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SUMMARY

Vortex methods have a history as old as finite differences. They have since faced difficulties stemming from
the numerical complexity of the Biot-Savart law, the inconvenience of adding viscous effects in a Lagrangian
formulation, and the loss of accuracy due to Lagrangian distortion of the computational elements. The first two
issues have been successfully addressed, respectively, by the application of the fast multipole method, and by a
variety of viscous schemes which will be briefly reviewed in this article. The standard method to deal with the third
problem is the use of remeshing schemes consisting of tensor product interpolation with high-order kernels. In this
work, a numerical study of the errors due to remeshing has been performed, as well as of the errors implied in the
discretization itself using vortex blobs. In addition, an alternative method of controlling Lagrangian distortion is
proposed, based on ideas of radial basis function (RBF) interpolation (briefly reviewed here). This alternative is
formulated grid-free, and is shown to be more accurate than standard remeshing. In addition to high-accuracy, RBF
interpolation allows core size control, either for correcting the core spreading viscous scheme or for providing a
variable resolution in the physical domain. This formulation will allow in theory the application of error estimates
to produce a truly adaptive spatial refinement technique. Proof-of-concept is provided by calculations of the
relaxation of a perturbed monopole to a tripole attractor. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vortex methods for the simulation of incompressible flows correspond to a numerical approach with
three fundamental features. First, the Navier-Stokes or Euler equations are formulated in terms of
vorticity and so the spatial discretization is carried out over the vorticity field instead of the velocity
field. Second, making use of one of Helmholtz’ theorems which states the correspondence of vorticity
elements with material fluid elements, the computational elements are Lagrangian and so convect with
the fluid velocity. And third, to obtain the fluid velocity one makes use of the fact that the vorticity,
defined as ω = ∇×u, can be inverted giving the velocity u as an integral over the vorticity field. This
is the Biot-Savart law in vorticity kinematics, which allows to completely describe the flow field by
tracking vorticity elements.
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The features described above generate both the most desirable aspects of vortex methods, as well as
their most serious difficulties. Describing the flow in terms of vorticity is desirable due to the intuitive
power of visualizing the vorticity field, especially in complex and unsteady flows. Another advantage is
the fact that the pressure drops out of the governing equation, and thus only needs to be solved for when
and where force measurements are desired. In addition, as the vortex method literature profusely extols,
the fact that the vorticity field is predominantly compact means that smaller computational domains can
be used, in comparison with primitive variable formulations, and boundary conditions at infinity can be
automatically satisfied. In contrast, satisfying the free-space boundary condition of external flows can
be a delicate matter in grid-based methods with truncated flow domains. Furthermore, the Lagrangian
vortex particles convect without numerical dissipation, as the non-linear term of the Euler or Navier-
Stokes equations is traded for a set of ordinary differential equations for the particle trajectories. This is,
again, in contrast with grid-based schemes which invariably suffer from numerical dissipation. Finally,
the essentially grid-free nature of the vortex particle method is itself an advantage, as grid-generation
is often one of the most expensive processes in CFD (see, for example, [1]).

Vortex methods have been around almost as long as finite differences and the earliest methods
of computational mathematics. Indeed, the seminal work of Praeger [2] with vortex distributions on
surfaces is the origin of panel methods —widely used in the aeronautics industry to this day— whereas
Rosenhead’s work on the calculation of vortex sheets with the point vortex method [3] was of such
great consequence that it is still very much cited today. But vortex methods have, in spite of this,
suffered the reputation of being mostly coarse attempts at modelling complex vortical flows (admittedly
difficult to tackle with traditional CFD methods as well). The main difficulties for vortex methods to
be accepted in the mainstream of computational fluid dynamics have been threefold: (i) the numerical
complexity of calculating the velocity using the Biot-Savart law (requiring O(N2) operations for N
vortex elements); (ii) the inconvenience of adding viscous effects in a Lagrangian formulation; and, (iii)
the effect of the Lagrangian discretization itself producing a loss of accuracy due to its distortion. The
first of these difficulties has been successfully addressed by the application of the fast multipole method
[4] for the calculation of the particle velocities, whereas some workers have bypassed the problem with
mixed Eulerian-Lagrangian formulations such as the vortex-in-cell method [5], although at the cost of
adding mesh-dependence and interpolation errors. The addition of viscous effects, on the other hand,
has benefited from profuse research, there being at least seven proven schemes (these will be reviewed
briefly below, in §3) with varied degree of success. The loss of accuracy due to Lagrangian distortion of
the particles, finally, has been dealt with by the application of remeshing schemes, which utilize high-
order interpolation kernels on a Cartesian tensor product formulation. Although the standard remeshing
schemes have made long-time, accurate calculations of complex flows possible, they have caused quite
a bit of controversy as they add a mesh to an otherwise meshless method. In addition, they do introduce
some interpolation error, generally accepted as tolerable. As one wishes to simulate flows at higher
Reynolds numbers, however, increased resolution becomes crucial and the interpolation error may be
a limitation. Or, viewed from another perspective, a more accurate method may allow for reduced
problem sizes (i.e., smaller number of vortex particles for a given accuracy) at high Reynolds numbers.

In this article, after first presenting the formulation of vortex (blob) methods in §2 and the viscous
schemes in §3, a numerical study of the accuracy of the vortex method will be presented. This study
first concentrates on the spatial discretization, that is, on answering the question of how accurately
one can discretize the vorticity field with vortex blobs. As detailed in §4, the main parameter which
governs this accuracy is the overlap ratio, defined as the ratio between inter-particle spacing h and
particle size σ. This is by no means new, as convergence analyses of the vortex method —initiated
more than twenty years ago— have been based on the assumption that the overlap ratio is kept smaller

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–32
Prepared using fldauth.cls



ADVANCES IN VISCOUS VORTEX METHODS 3

than 1, and hence workers recognize that overlap of vortex blobs must be maintained throughout a
calculation. But presently it is shown, in practice, how several orders of magnitude in the accuracy are
lost as the overlap ratio increases passing through the value of 1. More importantly, one is reassured
by these results that high-resolution is indeed possible with the vortex blob method, as accuracy of the
order of Intel double precision is attainable when the overlap ratio, h/σ, is about 0.7 or smaller, for a
Gaussian blob function.

Subsequently, this work studies in §5 the accuracy implications of the Lagrangian distortion of the
particle field. It is a consequence of the strong dependence of discretization accuracy on the overlap
ratio that the Lagrangian advection of vortex blobs will lead to an increase of errors. Here, this is
illustrated using two test problems which have an analytical solution, so that errors are precisely
quantified. Next, the improvement that can be obtained using the standard remeshing schemes with
high-order interpolation kernels is demonstrated. It is seen, however, how with a very accurate
initialization the error introduced upon the first event of location processing becomes apparent. In
other words, although the standard techniques do allow for long-time calculations with tolerably small
error, they also impose a limitation on the accuracy that one can obtain with the vortex method, evident
in what we dub an ‘initial remesh error’.

Remeshing —or what some workers prefer to call ‘redistribution’, unfortunately introducing
confusion with the vortex redistribution method, a diffusion scheme— is by no means the only method
to control the errors due to Lagrangian distortion of the particle field. One of the early works analyzing
the accuracy of vortex methods [6] simply proposed to choose larger initial particle core sizes (i.e.,
smaller values of the overlap ratio) for longer time calculations, so that by merely a denser initialization
it would be possible to maintain overlap. A more useful proposal was the ‘rezoning’ techniques [7],
which will be seen below to be applicable in particular with higher-order blob or cutoff functions. In
addition, a technique which attempts to correct the Lagrangian errors not by re-locating the vortex
particles to a uniform mesh, but by changing their circulation strengths to better approximate the
continuous vorticity field, is provided by Beale’s method of circulation processing [8]. These schemes
for spatial adaption in vortex methods will be discussed in §6.

The focal contribution of this work is the formulation of a spatial adaption scheme which does not
require an ordered grid, and which is more accurate than other methods, including standard remeshing
schemes with high-order kernels. The proposed method is based on ideas from radial basis function
(RBF) interpolation, a technique for solving multivariate scattered data interpolation problems. In fact,
the similarity between the vortex blob discretization and Beale’s method of circulation processing,
and scattered data interpolation has been alluded to before [8, 9]. After a brief presentation of RBF
interpolation fundamentals, §7 presents the application of this technique for spatial adaption in vortex
methods. Finally, §8 presents results of numerical computations using this method on a perturbed
monopole which relaxes to a tripole attractor, which contribute to validate the proposed scheme by
comparison with similar computations in [10].

2. THE VORTEX BLOB METHOD

Let u(x, t) be the velocity field and ω(x, t) = ∇ × u(x, t) the vorticity field. Taking the curl of
the momentum equation and considering an incompressible fluid, the vorticity transport equation is
obtained. This is the governing equation in vortex methods, which for three dimensional flows is

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∆ω. (1)
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The assumptions in (1) are: constant density flow, conservative body forces, inertial frame of
reference, and unbounded domain. In the case of a two dimensional and inviscid flow the right-hand-
side of (1) is zero and the governing equation reduces to the simple form Dω

Dt = 0, where D
Dt stands

for the material derivative. This corresponds to the basic formulation of vortex methods, for which
clearly a Lagrangian method based on elements of vorticity is natural and ideal. Based on this simplest
of formulations, the vortex method historically found its first successful applications in the simulation
of phenomena governed by the 2D Euler equations. Subsequently, vortex methods have been extended
to three-dimensional flow by including the vortex stretching/tilting term, and have incorporated the
presence of internal boundaries by using vortex sheet formulations in the inviscid case and vorticity
generation models with boundary elements for the viscous case. Viscous effects were added first by
the random walk method [11], but a number of so-called ‘deterministic’ viscous schemes have been
proposed and tested during the last two decades.

