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ABSTRACT | Significant advances in video compression sys-

tems have been made in the past several decades to satisfy

the near-exponential growth of Internet-scale video traffic.

From the application perspective, we have identified three

major functional blocks, including preprocessing, coding, and

postprocessing, which have been continuously investigated

to maximize the end-user quality of experience (QoE) under

a limited bit rate budget. Recently, artificial intelligence

(AI)-powered techniques have shown great potential to fur-

ther increase the efficiency of the aforementioned functional

blocks, both individually and jointly. In this article, we review

recent technical advances in video compression systems

extensively, with an emphasis on deep neural network (DNN)-

based approaches, and then present three comprehensive
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case studies. On preprocessing, we show a switchable texture-

based video coding example that leverages DNN-based scene

understanding to extract semantic areas for the improvement

of a subsequent video coder. On coding, we present an end-

to-end neural video coding framework that takes advantage

of the stacked DNNs to efficiently and compactly code input

raw videos via fully data-driven learning. On postprocessing,

we demonstrate two neural adaptive filters to, respectively,

facilitate the in-loop and postfiltering for the enhancement of

compressed frames. Finally, a companion website hosting the

contents developed in this work can be accessed publicly at

https://purdueviper.github.io/dnn-coding/.

KEYWORDS | Adaptive filters; deep neural networks (DNNs);

neural video coding; texture analysis.

N O M E N C L AT U R E
AE Autoencoder.

CNN Convolutional neural network.

CONV Convolution.

ConvLSTM Convolutional LSTM.

DNN Deep neural network.

FCN Fully connected network.

GAN Generative adversarial network.

LSTM Long short-term memory.

RNN Recurrent neural network.

VAE Variational autoencoder.

BD-PSNR Bjøntegaard delta PSNR.

BD-Rate Bjøntegaard delta rate.

GOP Group of pictures.
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MS-SSIM Multiscale SSIM.

MSE Mean squared error.

PSNR Peak signal-to-noise ratio.

QP Quantization parameter.

QoE Quality of experience.

SSIM Structural similarity index.

UEQ Unequal quality.

VMAF Video multimethod assessment fusion.

AV1 AOMedia video 1.

AVS Audio–video standard.

H.264/AVC H.264/advanced video coding.

H.265/HEVC H.265/high-efficiency video coding.

VVC Versatile video coding.

AOM Alliance of open media.

MPEG Moving Picture Experts Group.

I. I N T R O D U C T I O N

In recent years, Internet traffic has been dominated by

a wide range of applications involving video, including

video on demand (VOD), live streaming, and ultralow

latency real-time communications. With ever-increasing

demands in resolution (e.g., 4k, 8k, gigapixel [1], and

high speed [2]) and fidelity (e.g., high dynamic range [3]

and higher bit precision or bit depth [4]), more efficient

video compression is imperative for content transmission

and storage, by which networked video services can be

successfully deployed. Fundamentally, video compression

systems devise appropriate algorithms to minimize the

end-to-end reconstruction distortion (or maximize the

QoE), under a given bit rate budget. This is a clas-

sical rate-distortion (R-D) optimization problem. In the

past, the majority of effort had been focused on the

development and standardization of video coding tools

for optimized R-D performance, such as the intrapre-

diction/interprediction, transform, and entropy coding,

resulting in a number of popular standards and recommen-

dation specifications (e.g., ISO/IEC MPEG series [5]–[11],

ITU-T H.26x series [9]–[13], AVS series [14]–[16], and the

AV1 [17], [18] from the AOM [19]). All these standards

have been widely deployed in the market and enabled

advanced and high-performing services to both enter-

prises and consumers. They have been adopted to cover

all major video scenarios from VOD, to live streaming,

to ultralow latency interactive real-time communications,

used for applications, such as telemedicine, distance learn-

ing, video conferencing, broadcasting, e-commerce, online

gaming, and short-video platforms. Meanwhile, the system

R-D efficiency can also be improved from preprocessing

and postprocessing, individually and jointly, for content-

adaptive encoding (CAE). Notable examples include

saliency detection for subsequent regionwise quantiza-

tion control and adaptive filters to alleviate compression

distortions [20]–[22].

In this article, we, therefore, consider preprocessing,

coding, and postprocessing as three basic functional blocks

of an end-to-end video compression system and optimize

them to provide compact and high-quality representation

of input original video.

1) The “coding” block is the core unit that converts raw

pixels or pixel blocks into binary bits presentation.

In the past decades, the “coding” R-D efficiency

has been gradually improved by introducing more

advanced tools to better exploit spatial, temporal,

and statistical redundancies [23]. Nevertheless, this

process inevitably incurs compression artifacts, such

as blockiness and ringing, due to the R-D tradeoff,

especially at low bit rates.

2) The “postprocessing” block is introduced to alleviate

visually perceptible impairments produced as byprod-

ucts of coding. Postprocessing mostly relies on the

designated adaptive filters to enhance the recon-

structed video quality or QoE. Such “postprocessing”

filters can also be embedded into the “coding” loop

to jointly improve reconstruction quality and R-D

efficiency, for example, in-loop deblocking [24] and

sample adaptive offset (SAO) [25].

3) The “preprocessing” block exploits the discrimina-

tive content preference of the human visual system

(HVS), caused by the nonlinear response and fre-

quency selectivity (e.g., masking) of visual neurons

in the visual pathway. Preprocessing can extract con-

tent semantics (e.g., saliency and object instance)

to improve the psychovisual performance of the

“coding” block, for example, by allocating unequal

qualities (UEQs) across different areas according to

preprocessed cues [26].1

Building upon the advancements in DNNs, numerous

recently created video-processing algorithms have been

greatly improved to achieve superior performance, mostly

leveraging the powerful nonlinear representation capacity

of DNNs. At the same time, we have also witnessed an

explosive growth in the invention of DNN-based tech-

niques for video compression from both academic research

and industrial practices. For example, DNN-based filtering

in postprocessing was extensively studied when devel-

oping the VVC standard under the joint task force of

ISO/IEC and ITU-T experts in the past three years. More

recently, the standard committee issued a Call-for-Evidence

(CfE) [27], [28] to encourage the exploration of deep

learning-based video coding solutions beyond VVC.

In this article, we discuss recent advances in preprocess-

ing, coding, and postprocessing, with a particular emphasis

on the use of DNN-based approaches for efficient video

compression. We aim to provide a comprehensive overview

to bring readers up to date on recent advances in this

emerging field. We also suggest promising directions for

further exploration. As summarized in Fig. 1, we first dive

into video preprocessing, emphasizing the analysis and

application of content semantics, for example, saliency,

1Although adaptive filters can also be used in preprocessing for pre-
filtering, for example, denoising, motion deblurring, contrast enhance-
ment, and edge detection, our primary focus in this work will be on
semantic content understanding for subsequent intelligent “coding.”
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object, and texture characteristics, to video encoding.

We then discuss recently developed DNN-based video cod-

ing techniques for both modularized coding tool develop-

ment and end-to-end fully learned framework exploration.

Finally, we provide an overview of the adaptive filters that

can be either embedded in a codec loop or placed as a

postenhancement to improve final reconstruction. We also

present three case studies: 1) switchable texture-based video

coding in preprocessing; 2) E2E-NVC; and 3) efficient neural

filtering, to provide examples of the potential of DNNs

to improve both subjective and objective efficiency over

traditional video compression methodologies.

The remainder of the article is organized as follows.

From Sections II–IV, we extensively review the advances

in preprocessing, coding, and postprocessing, respectively.

Traditional methodologies are first briefly summarized,

and then DNN-based approaches are discussed in detail.

As in the case studies, we propose three neural approaches

in Sections V–VII, respectively. Regarding preprocess-

ing, we develop a CNN-based texture analysis/synthesis

scheme for the AV1 codec. For video compression, an end-

to-end neural coding framework is developed. In our

discussion of postprocessing, we present different neural

methods for in-loop and postfiltering that can enhance

the quality of reconstructed frames. Section VIII summa-

rizes this work and discusses open challenges and future

research directions. For your convenience, the nomencla-

ture provides an overview of abbreviations and acronyms

that are frequently used throughout this article.

II. O V E R V I E W O F D N N - B A S E D V I D E O

P R E P R O C E S S I N G

Preprocessing techniques are generally applied prior to

the video coding block, with the objective of guiding the

video encoder to remove psychovisual redundancy and

to maintain or improve visual quality, while simultane-

ously lowering bit rate consumption. One category of

preprocessing techniques is the execution of prefiltering

operations. Recently, a number of deep learning-based pre-

filtering approaches have been adopted for targeted coding

optimization. These include denoising [29], [30], motion

deblurring [31], [32], contrast enhancement [33], edge

detection [34], [35], and so on. Another important topic

is closely related to the analysis of video content seman-

tics, for example, object instance, saliency attention, and

texture distribution, and its application to intelligent video

coding. For the sake of simplicity, we refer to this group

of techniques as “preprocessing” for the remainder of this

article. In our discussion below, we also limit our focus to

saliency- and analysis-/synthesis-based approaches.

A. Saliency-Based Video Preprocessing

1) Saliency Prediction: Saliency is the quality of being

particularly noticeable or important. Thus, the salient area

refers to regions of an image that predominantly attracts

the attention of subjects. This concept corresponds closely

to the highly discriminative and selective behavior dis-

played in visual neuronal processing [36], [37]. Content

feature extraction, activation, suppression, and aggrega-

tion also occur in the visual pathway [38].

Earlier attempts to predict saliency typically utilized

handcrafted image features, such as color, intensity, and

orientation contrast [39], motion contrast [40], and

camera motion [41]. Later on, DNN-based semantic-level

features were extensively investigated for both image con-

tent [42]–[48] and video sequences [49]–[55]. Among

these features, image saliency prediction only exploits

spatial information, while video saliency prediction often

relies on spatial and temporal attributes jointly. One typ-

ical example of video saliency is a moving object that

incurs spatiotemporal dynamics over time and is, there-

fore, more likely to attract users’ attention. For example,

Bazzani et al. [49] modeled the spatial relations in videos

using 3-D convolutional features and the temporal consis-

tency with a convolutional LSTM network. Bak et al. [50]

applied a two-stream network that exploited different

fusion mechanisms to effectively integrate spatial and tem-

poral information. Sun et al. [51] proposed a step-gained

FCN to combine the time-domain memory information and

space-domain motion components. Jiang et al. [52] devel-

oped an object-to-motion CNN that was applied together

with an LSTM network. All of these efforts to predict video

saliency leveraged spatiotemporal attributes. More details

regarding the spatiotemporal saliency models for video

content can be found in [56].

2) Salient Object: One special example of image saliency

involved the object instance in a visual scene, specifically,

the moving object in videos. A simple, yet effective solution

to the problem of predicting image saliency, in this case,

involved segmenting foreground objects and background

components. The segmentation of foreground objects and

background components has mainly relied on foreground

extraction or background subtraction. For example, motion

information has been frequently used to mask out fore-

ground objects [57]–[61].

