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Abstract—Lane detection is a fundamental aspect of most
current advanced driver assistance systems (ADASs). A large
number of existing results focus on the study of vision-based lane
detection methods due to the extensive knowledge background
and the low-cost of camera devices. In this paper, previous vision-
based lane detection studies are reviewed in terms of three
aspects, which are lane detection algorithms, integration, and
evaluation methods. Next, considering the inevitable limitations
that exist in the camera-based lane detection system, the system
integration methodologies for constructing more robust detection
systems are reviewed and analyzed. The integration methods
are further divided into three levels, namely, algorithm, system,
and sensor. Algorithm level combines different lane detection
algorithms while system level integrates other object detection
systems to comprehensively detect lane positions. Sensor level
uses multi-modal sensors to build a robust lane recognition
system. In view of the complexity of evaluating the detection
system, and the lack of common evaluation procedure and
uniform metrics in past studies, the existing evaluation methods
and metrics are analyzed and classified to propose a better
evaluation of the lane detection system. Next, a comparison
of representative studies is performed. Finally, a discussion on
the limitations of current lane detection systems and the future
developing trends toward an Artificial Society, Computational
experiment-based parallel lane detection framework is proposed.

Index Terms—Advanced driver assistance systems (ADASs),
ACP theory, benchmark, lane detection, parallel vision, perfor-
mance evaluation.
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I. INTRODUCTION

A. Background

TRAFFIC accidents are mainly caused by human mistakes

such as inattention, misbehavior, and distraction [1].

A large number of companies and institutes have proposed

methods and techniques for the improvement of driving safety

and reduction of traffic accidents. Among these techniques,

road perception and lane marking detection play a vital

role in helping drivers avoid mistakes. The lane detection is

the foundation of many advanced driver assistance systems

(ADASs) such as the lane departure warning system (LDWS)

and the lane keeping assistance system (LKAS) [2], [3].

Some successful ADAS or automotive enterprises, such as

Mobileye, BMW, and Tesla, etc. have developed their own

lane detection and lane keeping products and have obtained

significant achievements in both research and real world ap-

plications. Either of the automotive enterprises or the personal

customers have accepted the Mobileye Series ADAS products

and Tesla Autopilot for self-driving. Almost all of the current

mature lane assistance products use vision-based techniques

since the lane markings are painted on the road for human

visual perception. The utilization of vision-based techniques

detects lanes from the camera devices and prevents the driver

from making unintended lane changes. Therefore, the accuracy

and robustness are two most important properties for lane

detection systems. Lane detection systems should have the

capability to be aware of unreasonable detections and adjust

the detection and tracking algorithm accordingly [4], [5].

When a false alarm occurs, the ADAS should alert the driver

to concentrate on the driving task. On the other hand, vehicles

with high levels of automation continuously monitor their

environments and should be able to deal with low-accuracy

detection problems by themselves. Hence, evaluation of lane

detection systems becomes even more critical with increasing

automation of vehicles.

Most vision-based lane detection systems are commonly

designed based on image processing techniques within similar

frameworks. With the development of high-speed computing

devices and advanced machine learning theories such as deep

learning, lane detection problems can be solved in a more

efficient fashion using an end-to-end detection procedure.

However, the critical challenge faced by lane detection systems

is the demand for high reliability and the diverse working

conditions. One efficient way to construct robust and accurate
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advanced lane detection systems is to fuse multi-modal sensors

and integrate lane detection systems with other object detec-

tion systems, such as detection by surrounding vehicles and

road area recognition. It has been proved that lane detection

performance can be improved with these multi-level integra-

tion techniques [4]. However, the highly accurate sensors such

as the light/laser detection and ranging (LIDAR/LADAR) are

expensive and not available in public transport.

B. Contribution

In this study, the literature reviews on the lane detection al-

gorithms, the integration methods, and evaluation methods are

provided. The contribution of this paper can be summarized

as follows.

A considerable number of existing studies do not provide

enough information on the integration methodologies of lane

detection systems and other systems or sensors. Therefore, in

this study, the integration methodologies are analyzed in detail

and the ways of integration are categorized into three levels:

sensor level, system level, and algorithm level.

Due to the lack of ground truth data and uniform metrics, the

evaluation of the lane detection system remains a challenge.

Since various lane detection systems differ with respect to the

hardware and software they use, it is difficult to undertake a

comprehensive comparison and evaluation of these systems.

In this study, previous evaluation methods are reviewed and

classified into offline methods, which still use images and

videos, and online methods, which are based on real time

confidence calculation.

Finally, a novel lane detection system design framework

based on the ACP parallel theory is introduced toward a

more efficient way to deal with the training and evaluation

of lane detection models. ACP is short for Artificial society,

Computational experiments, and Parallel execution, which are

three major components of the parallel systems. The ACP-

based lane detection parallel system aims to construct virtual

parallel scenarios for model training and benefit the corre-

sponding real-world system. The construction method for the

lane detection parallel vision system will be analyzed.

C. Paper Organization

This paper is organized as follows: Section II provides a

brief overview of existing lane detection algorithms. Section

III summarizes the integration methods used in lane detection

systems and three levels of integration methods are discussed.

