch 
signaling pathway regulate the development of drug resistance 
among BCSCs. There are two main types of Notch inhibitor: 
Notch receptor cleavage inhibitors [e.g., γ-secretase inhibi-
tors (GSIs)] and monoclonal antibodies that interfere with 
receptor-ligand binding. GSIs mainly include MK-0752 and 
PF-03084014. MK-0752 and PF-03084014 have demon-
strated good efficacy in clinical trials on the treatment of 
advanced BC (118,119). Treatment with GSIs plus docetaxel 
led to a reduction in the number of BCSCs, downregulation of 
CD44+/CD24- and ALDH+ biomarkers and a decrease in BC 
volume (118). Monoclonal antibodies against Notch receptors 
or ligands include OMP-59R5, OMP-21M18, OMP-52M51 and 
REGN421, and their targets are Notch2/3, DLL-4, Notch1 and 
DLL-4, respectively (119). These drugs enhance antitumor 
activity when combined with typical targeted agents (120-123). 
Li et al (56) demonstrated that erythropoietin-producing 
hepatocellular receptor A5 inhibited BCSC self-renewal via 
the Notch1 signaling pathway, thereby reducing the risk of 
trastuzumab resistance in HER2-positive BC.

Hedgehog signaling pathway inhibitors. Hedgehog signaling 
pathway inhibitors may be categorized as SMO inhibitors 
(vismodegib, sonidegib, saridegib, glasdegib and TAK-441) and 
GLI inhibitors (GANT58, GANT61 and arsenic trioxide) (124). 
Vismodegib and sonidegib have been approved by the Food 
and Drug Administration for the therapy of metastatic or recur-
rent basal cell carcinoma; they significantly inhibit the spread 
of metastatic cells and improve median patient survival (125). 
GANT58 and GANT61 are also in preclinical studies (126). 
Liu et al (127) reported that cordycepin inhibited SMO recep-
tors and GLI transcription factors, thereby limiting BC cell 
growth and metastasis. Although several inhibitors remain in 
the preclinical stage of investigation, these new approaches may 
enhance the effectiveness of BCSC-targeted resistance (128).

Other pathway inhibitors. TAZ and YAP, two core transcrip-
tion factors in the Hippo signaling pathway, have essential 
roles in BC occurrence and development. Inhibitors targeting 
TAZ/YAP may restrict BCSC proliferation and tumorigenesis. 
Statins may inhibit TAZ/YAP activity and block signaling 
transduction in the Hippo pathway (129). Furthermore, 
numerous preclinical studies on TGF-β inhibitors are 
underway, including the investigation of recombinant RNA 
technology that may interfere with TGF-β signaling to inhibit 
the proliferation and invasion of BC cells (130). In addition, 
Wang et al (131) demonstrated that inhibition of the JAK2/
STAT3 pathway led to downregulation of the expression of 
key fatty acid β-oxidation enzymes in BCSCs, restoring their 
sensitivity to chemotherapy. As drugs that target a single 
signaling pathway may be insufficient for clinical needs, 
diverse multitarget strategies are required for future treatment 
of HER2-positive BC.

Therapies targeting BCSC status. Dormant BCSCs may 
evade drug treatment and undergo plastic transformation 
with proliferating cells, leading to recurrence and metastasis. 
Non-coding RNAs may be involved in converting dormant 
BCSCs into proliferative BCSCs (132). LncRNA-Na+-sulfate 
cotransporter 1 is upregulated in dormant mesenchymal-like 
BCSCs, where it contributes to a prolonged dormancy period 
and reduces tumorigenicity (133). Similarly, the combined 
effects of Src family kinase inhibitors and MEK1/2 inhibi-
tors may extend dormancy in BCSCs and induce apoptosis 
to prevent BC recurrence (134). In addition, a Tet methylcy-
tosine dioxygenase 2-targeted strategy was observed to be 
able to transform dormant cells into active proliferating cells, 
thus restoring chemotherapeutic sensitivity (135). Therefore, 
therapeutic exploitation of BCSC status involves directly 
eliminating dormant cells or suppressing cell transition from 
dormancy to proliferation.