In the vortex blob method, the elements are identified by: a position vector, xi; a strength vector
(vorticity×volume) of circulation; and a core size, σi. The discretized vorticity field is expressed as the
sum of the vorticities of the vortex elements in the following way:

ω(x, t) ≈ ωh(x, t) =
N∑
i=1

Γi(t)ζσi (x− xi(t)) , (2)

where Γi corresponds to the vector (scalar in 2D) circulation strength of particle i. In the blob version
of the vortex method —in contrast to point vortices— the elements have a non-zero, often uniform,
core size σi = σ and a characteristic distribution of vorticity ζσi , commonly called the cutoff function.
Frequently, the blob cutoff function is a Gaussian distribution, such as (in 2D):

ζσ(x) =
1

2πσ2
e−|x|

2/2σ2
. (3)

The vortex elements are assumed to convect without deformation with the local velocity, which is
approximated by the Biot-Savart law:

u(x, t) =
∫

(∇×G)(x− x′)ω(x′, t)dx′ =
∫

K(x− x′)ω(x′, t)dx′ = (K ∗ ω)(x, t) (4)

where K = ∇×G is the Biot-Savart kernel, G is the Green’s function for the Poisson equation, and
∗ represents convolution. For example, in 2D the Biot-Savart law is written explicitly as,

u(x, t) =
−1
2π

∫
(x− x′)× ω(x′, t)k̂

|x− x′|2
dx′ (5)

Finally, the Lagrangian formulation of the (viscous) vortex method in two-dimensions can be
expressed in the following system of equations:

dxi
dt

= u(xi, t) = (K ∗ ω)(xi, t) (6)

dω

dt
= ν∇2ω + B.C. (7)

The complete numerical method is defined by Equations (6) and (7) which express that the
implementation consists in integrating the particle trajectories due to the local fluid velocity, while the
velocity is obtained from the vorticity using the Biot-Savart law. The vorticity field evolves due to the
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effects of viscosity, both in the free-stream and on the boundaries (no-slip condition, denoted by ‘B.C.’).
The viscous effects in the free-stream are enforced by one of a variety of viscosity schemes available for
vortex methods (see next section), while the effects due to solid boundaries are traditionally accounted
for by generation of vorticity implemented in a version of the boundary element method.

Comprehensive reviews of the development of vortex methods and their applications can be found in
[12, 13, 14, 15] and [16]. The favoured applications of vortex methods may be found in the simulation
of unsteady flows that exhibit concentrated areas of strong vorticity. For example, bluff body flows and
wake-induced phenomena are clear candidates for being tackled with vortex methods. Also, separated
or oscillating flows around airfoils, and problems like dynamic stall and vortex-blade interaction —
especially as higher Reynolds number computations become feasible. In these types of application
problems it is more likely that the special features of vortex methods, e.g. the Lagrangian and grid-free
nature of the formulation and the concentration of computational elements only on the compact support
of the vorticity field, will result in advantages over using other more traditional methods.

3. VISCOUS SCHEMES FOR VORTEX METHODS

The Lagrangian, grid-free approach in vortex methods has caused quite a bit of difficulty in making
the extension to viscous flows efficiently and accurately. The first successful addition of viscosity was
made with a random walk [11] of the vortex positions (now called random vortex method, RVM). In
this approach, diffusion is simulated with a Brownian motion of the particles, based on the probabilistic
interpretation of the diffusion equation.

The random vortex method is formulated as a fractional step method, i.e., the viscous and inviscid
parts of the governing equations are taken into account as successive sub-steps. More sub-steps are
involved in higher order schemes, but the basic two-step viscous splitting algorithm is second-order
accurate at each time step and first-order overall (irrespective of the time-stepping scheme used). So,
in addition to other sources of error, the RVM suffers from operator splitting error. The RVM error
estimate [17] is of order

√
ν/N , which in 2D corresponds to first order in the particle spacing, h,

for a regular grid, and to O(h3/2) in a 3D rectangular discretization. Convergence has been proved
[18, 19], but its slow rate means that a large number of particles are required to obtain reasonable
accuracy. Nevertheless, it has the advantage of preserving the Lagrangian and grid-free formulation of
vortex methods, it is local and easily parallelizable, and it continues to find extensive use to this day,
especially in engineering applications. In spite of this, the disadvantages are important: only slightly
viscous flows can be modelled (lower Reynolds number limit is about 100); pressures and forces can
only be obtained by averaging or smoothing over several time steps; there is an error in the mean size
and position of the vortex system; and it has low convergence rate and low accuracy, as mentioned.

Contemporary to the introduction of the RVM, it was recognized that vortex blobs could be allowed
to grow in time to simulate viscosity [20, 12], which came to be known as the core spreading method.
The idea of core spreading can be explained for the 2D case using as analogy the classical exact solution
of the Navier-Stokes equations termed “spreading line vortex” (Batchelor [21], p. 204). In this problem
the vorticity is given by

ω(x, t) =
Γ

4πνt
e−|x|

2/4νt. (8)

Consider again the approximate vorticity given by the discretized form (2), but in two dimensions
(where the strengths are scalar), and write it slightly differently to express the fact that the core function
now is dependent on time,
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ω(x, t) ≈ ωh(x, t) =
N∑
i=1

Γi ζ(x− xi(t), t) . (9)

The core function is now chosen to be the solution of the heat equation with initial data ζo,

ζ(x, t) =
1

4πνt

∫
e−(x−y)2/4νtζo(y)dy = (G ∗ ζo)(x), (10)

where G is the heat kernel. If the initial distribution function ζo is a Dirac delta, then:

ζ(x, t) =
1

4πνt
e−|x|

2/4νt. (11)

Comparing with (8), the discretized vorticity field in 2D can be seen as a superposition of spreading
line vortices of different circulation strengths Γi. The core spreading vortex method is then formulated
to satisfy identically the viscous part of the vorticity equation by growing σ2 linearly according to

dσ2

dt
= 2ν, (12)

Thus, the method is expressed in the simple algorithmic rule,

σ2
i (t+ ∆t) = σ2

i (t) + 2ν∆t, i = 1 · · ·N. (13)

This method is utterly simple to implement, it is fully localized and grid-free, and easily
parallelizable —as is the RVM, but core spreading is deterministic so in principle allows for better
error control and faster convergence than the RVM. However, research and use of the core spreading
method stalled when the method was declared inconsistent as Greengard [22] gave mathematical proof
that it converges to an equation that differs from the Navier-Stokes equation in the convection term.
The consistency error of core spreading is caused by the advection without deformation of larger and
larger vortex blobs as they spread. About a decade later [23], a splitting scheme was finally proposed
to alleviate this problem and proved to be convergent. Research on the core spreading vortex method
was effectively ‘resurrected’, but blob splitting does introduce some numerical diffusion; its errors are
in fact comparable to the random vortex method.

Whilst the core spreading method remained in discredit, a number of other deterministic viscous
schemes were developed. Possibly the most prevalent of these is particle strength exchange (PSE),
based on general particle methods [24]. In this method, the Laplacian at a particle’s location is
approximated based on nearby particles by an integral operator (provided that the smoothing function
η satisfies certain moment conditions, see [25] p. 145), as follows:

∇2ω(x) ≈ 2
σ2

∫
ησ (x− x′) [ω(x′)− ω(x)] dx′ =

∫
Gσ (|x− x′|) [ω(x′)− ω(x)] dx′. (14)

Using a Gaussian smoothing function, one has

Gσ (x) =
2
πσ2

e−|x|
2/2σ2

, (15)

so that when σ2 = 2νδt, (15) is equivalent to the heat kernel. In this case, the accuracy of the
approximation given by (14) is O(σ2). The integral operator in (14) is discretized by quadrature, using
as quadrature points the locations of the particles. In principle, the formulation of PSE is grid-free, but
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the fact that the accuracy relies strongly on the quadrature rules used for the discretized integral means
that in practice the method hinges on having nearly uniformly spaced particle locations. For this reason,
the extensive implementation of the PSE method has promoted the development and widespread use
of remeshing schemes in vortex methods [26, 27, 28, 29, 30]. This has caused a bit of debate, as
some workers maintain that the grid-free nature of the vortex method is undermined when remeshing
schemes relying on regular particle grids are applied, sometimes as often as every time step. Indeed,
if this is the case, as pointed out by G Winckelmans (private communication, 2002), then there may
not be much difference between PSE with remeshing and vortex-in-cell methods (which nowadays
utilize the same interpolation kernels as particle remeshing). In both cases, each interpolation step
introduces some numerical diffusion, although these errors are generally considered acceptable and
indeed a number of remarkable results have been obtained on unsteady wake flows, e.g., [31, 32] using
PSE with remeshing, and [33, 34] using the vortex-in-cell approach. In spite of this, it is possible
that the interpolation errors in both of these approaches impose a limitation on the accuracy of the
vortex method, especially at high Reynolds numbers where the small physical viscosity might be
overwhelmed by the numerical diffusion effects.

The heavy reliance of the PSE method on remeshing schemes motivated the development of an
alternative which is known as the vortex redistribution method, VRM [35]. This method is based on
particle circulation exchange as well, but the formulation is different from PSE as it does not use
integral operators. The algorithm hinges on finding fractions of each particle’s circulation that will be
‘redistributed’ among its neighbors, these being defined as those particles within a maximum distance
in the order of the typical diffusion distance, hν =

√
ν∆t. The ‘redistribution fractions’ fnij are solved

for by assembling a system of equations which is formulated so that locally there is conservation of
circulation, linear and angular momentum, and enforcing positivity of the solution: fnij ≥ 0. Whenever
it is encountered that the linear systems for the fnij have no acceptable solution, an ad hoc algorithm
is used that inserts new vortex particles within the neighbourhood in question. The number of vortices
thus can increase without apparent bound when the Reynolds number is increased, and vortex particle
merging is sometimes used to alleviate this problem.

The authors of the VRM claim that the advantage of the method is that it retains the grid-free nature
of vortex methods, because it is not needed that the particles be in an ordered distribution (in contrast
to PSE). This is achieved, however, at the cost of solving N underdetermined systems for N particles,
at each time step. The size of the systems is determined by the redistribution influence neighbourhood,
|xj − xi| ≤ R

√
ν∆t, involving an empirically chosen parameter R. Then again, as will be discussed

in the following two sections, no matter the viscous scheme, the accuracy of the vortex method in
general does depend on preserving overlap throughout a calculation. The vortex insertion algorithm in
the VRM does provide some form of spatial adaption, but with no overlap control. In addition, there
may be some numerical diffusion involved in the vortex merging processes, and moreover, viscous
splitting error is present.