In Section IV, the online and offline evaluation methods for

lane detection systems will be presented, followed by an

analysis of evaluation metrics. In section V, the limitations

of current approaches and discussion on developing advanced

lane detection systems in the future developing trend will

be proposed. The ACP-based parallel theory, as one of the

powerful tool to assist the design of lane detection systems

will also be introduced. Finally, we will conclude our work in

Section VI.

II. VISION-BASED LANE DETECTION ALGORITHM

REVIEW

Literature reviews of lane detection algorithms and their

corresponding general frameworks have been proposed in

[4]−[6]. Hillel et al. concluded that road color, texture,

boundaries, and lane markings are the main perception aspects

for human drivers [4]. In [5], McCall and Trivedi classified

the lane detection objectives into three categories, which

are lane departure warning, driver attention awareness, and

automated vehicle control system design. However, they paid

much attention to the design of lane detection algorithms and

incompletely review the integration and evaluation methods.

This study tries to comprehensively review the lane detec-

tion system from the perspective of algorithms, integration

methods, and evaluation methods. Firstly, in this section, lane

detection algorithms and techniques are reviewed from the

scope of conventional image processing and novel machine

learning methods. In the first part of this section, basic lane

detection procedures and general frameworks will be analyzed.

The second part will concentrate on the review of commonly

used conventional image processing methods. In the last part,

lane detection algorithms based on machine learning and deep

learning methods, especially the utilization of convolutional

neural network (CNN), will be discussed.

A. General Lane Detection Procedure

Vision-based lane detection systems described in studies

usually consist of three main procedures, which are image

preprocessing, lane detection and lane tracking. Among these,

the lane detection process, which comprises feature extraction

and model fitting, is the most important aspect of the lane

detection system, as shown in Fig. 1. The most common

procedures in the pre-processing step include region of interest

(ROI) selection, vanishing point detection, transferring color

image into greyscale image or a different color format, noise

removal and blur, inverse perspective mapping (IPM), also

known as birds-eye view, segmentation, and edge statistics,

etc. Among these tasks, determining the ROI is usually the first

step performed in most of previous studies. The main reason

for focusing on ROI is to increase computation efficiency and

reduce false lane detections. ROI can be roughly selected as

the lower portion of an input image or dynamically determined

according to the detected lanes. It can also be more efficiently

determined with prior road area detections [7], [8]. Details

of these methods are described in the next section. Generally

speaking, a carefully-designed ROI will significantly improve

lane detection accuracy as well as computation efficiency.

Fig. 1. General architecture of lane detection system. The feedback loop

indicates that the tracked position of the lane markings can be used to narrow

the searching and processing range of the pre-processing unit.
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Once the input images have been pre-processed, lane fea-

tures such as the colors and edge features can be extracted and,

therefore, can be detected based on these features. The Hough

Transform algorithm, which uses the edge pixel images, is

one of the most widely used algorithms for lane detection in

previous studies. However, this method is designed to detect

straight lines in the beginning and is not efficient in curve

lane detection. Curve lanes can often be detected based on

model fitting techniques such as random sample consensus

(RANSAC). RANSAC fits lane models by recursively testing

the model fitting score to find the optimal model parameters.

Therefore, it has a strong ability to cope with outlier features.

Finally, after lanes have been successfully detected, lane

positions can be tracked with tracking algorithms such as

Kalman filter or particle filters to refine the detection results

and predict lane positions in a more efficient way.

B. Conventional Image-Processing-Based Lane Detection Al-

gorithms

Vision-based lane detection can be roughly classified

into two categories: feature-based [9]−[19] and model-based

[20]−[29]. Feature-based methods rely on the detection of lane

marking features such as lane colors, textures, and edges. For

example, in [9], noisy lane edge features were detected using

the Sobel operator and the road images were divided into

multiple subregions along the vertical direction. Suddamalla et

al detected the curves and straight lanes using pixel intensity

and edge information with lane markings being extracted

with adaptive threshold techniques [10]. To remove camera

perspective distortions from the digital images and extract real

lane features, lane markings can be efficiently detected with

a perspective transform. Collado et al. created a bird-view of

the road image and proposed an adaptive lane detection and

classification method based on spatial lane features and the

Hough transform algorithm [11]. A combination of IPM and

clustered particle filters method based on lane features was

used to estimate multiple lanes in [12]. The authors claimed

that it is less robust if a strong lane model is used in the

context and they only used a weak model for particle filter

tracking. Instead of using color images, lanes can also be

detected using other color format images. The general idea

behind the color format transform is that the yellow and white

lane markings can be more distinct in other color domain, so

the contrast ratio is increased. In [13], lane edges were detected

with an extended edge linking algorithm in the lane hypothesis

stage. Lane pixels in the YUV format, edge orientation, and

width of lane markings were used to select the candidate

edge-link pairs in the lane verification step. In [14], lanes

were recognized using an unsupervised and adaptive classifier.

Color images were first converted to HSV format to increase

the contrast. Then, the binary feature image was processed

using the threshold method based on the brightness values.

Although in some normal cases the color transform can benefit

the lane detection, it is not robust and has limited ability to

deal with shadows and illumination variation [4].