Recently, both CNN and foreground attentive neural

network (FANN) models have been developed to perform

foreground segmentation [62], [63]. In addition to con-

ventional Gaussian mixture model (GMM)-based back-

ground subtraction, recent explorations have also shown

that CNN models could be effectively used for the same

purpose [64], [65]. To address these separated foreground

objects and background attributes, Zhang et al. [66]

introduced a new background mode to more compactly

represent background information with better R-D effi-

ciency. To the best of our knowledge, such foreground

object/background segmentation has been mostly applied

in video surveillance applications, where the visual scene

lends itself to easier separation.

3) Video Compression With UEQ Scales: Saliency

or object, which refers to more visually attentive areas,

is straightforward to apply UEQ setting in a video encoder,

where light compression is used to encode the saliency
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Fig. 1. Topic outline. This article reviews DNN-based techniques used in preprocessing, coding, and postprocessing of a practical video

compression system. The “preprocessing” module leverages content semantics (e.g., texture) to guide video coding, followed by the

“coding” step to represent the video content using more compact spatiotemporal features. Finally, quality enhancement is applied in

“postprocessing” to improve the quality of reconstruction by alleviating processing artifacts. Companion case studies are, respectively,

offered to showcase the potential of DNN algorithms in video compression.

area, while heavy compression is used elsewhere. The use

of this technique often results in a lower level of total bit

rate consumption without compromising QoE.

For example, Hadi and Bajić [67] extended the well-

known Itti–Koch–Niebur (IKN) model to estimate saliency

in the DCT domain, also considering camera motion.

In addition, saliency-driven distortion was also introduced

to accurately capture the salient characteristics, in order to

improve R-D optimization in H.265/HEVC. Li et al. [68]

suggested using graph-based visual saliency to adapt

the quantizations in H.265/HEVC, to reduce total bits

consumption. Similarly, Ku et al. [69] applied saliency-

weighted coding tree unit (CTU)-level bit allocation, where

the CTU-aligned saliency weights were determined via

low-level feature fusion.

The aforementioned methodologies rely on traditional

handcrafted saliency prediction algorithms. As DNN-based

saliency algorithms have demonstrated superior perfor-

mance, we can safely assume that their application to

video coding will lead to better compression efficiency.

For example, Zhu and Xu [70] adopted a spatiotemporal

saliency model to accurately control the QP in an encoder

where the spatial saliency was generated using a ten-

layer CNN and whose temporal saliency was calculated

assuming the 2-D motion model [resulting in an aver-

age of 0.24 BD-PSNR gains over H.265/HEVC reference

model (version HM16.8)]. A performance improvement

due to fine-grained quantization adaptation was reported

using an open-source x264 encoder in [71]. This was

accomplished by jointly examining the input video frame

and associated saliency maps. These saliency maps were

generated by utilizing three CNN models suggested in

[52], [56], and [72]. Up to 25% bit rate reduction was

reported when distortion was measured using the edge-

weighted SSIM. Similarly, Sun et al. [73] implemented a

saliency-driven CTU-level adaptive bit rate control, where

the static saliency map of each frame was extracted using a

DNN model, and the dynamic saliency region was tracked

using a moving object segmentation algorithm. Experiment

results revealed that the PSNR of salient regions was

improved by 1.85 dB on average.

Though saliency-based preprocessing is mainly driven

by psychovisual studies, it heavily relies on saliency

detection to perform UEQ-based adaptive quantization

with a lower rate of bit consumption but visually iden-

tical reconstruction. On the other hand, visual selectivity

behavior is closely associated with video content distrib-

ution (e.g., frequency response), leading to perceptually

unequal preference. Thus, it is highly expected that such

content semantics-induced discriminative features can be

utilized to improve the system efficiency when integrated

into the video encoder. To this end, we will discuss the

analysis-/synthesis-based approach for preprocessing in

Section II-B.

B. Analysis-/Synthesis-Based Preprocessing

Since most videos are consumed by human vision,

subjective perception of HVS is the best way to evaluate

quality. However, it is quite difficult to devise a profoundly

accurate mathematical HVS model in an actual video

encoder for rate and perceptual quality optimization, due

to the complicated and unclear information processing

that occurs in the human visual pathway. Instead, many

pioneering psychovisual studies have suggested that neu-

ronal response to compound stimuli is highly nonlinear

[74]–[81] within the receptive field. This leads to well-

known visual behaviors, such as frequency selectivity and

masking, where such stimuli are closely related to the

content texture characteristics. Intuitively, video scenes can

be broken down into areas that are either “perceptually sig-

nificant” (pSIG) (e.g., measured in an MSE sense) or “per-

ceptually insignificant.” For “perceptually insignificant”

regions, users will not perceive compression or processing

impairments without a side-by-side comparison with the

original sample. This is because the HVS gains semantic

understanding by viewing content as a whole, instead of

interpreting texture details pixel by pixel [82]. This notable

effect of the HVS is also referred to as “masking,” where

visually insignificant information, for example, perceptu-

ally insignificant pixels, will be noticeably suppressed.

In practice, we can first analyze the texture character-

istics of original video content in the preprocessing step,
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Fig. 2. Texture coding system. A general framework of

analysis-/synthesis-based video coding.

for example, Texture Analyzer in Fig. 2, in order to sort

textures by their significance. Subsequently, we can use

any standard compliant video encoder to encode the pSIG

areas as the main bitstream payload and apply a statistical

model to represent the perceptually insignificant textures

with model parameters encapsulated as side information.

Finally, we can use decoded areas and parsed textures to

jointly synthesize the reconstructed sequences in Texture

Synthesizer. This type of texture modeling makes good

use of statistical and psychovisual representation jointly,

generally requiring fewer bits, despite yielding visually

identical sensation, compared to the traditional hybrid

“prediction+residual” method.2 Therefore, texture analy-

sis and synthesis play a vital role in subsequent video

coding. We will discuss related techniques in the following.

1) Texture Analysis: Early developments in texture

analysis and representation can be categorized into filter-

or statistical modeling-based approaches. The Gabor filter is

one typical example of filter-based approaches, by which

the input image is convoluted with nonlinear activation

for the derivation of corresponding texture representa-

tion [84], [85]. At the same time, in order to identify

static and dynamic textures for video content, Thakur and

Chubach [86] utilized the 2-D dual-tree complex wavelet

transform and steerable pyramid transform [87], respec-

tively. To accurately capture the temporal variations in the

video, Bansal et al. [88] again suggested the use of optic

flow for dynamic texture indication and later synthesis,

where optical flow could be generated using temporal

filtering. Leveraging statistical models, such as the Markov-

ian random field (MRF) [89], [90], is an alternative way to

analyze and represent texture. For efficient texture descrip-

tion, such statistical modeling was then extended using

handcrafted local features, for example, the scale-invariant

feature transform (SIFT) [91], speeded up robust features

(SURFs) [92], and local binary patterns (LBPs) [93].

Recently, stacked DNNs have demonstrated their supe-

rior efficiency in many computer vision (CV) tasks. This

efficiency is mainly due to the powerful capacity of DNN

features to be used for video content representation. The

most straightforward scheme directly extracted features

2A comprehensive survey of texture analysis-/synthesis-based video
coding technologies can be found in [83].

from the FC6 or FC7 layer of AlexNet [94] for texture rep-

resentation. Furthermore, Cimpoi et al. [95] demonstrated

that Fisher vectorized [96] CNN features were a decent

texture descriptor candidate.

2) Texture Synthesis: Texture synthesis reverse-

engineers the analysis in preprocessing to restore pixels

accordingly. It generally includes both nonparametric

and parametric methods. For nonparametric synthesis,

texture patches are usually resampled from reference

images [97]–[99]. In contrast, the parametric method

utilizes statistical models to reconstruct the texture regions

by jointly optimizing the observation outcomes and the

model itself [87], [100], [101].

DNN-based solutions exhibit great potential for texture

synthesis applications. One notable example demonstrat-

ing this potential used a pretrained image classification-

based CNN model to generate texture patches [102].

Li and Wand [103] then demonstrated that a Markovian

GAN-based texture synthesis could offer remarkable qual-

ity improvement.

To briefly summarize, earlier “texture analy-

sis/synthesis” approaches often relied on handcrafted

models and corresponding parameters. While they have

shown good performance to some extent for a set of test

videos, it is usually very difficult to generalize them to

large-scale video data sets without fine-tuning parameters

further. On the other hand, related neuroscience studies

propose a broader definition of texture, which is more

closely related to perceptual sensation, although existing

mathematical or data-driven texture representations

attempt to fully fulfill such perceptual motives.

Furthermore, recent DNN-based schemes present a

promising perspective. However, the complexity of these

schemes has not yet been appropriately exploited. Thus,

in Section V, we will reveal a CNN-based pixel-level

texture analysis approach to segment perceptually

insignificant texture areas in a frame for compression

and later synthesis. In order to model the textures both

spatially and temporally, we introduce a new coding mode

called the “switchable texture mode” that is determined at

GoP level according to the bit rate saving.

III. O V E R V I E W O F D N N - B A S E D

V I D E O C O D I N G

A number of investigations have shown that DNNs can be

used for efficient image/video coding [104]–[107]. This

topic has attracted extensive attention in recent years,

demonstrating its potential to enhance the conventional

system with better R-D performance.

There are three major directions currently under inves-

tigation. One is resolution resampling-based video cod-

ing, by which the input videos are first downsampled

prior to being encoded, and the reconstructed videos

are upsampled or super-resolved to the same resolution

as the input [108]–[111]. This category generally devel-

ops upscaling or super-resolution algorithms on top of
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standard video codecs. The second direction under inves-

tigation is modularized neural video coding (MOD-NVC),

which has attempted to improve individual coding tools

in a traditional hybrid coding framework using learning-

based solutions. The third direction is end-to-end neural

video coding (E2E-NVC), which fully leverages the stacked

neural networks to compactly represent input image/video

in an end-to-end learning manner. In the following, we will

primarily review the latter two cases since the first one has

been extensively discussed in many other studies [112].

A. Modularized Neural Video Coding

The MOD-NVC has inherited the traditional hybrid

coding framework within which handcrafted tools are

refined or replaced using learned solutions. The general

assumption is that existing rule-based coding tools can be

further improved via a data-driven approach that lever-

ages powerful DNNs to learn robust and efficient map-

ping functions for more compact content representation.

Two great articles have comprehensively reviewed relevant

studies in this direction [106], [107]. We briefly introduce

key techniques in intraprediction/interprediction, quanti-

zation, and entropy coding. Though in-loop filtering is

another important piece in the “coding” block, due to its

similarities with postfiltering, we have chosen to review

it in quality enhancement-aimed “postprocessing” for the

sake of creating a more cohesive presentation.

1) Intraprediction: Video frame content presents highly

correlated distribution across neighboring samples spa-

tially. Thus, block redundancy can be effectively exploited

using causal neighbors. In the meantime, due to the pres-

ence of local structural dynamics, block pixels can be better

represented from a variety of angular directed predictions.