There are yet other deterministic viscous schemes for vortex methods, namely: Fishelov’s method,
diffusion velocity method, and least-squares and triangulated vortex methods. Fishelov’s [36]
suggestion was to approximate the second-order derivatives in the Laplacian by explicit differentiation
of the cutoff function. This idea had already been applied in [37] to obtain the stretching term in a 3D
inviscid vortex method. When the vorticity is convolved with the smoothing function, ω ≈ ζσ ∗ ω,
then the Laplacian can be approximated in this way: ∆ω ≈ ∆(ζσ ∗ω) = ∆ζσ ∗ω. Fishelov’s method
is obtained by approximating the convolution integrals by the trapezoid rule. The scheme is, like PSE,
known to lose accuracy as the particles become disordered, and rezoning (see §6) has been used to
counter this problem in conjunction with higher-order cutoff functions [38].
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The diffusion velocity method is similar to a Lagrangian method that was used in plasma physics
for collision kinetics [39], where a finite difference scheme in the moving mesh is implemented. This
approach was modified as a particle method and also applied to the Fokker-Planck model in [40]. In
the context of vorticity dynamics, the method is obtained in [41] by deriving a diffusion contribution
to the velocity, which —in analogy to Fick’s first law of diffusion— is proportional to the gradient of
vorticity. It is also proportional to ν/ω, which encounters difficulties in areas where the vorticity is
close to zero. It has been noted that diffusion is correctly modelled by this method only where particle
overlap is maintained [42] so a nicely ordered particle field must somehow be provided; remeshing was
used in [43] in the context of the diffusion velocity method applied to a problem of natural convection.

Finally, there are a few variations of vortex methods based on triangulations, which find different
ways to include viscosity. The “free-Lagrangian” method [44] is based on a discrete approximation of
the Laplacian operator on a triangulation of the particle positions, obtained from a Voronoi diagram. In
[44], the convection of vorticity was still solved with a particle representation (vortex blobs). A later
inviscid implementation [45] abandons the blobs in favor of a scheme analogous to Lagrangian finite
elements, where the vorticity is approximated by piecewise polynomials on a triangulation. In this case,
the velocity is evaluated by a technique related to the fast multipole method, on the triangulated mesh.

In [46] a method for obtaining the derivatives of vorticity based on a least-squares formulation
is presented, which claims the advantage of preserving accuracy better for irregular points, in
comparison with PSE or Fishelov’s method. First, a quadratic polynomial function is fitted to control
points in the neighbourhood of a particle location, and then derivatives of vorticity are obtained by
explicit differentiation of the polynomials. The unknown coefficients in the polynomial expansion are
found by minimizing errors in a least-squares sense, which results in a two-by-two linear system
for each particle, giving the first and second derivatives at its location. If the particles were on
a uniform grid and only near neighbours were used in the fit, the scheme would reduce to a
standard centered difference. Applied to viscous flows, this technique is used in combination with
a diffusion velocity implementation to provide the necessary expansion of the vorticity support. This
‘moving least-squares’ approach was demonstrated for axisymmetric flows in [47], using diffusion
velocity and calculating vorticity derivatives from the polynomial fit (recall that diffusion velocity
requires knowledge of the vorticity gradient; second derivatives are also needed in the axisymmetric
formulation). In 3D, these workers abandon the particle representation, and instead develop a
‘tetrahedral vortex element’ (TVE) method [48]. This scheme utilizes the moving least-squares method
to obtain the derivatives in the vortex stretching and diffusion terms, and obtains the vorticity by
interpolation on a tetrahedral mesh built from the Lagrangian points, similarly to the 2D triangulated
vortex method of [45]. The TVE method claims the advantages of providing a continuous interpolated
vorticity field even when the Lagrangian points are highly disordered, or distributed anisotropically, and
the fact that it is easy to avoid vorticity penetration into solid bodies (as there are no cutoff functions).
Perhaps one could consider this a method closer to vortex-in-cell than to vortex blob methods, where
the mesh is now unstructured. It is clearly not a grid-less method, as a tetrahedral mesh is constructed
and fit to the Lagrangian points on each time step.

With so many different approaches to construct a viscous vortex method, it is clear that the field is
still maturing and is yet far from a consensus in regards to the ‘best’ viscous scheme. Each method
reviewed above has some desirable characteristics as well as some disadvantages. PSE is very sensitive
to having an ordered distribution of particles, and so there has been a great amount of work on
remeshing schemes. The method of superposing derivatives of the cutoff function, as used by Anderson
and Greengard and Fishelov, is also dependent on a regular particle arrangement to maintain accuracy;
diffusion velocity, as well, requires constant overlap of blobs. It would seem that the problem for an

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–32
Prepared using fldauth.cls



ADVANCES IN VISCOUS VORTEX METHODS 9

accurate viscous vortex method is not the viscous scheme, but spatial adaption. Indeed, to bypass the
problem generated by irregular particle fields, the vortex redistribution method resorts to elaborate and
computationally expensive algorithms, while the tetrahedral vortex element method does away with
the particle representation altogether (at the cost of constructing a mesh at every time step). Even the
core spreading method suffers from the problem of how to limit the size that vortex blobs can grow, so
needs a form of spatial adaption. But in contrast to the other methods, core spreading is utterly simple
in its approach to satisfying diffusion effects. If the spatial accuracy can be maintained with some form
of adaptive refinement, the core spreading method seems to offer the opportunity of a truly grid-less
viscous vortex method.

4. NUMERICAL STUDY ON THE ACCURACY OF DISCRETIZATION

The first fundamental question one may pose in regards to the practical use of the vortex (blob) method
refers to the accuracy that one can expect from the spatial discretization of the vorticity field, by
means of equation (2). Note that we do not deal with the point vortex method which presents certain
difficulties due to its singular nature. Both the vortex blob method and the point vortex method have
an extensive convergence analysis [49, 50, 51, 52, 53, 54, 55], but here we examine the accuracy of the
blob approach in practice, based on numerical experiments.

In the first exploratory numerical calculations, we look at the errors obtained in the vorticity and
velocity by discretizing a given vorticity field using vortex blobs. Two classic test problems were
chosen to carry out this investigation, both problems of the simplest possible nature: an axisymmetric,
inviscid vortex patch (16), and a Lamb-Oseen vortex (17):

ω(r) =

{
(1− r2)3 r 6 1
0 r > 1

(16)

ω(r, t) =
Γ0

4πνt
e−r

2/4νt, (17)

where r2 = x2 + y2. The first problem is particularly suited to observe the effects of features in the
inviscid vortex method, as the exact solution consists of circular trajectories of different velocity and
the initial particle distribution gets rapidly distorted due to the large shear (hence, this flow belongs to
the class of problems known as ‘circular shear layers’) . The second problem is especially useful to
consider different viscosity schemes, being the simplest viscous vortex flow and having an analytical
solution; in addition, the vorticity transport equation reduces to the diffusion equation for this problem,
so that the viscous effects are decoupled from the nonlinear effects.

Since the study of Perlman [6], one of the early efforts to analyze and quantify the errors in
vortex methods, it has become well-known that the accuracy of discretization with the vortex method
fundamentally depends on three factors: the choice of cutoff function used in the discretization, the
value of the cutoff parameter, σ, and the way an initially existing vorticity field is discretized and the
numerical method initialized. Two choices of cutoff function were used in the present calculations: the
most popular choice with most workers is the Gaussian (3), formally a second order cutoff, i.e. O(σ2);
in addition, we used the algebraic 8th-order cutoff of Nordmark [38], given by

ζ(8)(r) =

{
52
π (1− 21r2 + 105r4 − 140r6)(1− r2)9 r 6 1
0 r > 1

(18)
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with ζσ(x) = 1/σd ζ(|x|/σ), d being the dimension of the problem.
Initialization of a vortex method calculation consists of determining the identifying quantities of

the vortex particles, i.e., their location and circulation strength. Their core size is chosen initially as
a discretization parameter, dictating the resolution of the calculation (the smallest scales that can be
resolved) . The initial particle locations are, for simplicity, most commonly chosen to be the nodes on a
Cartesian mesh. An alternative would be to divide the support of the initial vorticity in cells of uniform
size and initialize a particle in a random location inside the cell; this has been called “quasi-random”
initialization [25], while a random initialization will not construct any form of ordered lattice. On a
square lattice of initial particle locations, one can assign the circulation strengths by simply evaluating
the vorticity at the particle location and multiplying by the cell area (or volume in 3D). That is,

Γi = ωoi h
d = ω(t = 0,xi)hd. (19)

For the random or quasi-random initializations one could use again the local value of vorticity, and
multiply by the average cell area (obtained by dividing the support of the vorticity by the number of
particles,N ). This approach is less accurate but may be preferable if the vorticity is not smooth; but the
initialization on a square lattice and the use of (19) is the most commonly used initialization method.
Note, however, that the use of (19) to initialize the particle strengths incurs an error, which is related to
the midpoint rule; one can try to decrease this error by iterating on the Γi’s, for example (as in Beale’s
method of circulation processing, see §6).

Indeed, the particle representation of the initial vorticity field incorporates a sort of numerical
diffusion when (19) is used; this ‘diffusive effect’ of the blob discretization can be quantified for the
particular case of Gaussian blobs used on flows which are exact solutions of the diffusion equation. This
can be seen by writing the general solution of the heat equation as (in one dimension, for simplicity),

g(x, t) =
1√

4πνt

∫ ∞
−∞

g(x′, to) exp
(
−|x

′ − x|2

4νt

)
dx′. (20)

Writing the discrete representation of the integral above using single interval extrapolative rule, it can
be seen that if one spatially discretizes the function g(x, t) using Gaussian cores (with k = 2) the sums
obtained on the left and right hand sides of the equation can be made equal with σ2 = 2νt. Hence,
the discretization reconstructs the vorticity field after it has ‘diffused’ for a time interval of σ2/2ν.
As an application, a scheme for improving the accuracy of initialization for test problems based on
exact solutions of the diffusion equation —as in the Lamb-Oseen vortex— is the application of an
initial “anti-diffusion”, equivalent to shifting the initial time by an amount −σ2/2ν. Hence, the initial
circulation strengths for a Lamb-Oseen vortex at time-zero, to, are obtained by:

Γi = ωoi h
2 =

Γ0h
2

4πν(to − σ2/2ν)
exp

(
− x2

i + y2
i

4ν(to − σ2/2ν)

)
(21)

This ‘time-shift correction’ can be applied in the very particular situation of discretizing an exact
solution of the diffusion equation using Gaussian blobs. As such, it will not be usable in a practical
application; it allows, however, the production of accurate initialization of the Lamb vortex for
the purposes of studying overlap dependence and the effects of the particle distribution. Overlap
dependence is illustrated by the results plotted in Figure 1(a), where for a given choice of σ two initial
conditions of the Lamb vortex are discretized with varying overlap ratio. Case 2 incorporates a criterion
for blob ‘population control’ whereby after calculating particle strengths with (21), vortex blobs with a
strength below 2.2× 10−16 (equal to the machine roundoff in these experiments) were eliminated. As
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(a) (b)

Figure 1. Lamb vortex, Γo = 1, ν = 0.01. (a) Vorticity and velocity errors vs. overlap ratio, using Gaussian blobs
with σ = 0.02; (b) Vorticity and velocity errors vs. c, with σ = c

√
h for Nordmark blobs. Case 1: to = 0.25,

h = 0.01, N = 5177; Case 2: to = 0.25, h = 0.025, N = 925; Case 3: to = 0.5, h = 0.025, N = 925.

a result, the errors are bounded below byO(10−10), but with significantly reduced problem size (about
40% less particles when h/σ = 0.7).