Borkar et al. proposed a layered approach to detect lanes at

night [15]. A temporal blur technique was used to reduce video

noise and binary images were generated based on an adaptive

local threshold method. The lane finding in another domain

algorithm (LANA) represented lane features in the frequency

domain [16]. The algorithm captured the lane strength and

orientation in the frequency domain and a deformable template

was used to detect the lane markings. Results showed that

LANA was robust under varying conditions. In [17], a spa-

tiotemporal lane detection algorithm was introduced. A series

of spatiotemporal images were generated by accumulating

certain row pixels from the past frames and the lanes were

detected using Hough transform applied on the synthesized im-

ages. In [18], a real-time lane detection system based on FPGA

and DSP was designed based on lane gradient amplitude

features and an improved Hough Transform. Ozgunalp and

Dahnoun proposed an improved feature map for lane detection

[19]. The lane orientation histogram was first determined with

edge orientations and then the feature map was improved and

shifted based on the estimated lane orientation.

In general, feature-based methods have better computational

efficiency and are able to accurately detect lanes when the lane

markings are clear. However, due to too many constraints are

assumed, such as the lane colors and shapes, the drawbacks

of these methods include less robustness to deal with shad-

ows and poor visibility conditions compared to model-based

methods.

Model-based methods usually assume that lanes can be

described with a specific model such as a linear model, a

parabolic model, or various kinds of spline models. Besides,

some assumptions about the road and lanes, such as a flat

ground plane, are required. Among these models, spline mod-

els were popular in previous studies since these models are

flexible enough to recover any shapes of the curve lanes. Wang

et al. fitted lanes with different spline models [20], [21]. In

[20], a Catmull-Rom spline was used to model the lanes in

the image. In [21], the lane model was improved to generate

a B-snake model, which can model any arbitrary shape by

changing the control points. In [22], a novel parallel-snake

model was introduced. In [23], lane boundaries were detected

based on a combination of Hough transform in near-field areas

and a river-flow method in farfield areas. Finally, lanes were

modelled with a B-spline model and tracked with a Kalman

filter. Jung and Kelber described the lanes with a linear-

parabolic model and classified the lane types based on the

estimated lane geometries [24]. Aly proposed a multiple lane

fitting method based on the integration of Hough transform,

RANSAC, and B-spline model [25]. Initial lane positions

were first roughly detected with Hough transform and then

improved with RANSAC and B-spline model. Moreover, a

manually labelled lane dataset called the Caltech Lane dataset

was introduced.

The RANSAC algorithm is the most popular way to iter-

atively estimate the lane model parameters. In [26], linear

lane model and RANSAC were used to detect lanes, and

a Kalman filter was used to refine the noisy output. Ridge

features and adapted RANSAC for both straight and curve

lane fitting were proposed in [27], [28]. The ridge features of

lane pixels, which depend on the local structures rather than

contrast, were defined as the center lines of a bright structure
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of a region in a greyscale image. In [29], [30], hyperbolic

model and RANSAC were used for lane fitting. In [30], input

images were divided into two parts known as far-field area

and near-field area. In near-field area, lanes were regarded as

straight lines detected using the Hough transform algorithm.

In far-field area, lanes were assumed to be curved lines and

fitted using hyperbolic model and RANSAC.

In [31], a conditional random field method was proposed to

detect lane marks in urban areas. Bounini et al. introduced a

lane boundary detection method for an autonomous vehicle

working in a simulation environment [32]. A least-square

method was used to fit the line model and the computation cost

was reduced by determining a dynamic ROI. In [33], an au-

tomated multi-segment lane-switch scheme and an RANSAC

lane fitting method were proposed. The RANSAC algorithm

was applied to fit the lines based on the edge image. A lane-

switch scheme was used to determine lane curvatures and

choose the correct lane models from straight and curve models

to fit the lanes. In [34], a Gabor wavelet filter was applied to

estimate the orientation of each pixel and match a second-order

geometric lane model. Niu et al. proposed a novel curve fitting

algorithm for lane detection with a two-stage feature extraction

algorithm (LDTFE) [35]. A density based spatial clustering of

application with noise (DBSCAN) algorithm was applied to

determine whether the candidate lane line segments belong

to ego lanes or not. The identified small lane line segments

can be fitted with curve model and this method is particularly

efficient for small lane segment detection tasks.

Generally speaking, model-based methods are more robust

than feature-based methods because of the use of model-

fitting techniques. The noisy measurement and the outlier

pixels of lane markings usually can be ignored with the

model. However, model-based methods usually entail more

computational cost since RANSAC has no upper limits on

the number of iterations. Moreover, model-based methods are

less easy to be implemented compared to the feature-based

systems.

C. Machine Learning-Based Lane Detection Algorithms

Despite using conventional image processing-based meth-

ods to detect lane markings, some researchers focus on de-

tecting lane marking using novel machine learning and deep

learning methods. Deep learning techniques have been one

of the hottest research areas in the past decade due to the

development of deep network theories, parallel computing

techniques, and large-scale data. Many deep learning algo-

rithms show great advantages in computer vision tasks and the

detection and recognition performance increases dramatically

compared to conventional approaches. The convolution neural

network (CNN) is one of the most popular approaches used

for the object recognition research. CNN provides some im-

pressive properties such as high detection accuracy, automatic

feature learning, and end-to-end recognition. Recently, some

researchers have successfully applied CNN and other deep

learning techniques to lane detection. It was reported that

by using CNN model, the lane detection accuracy increased

dramatically from 80% to 90% compared with traditional

image processing methods [36].

Li et al. proposed a lane detection system based on deep

CNN and recurrent neural network (RNN) [37]. A CNN was

fed with a small ROI image that was used for multiple tasks.