In conventional standards, such as the H.264/AVC,

H.265/HEVC, or even emerging VVC, specific prediction

rules are carefully designated to use weighted neighbors

for respective angular directions. From the H.264/AVC

to recent VVC, intracoding efficiency has been gradually

improved by allowing more fine-grained angular directions

and flexible block size/partitions. In practice, an optimal

coding mode is often determined by R-D optimization.

One would intuitively expect that coding performance

can be further improved if better predictions can be pro-

duced. Therefore, there have been a number of attempts

to leverage the powerful capacity of stacked DNNs for

better intrapredictor generation, including the CNN-based

predictor refinement suggested in [113] to reduce predic-

tion residual, additional learned mode trained using FCN

models reported in [114] and [115], using RNNs in [116],

using CNNs in [108], even using GANs in [117], and so on.

These approaches have actively utilized the neighbor pix-

els or blocks and/or other context information (e.g., mode)

if applicable, in order to accurately represent the local

structures for better prediction. Many of these approaches

have reported more than 3% BD-Rate gains against the

popular H.265/HEVC reference model. These examples

demonstrate the efficiency of DNNs in intraprediction.

2) Interprediction: In addition to the spatial intrapredic-

tion, temporal correlations have also been exploited via

interprediction, by which previously reconstructed frames

are utilized to generate interpredictor for compensation

using displaced motion vectors.

Temporal prediction can be enhanced using references

with higher fidelity and more fine-grained motion compen-

sation. For example, fractional-pel interpolation is usually

deployed to improve prediction accuracy [118]. On the

other hand, motion compensation with flexible block parti-

tions is another major contributor to intercoding efficiency.

Similarly, earlier attempts have been made to uti-

lize DNN solutions for better intercoding. For instance,

CNN-based interpolations were studied in [119]–[121]

to improve the half-pel samples. Besides, an additional

virtual reference could be generated using CNN models for

improved R-D decision in [122]. Xia et al. [123] further

extended this approach using multiscale CNNs to create

an additional reference closer to the current frame by

which accurate pixel-wise motion representation could be

used. Furthermore, conventional references could be also

enhanced using DNNs to refine the compensation [124].

3) Quantization and Entropy Coding: Quantization and

entropy coding are used to remove statistical redundancy.

Scalar quantization is typically implemented in video

encoders to remove insensitive high-frequency compo-

nents, without losing the perceptual quality, while saving

the bit rate. Recently, a three-layer DNN was developed

to predict the local visibility threshold CT for each CTU,

by which more accurate quantization could be achieved via

the connection between CT and actual quantization step

size. This development led to noticeable R-D improvement,

for example, up to 11%, as reported in [125].

Context-adaptive binary arithmetic coding (CABAC) and

its variants are techniques that are widely adopted to

encode binarized symbols. The efficiency of CABAC is

heavily reliant on the accuracy of probability estima-

tion in different contexts. Since the H.264/AVC, hand-

crafted probability transfer functions (developed through

exhaustive simulations and typically implemented using

lookup tables) were utilized. Pfaff et al. [115] and

Song et al. [126] demonstrated that a combined FCN and

CNN model could be used to predict intramode probability

for better entropy coding. Another example of a combined

FCN and CNN model was presented in [127] to accurately

encode transform indexes via stacked CNNs. Likewise,

in [128], the intra-dc coefficient probability could also be

estimated using DNNs for better performance.

All of these explorations have reported positive R-D

gains when incorporating DNNs in traditional hybrid

coding frameworks. A companion H.265-/HEVC-based

software model is also offered by Liu et al. [106] to

advance the potential for society to further pursue this

line of exploration. However, integrating DNN-based tools
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could exponentially increase both the computational and

space complexity. Therefore, creating harmony between

learning-based and conventional rule-based tools under

the same framework requires further investigation. It is

also worth noting that an alternative approach is currently

being explored in parallel. In this approach, researchers

suggest using an E2E-NVC framework to drive the raw

video content representation via layered feature extrac-

tion, activation, suppression, and aggregation, mostly in a

supervised learning fashion, instead of refining individual

coding tools.

B. End-to-End Neural Video Coding

Representing raw video pixels as compactly as possi-

ble by massively exploiting its spatiotemporal and sta-

tistical correlations is the fundamental problem of lossy

video coding. Over decades, traditional hybrid cod-

ing frameworks have utilized pixel-domain intrapredic-

tion/interprediction, transform, entropy coding, and so

on to fulfill this purpose. Each coding tool is extensively

examined under a specific codec structure to carefully

justify the tradeoff between R-D efficiency and complex-

ity. This process led to the creation of well-known inter-

national or industry standards, such as the H.264/AVC,

H.265/HEVC, and AV1.

On the other hand, DNNs have demonstrated a powerful

capacity for video spatiotemporal feature representation

for vision tasks, such as object segmentation and tracking.

This naturally raises the question of whether it is possible

to encode those spatiotemporal features in a compact

format for efficient lossy compression.

Recently, we have witnessed the growth of video coding

technologies that rely completely on end-to-end supervised

learning. Most learned schemes still closely follow the

conventional intra/interframe definition by which different

algorithms are investigated to efficiently represent the

intraspatial textures, intermotion, and the interresiduals

(if applicable) [104], [129]–[131]. Raw video frames are

fed into stacked DNNs to extract, activate, and aggregate

appropriate compact features (at the bottleneck layer) for

quantization and entropy coding. Similarly, R-D optimiza-

tion is also facilitated to balance the rate and distortion

tradeoff. In the following, we will briefly review the afore-

mentioned key components.

1) Nonlinear Transform and Quantization: The AE or VAE

architectures are typically used to transform the intra-

texture or interresidual into compressible features. For

example, Toderic et al. [132] first applied fully connected

recurrent AEs for variable-rate thumbnail image compres-

sion. Their work was then improved in [133] and [134]

with the support of full-resolution image, unequal bit allo-

cation, and so on. Variable bit rate is intrinsically enabled

by these recurrent structures. The recurrent AEs, however,

suffer from higher computational complexity at higher bit

rates because more recurrent processing is desired. Alter-

natively, convolutional AEs have been extensively studied in

the past years, where different bit rates are adapted by set-

ting a variety of λ’s to optimize the R-D tradeoff. Note that

different network models may be required for individual

bit rates, making hardware implementation challenging

(e.g., model switch from one-bit rate to another). Recently,

conditional convolution [135] and scaling factor [136]

were proposed to enable variable-rate compression using

a single or very limited network model without noticeable

coding efficiency loss, which makes the convolutional AEs

more attractive for practical applications.

To generate a more compact feature representation,

Balle et al. [105] suggested replacing the traditional

nonlinear activation, for example, ReLU, using general-

ized divisive normalization (GDN) that is theoretically

proved to be more consistent with human visual per-

ception. A subsequent study [137] revealed that GDN

outperformed other nonlinear rectifiers, such as ReLU,

leakyReLU, and tan h, in compression tasks. Several follow-

up studies [138], [139] directly applied GDN in their

networks for compression exploration.

Quantization is a nondifferentiable operation, basically

converting arbitrary elements into symbols with a lim-

ited alphabet for efficient entropy coding in compression.

Quantization must be derivable in the end-to-end learning

framework for backpropagation. A number of methods,

such as adding uniform noise [105], stochastic round-

ing [132], and soft-to-hard vector quantization [140],

were developed to approximate a continuous distribution

for differentiation.

2) Motion Representation: Chen et al. [104] developed

the DeepCoder where a simple convolutional AE was

applied for both intracoding and residual coding at fixed

32×32 blocks, and block-based motion estimation in tradi-

tional video coding was reused for temporal compensation.

Lu et al. [141] introduced the optical flow for motion

representation in their DVC work, which, together with

the intracoding in [142], demonstrated similar perfor-

mance compared with the H.265/HEVC. However, coding

efficiency suffered from a sharp loss at low bit rates.

Chen et al. [136] extended their nonlocal attention opti-

mized image compression (NLAIC) for intraencoding and

residual encoding and applied second-order flow-to-flow

prediction for more compact motion representation, show-

ing consistent R-D gains across different contents and bit

rates.

Motion can also be implicitly inferred via temporal inter-

polation. For example, Wu et al. [143] applied RNN-based

frame interpolation. Together with the residual compensa-

tion, RNN-based frame interpolation offered comparable

performance to the H.264/AVC. Djelouah et al. [144]

furthered interpolation-based video coding by utilizing

advanced optical flow estimation and feature domain

residual coding. However, temporal interpolation usually

led to an inevitable structural coding delay.

Another interesting exploration made by Ripple et al.

in [130] was to jointly encode motion flow and residual
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using compound features, where a recurrent state was

embedded to aggregate multiframe information for effi-

cient flow generation and residual coding.

3) R-D Optimization: Li et al. [145] utilized a

separate three-layer CNN to generate an importance

map for spatial-complexity-based adaptive bit allocation,

leading to noticeable subjective quality improvement.

Mentzer et al. [140] further utilized the masked bottle-

neck layer to unequally weight features at different spa-

tial locations. Such importance map embedding is a

straightforward approach to end-to-end training. Impor-

tance derivation was later improved with the nonlocal

attention [146] mechanism to efficiently and implicitly

capture both global and local significance for better com-

pression performance [136].

Probabilistic models play a vital role in data compres-

sion. Assuming the Gaussian distribution for feature ele-

ments, Ballé et al. [142] utilized hyperpriors to estimate

the parameters of the Gaussian scale model (GSM) for

latent features. Later, Hu et al. [147] used hierarchical

hyperpriors (coarse-to-fine) to improve the entropy mod-

els in multiscale representations. Minnen et al. [148]

improved the context modeling using joint autoregressive

spatial neighbors and hyperpriors based on the GMM.

Autoregressive spatial priors were commonly fused by

PixelCNNs or PixelRNNs [149]. Reed et al. [150] fur-

ther introduced multiscale PixelCNNs, yielding competi-

tive density estimation and great boost in speed [e.g.,

from O(N) to O(log N)]. Prior aggregation (PA) was later

extended from 2-D architectures to 3-D PixelCNNs [140].

Channelwise weights sharing-based 3-D implementations

could greatly reduce network parameters without perfor-

mance loss. Parallel 3-D PixelCNNs for practical decoding

were presented by Chen et al. [136]. Previous methods

accumulated all the priors to estimate the probability based

on a single GMM assumption for each element. Recent

studies in [151] and [152] have shown that weighted

GMMs can further improve coding efficiency.

Pixel error, such as MSE, was one of the most popular

loss functions used. Concurrently, SSIM (or MS-SSIM) was

also adopted because of its greater consistency with visual

perception. Simulations revealed that SSIM-based loss can

improve reconstruction quality, especially at low bit rates.

Toward the perceptual-optimized encoding, perceptual

losses that were measured by adversarial loss [153]–[155]

and VGG loss [156] were embedded in learning to produce

visually appealing results.

Though E2E-NVC is still in its infancy, its fast-growing

R-D efficiency holds a great deal of promise. This is espe-

cially true, given that we can expect neural processors to

be deployed massively in the near future [157].