The error of the discretization was measured in terms of the maximum relative error in vorticity
and velocity —i.e. the maximum field value of the point-by-point difference between the exact and
discretized vorticity/velocity, divided by the maximum value of vorticity/velocity— and a discrete L2-
norm error, calculated using the following formula:

‖ω − ωh‖ =

(∑
i

|ω(xi)− ωh(xi)|2h2

) 1
2

(22)

The results shown in Figure 1(a) demonstrate how, with the appropriate choice of the overlap ratio,
it is possible in practice to obtain negligibly small errors with the vortex blob representation. In this
case of the Lamb-Oseen vortex discretized with Gaussian blobs, an optimum overlap ratio in the range
(0.7, 1.0) will produce velocity errors smaller than about O(10−8). It is clear as well how strongly the
initialization depends on overlap ratio, there being a loss of several orders of magnitude in the accuracy
as h/σ increases passing through the value of 1. Another observation that one can make from the figure
is the fact that the vorticity errors are always larger than the velocity errors, which is consistent with
the general results of the convergence theory of vortex methods.

When using high-order cutoff functions, it is typical to determine the initial overlap of blobs by
the relation σ = c

√
h and a choice of c; this follows Hald’s convergence theory [50, 53]. Results of

discretizing the Lamb vortex using (19) with Nordmark blobs and varying proportionality constant
c are shown in Figure 1(b); minimal errors can be observed with c ∈ (0.7, 0.9). Note that standard
initialization (19) is used with the Nordmark blobs, which provides a tolerable error because of the
high-order of the cutoff function (the time shift correction may be applied only with Gaussian blobs).

The discretizations used for the plot on Figure 1(a) were carried out with particles placed on a square
lattice. To observe the effect of a different particle arrangement, discretizations were carried out on the
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12 L. A. BARBA, A. LEONARD AND C. B. ALLEN

Figure 2. Lamb vortex Γo = 1, to = 0.25 and ν = 0.01. Vorticity and velocity errors vs. overlap ratio for
Gaussian blobs with σ = 0.02, on square vs. triangular lattice.

Lamb vortex with initial conditions as in case 1 of Figure 1(a), but using both a square lattice and a
triangular lattice of equilateral triangles. This time, the discrete L2-norm errors were measured on a
finer mesh of spacing h/2 for h the inter-particle spacing. Discretizations on the triangular lattice were
carried out twice: once with the same value of h as the ones on the square lattice, which produces in the
denser triangular lattice a slightly increased resolution, and once with a ‘stretched’ value of h to obtain
an equivalent resolution to the square lattice (that is, for equal cell area in both lattices). This last option
results in an effective larger overlap ratio for the same ‘nominal’ value of h, for comparison with the
same resolution case on a square lattice. For the same value of h, the triangular lattice “fills space” 15%
more in 2D, i.e., there are 15% more particles on average in the same area. With the stretched value of
h, of course, the number of particles for each value of overlap ratio is almost the same for both lattices.
The domain of initialization is obtained by first filling with blobs a square area considerably larger
than the support of vorticity, then calculating the particle strengths using the time-shift correction and
finally eliminating all particles whose calculated strength is less than the machine roundoff. The errors
are calculated after this form of population control is enforced, which has the effect of limiting the
accuracy that is obtained at the smallest values of overlap ratio.

Figure 2 shows how the triangular lattice provides an increased accuracy in comparison with a square
lattice. For example, with an overlap ratio of 1.0 at the same value of h, the triangular lattice proves
to be almost three orders of magnitude more accurate, although with a larger N (by about 15%, as
already mentioned). If one compares the equivalent resolution cases for a nominal overlap ratio of 1.0,
then the triangular lattice gives about one order of magnitude improvement (with an effective overlap
of 1.075). We will come back to this when discussing radial basis function interpolation, in §7.

5. ACCURACY ISSUES OF THE LAGRANGIAN FORMULATION

It was seen in the previous section how the accuracy of discretization with vortex blobs depends
crucially on the overlap ratio. This demonstrates the practical situation when the vortex blobs cease
to overlap fully (overlap ratio larger than 1, for Gaussian blobs). One expects, therefore, that as the
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ADVANCES IN VISCOUS VORTEX METHODS 13

(a) (b)

Figure 3. Calculation of a Lamb vortex: Γo = 1, to = 4.0 and ν = 0.0005; Gaussian blobs with σ = 0.02,
h = 0.0160, N = 1560. RK4 time-stepping, ∆t = 0.01. (a) Evolution of errors in vorticity and velocity; (b)

vorticity error contours and particle locations at final time.

vortex particles are allowed to evolve in a Lagrangian manner, the strain of the flow field will cause
the overlap to be lost in some areas thereby increasing the errors. The problem becomes of crucial
importance as the viscosity value is reduced, and it is the determining factor in the results that can be
obtained from an inviscid simulation.

Consider a typical calculation of a Lamb vortex with small viscosity, giving a moderate Reynolds
number of 2000. The initial vorticity is discretized using Gaussian blobs on a square lattice with the
time-shift correction, resulting in an initial velocity error of O(10−9) with h/σ = 0.8. As shown
in Figure 3(a), the errors quickly grow, and oscillate around a deteriorated accuracy level 5 orders of
magnitude larger than initially. Note that the errors do not grow without bound, which has been pointed
out before [6, 7, 8]. Figure 3(b) shows the contours of vorticity error as well as particle locations at the
final time of the calculation. The error contours show how the Lagrangian distortion of the particles
introduces spurious (although weak) vortical structures. The vorticity error is measured in a maximum
norm, and the contour of largest absolute value is 1.23% of the maximum vorticity, while the outermost
contour has a value of 0.2% the maximum vorticity. In this calculation, vorticity diffusion was provided
by core spreading and the final value of σ is 0.0490 (note that in a problem with radial symmetry,
Greengard’s inconsistency observations [22] do not apply).

The loss of accuracy due to Lagrangian distortion of the particles is more dramatic when using high-
order blob functions, which are more vulnerable to a reduced overlap. For this reason, in the early
works that tested high-order blobs, ‘rezoning’ was immediately applied [7] (rezoning is explained in
the next section). For example, discretizing the inviscid vortex patch with Gaussian and Nordmark
blobs using the same value of h, a much more accurate result is obtained at time-zero with the latter, as
expected. After only four time steps, however, the run with Nordmark blobs can show larger errors than
the one with Gaussians. This was the case for calculations using h = 0.1, resulting in N = 305 in both
cases, with h/σ = 0.5 for the Gaussian and c = 1.6 for the Nordmark blobs. With these parameters,
the Nordmark blobs provided an improvement of 2–3 orders of magnitude in the time-zero errors,
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14 L. A. BARBA, A. LEONARD AND C. B. ALLEN

compared to the Gaussian blobs initialized with 5 iterations of circulation processing (Beale’s method;
see next section). Without spatial adaption, however, the Nordmark blobs result in larger errors by up
to 2 orders of magnitude at the end of the run with 50 time steps.

This and the previous sections demonstrate that overlap control is important in vortex methods no
matter which scheme is chosen to account for viscous effects. Some authors claim that an alternative
to the PSE scheme that does not rely on quadrature rules will do away with the need for remeshing
and therefore retain the grid-less nature of the vortex methods. In fact, no matter the viscous scheme,
the accuracy of the vortex method depends on preserving overlap and some form of spatial adaption is
compulsory to maintain the desired level of accuracy.

6. SPATIAL ADAPTION SCHEMES FOR VORTEX METHODS

6.1. Particle Remeshing

Most vortex method application programs incorporate spatial adaptation in the form of “remeshing” or
“rezoning” algorithms, which consist in re-starting the particle field on a regular grid every few time
steps, and re-calculating the particle circulation strengths by interpolation or other means. This subject
constitutes an important active area of research in vortex methods.

The prevailing approach consists in constructing a square lattice of new particle locations, and
obtaining the circulation values on the nodes from the old particles by interpolation. The 2D or 3D
interpolation rules are built by Cartesian tensor product of 1D kernels, and these have been constructed
of increasing order in terms of the inter-particle separation, h. The commonly used interpolation kernels
are of two families, the “Λ” and the “M” family. The first order Λ0 and M1 kernels are equivalent to
nearest-grid-point (NGP) interpolation, and conserve only total circulation (they are almost never used
in vortex methods). The so-called “tent-function”, Λ1, is a second order interpolant and is equivalent
to the M2 kernel, conserving total circulation and linear impulse. Second order interpolants, however,
are considered “too dissipative” [30] and therefore the relevant formulas of the Λ family for current
vortex methods are the following.

Λ2 =


1− u2 if 0 ≤ u ≤ 1

2 ,
1
2 (1− u)(2− u) if 1

2 ≤ u ≤
3
2 ,

0 otherwise.
Λ3 =


1
2 (1− u2)(2− u) if 0 ≤ u ≤ 1,
1
6 (1− u)(2− u)(3− u) if 1 ≤ u ≤ 2,
0 otherwise.

(23)

The third-order Λ2 kernel corresponds to quadratic interpolation and it conserves up to second moment
of vorticity, with a 3d stencil. This scheme has been used successfully in bluff body flow computations
[26, 56]. Its main disadvantage is lack of smoothness, as it is not even continuous. The piecewise-
cubic and continuous kernel Λ3 (Everett’s 4th order formula) requires a 4d stencil, conserving up to
third moment of vorticity. (Indeed, the Λ family of kernels is constructed by specifying that increasing
moments of vorticity be conserved.)