There are two types of CNN outputs. The first is a discrete

classification result indicating if the visual cues are lane

markers or not. If a lane is detected, then the other output will

be the continuous estimation of lane orientation and location.

To recognize the global lane structures in a video sequence

instead of local lane positions in a single image, RNN was

used to recognize the lane structures in sequence data with

its internal memory scheme. Training was based on a merged

scene with three cameras facing front, left side and rear area,

respectively. It was shown that RNN can help recognize and

connect lanes that are covered by vehicles or obstacles.

Gurghian et al. proposed another deep CNN method for

lane marking detection using two side-facing cameras [38].

The proposed CNN recognized the side lane positions with an

end-to-end detection process. The CNN was trained with both

real world images and synthesized images and achieved a 99%

high detection accuracy. To solve the low accuracy and high

computational cost problem, authors in [36] proposed a novel

lane marking detection method based on a point cloud map

generated by a laser scanner. To improve the robustness and

accuracy of the CNN result, a gradual up-sampling method

was introduced. The output image was in the same format

as the input images to get an accurate classification result.

The reported computation cost of each algorithm is 28.8 s on

average, which can be used for the offline high-precision road

map construction.

In [39], a spiking neural network was used to extract edge

images and lanes were detected based on Hough transform.

This was inspired by the idea that a human neuron system

produces a dense pulse response to edges while generating

a sparse pulse signal to flat inputs. A similar approach can

be found in [40]. The study proposed a lane detection method

based on RANSAC and CNN. One eight-layer CNN including

three convolution layers was used to remove the noise in

edge pixels if the input images were too complex. Otherwise,

RANSAC was applied to the edge image directly to fit the lane

model. He et al. proposed a dual-view CNN for lane detection

[41]. Two different views, which were the front view and top

view of the road obtained from the same camera, were fed

into the pre-trained CNN simultaneously. The CNN contained

two sub-CNN networks to process two kinds of input images

separately and concatenate the results eventually. Finally, an

optimal global strategy taking into account lane length, width,

and orientations was used to threshold the final lane markings.

Instead of using the general image processing and ma-

chine learning methods, some other researchers used evolution

algorithms or heuristic algorithms to automatically search

lane boundaries. For example, Revilloud et al. proposed a

novel lane detection method using a confidence map and a

multi-agent model inspired by human driver behaviors [42].

Similarly, an ant colonies evolution algorithm for the optimal

lane marking search was proposed in [43]. A novel multiple-

lane detection method using directional random walking was

introduced in [44]. In that study, a morphology-based approach

was used to extract lane mark features at the beginning.
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Then, the directional random walking based on a Markov

probability matrix was applied to link candidate lane features.

The proposed algorithm required no assumption about the road

curvatures or lane shapes.

In summary, it can be stated that machine learning algo-

rithms or intelligent algorithms increase the lane detection

accuracy significantly and provide many efficient detection

architectures and techniques. Although these systems usually

require more computational cost and need a large number of

training data, these systems are more powerful than conven-

tional methods. Therefore, many novel efficient and robust

lane detection methods with lower training and computation

requirements are expected to be developed in the near future.

III. INTEGRATION METHODOLOGIES FOR VISION-BASED

LANE DETECTION SYSTEMS

A. Integration Methods Introduction

Although many studies have been done to enable the ac-

curate vision-based lane detection, the robustness of the de-

tection systems still cannot meet the real-world requirements,

especially in urban areas, due to the highly random properties

of the traffic and the state of roads. Therefore, a reasonable

way to enhance the lane detection system is to introduce

redundancy algorithms, integrate with other object detection

systems or use sensor fusion methods. It is a common agree-

ment among automotive industries that a single sensor is not

enough for vehicle perception tasks. Some companies such as

Tesla, Mobileye, and Delphi developed their own intelligent

on-vehicle perception systems using multiple sensors like

cameras, and radar (especially the millimeter-wave radar). In

this section, the integration methods will be classified into

three levels, which are algorithm level, system level, and

sensor level, as shown in Fig. 2.

Specifically, the algorithm level integration combines dif-

ferent lane detection algorithms together to comprehensively

determine reasonable lane positions and improve the robust-

ness of the system. In the system level integration, different

object detection systems work simultaneously with real-time

communication with one another. Finally, in the sensor level

integration, multi-modal sensors are integrated. The proposed

sensor fusion methods in this level are believed to improve

the robustness of the lane detection system most significantly.

In the following sub-sections, the aforementioned multi-level

integration techniques will be described in detail and the

studies conducted within each scope will be discussed.

B. Algorithm Level Integration

Integration of vision-based lane detection algorithms has

been widely used in the past. Previous studies focused on two

main integration architectures, which can be summarized as

parallel and serial combination methods. Moreover, feature-

based and model-based algorithms can also be combined

together. Serial combination methods were commonly seen in

the past. Studies in [20], [21], [25] demonstrate the exam-

ples of methods that serially combined the Hough transform,

RANSAC, and spline model fitting methods. Another method

followed in multiple studies involves applying a lane tracking

system after the lane detection procedure to refine and improve

the stability of the detected lanes [5], [21], [22], [45]−[47].