IV. O V E R V I E W O F D N N - B A S E D

P O S T P R O C E S S I N G

Compression artifacts are inevitably present in both tradi-

tional hybrid coding frameworks and learned compression

approaches, for example, blockiness, ringing, and cartoon-

ishness, severely impairing visual sensation and QoE. Thus,

quality enhancement filters are often applied as a post-

filtering step or in-loop module to alleviate compression

distortions. Toward this goal, adaptive filters are usually

developed to minimize the error between original and

distorted samples.

A. In-Loop Filtering

Existing video standards are mainly utilizing the in-

loop filters to improve the subjective quality of recon-

struction and also to offer better R-D efficiency due to

enhanced references. Examples include deblocking [24],

SAO [25], constrained directional enhancement filter

(CDEF) [158], loop-restoration (LR) [159], adaptive loop

filter (ALF) [160], and so on.

Recently, numerous CNN models have been developed

for in-loop filtering via a data-driven approach to learn the

mapping functions. It is worth pointing out that prediction

relationships must be carefully examined when designing

in-loop filters due to the frame referencing structure and

potential error propagation. Earlier explorations of this

subject have mainly focused on designing DNN-based fil-

ters for intracoded frames, particularly by trading network

depth and parameters for better coding efficiency. For

example, IFCNN [161] and VRCNN [162] are shallow

networks with ≈50 000 parameters, providing up to 5%

BD-Rate savings for the H.265/HEVC intraencoder. More

gains can be obtained if we use a deeper and denser

network [163]–[165], for example, 5.7% BD-Rate gain

reported in [163] by using the model with 3 340 000 para-

meters and 8.50% BD-Rate saving obtained in [166] by

using the model with 2 298 160 parameters. The more

parameters a model has, the more complex it is. Unfor-

tunately, greater complexity limits the network’s potential

for practical application. Such intraframe-based in-loop

filters treat decoded frames equally, without the consider-

ation of in-loop interprediction dependence. Nevertheless,

the aforementioned networks can be used in postfiltering

out of the coding loop.

It is necessary to include temporal prediction depen-

dence while designing the in-loop CNN-based filters for

interframe coding. Some studies leveraged prior knowl-

edge from the encoding process to assist the CNN training

and inference. For example, Jia et al. [167] incorporated

the colocated block information for in-loop filtering.

Meng et al. [168] utilized the coding unit partition for

further performance improvement. Li and Yu [169] input

both the reconstructed frame and the difference between

the reconstructed and predicted pixels to improve the cod-

ing efficiency. Applying prior knowledge in learning may

improve the coding performance, but it further complicates

the CNN model by involving additional information in

the networks. On the other hand, the contribution of this

prior knowledge is quite limited because such additional

priors are already implicitly embedded in the reconstructed

frame.
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If CNN-based in-loop filtering is applied to frame I0,

the impact will be gradually propagated to frame I1

that has frame I0 as the reference. Subsequently, I1 is

the reference of I2 and so forth.3 If frame I1 is filtered

again by the same CNN model, an overfiltering problem

will be triggered, resulting in severely degraded perfor-

mance, as analyzed in [170]. To overcome this challenging

problem, a CNN model called SimNet was built to carry

the relationship between the reconstructed frame and its

original frame in [171] to adaptively skip filtering oper-

ations in intercoding. SimNet reported 7.27% and 5.57%

BD-Rate savings for intracoding and intercoding of AV1,

respectively. A similar skipping strategy was suggested by

Chen et al. [172] to enable a wide activation residual

network (WARN), yielding 14.42% and 9.64% BD-Rate

savings for respective intracoding and intercoding on the

AV1 platform.

Alternative solutions resort to the more expensive R-D

optimization to avoid the overfiltering problem. For exam-

ple, Yin et al. [173] developed three sets of CNN filters

for luma and chroma components, where the R-D optimal

CNN model is used and signaled in the bitstream. Similar

ideas are developed in [174] and [175] as well, in which

multiple CNN models are trained and the R-D optimal

model is selected for inference.

It is impractical to use deeper and denser CNN models

in applications. It is also very expensive to conduct R-D

optimization to choose the optimal one from a set of pre-

trained models. Note that a limited number of pretrained

models are theoretically insufficient to be generalized for

large-scale video samples. To this end, in Section VII-A,

we introduce a guided-CNN scheme that adapts shallow

CNN models according to the characteristics of input video

content.

B. Postfiltering

Postfiltering is generally applied to the compressed

frames at the decoder side to further enhance the video

quality for better QoE.

Previous in-loop filters designated for intracoded

frames can be reused for single-frame postfiltering

[162], [176]–[184]. Appropriate retraining may be

applied in order to better capture the data characteristics.

However, single-frame postfiltering may introduce quality

fluctuation across frames. This may be due to the limited

capacity of CNN models to deal with a great number

of video contents. Thus, multiframe postfiltering can be

devised to massively exploit the correlation across suc-

cessive temporal frames. By doing so, it not only greatly

improves the single-frame solution, but also offers better

temporal quality over time.

Typically, a two-step strategy is applied for multi-

frame postfiltering. First, neighboring frames are aligned

to the current frame via (pixel-level) motion estimation

3Even though more advanced interreferencing strategies can be
devised, interpropagation-based behavior remains the same.

and compensation (MEMC). Then, all aligned frames are

fed into networks for high-quality reconstruction. Thus,

the accuracy of MEMC greatly affects reconstruction per-

formance. In applications, learned optical flow, such as

FlowNet [185], FlowNet2 [186], PWC-Net [187], and

TOFlow [188], are widely used.

Some exploration has already been made in this arena:

Bao et al. [189] and Wang et al. [190] implemented

a general video quality enhancement framework for

denoising, deblocking, and super-resolution, where

Bao et al. [189] employed the FlowNet and

Wang et al. [190] used pyramid, cascading, and

deformable convolutions to, respectively, align frames

temporally. Meanwhile, Yang et al. [191] proposed a

multiframe quality enhancement framework called MFQE-

1.0, in which a spatial transformer motion compensation

(STMC) network is used for alignment, and a deep quality

enhancement network (QE-net) is employed to improve

reconstruction quality. Then, Guan et al. [192] upgraded

MFQE-1.0 to MFQE-2.0 by replacing QE-net using a

dense CNN model, leading to better performance and less

complexity. Later on, Tong et al. [193] suggested using

FlowNet2 for temporal frame alignment (instead of default

STMC), yielding 0.23-dB PSNR gain over the original

MFQE-1.0. Similarly, FlowNet2 is also used in [194] for

improved efficiency.

All of these studies suggested the importance of tempo-

ral alignment in postfiltering. Thus, in the subsequent case

study (see Section VII-B), we first examine the efficiency of

alignment and then further discuss the contributions from

respective intracoded and intercoded frames for the quality

enhancement of final reconstruction. This will help audi-

ences gain a deeper understanding of similar postfiltering

techniques.

V. C A S E S T U D Y F O R

P R E P R O C E S S I N G : S W I T C H A B L E

T E X T U R E - B A S E D V I D E O C O D I N G

This section presents a switchable texture-based video

preprocessing that leverages DNN-based semantic under-

standing for subsequent coding improvement. In short,

we exploit DNNs to accurately segment “perceptually

InSIGnifcant” (pInSIG) texture areas to produce a corre-

sponding pInSIG mask. In many instances, this mask drives

the encoder to perform separately for pInSIG textures

that are typically inferred without additional residuals

and “pSIG” areas elsewhere using the traditional hybrid

coding method. This approach is implemented on top of

the AV1 codec [195]–[197] by enabling the GoP-level

switchable mechanism, resulting in noticeable bit rate sav-

ings for both standard test sequences and additional chal-

lenging sequences from the YouTube UGC data set [198],

under similar perceptual quality. The method that we

propose is a pioneering work that integrates learning-

based texture analysis and reconstruction approaches

with modern video codec to enhance video compression

performance.
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Fig. 3. Texture analyzer. The proposed semantic segmentation

network using PSPNet [199] and ResNet-50 [200].

A. Texture Analysis

Our previous attempt [201] yielded encouraging bit rate

savings without decreasing visual quality. This was accom-

plished by perceptually differentiating pInSIG textures and

other areas to be encoded in a hybrid coding framework.

However, the corresponding texture masks were derived

using traditional methods, at the coding block level. On the

other hand, building upon advancements created by DNNs

and large-scale labeled data sets (e.g., ImageNet [202],

COCO [203], and ADE20K [204]), learning-based seman-

tic scene segmentation algorithms [199], [204], [205]

have been tremendously improved to generate accurate

pixel-level texture masks.

In this work, we first rely on the powerful

ResNet50 [200] with dilated convolutions [206], [207] to

extract feature maps that effectively embed the content

semantics. We then introduce the pyramid pooling module

from PSPNet [199] to produce a pixel-level semantic

segmentation map shown in Fig. 3. Our implementation

starts with a pretrained PSPNet model generated using the

MIT SceneParse150 [208] as a scene parsing benchmark.

We then retrain the model on a subset of a densely

annotated data set ADE20K [204]. In the end, the model

offers a pixel segmentation accuracy of 80.23%.

It is worthwhile to note that such pixel-level segmenta-

tion may result in the creation of a number of semantic

classes. Nevertheless, this study suggests grouping similar

texture classes commonly found in nature scenes together

into four major categories, for example, “earth and grass,”

“water, sea, and river,” “mountain and hill,” and “tree.”

Each texture category would have an individual segmen-

tation mask to guide the compression performed by the

succeeding video encoder.

B. Switchable Texture-Based Video Coding

Texture masks are generally used to identify texture

blocks and perform the encoding of texture blocks and

nontexture blocks separately, as illustrated in Fig. 4(a).

In this case study, the AV1 reference software platform is

selected to exemplify the efficiency of our proposal.

1) Texture Blocks: Texture and nontexture blocks are

identified by overlaying the segmentation mask from the

texture analyzer on its corresponding frame. These frame-

aligned texture masks produce pixel-level accuracy, which

is capable of supporting arbitrary texture shapes. How-

ever, in order to support the block processing commonly

adopted by video encoders, we propose refining original

pixel-level masks to their block-based representations. The

minimum size of a texture block is 16×16. In order to

avoid boundary artifacts and maintain temporal consis-

tency, we implemented a conservative two-step strategy to

determine the texture block. First, the block itself must

be fully contained in the texture region marked using

the pixel-level mask. Then, its warped representation to

temporal references (e.g., the preceding and succeeding

frames in the encoding order) has to be inside the masked

texture area of corresponding reference frames as well.

Finally, these texture blocks are encoded using the texture

mode, and nontexture blocks are encoded as usual using

the hybrid coding structure.

2) Texture Mode: A coded block of the texture mode is

inferred by its temporal reference using the global motion

parameters without incurring any motion compensation

residuals. In contrast, nontexture blocks are compressed

using a hybrid “prediction+residual” scheme. For each cur-

rent frame and any one of its reference frames, AV1 syntax

specifies only one set of global motion parameters at the

frame header. Therefore, to comply with the AV1 syntax,

Fig. 4. Texture mode and switchable control scheme. (a) Texture

mode encoder implementation. (b) Switchable texture mode

decision.