The interpolation kernels of the “M” family are derived from splines; they are characterized by
being more regular than the Λ family. Central B-splines are capable of interpolating exactly only linear
functions, however, so they cannot be of higher than second order. The improved M ′4 kernel

M ′4 =


1− 5

2u
2 + 3

2u
3 if 0 ≤ u ≤ 1,

1
2 (1− u)(2− u)2 if 1 ≤ u ≤ 2,
0 otherwise.

(24)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–32
Prepared using fldauth.cls



ADVANCES IN VISCOUS VORTEX METHODS 15

introduced in [57] is of higher accuracy (3rd order) and when used in vortex methods will conserve the
first three invariants (total circulation, linear impulse and angular impulse). Researchers have used M ′4
remeshing when they seek highly accurate results, e.g. [28]; it has the advantage of being quite smooth
(class C1) and it was shown in [30] to be considerably more accurate than the Λ2 scheme which is of
the same formal order.

Using one of the interpolation kernels above, the remeshing schemes obtain the contribution of
circulation ∆Γj,i from the i-th old vortex with Γi to the new mesh point (x̃j , ỹj) according to (in the
two-dimensional case):

∆Γj,i = Γi Λ
(
x̃j − xi
h

)
Λ
(
ỹj − yi
h

)
, (25)

where Λ represents the 1D interpolation kernel.

6.2. Rezoning

What has been termed “rezoning strategy” [7] is similar to remeshing, in the sense that the particle field
is re-started on a rectangular mesh of new vortex blobs. But instead of interpolating the circulation
of the old particles onto the new (neighboring) ones, the rezoning strategy consists in evaluating
the vorticity induced by the old particles at the new blob locations, and then obtaining the new
particles’ circulation by applying the standard initialization formula (19). In other words, one defines a
continuous vorticity field using the current particle distribution, and then evaluates this function on the
new blob locations x̃, i.e., summing over all j current blobs:

ω̃(x̃, t) =
∑
j

Γj ζσ(x̃− xj). (26)

To evaluate this function at a new blob location on a square mesh, one has to add the vorticity
contribution of each old particle, requiring O(N ·M) operations for N old blobs and M new ones.
The scheme is therefore expensive computationally, similar to the direct summation of the Biot-Savart
law (although in theory one could implement some form of fast summation; the literature does not to
our knowledge show any such implementation in a rezoning scheme). A criterion for determining how
often to execute a rezoning process was introduced in [38], but it is based on calculating at every time
step an estimate of the ‘vorticity error along vortex paths’, which is just as expensive. On the other
hand, note that if one obtains the new circulation strengths using the calculated vorticity values at the
new blob locations and equation (19), that is, multiplying the new blob’s vorticity by cell area h2, then
an error equivalent to the initialization error is incurred. For this reason, it seems reasonable to advocate
that rezoning as described by Beale and Majda should be applied only when using high-order blobs.

6.3. Numerical Experiments with Remeshing and Rezoning

Numerical experiments show that classic rezoning is effective in controlling errors due to Lagrangian
distortion when using high-order blobs. In addition, as it is exemplified by the calculations in Figure
4, when using the 8th order cutoff classic rezoning gives higher accuracy than standard remeshing with
the M ′4 kernel. Figure 4 shows errors obtained in calculations of the inviscid vortex patch, where the
Nordmark blobs give at this rather low resolution (only 305 blobs with h = 0.1) an initial L2-norm
velocity error of 3.05 × 10−6. Without spatial adaption, after only five time steps the error has grown
to 4.71× 10−4, and it is 1.35× 10−2 at the end of the run. Remeshing with M ′4 every 2 time steps (the
velocity error is 1.2× 10−5 at t = 2∆t, so one may prefer to adapt every time step), the final velocity
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Figure 4. Vorticity and velocity errors vs. time for calculations of the inviscid vortex patch. Nordmark blobs with:
h = 0.1, c = 1.6 and σ = c

√
h = 0.51, N = 305. Time stepping: RK4, ∆t = 1. Left: no spatial adaption;

middle: remeshing with M ′4 every 2 time steps; right: classic rezoning every 2 time steps.

error is 8.01×10−4, whereas using rezoning the final error is 2.96×10−4. But in the vorticity field the
difference is more substantial: final L2-norm error of 2.86×10−2 with remeshing vs. 2.18×10−3 with
rezoning. It is interesting to note that in the case using M ′4 remeshing, most of the accuracy loss occurs
on the first remesh; this ‘jump’ is what we call the initial remesh error. Another issue to consider is that
in the 25 remeshing processes of this run, the problem size grew about 7 times toN = 2148, due to the
fact that the interpolation rule requires a rather wide stencil and new vortices must each time be added
all around the vorticity support. With rezoning, there is no reason in theory for the number of particles
to grow (in practice, it may grow a little due to programming simplifications).

The situation seen in the middle plot of Figure 4, where the first remeshing event produces a jump
in the errors, is characteristic of many numerical experiments performed in this work. Many times, the
initial remesh error is as much as two or three orders of magnitude; on occasions, even more. Note,
however, that this only becomes apparent when having a very accurate initialization, either using the
8th-order cutoff, or with Gaussians using the time-shift correction in the Lamb vortex case or Beale’s
method of circulation processing (explained next) in the case of the inviscid vortex patch. Several
experiments shown in the literature utilizing standard initialization with Equation (19) have much larger
initial errors, and so the ‘jump’ in the first remeshing is not visible. For instance, the calculations of
the inviscid vortex patch (16) in [30] show for h = 0.05 an initial L2 norm error of about 4 × 10−4

(reading from the plot), which deteriorates in 100 time steps to 4× 10−2 without any remeshing. With
M ′4 remeshing carried out at every time step, the final error improves to about 2 × 10−3, and no error
jump is visible at any stage. This paper unfortunately does not specify what type of cutoff was used
(we suspect that it may be part of the thesis work of [58], in which case a 4th order algebraic cutoff
was used). Using the simple Gaussian blobs and the same value of h = 0.05, we initialize the vortex
patch with circulation processing obtaining a velocity error of 6×10−7; applying M ′4 remeshing every
five time steps, the error after 100 steps is 3 × 10−4. But most significantly, an initial remesh error is
observed which brings the velocity error immediately to order 10−5 at t = 2∆t. In the experiment of
[30] the initial error was already one order of magnitude larger than this, and no jump can be seen.

6.4. Circulation Processing

An alternative approach to control the effects of Lagrangian distortion, not based on relocating the
blobs on a regular lattice, is processing the circulation values to improve the approximation of the
discretized vorticity field to the exact one at the particle locations. The idea of recalculating the
circulations can be understood as a way of adjusting the particle volumes to account for the changes in

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–32
Prepared using fldauth.cls



ADVANCES IN VISCOUS VORTEX METHODS 17

overlap. To improve on the approximation given by (2) at a given time, one may search for new values
γi of the circulation strengths so that:

N∑
i=1

γi ζσ (xj(t)− xi(t)) = ω(xj , t) = ωj (27)

where ωj is the vorticity at the particle location, which one wishes to approximate better. Multiplying
this equation by h2, the area of a blob in a regular, square mesh, one obtains:

h2
N∑
i=1

γi ζσ (xj(t)− xi(t)) = Γj (28)

where the Γj’s are the known, current circulation values of the blobs. Equation (28) represents a linear
system for the coefficients γi, which can be written in matrix form as,

Aγ = Γ (29)

where,Aij = h2ζσ(xj(t)−xi(t)). An iterative method to solve this system was proposed by Beale [8],
who observed that the previous circulation values are a natural first guess for the γi’s. First rewriting
the system (29) as:

(A− I)γ + γ = Γ, (30)

then Beale’s iterative method is expressed by the following rule:

γn+1
i = Γi + γni −

∑
j

h2γnj ζσ (xj(t)− xi(t)) . (31)

This iterative method was used at every time step in [8], as well as in [9] in combination with the PSE
viscous scheme. However, Beale’s method is not guaranteed to converge, and in the example given in
p. 209 of [25] one can see that even though an improvement of two orders of magnitude in the velocity
accuracy is obtained at time-zero, the errors do seem to grow persistently so that the final accuracy is
just slightly better than the unprocessed case.

6.5. Vortex Blob Splitting

Blob splitting was proposed as a means to rectify the lack of consistency in the bare core spreading
method [23], by maintaining the maximum blob radius below a stipulated value, σmax. The method
consists in replacing a single vortex blob of width σ > σmax with a number (chosen as 4) of children
blobs of width ασ. The algorithm is controlled by the numerical parameter α, while other parameters
are determined by imposing the conservation of vorticity moments. Since the splitting generates
exponential growth of the problem size, a merging algorithm is proposed to alleviate this problem.
A convergence analysis is developed in [23] which proves linear convergence to the Navier-Stokes
equations in the L∞ norm. (As is pointed out in the paper, the classic convergence theory of Beale and
Majda [51] utilizes the Lp norm in the full nonlinear case, and also the standard convergence theory is
applied to the velocity, while Rossi utilizes the vorticity instead.) The error of the refinement is proved
to converge to zero as α→ 1, and for the particular choice of 1:4 refinement it is proved to be bounded
by O(1− α2) in the linear case.

The basic resolution parameter in the splitting algorithm is the fixed maximum blob width, σmax.
The accuracy parameter of the splitting is α, determining the width ασ of the children blobs. The

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–32
Prepared using fldauth.cls



18 L. A. BARBA, A. LEONARD AND C. B. ALLEN

(a) (b)

Figure 5. Ratio of the maximum vorticity of the four children blobs to the maximum vorticity of the parent blob
placed at the origin for Rossi’s 1:4 splitting, resulting in 1

α2 exp(− 1−α2

α2 ). Zoom to usual α values in (b).

children blobs’ circulation is of course 1
4 the strength of the parent, for conservation of zeroth

moment of vorticity (total circulation). They are placed with their center at a distance r from the
parent blob’s center, where r is determined from conservation of second moment of vorticity, giving
r =
√

2σ(1−α2)
1
2 in the case of blobs with cutoff (3). In [23], the values of α are chosen between 0.7

and 0.9 (with a different definition of the Gaussian cutoff), and numerical experiments are presented
using a Lamb vortex and a co-rotating vortex pair, where this latter case was compared with an RVM
calculation using much larger N . In the case of the Lamb vortex, plotted results of tangential velocity
at a given location show quite visible errors, while the plots showing blob locations reveal that there is
loss of overlap in some areas. In the case of the co-rotating vortices, the figures also show overlap loss,
in particular near the edges of each vortex. The calculation is said to compare well with RVM, but it
must be said that at the Reynolds number of the experiment, equal to 100, random walk can be quite
crude. It would seem, then, that the chosen splitting scheme results in rather low accuracy.