Therapies targeting BCSC microenvironment. As mentioned 
above, the BCSC microenvironment participates in the onset 
of treatment resistance; therefore, strategies targeting the 
BCSC microenvironment may be useful. COL1A1 knockdown 
reduces cell proliferation and invasion, leading to decreased 
expression of stemness markers (e.g., sex-determining region 
Y-box2, octamer-binding transcription factor 4 and CD133) 
that inhibit EMT and stem cell activity (136). Furthermore, 
abnormalities in the vascular microenvironment may hinder 
therapeutic effects. Chen et al (137) indicated that erlotinib 
was able to normalize the tumor vascular system, improve 
perfusion and oxygenation, and enhance the chemotherapeutic 
effects of nanodrugs in a mouse model of BC. In addition, 
Kim et al (138) reported that AzCDF, a small molecule drug, 
was able to target BCSCs in a hypoxic environment, blocking 
tumor growth and lowering tumorigenesis rates. The inhibition 
of TGFβ-inducible protein expression improved hypoxia and 
tumor angiogenesis, thereby reducing the number of BCSCs 
and inhibiting cancer cell metastasis (139).

ABC transporter inhibitors. Apatinib significantly down-
regulates the expression of ABCG2 to inhibit BCSC 
proliferation (140). Wu et al (141) demonstrated that proges-
terone increased BCSC sensitivity to drug treatment by 
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modulating ABCG2 transcriptional activity, which led to 
decreased drug efflux. Lapatinib was found to block ABCG2-
mediated efflux in HER2-positive BC cells (142). Elacridar, 
the ABCG2-transporter inhibitor, enhances the therapeutic 
effect of lapatinib on HER2-positive advanced and metastatic 
BC (143). Yi et al (144) indicated that pyrotinib was able to 
inhibit the expression of ABCG2 to restore the sensitivity of 
drug-resistant HER2-positive BC cells.

Other special drugs. Metformin, an anti-diabetes drug, 
is able to selectively kill BCSCs by inhibiting the PI3K/
AKT/mTOR pathway and improving BC sensitivity to drug 
therapy (105,145,146). The expression levels of IL-8 were 
positively associated with BCSC activity; inhibition of the 
chemokine receptors C-X-C motif chemokine receptor 
(CXCR)1/2 was able to reduce the level of IL-8 (147). 
Therefore, small molecule antagonists of CXCR1/2, in 
combination with HER2-targeted therapy, have the potential 
to inhibit BCSC activity and prolong the survival of patients 
with HER2-positive BC (148). The DDR is activated to repair 
DNA damage in BCSCs and ATR is a major regulator of the 
DDR. Kim et al (149) demonstrated that AZD6738, an ATR 
inhibitor, considerably reduced DDR efficiency and weakened 
BCSC formation in HER2-positive BC. Several types of DDR 
inhibitors are currently in development. 

6. Conclusions and perspectives

Increasing evidence indicates that BCSCs have critical roles 
in the treatment resistance and recurrence of HER2-targeted 
therapy. An improved understanding of the mechanism by 
which BCSCs contribute to drug resistance will help to prevent 
breast tumor recurrence and drug resistance. The mechanism 
of drug resistance of BCSCs is complex. Factors such as 
abnormal signaling pathway activation, BCSC microenvi-
ronment, ABC transporters and BCSC repair capacity may 
lead to BCSC proliferation and the onset of drug resistance 
in HER2-positive BC. The development of BCSCs-targeted 
treatment approaches is expected to improve the effectiveness 
of HER2-positive BC. A variety of therapeutic strategies have 
been implemented to eliminate or reduce BCSCs, which may 
restore trastuzumab sensitivity in vitro and in vivo. However, 
most of the therapies are still restricted to laboratory investi-
gation. Therefore, in future studies, it is necessary to clarify 
new biological characteristics and molecular mechanisms 
of BCSCs and develop combination therapy or multi-target 
therapy to overcome and reverse the drug resistance of BCSCs, 
ultimately improving the cure rate and reducing the recurrence 
rate of HER2-positive BC.
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