Vol. 109, No. 9, September 2021 | PROCEEDINGS OF THE IEEE 1503



Ding et al.: Advances in Video Compression System Using DNN

our implementation only considers one texture class for

each frame. This guarantees the general compatibility of

our solution to existing AV1 decoders. We further mod-

ify the AV1 global motion tool to estimate the motion

parameters based on the texture regions of the current

frame and its reference frame. We use the same feature

extraction and model fitting approach as in the global

motion coding tool in order to provide a more accurate

motion model for the texture regions. This is done to

prevent visual artifacts on the block edges between the

texture and nontexture blocks in the reconstructed videos.

Although we have demonstrated our algorithms using the

AV1 standard, we expect that the same methodology can

be applied to other standards. For instance, when using

the H.265/HEVC standard, we can leverage the SKIP mode

syntax to signal the texture mode instead of utilizing the

global motion parameters.

Previous discussions have suggested that the texture

mode is enabled along with interprediction. Our exten-

sive studies have also demonstrated that it is better

to activate the texture mode in frames where bidi-

rectional predictions are allowed (e.g., B-frames), for

the optimal tradeoff between bit rate saving and per-

ceived quality. As will be shown in the following per-

formance comparisons, we use an eight-frame GoP (or

golden-frame (GF) group defined in AV1) to exemplify

the texture mode in every other frame, by which the

compound prediction from bidirectional references can

be facilitated for prediction warping. Such bidirectional

prediction could also alleviate possible temporal quality

flickering.

3) Switchable Optimization: In our previous work [209],

the texture mode was enabled for every B frame, demon-

strating significant bit rate reduction at the same level of

perceptual sensation in most standard test videos, in com-

parison to the AV1 anchor. However, some videos did cause

the model to perform more poorly. One reason for this

effect is that higher QP settings typically incur more all-

zero residual blocks. Alternatively, the texture mode is also

content-dependent: a relatively small number of texture

blocks may be present for some videos. Both scenarios

limit the bit rate savings, and overhead of extra bits is

mandatory for global motion signaling if texture mode is

enabled.

To address these problems, we introduce a switchable

scheme to determine whether texture mode could be

potentially enabled for a GoP or a GF group. The criteria

for switching are based on the texture region percentage

that is calculated as the average ratio of texture blocks in B-

frames and on the potential bit rate savings with or without

texture mode. Fig. 4(b) illustrates the switchable tex-

ture mode decision. Currently, we use bit rate saving as

a criterion for switch decisions when the texture mode

is enabled. This assumes that perceptual sensation will

remain nearly the same since these texture blocks are

perceptually insignificant.

C. Experimental Results

We selected sequences with texture regions from stan-

dard test sequences and the more challenging YouTube

UGC data set4 [198]. The YouTube UGC data set is a sample

selected from thousands of user-generated content (UGC)

videos uploaded to YouTube. The names of the UGC videos

follow the format of Category_Resolution_UniqueID.

We calculate the bit rate savings at different QP values

for 150 frames of the test sequences. In our experiments,

we use the following parameters for the AV1 codec5 as

the baseline: eight-frame GoP or GF group using random

access configuration; 30 FPS; constant quality rate control

policy; multilayer coding structure for all GF groups; and

maximum intraframe interval at 150. We evaluate the

performance of our proposed method in terms of bit rate

savings and perceived quality.

1) Coding Performance: To evaluate the performance of

the proposed switchable texture mode method, bit rate

savings at four quantization levels (QP = 16, 24, 32,

and 40) are calculated for each test sequence in compari-

son to the AV1 baseline.

a) Texture analysis: We compare two DNN-based texture

analysis methods [209], [211] with a handcrafted feature-

based approach [210] for selected standard test sequences.

Results are shown in Table 1. A positive bit rate saving

(%) indicates a reduction compared with the AV1 base-

line. Compared to the feature-based approach, DNN-based

methods show improved performance in terms of bit rate

saving. The feature-based approach relies on color and

edge information to generate the texture mask and is

less accurate and consistent both spatially and temporally.

Therefore, the number of blocks that are reconstructed

using texture mode is usually much smaller than that of

DNN-based methods. Note that the parameters used in

the feature-based approach require manually tuning for

each video to optimize the texture analysis output. The

pixel-level segmentation [209] shows further advantages

compared with the block-level method [211] since the

CNN model does not require block size to be fixed.

b) Switchable scheme We also compare the proposed

method, also known as, tex-switch, with our previous work

in [209], also known as, tex-allgf, which enables texture

mode for all frames in a GF group. Both methods use

the same encoder setting for a fair comparison. Bit rate

saving results for various videos at different resolutions

against the AV1 baseline are shown in Table 2. A positive

bit rate saving (%) indicates a reduction compared with

the AV1 baseline.

In general, compared to the AV1 baseline, the coding

performance of tex-allgf shows significant bit rate sav-

ings at lower QPs. However, as QP increases, the savings

are diminished. In some cases, tex-allgf exhibits poorer

coding performance than the AV1 baseline at a high QP

4https://media.withyoutube.com/
5AV1 codec change-Id: Ibed6015aa7cce12fcc6f314ffde76624df

4ad2a1.
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Table 1 Bit Rate Saving (%) Comparison Between Handcraft Feature (FM) [210], Block-Level DNN (BM) [211], and Pixel-Level DNN (PM) [209] Texture

Analysis Against the AV1 Baseline for Selected Standard Test Sequences Using tex-allfg Method

(e.g., negative numbers at QP 40). At a high QP, most

blocks have zero residual due to heavy quantization, lead-

ing to very limited margins for bit rate savings using

texture mode. In addition, few extra bits are required

for the signaling of global motion of texture mode coded

blocks. The bit savings gained through residual skipping in

texture mode still cannot compensate for the bits used as

overhead for the side information.

Furthermore, the proposed tex-switch method retains

the greatest bit rate savings offered by tex-allgf and

resolves the loss at higher QP settings. As shown in Table 2,

negative numbers are mostly removed (highlighted in

green) by the introduction of a GoP-level switchable tex-

ture mode. In some cases where tex-switch has zero bit rate

savings compared to the AV1 baseline, the texture mode

is completely disabled for all the GF groups, whereas tex-

allgf has a loss. In a few cases, however, tex-switch has

less bit rate saving than tex-allgf (highlighted in red). This

is because the bit rate saving performance of the first GF

group in the scene fails to accurately represent the whole

scene in some of the UGC sequences with short scene cuts.

A possible solution is to identify additional GF groups that

show potential bit rate savings and enable texture mode

for these GF groups.

2) Subjective Evaluation: Although significant bit rate

savings have been achieved compared to the AV1 baseline,

it is acknowledged that identical QP values do not neces-

sarily imply the same video quality. We have performed a

subjective visual quality study with 20 participants. Recon-

structed videos produced by the proposed method (tex-

switch) and the baseline AV1 codec at QP = 16, 24, 32, and

40 are arranged randomly and assessed by the participants

using a double stimulus continuous quality scale (DSCQS)

method [212]. Subjects have been asked to choose among

three options: the first video has better visual quality,

the second video has better visual quality, or there is no

difference between the two versions.

The result of this study is summarized in Fig. 5. The

“Same Quality” indicates the percentage of participants

that cannot tell the difference between the reconstructed

videos by the AV1 baseline codec and the proposed

method tex-switch (69.03% on average). The term “tex-

switch” indicates the percentage of participants that prefer

the reconstructions by the proposed method tex-switch

(14.32% on average); the “AV1” indicates the percentage

of participants who think the visual quality of the recon-

structed videos using the AV1 baseline is better (16.65%

on average).

Table 2 Bit Rate Saving (%) Comparison for tex-allgf and tex-switch Methods Against the AV1 Baseline
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Fig. 5. Subjective evaluation of visual preference. Results show

average subjective preference (%) for QP � 16, 24, 32, and

40 compared between AV1 baseline and proposed switchable

texture mode.

We observe that the results are sequence-dependent,

and both spatial and temporal artifacts can appear in the

reconstructed videos. The main artifacts come from the

inaccurate pixel-based texture mask. For example, in some

frames of TelevisionClip_360P-74dd sequence, the texture

masks include parts of the moving objects in the fore-

ground, which are reconstructed using the texture mode.

Since the motion of the moving objects is different from the

motion of the texture area, there are noticeable artifacts

around those parts of the frame. To further improve the

accuracy of region analysis using DNN-based preprocess-

ing, we plan to incorporate an in-loop perceptual visual

quality metric for optimization during the texture analysis

and reconstruction.

D. Discussion and Future Direction

We proposed a DNN-based texture analysis/synthesis

coding tool for the AV1 codec. Experimental results show

that our proposed method can achieve noticeable bit rate

reduction with satisfying visual quality for both standard

test sets and UGCs, which is verified by a subjective study.

We envision that video coding driven by semantic under-

standing will continue to improve in terms of both quality

and bit rate, especially by leveraging advances of deep

learning methods. However, there remain several open

challenges that require further investigation.

Accuracy of the region analysis is one of the major chal-

lenges for integrating semantic understanding into video

coding. However, recent advances in scene understand-

ing have significantly improved the performance of the

region analysis. Visual artifacts are still noticeable when

a nontexture region is incorrectly included in the texture

mask, particularly if the analysis/synthesis coding system

is open loop. One potential solution is to incorporate

some perceptual visual quality measures in-loop during the

texture region reconstruction.

Benchmark video segmentation data sets are important

for developing machine learning methods for video-based

semantic understanding. Existing segmentation data sets

are either based on images with texture [213], contain

general video objects only [214], [215], or focus on visual

quality but lack segmentation ground truth.

VI. C A S E S T U D Y F O R C O D I N G :

E N D - T O - E N D N E U R A L V I D E O C O D I N G

This section presents a framework for E2E-NVC.

We include a discussion of its key components as well as

its overall efficiency. Our proposed method is extended

from our pioneering work in [104] but with significant

performance improvements by allowing fully end-to-end

learning-based spatiotemporal feature representation.

More details can be found in [131], [136], and [216].

A. Framework

As with all modern video encoders, the proposed E2E-

NVC compresses the first frame in each GoP as an

intraframe using a VAE-based compression engine (neuro-

Intra). It codes the remaining frames in each GoP using

motion-compensated prediction. As shown in Fig. 6(a),

the proposed E2E-NVC uses the VAE compressor (neuro-

Motion) to generate the multiscale motion field between

the current frame and the reference frame. Then, a multi-

scale motion compensation network (MS-MCN) takes mul-

tiscale compressed flows, warps the multiscale features of

the reference frame, and combines these warped features

to generate the predicted frame. The prediction resid-

ual is then coded using another VAE-based compressor

(neuro-Res).

A low-delay E2E-NVC-based video encoder is speci-

ifically illustrated in this work. Given a GoP X =

{X1, X2, . . . , Xt}, we first encode X1 using the neuro-Intra-

module and have its reconstructed frame X̂1. The following

frame X2 is encoded predictively, using neuro-Motion,

MS-MCN, and neuro-Res together, as shown in Fig. 6(a).