One problem with the splitting method is the lack of any overlap control. In addition, the scheme
introduces numerical diffusion. Furthermore, it is not clear that the criterion for calculating r based on
conservation of second moment of vorticity is the best choice. An alternative scheme was studied in
[59], where r is chosen to conserve the value of vorticity at the parent blob’s center. In one dimensional
experiments, it was found that the center vorticity constraint is more accurate than conservation of
second moment of vorticity for one-blob splitting, but it was less accurate in an experiment with eleven
blobs superimposed. Since neither constraint proved to be ‘ideal’, a set of two-dimensional tests using
a Lamb vortex were performed with the aim of finding an empirical relationship r = f(α). A linear
fit was performed to (α, r) pairs obtained on the basis of minimizing L1-norm errors of vorticity,
comparing with the analytical solution, which resulted in a relationship somewhere in between the
center vorticity and second moment constraints. This empirical law was built into the code used for the
core spreading experiments in [60], one of the few recent implementations of the core spreading vortex
method.

For the case of splitting with the second moment criterion, the diffusive character of the method is
illustrated in Figure 5. The plots are obtained from the ratio between the centre vorticity after splitting
and before splitting one blob, and one can see that the result is always less than 1 (i. e., the maximum
vorticity always decreases after splitting).
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7. HIGHER ACCURACY WITH MESHLESS SPATIAL ADAPTION

7.1. Radial Basis Function Interpolation

The problem of spatial adaption for vortex methods —i.e., determining the identifying quantities
(location and circulation) of a new set of well-overlapped particles to best approximate the current
vorticity field— can be approached as a problem of function approximation. In this perspective, one
can see a similarity between the vortex blob discretization given by (2) and the technique of radial basis
function (RBF) interpolation, a tool for solving multivariate scattered data interpolation problems. In
the context of Beale’s method of circulation processing, the problem of finding the new circulation
values so that the particle representation best approximates the vorticity field has been recognized as
a problem of “scattered data interpolation” in [8] and [9]. They both refer to Franke’s review paper
[61], where a study is made of different algorithms for the problem of scattered data interpolation on
a set of known surfaces. Franke assessed about 30 algorithms and ranked them based on six criteria
—accuracy, visual aspect, sensitivity to parameters, execution time, storage requirements and ease of
implementation. The two methods that ranked best, the so-called multi-quadrics (MQ) and thin-plate
splines (TPS) are examples of radial basis functions. But since Franke’s work, a significant volume of
literature has been published on this subject.

The problem of scattered data interpolation is that of how to approximate an unknown function
f ∈ C(Ω) whose values are known on a setX = {x1, . . . , xN} ⊂ Ω ⊂ Rd. The RBF approach, where
we follow the notation of [62], is to choose the function that approximates f to be of the form:

sf,X(x) =
N∑
j=1

αj Φj(x, xj) + p(x), (32)

where p(x) is a low-degree polynomial, and Φ : Ω × Ω → R is a fixed function that is translation
invariant and in particular satisfies

Φ(x, y) = φ(‖x− y‖2), with φ : [0,∞)→ R (radiality). (33)

Clearly, the blob discretization of the vorticity is analogous to the interpolant (32), where the
polynomial part is chosen as null and the basis function is the cutoff function, a Gaussian for example.
Indeed, Gaussians are used in RBF interpolation (and usually with null polynomial part), as are basis
functions of the following types:

(i) φ(r) = rβ , β > 0, β /∈ 2N : ‘pseudo-cubics’ (34)
(ii) φ(r) = r2k log(r), k ∈ N : ‘thin-plate splines’ (35)

(iii) φ(r) = (c2 + r2)β , β > 0, β /∈ N : ‘multi-quadrics’ (36)

The solution of (32) requires the satisfaction of the interpolation conditions by collocation, leading
to a linear system for the coefficients α = (α1, . . . , αN ) and the polynomial coefficients. For our
purposes, we can assume that the polynomial part is null, and write the system as:

Φα = ~f (37)

where ~f represents the vector of function values at the centres, ~f = {f(x1), . . . , f(xN )}, and
Φij = φ(‖xi − xj‖). The matrix Φ being full and not well conditioned, Franke [61] concluded that
global basis function methods are not feasible for large N . But since then, a great deal of work has
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contributed to effectively resolve this and several other difficulties. Preconditioning operators were
first introduced in [63] for the cases of the MQ and TPS, based on triangulation of the data points
and construction of discrete approximations to the iterated Laplacian operators, ∆k. At the same
time, progress was made in regards to theoretical aspects of the problem, with the result of [64]
that the interpolation system (37) is guaranteed a solution whenever the function Φ(x, y) is strictly
conditionally positive definite and the data distinct. As described in [62] (where proofs are given), the
theory has been greatly extended and many basis functions have been characterized, for example, the
MQ interpolant is conditionally positive definite and can be made positive definite by appending a
linear polynomial, and the Gaussian is positive definite hence not requiring a polynomial part.

The problem of ill-conditioning of the distance matrix Φ has been subject of extensive analyses
aiming to establish bounds on the norm of the inverse, ‖Φ−1‖, and on the spectral condition number
of Φ for different basis functions. In [65, 66] upper bounds on the inverse, for a given basis function,
are found to depend only on the dimension of the domain space Rd and the separation radius of the
data locations, which is defined by:

qX :=
1
2

min
1≤j 6=k≤N

‖xj − xk‖. (38)

This density measure of a point set is the minimal (half) distance that separates one site to its nearest
neighbour in the data set. If it is very small, it means that two data locations are very close together,
which in turn makes the distance matrix close to singular. The estimates on the condition number,
κ(Φ) = ‖Φ‖ ‖Φ‖−1, depend additionally on N , through the dependence of ‖Φ‖ on N . For strictly
positive definite basis functions (including the Gaussian), however, estimates independent of N were
given in [67]. These estimates reveal that the condition number becomes very large as the minimal
overlap ratio, which we could define as qX/σ for the k = 1 Gaussian, becomes small. This article also
demonstrates how, for the Gaussian, the requirement of good conditioning is at odds with the accuracy
of the interpolation, what is called the problem of “good conditioning vs. good fit”. Additional results
in regards to upper bounds on the inverse ‖Φ−1‖ are found in [68], whereas [69] provides lower
bounds for special cases of regular arrangements of the data, and [70] provides general lower bounds
for scattered data which are not expressed as a function (explicitly) of separation radius. In this last
work, it is shown how the lower bounds for ‖Φ−1‖ depend on the smoothness of Φ, becoming larger
as the smoothness increases; also, support is provided to the idea that regular placement of the data is
most favorable to the conditioning.

Much theoretical progress has been made, in addition, in the estimation of the error of interpolation
with RBF’s. Error bounds of arbitrarily high order were proved for the multi-quadrics in [71, 72], and
for Gaussians in [73], where a simpler theoretical approach is used. Both of these works require a
certain restrictive condition on the Fourier transform of the function f being approximated. The error
estimates refer to the pointwise difference between the function f and the interpolant sf,X , and are
found to be of O(hkX) where k depends on the RBF Φ and the density measure hX is called the fill
distance and defined by:

hX,Ω := sup
x∈Ω

min
1≤k≤N

‖x− xk‖ (39)

The fill distance measures the maximal distance from any point x ∈ Ω (not necessarily a data location)
to its nearest point in the data set. In the terminology of computational geometry, it is the radius of
the largest empty circle in the data. Hence, it measures how the data “fills” the support Ω, and the
quality of the approximation using RBFs (for all different choices of RBF) will deteriorate as hX,Ω
gets larger. For some basis functions, including the multi-quadrics and the Gaussian, improved error
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estimates based on h ≤ hX,Ω were found in [74]; these local estimates are O(λ1/h) as h → 0, with
0 < λ < 1. Subsequently, a representation of the norm of the error functional for different RBFs that
is workable numerically has been developed [75, 76]. This representation is bounded by the so-called
power function, P (x), in the following manner:

|f(x)− sf (x)| ≤ |f |FΦ · P (x), (40)

where FΦ is an inner-product space of functions defined via Φ and | · |FΦ is the seminorm defined in
the function space. For the Gaussian, FΦ is the space of C∞ functions. The upper bound of P (x) is
written in the form P 2(x) ≤ F (h(x)) where h(x) is a local measure of fill distance. For example,
the Gaussian Φ(x) = e−β‖x‖

2
has F (x) = e−

δ
h2 , with δ > 0. Note that this most favorable case of

exponential convergence for Gaussians comes at the cost of the worst situation in terms of conditioning,
due to it being very smooth. This was developed into a general notion of an uncertainty principle for
RBF interpolation by Schaback in [76], which says that good reproduction quality is only obtained at
the cost of poor numerical stability and vice versa. By introducing increased smoothness constraints on
the function f , approximation orders are doubled in [77], but for the Gaussian with exponential error
bounds, this does not bear a major improvement.

Finally, the extensive research in RBF interpolation has also made significant progress in regards
to computational efficiency. First, consider that evaluating a function whose approximation has been
expressed as an expansion in RBFs can be quite expensive, involving O(N) operations for each
evaluation point. Multipole expansions for the fast evaluation of the interpolant (32) were introduced
for the TPS in [78], where in addition the fast algorithms are also applied to the matrix-vector product
required at each step of an iterative solution method, in particular the pre-conditioned conjugate-
gradient method. A new method for the fast evaluation of RBF expansions, based on generalizing
the multipole method so that changes of basis are easily performed, was presented in [79]. Second, the
actual solution of the RBF interpolation problem can be prohibitive for large N , unless fast methods
are implemented. This was successfully addressed in [80], where preconditioning strategies were used
in conjunction with fast matrix-vector multiplication and a GMRES iterative solution method. The
preconditioning method is based on changing the basis in which the RBFs are represented, using
approximate cardinal functions. Numerical experiments with TPS and MQ demonstrated significant
clustering of the eigenvalues, improving the condition number by several orders of magnitude.
This lead to the GMRES solution converging in only a few iterations. The overall strategy entails
O(N logN) operations and O(N) storage. Alternatively, an approach for the fast solution of RBF
interpolation analogous to forward substitution is developed in [81, 82], based on generalization of the
iterative method constructed in [83]; this was applied to TPS while the extension to the MQ and other
conditionally positive definite functions was shown to be accessible. Considerable improvements to
this method have been performed, in particular the inclusion of a Krylov subspace algorithm which
is guaranteed to converge [84]. A third approach for the efficient solution of the RBF interpolation
system is based on domain decomposition [85]; such a method was applied to data sets of up to 5
million points in a two-dimensional application.