For lane tracking, Kalman filter and particle filter were two

most widely used tracking algorithms [4]. Shin proposed a

super-particle filter combining two separate particle filters for

ego lane boundary tracking [48]. In [49], a learning-based lane

detection method was proposed and tracked with a particle

filter. The learning-based algorithm requires no prior road

model and vehicle velocity knowledge.

Fig. 2. Diagram for lane detection integration level.

Parallel combination methods can be found in [50], [51].

In [50], a monocular vision-based lane detection system was

combined with two independent algorithms in parallel to make

a comprehensive judgement. The first algorithm used a lane

marking extractor and road shape estimation to find potential

lanes. Meanwhile, a simple feature-based detection algorithm

was applied to check the candidate lanes chosen by the first

algorithm. If the final results from the two algorithms are

comparable with each other, the detection result is accepted.

Labayrade et al. proposed three parallel integrated algorithms

to pursue a robust lane detection with higher confidence [51].

Two lower level lane detection algorithms, namely, lateral

and longitudinal consistent detection methods, were processed

simultaneously. Then, the sampling points of the detected lanes

given by these two lower level detection algorithms were

tested. If the results were close to each other, the detection

was viewed as a success and the average position from the

two algorithms was selected as the lane position.

Some studies also combined different lane features to con-

struct a more accurate feature vector for lane detections. In

[52], the lane detection system was based on the fusion of
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color and edge features. Color features were used to separate

road foreground and background regions using Otsus method,

while edges were detected with a Canny detector. Finally,

curve lanes in the image were fitted using the Lagrange

interpolating polynomial. In [53], a three-features based auto-

matic lane detection algorithm (TFALDA) was proposed. Lane

boundary was represented as a three-feature vector, which

includes intensity, position, and orientation values of the lane

pixels. The continuity of lanes was used as the selection

criteria to choose the best current lane vector that was at the

minimum distance with the previous one.

Although parallel integration methods improve the robust-

ness of the system by introducing redundancy algorithms, the

computation burden will increase correspondingly. Therefore,

a more efficient way is to combine algorithms in a dynamic

manner and only initiate a redundancy system when it is

necessary.

C. System Level Integration

Lane detections in the real world can be affected by

surrounding vehicles and other obstacles, which may have

similar color or texture features to the lane markings in the

digital images. For instance, the guardrail usually shows strong

lane-like characteristics in color images and can easily cause

false lane detections [54]−[56]. Therefore, integrating the lane

detection system with other onboard detection systems will

enhance the accuracy of the lane detection system. Obstacle

detections and road painting detections are two basic cate-

gories of vision-based detection techniques, as shown in Fig. 2.

By introducing an obstacle, noise measurement or outlier

pixels can be filtered. Similarly, road recognition can narrow

down the searching area for lane detections and lead to a

reasonable result.

Lane detection algorithms usually require lane features for

model fitting tasks. Nearby vehicles, especially passing vehi-

cles are likely to cause a false detection result due to occlusion

and similar factors. With the detection of surrounding vehicles,

the color, shadow, appearance, and the noise generated by

the vehicles ahead can be removed and a higher accuracy of

lane boundaries can be achieved [30]. In [30], [57]−[60], the

lane detection result was reported to be more accurate with a

front-vehicle detection system. This reduces the quantities of

false-lane features, and improves the model fitting accuracy.

Cheng et al. proposed an integrated lane and vehicle detection

system. Lane markings were detected by analysing road and

lane color features, and the system was designed so as not to

be influenced by variations in illumination [57]. Those vehicles

that have similar colors to the lanes were distinguished on the

basis of the size, shape, and motion information.

Sayanan and Trivedi [58] proposed a driver assistance

system based on an integration of lane and vehicle tracking

systems. With the tracking of nearby vehicles, the position of

surrounding vehicles within the detected lanes and their lane

change behaviours can be recognized. Final evaluation results

showed an impressive improvement compared to the results

delivered by the single lane detection algorithm. In [61], a

novel lane and vehicle detection integration method called an

efficient lane and vehicle detection with integrated synergies

(ELVIS) was proposed. The integration of vehicles and lane

detection reduces the computation cost of finding the true

lane positions by at least 35%. Similarly, an integrated lane

detection and front vehicle recognition algorithm for a forward

collision warning system was proposed in [62]. Front vehicles

were recognized with a Hough Forest method. The vehicle

tracking system enhanced the accuracy of the lane detection

result in high-density traffic scenarios.

In terms of road painting recognition, Qin et al. proposed a

general framework of road marking detection and classification

[63]. Four common road markings (lanes, arrows, zebra-

crossing, and words) were detected and classified separately

using a support vector machine. However, this system only

identified the different kinds of road markings without further

context explanation of each road marking. It is believed

that road marking recognition results contribute to a better

understanding of ego-lanes and help decide current lane types

such as right/left turning lanes [64], [65]. Finally, a large

amount of research was dedicated to the integration of road

detection and lane detection [4], [7], [66]−[68]. The Tesla and

Mobileye are all reported to use a road segmentation to refine

the lane detection algorithms [69], [70]. Road area is usually

detected before lanes since an accurate recognition of road

area increases the lane marking searching speed and provides

an accurate ROI for lane detection. Besides, since the road

boundaries and lanes are correlated and normally have the

same direction, a road boundary orientation detection enhances

the subsequent lane detection accuracy. Ma et al. proposed a

Bayesian framework to integrate road boundary and lane edge

detection [71]. Lane and road boundaries were modelled with a

second-order model and detected using a deformable template

method.