Note that MS-MCN takes the multiscale optical flows

{~f1
d , ~f2

d , . . . , ~fs
d} derived by the pyramid decoder in neuro-

Motion and then uses them to generate the predicted

frame X̂
p

2 by multiscale motion compensation. Displaced

interresidual r2 = X2−X̂
p

2 is then compressed in neuro-Res,

yielding the reconstruction r̂2. The final reconstruction X̂2

is given by X̂2 = X̂
p

2 + r̂2. All of the remaining P-frames in

the GoP are then encoded using the same procedure.

Fig. 6(b) illustrates the general architecture of the VAE

model. The VAE model includes the main encoder–decoder

pair that is used for latent feature analysis and synthesis,

as well as a hyper-encoder–decoder for hyperprior genera-

tion. The main encoder Em uses four stacked CNN layers.

Each convolutional layer employs stride convolutions to

achieve downsampling (at a factor of 2 in this example)

and cascaded convolutions for efficient feature extraction

(here, we use three ResNet-based residual blocks [200]).6

6We choose to apply cascaded ResNets for stacked CNNs because
they are highly efficient and reliable. Other efficient CNN architectures
could also be applied.
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Fig. 6. E2E-NVC. This E2E-NVC in (a) consists of modularized

intracoding and intercoding, where intercoding utilizes respective

motion and residual coding. Each component is well exploited using

a stacked CNN-based VAE for efficient representations of intrapixels,

displaced interresiduals, and intermotions. All modularized

components are interconnected and optimized in an end-to-end

manner. (b) General VAE model applies stacked convolutions

(e.g., 5×5) with main encoder–decoder (Em, Dm) and

hyper-encoder–decoder pairs (Eh, Dh), where the main encoder Em

includes four major convolutional layers (e.g., convolutional

downsampling and three residual blocks (×3) robust feature

processing [200]). Hyperdecoder Dh mirrors the steps in

hyperencoder Eh for hyperprior information generation. PA engine

collects the information from hyperprior, autoregressive spatial

neighbors, and temporal correspondences (if applicable) for the

main decoder Dm to reconstruct the input scene. Nonlocal attention

is adopted to simulate the saliency masking at bottlenecks, and the

rectified linear unit (ReLU) is implicitly embedded with convolutions

for enabling the nonlinearity. “Q” is for quantization. AE and AD are

for respective arithmetic encoding and decoding. 2↓ and 2↑ are

downsampling and upsampling at a factor of 2 for both horizontal

and vertical dimensions.

We use two-layer hyperencoder Eh to further generate the

subsequent hyperpriors as side information, which is used

in the entropy coding of the latent features.

We apply stacked convolutional layers with a limited

(3×3) receptive field to capture the spatial locality. These

convolutional layers are stacked in order to simulate lay-

erwise feature extraction. These same ideas are used in

many relevant studies [142], [148]. We utilize the simplest

ReLU as the nonlinear activation function (although other

nonlinear activation functions, such as the GDN in [105],

could be used as well).

The HVS operates in two stages. First, the observer

scans an entire scene to gain a complete understanding of

everything within the field of vision. Second, the observer

focuses their attention on specific salient regions. During

image and video compression, this mechanism of visual

attention can be used to ensure that bit resources are

allocated where they are most needed (e.g., via unequal

feature quantization) [140], [217]. This allows resources

to be assigned such that salient areas are more accurately

reconstructed, while resources are conserved in the recon-

struction of less-salient areas. To more accurately discern

salient from nonsalient areas, we adopt the nonlocal atten-

tion module (NLAM) at the bottleneck layers of both the

main encoder and hyperencoder, prior to quantization,

in order to include both global and local information.

To enable more accurate conditional probability den-

sity modeling for entropy coding of the latent features,

we introduce the PA engine that fuses the inputs from the

hyperpriors, spatial neighbors, and temporal context (if

applicable).7 Information theory suggests that more accu-

rate context modeling requires fewer resources (e.g., bits)

to represent information [218]. For the sake of simplicity,

we assume the latent features (e.g., motion, image pixel,

and residual) are following the Gaussian distribution as

in [147] and [148]. We use the PA engine to derive the

mean and standard deviation of the distribution for each

feature.

B. Neural Intracoding

Our neuro-Intra is a simplified version of the NLAIC that

was originally proposed in [136].

One major difference between the NLAIC and the VAE

model using autoregressive spatial context in [148] is the

introduction of the NLAM inspired by Zhang et al. [219].

In addition, we have applied 3-D 5 × 5 × 5 masked CNN8

to extract spatial priors, which are fused with hyperpriors

in PA for entropy context modeling (e.g., the bottom part

of Fig. 9). Here, we have assumed the single Gaussian

distribution for the context modeling of entropy coding.

Note that temporal priors are not used for intrapixel and

interresidual in this article by only utilizing the spatial

priors.

The original NLAIC applies multiple NLAMs in both

main and hypercoders, leading to excessive memory con-

sumption at a large spatial scale. In E2E-NVC, NLAMs

are only used at the bottleneck layers for both main and

hyper-encoder–decoder pairs, allowing bits to be allocated

adaptively.

To overcome the nondifferentiability of the quantization

operation, quantization is usually simulated by adding

uniform noise in [142]. However, such noise augmentation

is not exactly consistent with the rounding in inference,

which can yield performance loss, as reported by [135].

Thus, we apply universal quantization (UQ) [135] in

neuro-Intra. UQ is used for neuro-Motion and neuro-Res

7Intracoding and residual coding only use joint spatial and hyperpri-
ors without temporal inference.

8This 5×5×5 convolutional kernel shares the same parameters for
all channels, offering great model complexity reduction compared with
the 2-D CNN-based solution in [148].
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Fig. 7. Efficiency of neuro-Intra. PSNR versus rate performance of

neuro-Intra in comparison to NLAIC [136], Minnen (2018) [148], BPG

(4:4:4), and JPEG2000. Note that the curves for neuro-Intra and

NLAIC overlap.

as well. When applied to the common Kodak data set,

neuro-Intra performs NLAIC [136] and outperforms Min-

nen (2018) [148], BPG (4:4:4), and JPEG2000, as shown

in Fig. 7.

C. Neural Motion Coding and Compensation

Interframe coding plays a vital role in video coding. The

key is how to efficiently represent motion in a compact

format for compensation. In contrast to the pixel-domain

block-based MEMC in conventional video coding, we rely

on optical flow to accurately capture the temporal infor-

mation for motion compensation.

To improve interframe prediction, we extend our earlier

work [131] to multiscale motion generation and compen-

sation. This multiscale motion processing directly trans-

forms two concatenated frames (where one frame is the

reference from the past, and one is the current frame)

into quantized temporal features that represent the inter-

frame motion. These quantized features are decoded into

compressed optical flow in an unsupervised way for frame

compensation via warping. This one-stage scheme does not

require any pretrained flow network, such as FlowNet2 or

PWC-net, to generate the optical flow explicitly. It allows

us to quantize the motion features rather than the optical

flow and to train the motion feature encoder and decoder

together with explicit consideration of quantization and

rate constraint.

The neuro-Motion module is modified for multiscale

motion generation, where the main encoder is used for fea-

ture fusion. We replace the main decoder with a pyramidal

flow decoder, which generates the multiscale compressed

optical flows (MCFs). MCFs will be processed together

with the reference frame, using an MS-MCN to obtain

the predicted frame efficiently, as shown in Fig. 8. Refer

to [216] for more details.

Encoding motion compactly is another important fac-

tor for overall performance improvement. We suggest

the joint spatiotemporal and hyperprior-based context-

adaptive model shown in Fig. 9 for efficiently inferring

current quantized features. This is implemented in the PA

engine of Fig. 6(b).

The joint spatiotemporal and hyperprior-based context-

adaptive model mainly consists of a spatiotemporal-

hyperaggregation module (STHAM) and a temporal

updating module (TUM), as shown in Fig. 9.

At timestamp t, STHAM is introduced to accumulate

all the accessible priors and estimate the mean and

standard deviation of GMM jointly using

(µF , σF) = F(F1, . . . , Fi−1, ẑt, ht−1). (1)

Spatial priors are autoregressively derived using masked

5×5×5 3-D convolutions and then concatenated with

decoded hyperpriors and temporal priors using stacked

1×1×1 convolutions. Fi, i = 0, 1, 2, . . . are elements

of quantized latent features (e.g., motion flow). ht−1 is

aggregated temporal priors from motion flows preceding

the current frame. The neuro-Motion module exploits tem-

poral redundancy to further predict the efficiency, lever-

aging the correlation between second-order moments of

intermotion. A probabilistic model of each element to be

encoded is derived with the estimated µF and σF by

pF|(F1,...,Fi−1,ẑt, ht−1)(Fi|F1, . . . , Fi−1, ẑt, ht−1)

=
�

i

�
N (µF , σ

2
F ) ∗ U

�
−

1

2
,
1

2

��
(Fi). (2)

Note that TUM is applied to embed current quantized

features Ft recurrently using a standard ConvLSTM [220]

(ht, ct) = ConvLSTM(Ft, ht−1, ct−1) (3)

where ht are updated temporal priors for the next frame,

and ct is a memory state to control information flow across

multiple time instances (e.g., frames). Other recurrent

units can also be used to capture temporal correlations as

in (3).

It is worth noting that leveraging second-order infor-

mation for the representation of compact motion is also

widely explored in traditional video coding approaches.

For example, motion vector predictions from spatial

and temporal colocated neighbors are standardized in

H.265/HEVC, by which only motion vector differences

(after prediction) are encoded.

D. Neural Residual Coding

Interframe residual coding is another significant module

contributing to the overall efficiency of the system. It is

used to compress the temporal prediction error pixels.
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Fig. 8. Multiscale MEMC. One-stage neuro-Motion with MS-MCN uses a pyramidal flow decoder to synthesize the MCFs that are used in an

MS-MCN for generating predicted frames.

It affects the efficiency of next frame prediction since errors

usually propagate temporally.

Here, we use the VAE architecture in Fig. 6(b) to encode

the residual rt. The rate-constrained loss function is used

L = λ · D2

�
Xt,

�
Xp

t + r̂t

��
+ R (4)

where D2 is the `2 loss between a residual compensated

frame Xp
t + r̂t and Xt. neuro-Res will be first pretrained

using the frames predicted by the pretrained neuro-Motion

and MS-MCN and a loss function in (4) where the rate

R only accounts for the bits for residual. Then, we refine

neuro-Res jointly with neuro-Motion and MS-MCN, using

a loss where R incorporates the bits for both motion and

residual with two frames.

E. Experimental Comparison

We apply the same low-delay coding setting as DVC

in [129] for our method, the H.264/AVC, and H.265/HEVC

for comparison. We encode 100 frames and use a GoP size

of 10 on H.265/HEVC test sequences and 600 frames with

Fig. 9. Context-adaptive modeling using joint spatiotemporal and

hyperpriors. All priors are fused in PA to provide estimates of the

probability distribution parameters.

a GoP size of 12 on the UVG data set. For the H.265/HEVC,

we apply the fast mode of the ×2659—a popular open-

source H.265/HEVC encoder implementation—while the

fast mode of the ×26410 is used as the representative of

the H.264/AVC encoder.