7.2. Comment: Significance and Application in Vortex Methods Research

The previous section amounts to a compressed review of the advancement in the field of radial basis
function interpolation. Clearly, this field comprises a substantial body of knowledge, untapped by
vortex methods workers. There is a great deal of cross-over applications that one can think of, for
example in regards to refinements of the convergence theory of the vortex blob method. For example,
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most convergence proofs start by assuming standard initialization using (19), whereas it is apparent that
a much increased accuracy can be obtained by solving the RBF interpolation system by collocation. But
first of all, we find that the ideas of RBF interpolation permit the development of fully meshless vortex
methods, where spatial adaption can be provided to overcome the problem of Lagrangian distortion of
the particle field, and also to correct the core spreading method. Spatial adaption based on the RBF
formulation consists of restarting the particle field onto a well-overlapped but not necessarily regular
lattice, thus allowing for easily conforming to boundaries. In contrast, a square lattice is obligatory
for both the rezoning strategy and any remeshing scheme based on tensor products. Moreover, the
vortex blob discretization uses the core size, σ, as a parameter determining the spatial resolution; it is
necessary that the core size be small to keep convection errors small. Sometimes, it may be desirable
to have different core sizes in different parts of the domain, for example one could allow a larger error
in the far wake of bluff body flows. Different core sizes cannot be dealt with directly in the usual
remeshing approach based on exchanging circulation; instead, some workers have devised schemes
based on carrying out the remeshing on a mapped domain [31, 86, 87, 88], thus allowing for spatially
varying cores. If one views the problem of spatial adaption as one of approximating accurately the
vorticity like an RBF interpolation problem, there is no obstacle to redefining the core sizes at the same
time that one carries out the spatial adaption. On the one hand, one can define variable resolution in the
physical domain, and on the other one can counter the problem of having cores that are too large when
the core spreading method is used to account for viscous effects. That is, the RBF adaptation procedure
can easily restart the particles to a smaller core radius. The next section will provide demonstrations of
these ideas in numerical experiments, which in addition evidence that higher accuracy can be obtained
in comparison with standard remeshing. It would seem that a grid-less formulation and high accuracy
are essentially connected.

In a more advanced application, one can envisage that the error estimates obtained for RBF
interpolation, developed to the point where there are numerically workable bounds, could be used
to design truly adaptive spatial refinement. By this we allude to the meaning generally ascribed to
the term adaptive in other sub-disciplines of CFD, such as finite elements and panel methods. The
common meaning is that the scheme should perform a certain measurement of an error indicator, and
use it to derive a refinement of the discretization (e.g., an unstructured mesh, in the finite element
context). In addition, an adaptive method should act only locally, but with the objective of reducing
the error globally in the domain. For example, having both of these attributes, locality and being
measurement based, one can view Rossi’s splitting to be indeed an adaptive refinement method, as
he calls it. Although, being based on measurement of blob size, instead of an actual error indicator,
it is a simpler and more crude form of adaptivity. In particular, the splitting cannot guarantee a given
accuracy (of the global vortex method calculation), due to the fact that it does not control blob overlap.

The notion of using local error measurement to provide adaptive refinement using the RBF ideas
has not been implemented as yet, but some simple numerical experiments with an approach akin to
rezoning have been performed. Instead of using (19) to obtain the new circulations, of course, they are
solved for by collocation (see next section for details). But an RBF adaption scheme with the feature
of acting only locally can be realized, for example, based on ideas such as coarsening and refinement
using the Voronoi diagram, as developed in [89]. The node adaption strategy proposed in this work
consists of using an error indicator which is function of the node set to assign a significance value to
each node, which in turn is used to flag nodes to be refined or coarsened. Coarsening is performed by
removing the node itself, and refinement is performed by the insertion of its Voronoi points. Thus, this
approach is fully local, adaptive, and grid-less.
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Figure 6. Vorticity and velocity errors vs. time for calculations of the Lamb vortex. Gaussian blobs with: σ = 0.03,
h/σ = 0.8 and h = 0.024, N = 1153. Time stepping: RK4, ∆t = 0.02. Left: no spatial adaption; middle:

remeshing with M ′4 every 10 time steps; right: RBF adaption (solved with SOR) every 10 time steps.

7.3. Numerical Experiments with RBF Spatial Adaption of Vortex Blobs

Presently, numerical experiments will be presented with a radial basis function formulation of the
spatial adaption process, and comparisons will be made with the standard remeshing schemes. A
number of experiments were performed in which the particle locations were restarted every few time
steps, and the circulation values of the new blobs were obtained by solving an RBF interpolation
problem. The new locations were chosen on regular lattices, square and triangular, but only for
convenience as the formulation does not require any regular particle arrangement.

Consider first a series of calculations with Gaussian blobs on a Lamb vortex with Γo = 1.0, to = 0.2,
ν = 0.001; the value of initial core radius is σ = 0.03 and diffusion is provided by core spreading.
Figure 6 presents the evolution of errors for three cases: no spatial adaption, remeshing with M ′4 every
10 time steps, and RBF adaption every 10 time steps. The initialization was performed on a square
lattice using the time-shift correction, which gives very small errors, but the time evolution cannot
preserve this (effects of time stepping, convection error and loss of the uniform lattice); upon the first
time step the accuracy is reasonably good with an L2-norm velocity error of 5.6× 10−7. It can be seen
that without spatial adaption the errors start growing quite dramatically after about 10 time steps, and
by the end of the calculation the velocity error is 3.5 × 10−4 (with an intermediate maximum value
of 1.8× 10−3). Adding M ′4 remeshing, the final velocity error is only slightly smaller, at 2.5× 10−4,
but the maximum values of errors during the whole calculation are about 70% smaller for velocity
and 50% smaller for vorticity (both error measures, L2 norm and maximum norm). The initial remesh
error is obvious, in this case a jump of almost two orders of magnitude. The final value of core size
for these two runs is σ = 0.07. The remeshing calculation was repeated but using instead the Λ3

kernel (not shown), with very similar results, but a slightly smaller initial remesh error. The plot on the
right of Figure 6 shows the results obtained when the vortex blobs were restarted on the initial square
grid, and their circulation values were obtained by solving the RBF-type linear system using SOR with
underrelaxation. This solution scheme was chosen due to it having been used before to solve for the
circulations upon initializing an elliptical vortex patch in [28]. Note that with the RBF adaption scheme
there is not a visible error upon the first processing event, demonstrating an immediate and considerable
improvement over standard remeshing. The final L2-norm velocity error in this case is 1.5 × 10−6,
consisting of a two-order-of-magnitude improvement over remeshing. Finally, and importantly, in this
calculation the core sizes were restarted to their initial values upon each RBF adaption event, so that
the maximum value of σ was 0.036. In other words, the correction for the core spreading method is
provided in addition to accurate spatial adaption by location processing.
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Figure 7. Vorticity and velocity errors vs. time; Lamb vortex, Gaussian blobs: σ = 0.03, h/σ = 0.8; nominal
h = 0.024 in a triangular lattice. RK4, ∆t = 0.02. Left: RBF adaption every 10 time steps; middle: hexagonal

redistribution scheme every 10 time steps; right: hexagonal redistribution with halved value of h.

Similar experiments were performed using an initial particle distribution on a lattice of equilateral
triangles. This time, both for the initialization and the RBF adaption processes, the circulations were
obtained using a GMRES scheme developed for RBF interpolation of geophysical data in [90]. See
Figure 7, left. The L2-norm velocity error is 2.16× 10−7 upon the first time step, and the final value is
1.4×10−6. All errors are slightly smaller than the case on the square lattice, even though the resolutions
were made equivalent by ‘stretching’ the value of h here, to obtain the same cell area. At this point, we
will digress somewhat to discuss this increased accuracy in the triangular lattice, which was pointed out
previously in the end of §4. According to our discussion of RBF interpolation, in particular in regards
to the error estimates, it is expected that the errors be smaller for particle arrangements with smaller
fill distance. In a square lattice, the radius of the largest empty circle is equal to

√
2/2 · h = 0.707h.

In an equivalent resolution triangular lattice, equal cell area gives:
√

3/2 · h2
t = h2

s, where hs is the
point separation in the equivalent square lattice. The radius of the largest empty circle in the triangular
lattice is

√
3/3 · ht, which combined with the previous relationship gives 0.621hs; i.e. the triangular

lattice ‘fills space’ better, and the RBF interpolation is more accurate.
For comparison with remeshing on the triangular lattice, a new hexagonal redistribution scheme

developed at GALCIT was used; this scheme is a higher (third) order version of the face-centered
schemes introduced in [91]. Its advantages over the M ′4 scheme are a narrower stencil, so it injects
less particles on the edges of the domain, and a more isotropic distribution of circulation. Figure 7,
center, shows the errors obtained with this remeshing scheme under the same parameter combination
as the calculation with RBF adaption, left. The result is quite similar to previously, when M ′4 was
compared with the RBF adaption case on the square lattice (where SOR was used to solve for the
circulations); there is a visible initial remesh error and the final L2-norm velocity error is 2.5× 10−4.
All errors are very similar to the previous case with M ′4 remeshing (Figure 6, center), but one can see
that the error curves are more ‘flat’; this is the effect of the improved isotropy characteristics of the
hexagonal redistribution. On Figure 7, right, a calculation is shown where the value of h was halved.
This results in an improvement, but it does not equal the accuracy of the RBF adaption case. It was
found that the value of h has to be between 2 and 3 times smaller to obtain the same accuracy with
standard remeshing, at this resolution. This means that in 2D the problem size can be up to an order of
magnitude smaller when one uses the RBF formulation, to obtain the same accuracy as with remeshing.