Fritsch et al. proposed a road and ego-lane detection system

particularly focusing on inner-city and rural roads [7]. The

proposed road and ego-lane detection algorithm was tested in

three different road conditions. Another integrated road and

ego-lane detection algorithm for urban areas was proposed in

[72]. Road segmentation based on an illumination invariant

transform was the prior step for lane detection to reduce

the detection time and increase the detection accuracy. The

outputs of the system consisted of road region, ego-lane region

and markings, local lane width, and the relative position and

orientation of the vehicle.

D. Sensor Level Integration

Sensor fusion dramatically improves the lane detection per-

formance since more sensors are used and perception ability is

boosted. Using multiple cameras including monocular, stereo

cameras, and combining multiple cameras with different fields

of view are the most common ways to enhance the lane detec-

tion system [46], [55], [73]. In [73], a dense vanishing point

detection method for lane detections using stereo cameras was

proposed. The combination of global dense vanishing point

detection and stereo camera makes the system very robust to

various road conditions and multiple lane scenarios. Bertozzi

and Broggi proposed a generic obstacle and lane detection
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(GOLD) system to detect obstacles and lanes based on stereo

cameras and IPM images [55]. The system was tested on

the road for more than 3000 km and it showed robustness

under exposure to shadow, illumination, and road variation. In

[74], three wide-field cameras and one tele-lens camera were

combined and sampled at the frequency of 14 Hz. Raw images

were converted to the HSV format and IPM was performed. In

[75], an around view monitoring (AVM) system with four fish

eye cameras and one monocular front-looking camera were

used for lane detection and vehicle localization. The benefit

of using the AVM system is that a whole picture of the top-

view of the vehicle can be generated, which contains the front,

surrounding, and rear views of the vehicle in one single image.

Instead of using only camera devices, the lane detection

system can also be realised by combining cameras with

global positioning system (GPS) and RADAR [76]−[82]. An

integration system based on vision and RADAR was proposed

in [71]. RADAR was particularly used for the road boundary

detection in ill-illuminated conditions. Jung et al. proposed an

adaptive ROI-based lane detection method aimed at designing

an integrated adaptive cruise control (ACC) and lane keeping

assistance (LKA) system [76]. Range data from ACC was used

to determine a dynamic ROI and improve the accuracy of the

monocular vision-based lane detection system. The lane detec-

tion system was designed using a conventional method, which

includes edge distribution function (ED), steerable filter, model

fitting and tracking. If nearby vehicles were detected with the

range sensor, all the edge pixels were eliminated to enhance

the lane detection. Final results showed that recognition of

nearby vehicles based on the range data improved the lane

detection accuracy and simplified the detection algorithm.

Cui et al. proposed an autonomous vehicle positioning sys-

tem based on GPS and vision system [77]. Prior information

like road shape was first extracted from GPS and then used

to refine the lane detection system. The proposed method was

extensively evaluated and found to be robust in varying road

conditions. Jiang et al. proposed an integrated lane detection

system in a structured highway scenario [78]. Road curvatures

were determined using GPS and digital maps in the begin-

ning. Then, two lane detection modules designed for straight

lanes and curved lanes, repectively, were selected accordingly.

Schreiber et al. introduced a lane marking-based localisation

system [83]. Lane markings and curbs were detected with a

stereo camera and vehicle localisation was performed with the

integration of a global navigation satellite system (GNSS), a

high accuracy map and a stereo vision system. The integrated

localisation system achieved an accuracy up to a few centime-

tres in rural areas.

An integrated lane departure warning system using GPS,

inertial sensor, high-accuracy map, and vision system was

introduced in [84]. The vsion-based LDWS is easily affected

by various road conditions and weather. A sensor fusion

scheme increases the stability of the lane detection system

and makes the system more reliable. Moreover, a vision-based

lane detection system and an accurate digital map help reduce

the position errors from GPS, which leads to a more accurate

vehicle localization and lane keeping.

Lidar was another widely used sensor and was the primary

sensor used in most autonomous vehicles in the DARPA chal-

lenge [85], [86], due to its high accuracy and robust sensing

ability. Lane markings are on-road paintings that have higher

reflective properties than the road surface in the 3D points

cloud map given by Lidar. Lidar can detect lane markings

according to those high reflectance points on the road. Lidar

uses multiple channel laser lights to scan surrounding surfaces

and build 3D images. Therefore, Lidar and vision integrated

lane detection systems can be more accurate and robust to

shadows and illumination change than vision-based systems

[87]. Shin et al. proposed a lane detection system using

camera and Lidar [88]. The algorithm consists of ground

road extraction, lane detection with multi-modal data, and

lane information combination. The proposed method shows

a high detection accuracy performance (up to 90% accuracy)

in real world experiments. Although camera and Lidar-based

methods can cope with curved lanes, shadow, and illumination

issues, they require a complex co-calibration of the multi-

modal sensors. Amaradi et al. proposed a lane-following and

obstacle detection system using camera and Lidar [89]. Lanes

were first detected with Hough transform. Lidar was used to

detect obstacles and measure the distance between the ego-

vehicle and front obstacles to plan an obstacle free driving

area. In [56], a fusion system of multiple cameras and Lidar

was proposed to detect lane markings in urban areas. The test

vehicle was reported as the only vehicle that used vision-based

lane detection algorithm in the final stage of the DARPA urban

challenge. The system detected multiple lanes followed by the

estimation and tracking of the center lines. Lidar and cameras

were first calibrated together to detect road paint and curbs.