We show the leading compression efficiency in Fig. 10

using respective PSNR and MS-SSIM measures, across

H.265/HEVC and UVG test sequences. In Table 3, by set-

ting the same anchor using the H.264/AVC, our NVC

presents 35% BD-Rate gains, while H.265/HEVC and DVC

offer 30% and 22% gains, respectively. If the distortion is

measured by MS-SSIM, our gains in efficiency are even

larger. This demonstrates that NVC can achieve a 50%

improvement in efficiency, while both the H.265/HEVC

and DVC achieve only around 25%.

Our NVC rivals the recent DVC_Pro [221], an upgrade of

the earlier DVC [141], for example, 35.54% and 50.83%

BD-Rate reduction measured by PSNR and MS-SSIM dis-

tortion, respectively, for NVC, while 34.57% and 45.88%

are marked for DVC_Pro. DVC [141] has mainly achieved

a higher level of coding efficiency than the H.265/HEVC at

high bit rates. However, a sharp decline in the performance

of DVC is revealed at low bit rates (e.g., performing worse

than the H.264/AVC at some rates). We have also observed

that DVC’s performance varies for different test sequences.

DVC_Pro upgrades DVC with better intracoding/residual

coding using [148] and λ fine-tuning, showing state-of-

the-art performance [221].

Visual comparison. We provide a visual quality com-

parison between NVC, the H.264/AVC, and H.265/HEVC,

as shown in Fig. 11. Generally, NVC yields reconstruc-

tions that are much higher in quality than those of its

competitors, even with a lower bit rate cost. For the

sample clip “RaceHorse,” which includes nontranslational

motion and complex background, NVC uses 7% fewer bits

despite an improvement in quality greater than 1.5-dB

9http://x265.org/
10https://www.videolan.org/developers/x264.html
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Table 3 BD-Rate Gains of NVC, H.265/HEVC, and DVC Against the H.264/AVC

Fig. 10. BD-Rate illustration using PSNR & MS-SSIM. (a) NVC

offers averaged 35.34% gain against the anchor H.264/AVC when

distortion is measured using PSNR. (b) NVC shows over 50% gains

against the anchor H.264/AVC when using MS-SSIM evaluation.

MS-SSIM is usually studied as a perceptual quality metric in image

compression, especially at a low bit rate.

PSNR compared with the H.264/AVC. For other cases, our

method also shows robust improvement. Traditional codec

usually suffers from blocky artifacts and motion-induced

noise close to the edges of objects. In the H.264/AVC,

you clearly can observe block partition boundaries with

severe pixel discontinuity. Our results provide higher qual-

ity reconstruction and avoid noise and artifacts.

F. Discussion and Future Direction

We developed an end-to-end deep neural video coding

framework that can learn a compact spatiotemporal rep-

resentation of raw video input. Our extensive simulations

yield very encouraging results, demonstrating that our

proposed method can offer consistent and stable gains over

existing methods (e.g., the traditional H.265/HEVC and

recent learning-based approaches [129]) across a variety

of bit rates and a wide range of contents.

The H.264/AVC, H.264/HEVC, AVS, AV1, and even

the VVC are masterpieces of hybrid prediction/transform

framework-based video coding. R-D optimization, rate

control, and so on can certainly be incorporated to improve

learning-based solutions. For example, reference frame

selection is an important means by which we can embed

and aggregate the most appropriate information for reduc-

ing temporal error and improving overall intercoding effi-

ciency. Making deep learning-based video coding prac-

tically applicable is another direction worthy of deeper

investigation.

VII. C A S E S T U D I E S F O R

P O S T P R O C E S S I N G : E F F I C I E N T

N E U R A L F I L T E R I N G

In this case study, both in-loop and postfiltering are demon-

strated using stacked DNN-based neural filters for qual-

ity enhancement of reconstructed frames. We specifically

design a single-frame guided CNN that adapts pretrained

CNN models to different video contents for in-loop filtering

and a multiframe CNN leveraging spatiotemporal informa-

tion for postfiltering. Both reveal noticeable performance

gains. In practice, neural filters can be devised, that is, in-

loop or post, according to the application requirements.

A. In-Loop Filtering via Guided CNN

As reviewed in Section IV, most existing works design a

CNN model to directly map a degraded input frame to its

restored version (e.g., ground-truth label), as illustrated

in Fig. 12(a). To ensure that the model is generalizable

to other contexts, CNN models are often designed to use

deeper layers, denser connections, wider receptive fields,

and so on, with hundreds of millions of parameters. As a

consequence, such generalized models are poorly suited

to most practical applications. To address this problem,

we propose that content-adaptive weights can be used
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Fig. 11. Visual comparison. Reconstructed frames of NVC, H.265/HEVC, and H.264/AVC. We avoid blocky artifacts, visible noise, and so on

and provide better quality at lower bit rate.

to guide a shallow CNN model [as shown in Fig. 12(b)]

instead.

The principle underlying this approach is sparse signal

decomposition: we expect that the CNN model can repre-

sent any input as a weighted combination of channelwise

features. Note that weighting coefficients are dependent on

input signals, making this model generalizable to a variety

of content characteristics.

1) Method: Let x be a degraded block with N pixels in a

columnwise vector format. The corresponding source block

of x is s, which has a processing error d = s − x. We wish

to have rcorr from x so that the final reconstruction xcorr =

x + rcorr is closer to s.

Let the CNN output layer have M channels, that is, r0,

r1, . . . , rM−1. Then, rcorr is assumed as a linear combina-

tion of these channelwise feature vectors

rcorr = a0r0 + a1r1 + · · · + aM−1rM−1 (5)

where a0, a1, . . . , aM−1 are the weighting parameters that

are explicitly signaled in the compressed bitstream.

Our objective is to minimize the distance between the

restored block xcorr and its corresponding source s, that

is, |xcorr − s|2 = |rcorr − d|2. Given the channelwise

Fig. 12. CNN-based restoration. (a) Conventional model structure.

(b) Guided CNN model with adaptive weights.
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Table 4 Layered Structure and Parameter Settings of the CNN Model

Used

output features r0, r1, . . . , rM−1, for a degraded input x,

the weighting parameters a0, a1, . . . , aM−1 can then be

estimated by least-squares optimization as

[a0, a1, . . . , aM−1]
T = (RTR)−1RTd (6)

where R = [r0, r1, . . . , rM−1] is the matrix at a size of

N×M comprised of stacked output features in columnwise

order. The reconstruction error is given by

e = |rcorr − d|2 = |d|2 − d
T

R(RTR)−1RTd. (7)

2) Loss Function: Assuming that one training batch is

comprised of T patch pairs: {si, xi}, i = 0, 1, . . . , T − 1,

the overall reconstruction error over the training set is

E =
�

i

�
|di|

2 − di
T

Ri

�
Ri

TRi

�−1
Ri

Tdi

�
(8)

where di = si − xi is the error for the ith patch. Ri =

[ri,0, ri,1, . . . , ri,M−1] is the corresponding channelwise fea-

tures in matrix form, with ri,j being the jth channel when

the training sample xi is passed through the CNN model.

Given that |di|
2 is independent of the network model,

the loss function can be simplified as

L =
�

i

�
− di

T
Ri

�
Ri

TRi

�−1
Ri

Tdi

�
. (9)

3) Experimental Studies: A shallow baseline CNN model

(as described in Table 4) is used to demonstrate the

efficiency of the guided CNN model. This model is com-

prised of seven layers in total and has a fixed kernel size

of 3×3. At the bottleneck layer, the channel number of

the output feature map is M . After extensive simulations,

M = 2 was selected. In total, our model only requires

3744 parameters, far fewer than the number required by

existing methods.

In training, 1000 pictures of DIV2K [222] are used. All

frames are compressed using the AV1 encoder with in-

loop filters CDEF [158] and LR [159] turned off to gener-

ate corresponding quantization-induced degraded recon-

structions. We divide the 64 QPs into six ranges and

trained one model for each QP range. The six ranges

include QP values 7–16, 17–26, 27–36, 47–56, and 57–63.

Compressed frames falling into the same QP range are

used to train the corresponding CNN model. Frames

are segmented into 64×64 patches. Each batch contains

1000 patches. We adopt the Adaptive moment estimation

(Adam) algorithm, with the initial learning rate set at 1e-4.

The learning rate is halved every 20 epochs.

We use the Tensorflow platform, which runs on NVIDIA

GeForce GTX 1080Ti GPU, to evaluate coding efficiency

across four QPs, for example, {32, 43, 53, and 63}. Our test

set includes 24 video sequences with resolutions ranging

from 2560×1600 to 352×288. The first 50 frames of

each sequence are tested in both intraconfiguration and

interconfiguration.

In our experiments, N is set to 64, 128, 256, and the

whole frame, respectively. We find that N = 256 yields

the best performance. For each block, the linear combi-

nation parameters ai (i = 0, 1) are derived accordingly.

To strike an appropriate balance between bit consumption

and model efficiency, our experiments suggest that the

dynamic range of ai is within 15.

We compare the respective BD-Rate reductions of our

guided CNN model and a baseline CNN model against

the AV1 baseline encoder. All filters are enabled for the

AV1 anchor. For a description of the baseline CNN model,

see Table 4 with M = 1. Our guided CNN model is the

baseline model with M = 2 plus the adaptive weights.

Both baseline and guided CNN models are applied on

top of the AV1 encoder with only the deblocking filter

enabled and other filters (including CDEF and LR) turned

off. The findings reported in Table 5 demonstrate that

either baseline or guided CNN models can be used to

replace additional adaptive in-loop filters while improving

the R-D efficiency. Furthermore, regardless of the block size

and frame types, our guided model always outperforms

the baseline CNN. This is mainly due to the adaptive

weights used to better characterize content dynamics.

Similar lightweight CNN structures can be upgraded using

deep models [162], [163], [166] for potentially greater

BD-Rate savings.

B. Multiframe Postfiltering

This section demonstrates how multiframe video

enhancement (MVE) scheme-based postfiltering can be

used to minimize compression artifacts. We implement

our proposed approach on AV1 reconstructed frames and

achieve significant coding improvement. Similar observa-

tions are expected with different anchors, such as the

H.265/HEVC.

1) Method: Single-frame video enhancement (SVE)

refers to the sole application of the fusion network without

leveraging temporal frame correlations. As discussed in

Section IV, there are a great number of network models

that can be used to do SVE. In most cases, the effi-

ciency and complexity are at odds with one another: in

other words, efficiency and complexity come at the cost

of deeper networks and higher numbers of parameters.
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Table 5 BD-Rate Savings of Baseline and Guided CNN Models Against the AV1 Baseline

Fig. 13. WARN. This WARN is used to fuse/enhance the input

frame for improved quality. In the MVE case, it takes three inputs to

enhance the LFs; in the SVE case, it inputs a single frame and

outputs its enhanced version. This WARN generally follows the

ResNet structure with the residual link and ResBlk embedded. Note

that ResBlk is extended to support wide activation from its plain

version prior to ReLU activation.