Similar results as those described above were obtained on the inviscid test problem. For example,
discretizing the vortex patch (16) using Gaussian blobs on a square lattice, initialized with 5 iterations
of circulation processing (Beale’s method), with σ = 0.05, h/σ = 1.0, N = 1245, and ∆t = 0.02
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(RK4), an initial L2-norm velocity error of 5.6 × 10−7 is obtained. The final velocity error after 60
time steps without remeshing is 1.3× 10−4, while with M ′4 remeshing every 10 steps the final error is
reduced to 6.5× 10−5. Most of this error is suffered upon the initial remeshing process, however. Note
that this initial remesh error would not have been visible if circulation processing at time-zero had not
been performed, which increased the initial velocity accuracy by almost 4 orders of magnitude. For
this reason, other numerical experiments with this test problem reported in the literature, which start
with less accurate initializations, describe very good results with M ′4 remeshing and do not observe
the initial remesh error; for example, [30] and [25], p. 235. A calculation of the inviscid vortex patch
with the same parameters, but using RBF adaption instead of remeshing, was carried out to a final time
about three times larger than above, obtaining a final velocity error of 4.2 × 10−6. This calculation
used SOR to solve for the circulation strengths. More details and error plots of the experiments with
the inviscid vortex described in this paragraph were presented in [92].

The numerical experiments described in this section are very encouraging. Indeed, several more
experiments were performed which support the conclusion that the vortex method has the potential
for an increased accuracy. The problem seems to be that the standard remeshing approach brings back
the mesh to an otherwise meshless method, thereby adding numerical dissipation. Evidently this is
more important when calculating higher Reynolds number flows. The advantages of the RBF adaption
are increased accuracy, in addition to a truly meshless formulation. The first advantage can be more
dramatic at high resolution; e.g., one experiment with the Lamb vortex using h = 0.0175 produced
a final velocity error of 3 × 10−8, which provided a four-order of magnitude improvement over
remeshing; see this result in [92]. Many more numerical experiments and additional details, including
a grid-refinement study, can be found in [93]. Finally, the approach allows one to correctly use the
core spreading method, thereby avoiding the errors and difficulties associated with other means of
accounting for viscous effects.

8. PROOF-OF-CONCEPT CALCULATION: A RELAXING PERTURBED MONOPOLE

When a strong vortex is subject to a perturbation, the first fundamental question that arises is whether
the vortex will return to an axisymmetric shape. Also, one is interested in the time scale of the relaxation
process. In the case of an m = 2 perturbation (quadrupole), the main effect is a localized elliptical
deformation of the main vortex. The question of axisymmetrization of elliptical vortices has been
subject of much interest, initiated by [94] where it is argued that relaxation towards axisymmetry is a
generic process of two-dimensional vortices.

An axisymmetric Gaussian monopole with a quadrupolar perturbation was studied numerically using
the vortex method with core spreading and splitting/merging in [10]. It was found that the perturbed
monopole axisymmetrizes for small perturbations, but relaxes to a tripolar attractor if the perturbation
is strong enough. When this is this case, the positive portion of the perturbation is homogenized through
mixing, while the negative part is persistent, thereby forming a quasi-steady rotating tripole. Rossi’s
numerical experiments were performed in a range of Reynolds numbers between 103 and 104, and
erosion of the tripole structure was seen for the smaller Reynolds number.

Presently, we have computed this same problem using the vortex method with core spreading
and RBF adaption, and compare results with [10]. The initial condition is the superposition of the
axisymmetric vortex ωo, and a perturbation ω′:

ωo(x) =
1

4π
e
−|x|2

4 , ω′(x) =
δ

4π
|x|2e

−|x|2
4 cos 2θ. (41)
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where θ = arg(x) and δ is the strength of the perturbation; Rossi used a value of δ = 0.25 and
observed the quasi-steady tripole. With this value of the perturbation andRe = 104, we have performed
a calculation using Gaussian blobs with σ = 0.2, h/σ = 0.9 resulting in N ∼= 4600 (unfortunately,
Rossi does not list any numerical parameters used). RBF adaption was performed every 10 time steps,
resulting in a maximum core size σmax = 0.205. The results are presented in Figure 8 in the form of
contour plots of total vorticity and vorticity perturbation, which can be compared with Figure 1 of [10]
(reproduced here in part, with permission). It can be seen that the results compare very well, in terms
of the shape of the contours and the rotation angle of the structure, but the results of [10] look quite a
bit more rugged. It is suspected that this is the effect of the numerical errors of the splitting/merging
processes. This is supported by results of calculations with different Reynolds numbers, at the same
time. Figure 9 presents the contours of vorticity perturbation at t = 500 for the three values of Re:
103, 5 × 103, 104. Comparing with the results of [10] (Figure 8: reproduced here with permission),
it can be seen that for the two higher Reynolds number calculations, the shape of the structure and
its angular position correspond very closely with Rossi’s calculations, where once again the contours
of the present calculation look smoother. However, for the lowest Reynolds number Rossi observed a
much more pronounced erosion of the tripole structure (note that in Figure 8 of [10], left, the negative
and positive contours are swapped). This difference may be attributed to the numerical errors in the
splitting/merging. Indeed, in a calculation with a lower Reynolds number of 500 we still did not see
the vorticity erosion that Rossi experiences for Re = 103. These calculations support the assertion that
RBF adaption can provide an increased accuracy, while at the same time correcting the core spreading
viscous method.

The quasi-steady nature of the tripole attractor means that it evolves slowly due to viscous effects on
the Reynolds number timescale. This decay is illustrated in Figure 10(a), where the additional case of
Re = 500 has been included. This plot shows the ratio of minimum to maximum vorticity vs. Reynolds
timescale, where the decay is similar at different Reynolds numbers. The present calculations, however,
seem to show a more marked retardation of the decay for the lowerRe in comparison with [10]. Figure
10(b) shows the same data plotted with a logarithmic scale on the abscissa, which helps to see the early
re-organization of the vortical structure. For all Reynolds numbers, the inclusions of negative vorticity
tend to vanish and the asymptotic state is an axisymmetric vortex.

9. CONCLUDING REMARKS

This article has presented a vortex method using a formulation based on radial basis function (RBF)
interpolation for the spatial adaption of the Lagrangian vortices, which preserves the grid-free nature
of the method. The method has been tested with various numerical experiments, and we conclude that
there is a link between a meshless formulation and an increased accuracy. Numerical experiments show
considerably more accuracy than standard remeshing, and also better results than blob splitting for the
core spreading method.

The paper also has ingredients of a review in the areas of: viscous schemes for vortex methods,
spatial adaption schemes, and RBF interpolation. The topic of viscous schemes has been discussed
with the aim of presenting a case for the core spreading vortex method. It is argued that a difficulty for
viscous vortex schemes is the Lagrangian nature of the method and the need for spatial adaption. As
is well known, the widespread use of the particle strength exchange (PSE) method has promoted the
development of remeshing schemes, the avoidance of which has in turn motivated the development
of quite complicated or computationally expensive methods (vortex redistribution method, VRM;
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Figure 8. Perturbed monopole relaxing to a tripole attractor. Re = 104, δ = 0.25. Top two rows: total vorticity
field; bottom two rows: perturbation vorticity. Negative contours in dotted line. Rows 1 and 3: present method.

Rows 2 and 4: Rossi’s vortex blob splitting method, reproduced from [10] with permission.
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Figure 9. Perturbed monopole relaxing to a tripole attractor; perturbation vorticity at varying Reynolds number:
from left to right, Re = 1000, 5000, 104. First row: present method, maximum vortex blob core size, respectively,

0.245, 0.21, 0.205. Second row: Rossi’s splitting method, reproduced from [10] with permission.

Figure 10. Decay of tripole structure on the Reynolds number timescale. Ratio of minimum to maximum vorticity
values vs. t/Re on a linear scale (a), and a logarithmic scale (b).
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tetrahedral vortex element, TVE). Other alternatives like Fishelov’s method and diffusion velocity
also require very nearly uniform particle distributions. On the other hand, the core spreading method
suffered mathematical objections, which were recently corrected using a spatial adaption scheme (blob
splitting) that unfortunately is not very accurate —comparable to random walk, or RVM. Other than
that, core spreading shares with RVM the features of being local, simple, parallelizable and grid-free
—with the addition of being deterministic.

The research on RBF interpolation has been reviewed to show that the considerable progress in this
area provides many avenues for cross-over applications in vortex methods. An RBF-based adaption
scheme allows for a truly meshless method, with opportunities for developing a truly adaptive spatial
refinement (local, based on defined criteria: error, stability), the provision of correction for core
spreading that’s more accurate than blob splitting, and permitting implementation of variable resolution
in the physical domain (this constitutes research in progress). Furthermore, advanced fast methods of
solution are available.

Other interesting observations made here include the fact that in the choice of cutoff function one
should consider that higher-order cutoffs are more vulnerable to loss of overlap. Also, the optimality of
a triangular lattice of vortices, in terms of providing maximum accuracy of discretization. And possibly
the most important observation is the fact that the standard remeshing schemes limit the accuracy of
the vortex method, as even with a very accurate initialization one consistently observes an ‘initial
remesh error’. Experiments with RBF adaption show an immediate improvement by the absence of
this error. These last observations (omitting the first) are consistent with remarks made quite early, as
in [5] one reads: “... the most significant numerical error arises from the anisotropic [cloud-in-cell,]
CIC–interpolation of velocities ... The only way to [improve this] is either to adopt a more complex
interpolation algorithm which produces an isotropic velocity field from a point vortex (r-dependence
only) or to employ a different mesh structure (for example a hexagonal or triangular mesh).” Standard
remeshing as well as classic rezoning both require square particle lattices, while the RBF formulation
does not. It rests to investigate the degree to which the accuracy is reduced if non-optimal scattered
blob locations were used. Comparing results of RBF adaption vs. standard remeshing on square and
triangular lattices, however, the numerical experiments performed show improvements in accuracy of
between one and four orders of magnitude, the most considerable improvements corresponding to the
higher resolution calculations (consistent with a higher convergence rate for RBF interpolation). In a
given resolution, it was found that about an order of magnitude less particles could be used to obtain
the same accuracy with RBF adaption as with remeshing (in 2D). For this reason, one can be optimistic
on the application of these methods for high Reynolds number calculations.
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