Then, Lidar was used to reduce the false positive detection

rate by detecting obstacles and drivable road area.

According to the implementation angle and surveying dis-

tances, the laser scanner device can efficiently identify the lane

marking. Lane detection using this laser reflection method has

also been widely applied [80], [90]−[94]. Li et al. proposed

a drivable region and lane detection system based on Lidar

and vision fusion at the feature level [80]. The test bed

vehicle used two cameras mounted at different angles and three

laser scanners. The algorithm detected the optimal drivable

region using multi-modal sensors. The system was able to

work under both structured and unstructured roads without

any prior terrain knowledge. A laser-camera system for lane

detection was introduced in [91]. The two dimensional laser

reflectivity map was generated on the roof of the vehicle.

Instead of using constrained rule-based methods to detect lanes

on the reflectivity map, a density-based spatial clustering of

application with noise (DBSCAN) algorithm was applied to

automatically determine the lane positions and the number

of lanes in the field according to the 2D map. In [93],

an integration system with laser scanner and stereo cameras

was proposed. The system achieved an accurate driving area

detection result even in the desert area. However, in some

unstructured road or dirty road, the signals from laser scanner

can carry more noise than the frame signals from the camera.
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TABLE I

FACTORS INFLUENCING LANE DETECTION SYSTEM

Lane and road factors Crosswalk, stop lane, lane color, lane style, road curvature, poor quality lane markings, complex road texture

Hardware factors Camera types, camera calibration, camera mounting position, other sensors

Traffic factors Road curbs, guardrail, surrounding vehicles, shadow, illumination issues, vibration

Weather factors Cloudy, snowy, rainy, foggy

Therefore, a signal filtering for the laser scanner and a sensor

fusion are usually needed for the integrated systems.

In this section, some sensors that are relevant to lane

detection task are reviewed. Other sensors such as vehicle

CAN-bus sensor and inertial measurement unit (IMU) are also

commonly used in the construction of a complete vehicle per-

ception system. Although Lidar-based lane detection system

can be more precise than other systems, the cost is still too

high for public transport. Therefore, recent studies like [79]

tend to fuse sensors such as GPS, digital map, and cameras,

which are already available in commercial vehicles, to design

a robust lane detection and driver assisting system.

IV. EVALUATION METHODOLOGIES FOR VISION-BASED

LANE DETECTION SYSTEMS

Most of the previous lane detection studies used visual

verification to evaluate the system performance due to the

lack of ground data, and only a few researchers proposed

quantitative performance analysis and evaluation. In addition,

lane detection evaluation is a complex task since the detection

methods can vary across hardware and algorithms. There are

not yet common metrics that can be used to comprehensively

evaluate each aspect of lane detection algorithms. An accurate

lane detection system in one place is not guaranteed to be

accurate in another place since the road and lane situation in

different countries or areas differ significantly. Some detection

algorithms may even show significantly different detection

results in days and nights. It is also not fair to say that a

monocular vision-based system is not as good as a system

with vision and Lidar fusion since the costis of the second

systems are higher.

Therefore, the performance evaluation of lane detection

systems is necessary and it should be noted that the best

index for the lane detection performance is the driving safety

issue and how robust the system is to the environment change.

In this section, the evaluation methodologies used in stud-

ies are divided into offline evaluation and online evaluation

categories, where the online evaluation can be viewed as

a process of calculating the detection confidence in real

time. The main evaluation architecture is shown in Fig. 3.

As mentioned earlier, a common vision-based lane detection

system can be roughly separated into three parts, which are

the pre-processing, lane detection, and tracking. Accordingly,

evaluation can be applied to all these three parts and the

performance of these modules can be assessed separately.

In the following section, influencing factors that affect the

performance of a lane detection system will be summarized

first. Then, the offline and online evaluation methods used

in past studies and other literature are described. Finally, the

evaluation metrics are discussed.

Fig. 3. Lane detection evaluation architecture with two different evaluation

methodologies.

A. Influential Factors for Lane Detection Systems

The vision-based lane detection systems previous studies

are different from the hardware, algorithms, and application

aspects. Some focused on the highway implementation while

some were used in urban areas. An accurate highway-oriented

lane detection system is not guaranteed to be accurate in

urban road areas since more disturbance and dense traffic

will be observed in such areas. Therefore, it is impossible

to use one single evaluation method or metric to assess all

the existing systems. Some important factors that can affect

the performance of lane detection system are listed in Table

I. A fair evaluation and comparison of lane detection systems

should take these factors and the system working environment

into consideration. Since different lane detection algorithms

are designed and tested for different places, different road

and lane factors in different places will affect the detection

performance. Moreover, the data recording device, the camera

or the other vision hardware is other aspects that can signifi-

cantly influence lane detection systems. For example, the lane

detection systems may have different resolutions and fields of

view with different cameras, which will influence the detection

accuracy. Finally, some traffic and weather factors can also

lead to a different lane detection performances.