Recently, Yu et al. [223] discovered that models with more

feature channels before activation could provide signifi-

cantly better performance with the same parameters and

computational budgets. We design a WARN by combining

wide activation with a powerful deep residual network

(ResNet) [224], as shown in Fig. 13. This WARN illustrates

the three inputs for an enhanced output in the MVE

framework. In contrast, SVE normally inputs a single frame

and outputs a corresponding enhanced representation.

This MVE closely follows the two-step strategy reviewed

in Section IV. It uses FlowNet2 [186] to perform pixel-level

motion estimation-/compensation-based temporal frame

alignment. Next, a WARN-based fusion network is used for

final enhancement. We allow the two high-quality frames

(HFs) immediately preceding and succeeding a low-quality

frame (LF) to enhance the LF in between. Bidirectional

warping is performed for each LF to produce compensated

HFs in Fig. 14.

2) Experimental Studies: We evaluate both SVE and MVE

against the AV1 baseline. A total of 118 video sequences

were selected to train network models. More specifically,

the first 200 frames of each sequence are encoded with

the AV1 encoder to generate the reconstructed frames. The

QPs are {32, 43, 53, 63}, yielding 23 600 reconstructed

frames in total. After frame alignment, we select one train-

ing set containing compensated HF0, compensated HF1,

and to-be-enhanced LF from every eight frames, yielding a

total of 2900 training sets. These sets are used to train the

WARN model as the fusion network. Notice that we train

the WARN models for SVE and MVE individually. The GoP

size is 16 with a hierarchical prediction structure. The LFs

and HFs are identified using their QPs, that is, HFs with

lower QP than the base QP are decoded, such as frames 0,

4, 8, 12, and 16 in Fig. 15.

Algorithms are implemented using the Tensorflow plat-

form, NVIDIA GeForce GTX 1080Ti GPU. In training,

frames are segmented into 64×64 patches, with 64 patches

included in each batch. We adopt the Adam optimizer with

the initial learning rate set at 1e-4. The learning rate can

then be adjusted using the step strategy with γ = 0.5.

Additional 18 sequences are also employed for testing. The

first 50 frames of each test sequence are compressed. Then,

the reconstructed frames are enhanced using the proposed

SVE and MVE methods.

We apply the proposed method to AV1 reconstructed

frames. The results are presented in Table 6. Due to the
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Fig. 14. Enhancement framework. (a) Single-input WARN-based SVE to enhance the HF. (b) and (c) Two-step MVE using FlowNet2 for

temporal alignment and three-input WARN-based fusion to use preceding and succeeding HFs for LF enhancement.

Fig. 15. Hierarchical coding structure in the AV1 encoder. The LFs

are enhanced using HFs following the prediction structure via MVE

scheme, and HFs are restored using SVE method.

Table 6 BD-Rate Improvement of the Proposed SVE and MVE

Scheme Against the AV1

hierarchical coding structure in interprediction, the LFs

in Fig. 15 are enhanced using the neighboring HFs via the

MVE framework. The HFs themselves are enhanced using

the SVE method.

The overall BD-Rate savings of the SVE and MVE meth-

ods are tabulated in Table 6, against the AV1 baseline. SVE

achieves an averaged reduction of 8.2% and 5.0% BD-Rate

for all intra and random access scenarios, respectively.

On the other hand, our MVE obtains 20.1% and 7.5% BD-

Rate savings on average, further demonstrating the effec-

tiveness of our proposed scheme. When random access

techniques are used, the HFs selected are generally distant

from a target LF, which reduces the benefits provided

from inter-HFs. On the other hand, intracoding techniques

uniformly demonstrate greater BD-Rate savings because

the neighboring frames nearest to target LFs can be used.

This contributes significantly to enhancement.

Besides the objective measures, sample snapshots of

reconstructed frames are illustrated in Fig. 16, clearly

demonstrating that blocky and ringing artifacts from

the AV1 baseline are attenuated after applying either

SVE or MVE-based filtering. Notably, MVE creates more

visually appealing images than SVE.

C. Discussion and Future Direction

In this section, we propose DNN-based approaches

for video quality enhancement. For in-loop filtering,

we develop a guided CNN framework to adapt pretrained

CNN models to various video contents. Under this frame-

work, the guided CNN learns to project an input signal

onto a subspace of dimension M . The weighting para-

meters for a linear combination of these channels are

explicitly signaled in the encoded bitstream to obtain the

final restoration. For postfiltering, we devise a spatiotem-

poral multiframe architecture to alleviate the compres-

sion artifacts. A two-step scheme is adopted in which

optical flow is first obtained for accurate motion estima-

tion/compensation, and then, a WARN is designed for

information fusion and quality enhancement. Our pro-

posed enhancement approaches can be implemented on

different CNN architectures.

The quality of enhanced frames plays a significant role

in overall coding performance since they serve as reference

Fig. 16. Qualitative visualization. Zoomed-in snapshots of

reconstructed frames for the AV1 baseline, SVE and MVE filtered

restoration, and the ground-truth label.
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frames for the motion estimation of subsequent frames.

Our future work will investigate the joint effect of in-

loop filtering and motion estimation on reference frames

to exploit the inherent correlations of these coding tools,

which could further improve coding performance.

VIII. C O N C L U S I O N A N D D I S C U S S I O N

As an old Chinese saying goes, “a journey of a thousand

miles begins with a single step.” This is particularly true in

the realm of technological advancement. Both the fields of

video compression and machine learning have been estab-

lished for many decades, but, until recently, they evolved

separately in both academic explorations and industrial

practice.

Lately, however, we have begun to witness the inter-

disciplinary advancements yielded by the proactive appli-

cation of deep learning technologies [225] into video

compression systems. The benefits of these advances

include remarkable improvements in performance in many

technical aspects. To showcase the remarkable products

of this disciplinary cross-pollination, we have identified

three major functional blocks in a practical video system,

for example, preprocessing, coding, and postprocessing.

We then reviewed related studies and publications to help

the audience familiarize themselves with these topics.

Finally, we presented three case studies to highlight the

state-of-the-art efficiency resulting from the application of

DNNs to video compression systems, which demonstrates

this avenue of exploration’s great potential to bring about

a new generation of video techniques, standards, and

products.

Though this article presents separate DNN-based case

studies for preprocessing, coding, and postprocessing,

we believe that a fully end-to-end DNN model could poten-

tially offer a greater improvement in performance while

enabling more functionalities. For example, Xia et al. [226]

applied deep object segmentation in preprocessing and

used it to guide neural video coding, demonstrating notice-

able visual improvements at very low bit rates. Meanwhile,

Lee et al. [152] and others observed similar effects when

a neural adaptive filter was successfully used to further

enhance neural compressed images.

Nevertheless, a number of open problems requiring sub-

stantial further study have been discovered. These include

the following.

1) Model generalization. It is vital for DNN models to

be generalizable to a wide variety of video content,

different artifacts, and so on. Currently, most DNN-

based video compression techniques utilize super-

vised learning, which often demands a significant

amount of labeled image/video data for the full

spectrum coverage of the aforementioned application

scenarios. Continuously developing a large-scale data

set, such as the ImageNet,11 presents one possible

solution to this problem. An alternative approach may

11http://www.image-net.org/

use more advanced techniques to alleviate uncer-

tainty related to a limited training sample for model

generalization. These techniques include (but are

not limited to) few-shot learning [227] and self-

supervised learning [225].

2) Complexity. Existing DNN-based methods are mainly

criticized for their unbearable complexity in both

computational and spatial dimensions. Compared to

conventional video codecs which require tens of

kilobytes of on-chip memory, most DNN algorithms

require several megabytes or even gigabytes of mem-

ory space. On the other hand, although inference may

be very fast, training could take hours, days, or even

weeks for converged and reliable models [141]. All

of these issues present serious barriers to the market

adoption of DNN-based tools, particularly on energy-

efficient mobile platforms. One promising solution is

to design specialized hardware for the acceleration of

DNN algorithms [157]. Currently, neural processing

units (NPUs) have attracted significant attention and

have been gradually deployed in heterogeneous plat-

forms (e.g., Qualcomm AI Engine in the Snapdragon

chip series and Neural Processor in Apple silicon).

This paints a promising picture of a future in which

DNN algorithms can be deployed on NPU-equipped

devices at a massive scale.

3) QoE metric. Video quality matters. A video QoE met-

ric that is better correlated with the HVS is highly

desirable not only for quality evaluation, but also for

loss control in DNN-based video compression. There

has been a notable development in both subjective

and objective video quality assessments, yielding sev-

eral well-known metrics, such as SSIM [228], just-

noticeable-distortion (JND) [229], and VMAF [230],

some of which are actively adopted for the evaluation

of video algorithms, application products, and so on.

On the other hand, existing DNN-based video coding

approaches can adaptively optimize the efficiency of

a predefined loss function, such as MSE, SSIM, adver-

sarial loss [156], and VGG feature-based semantic

loss. However, none of these loss functions has shown

clear advantages. A unified, differentiable, and HVS-

driven metric is of great importance for the capacity

of DNN-based video coding techniques to offer per-

ceptually better QoE.

The exponential growth of Internet traffic, a majority of

which involves videos and images, has been the driving

force for the development of video compression systems.

The availability of a vast amount of images through the

Internet, meanwhile, has been critical for the renaissance

of the field of machine learning. In this work, we show that

recent progress in deep learning can, in return, improve

video compression. These mutual positive feedback sug-

gest that significant progress could be achieved in both

fields when they are investigated together. Therefore, the
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approaches presented in this work could be the step-

ping stones for improving the compression efficiency in

Internet-scale video applications.

From a different perspective, most compressed videos

will be ultimately consumed by human beings or inter-

preted by machines, for subsequent task decisions. This

is a typical CV problem, that is, content understanding

and decisions for consumption or task-oriented application

(e.g., detection and classification). Existing approaches

have performed these tasks by first decoding the video

and then examining the tasks via learned or rule-based

methods on decoded pixels. Such separate processing, that

is, video decoding followed by CV tasks, is relied upon

mainly because traditional pixel-prediction-based differen-

tial video compression methods break the spatiotemporal

features that could be potentially helpful for vision tasks.

In contrast, recent DNN-based video compression algo-

rithms rely on feature extraction, activation, suppression,

and aggregation for more compact representation. For

these reasons, it is expected that the CV tasks can be

fulfilled in the compressive domain without bit decoding

and pixel reconstruction. Our earlier attempts have shown

a very encouraging gain in the accuracy of classification

and retrieval in compressive formats, without resorting

to the traditional feature-based approaches using decoded

pixels [231], [232]. Using powerful DNNs to unify video

compression and CV techniques is an exciting new field.

It is also worth noting that the ISO/IEC MPEG is now

actively working on a new project called “Video Coding

for Machine” (VCM),12 with emphasis on exploring video

compression solutions for both human perception and

machine intelligence.
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