As shown in Table I, many factors can cause a less accurate

detection result and make the performance vary with other

systems. For example, some lane detection systems were tested

under a complex traffic context, which had more disturbances

like crosswalks or poor quality lane markings, while some

other systems were tested in standard highway environments

with few influencing factors. Therefore, an ideal way is to use

a common platform for algorithm evaluation, which is barely

possible in real life. Hence, a mature evaluation system should

take as many influential factors as possible into account and

comprehensively assess the performance of the system. One
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potential solution for these problems is using parallel vision

architecture, which will be discussed in the next section.

In the following part, the methodologies and metrics that

can be used to propose a reasonable performance evaluation

system are described.

B. Offline Evaluation

Offline evaluation is commonly used in previous literatures.

After the framework of a lane detection system has been

determined, the system performance is first evaluated offline

using still images or video sequences. There are some public

datasets such as KITTI Road and Caltech Road [7], [25] that

are available on the internet. KITTI Road dataset consists of

289 training images and 290 testing images separated into

three categories. The road and ego-lane area were labelled in

the dataset. The evaluation is usually done by using receiver

operating characteristic (ROC) curves to illustrate the pixel-

level true and false detection rate. Caltech Road dataset

contains 1224 labelled individual frames captured in four

different road situations. Both datasets focus on evaluating

road and lane detection performance in urban areas. The main

drawbacks of image-based evaluation methods are that they

are less reflective of real traffic environments and the datasets

contain limited annotated test images.

On the other hand, video datasets depict much richer infor-

mation and enable the reflection of real-life traffic situations.

However, they normally require more human resources to label

ground-truth lanes. To deal with this problem, Borkar et al.

proposed a semi-automatic method to label lane pixels in video

sequences [95]. They used the time-sliced (TS) images and

interpolation method to reduce the labelling workload. The

time-sliced images were constructed by selecting the same

rows from each video frame and re-arranging these row pixels

according to the frame order. Two or more TS images were

required and the accuracy of ground truth lanes was directly

proportional to the number of images. The lane labelling

tasks are converted to point labelling in the TS images. After

the labelled ground truth points were selected from each TS

image, the interpolated ground-truth lanes can be recovered

into the video sequence accordingly. The authors significantly

reduced the ground truth labelling workload by converting

lane labelling into few points labelling tasks. This method

was further improved in [49] by using a so-called modified

min-between-max thresholding algorithm (M2BMT) applied

to both time-slices and spatial stripes of the video frames.

Despite the manual annotated ground truth, some re-

searchers use the synthesis method to generate lane images

with known position and curvature parameters in simulators

[28], [56]. Lopez et al. used MATLAB simulator to generate

video sequences and ground truth lanes [28]. Lane frames

were created with known lane parameters and positions. This

method was able to generate arbitrary road and lane models

with an arbitrary number of video frames. Using a simulator to

generate lane ground truth is an efficient way to assess the lane

detection system under ideal road conditions. However, there

are few driving simulators that can completely simulate real

world traffic context at this moment. Therefore, the detection

performance still has to be tested with real-world lane images

or videos after evaluation using simulators. Another way is

to test the system on real-world testing tracks to assess the

lane detection system compared to the accurate lane position

ground truth provided by GPS and high precision maps [79].

C. Online Evaluation

The online evaluation system combines road and lane

geometry information and integrates with other sensors to

generate a detection confidence. Lane geometry constraints

are reliable metrics for online evaluation. Once the camera

is calibrated and mounted on the vehicle, road and lane

geometric characteristics such as the ego lane width can be

determined. In [96], a real-time lane evaluation method was

proposed based on width measurement of the detected lanes.

The detected lanes were verified based on three criteria, which

were the slopes and intercept of the straight lane model,

the predetermined road width, and position of the vanishing

point. The distribution of lane model parameters was analysed

and a look-up table was created to determine the correctness

of the detection. Once the detected lane width exceeds the

threshold, re-estimation is proposed with respect to the lane

width constraints.

In [5], the authors used a world-coordinate measurement

error instead of using errors in image coordinates to assess

the detection accuracy. A road side down-facing camera was

used to directly record lane information, generate ground truth,

and estimate vehicle position within the lanes. In [50], [51],

real-time confidence was calculated based on the similarity

measurement of the results given by different detection al-

gorithms. The evaluation module usually assess whether the

detected lane positions from different algorithms are within

a certain distance. If similar results are obtained, then the

detection results are averaged and a high detection confidence

is reported. However, this method requires performing two

algorithms simultaneously at each step, which increases the

computation burden.

In [56], vision and Lidar-based algorithms were combined to

build a confidence probability network. The travelling distance

was adopted to determine the lane detection confidence. The

system was said to have a high estimation confidence at

certain meters in front of the vehicle if the vehicle can travel

safely at that distance. Other online evaluation methods like

estimating the offsets between the estimated center line and

lane boundaries were also used in previous studies. Instead of

using single sensor, vision-based lane detection results can be

evaluated with other sensors such as GPS, Lidar, and highly

accurate road models [56], [77]. A vanishing point lane detec-

tion algorithm was introduced in [97]. Vanishing points of the

lane segments were first detected according to a probabilistic

voting method. Then, the vanishing points along with the

line orientation threshold were used to determine correct lane

segments. To further reduce the false detection rate, a real time

inter-frame similarity model for evaluation of lane location

consistency was adopted. This real time evaluation idea was

also under the assumption that lane geometry properties do

not change significantly within a short period of continuous

frames.
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D. Evaluation Metrics

Existing studies mainly use visual evaluation or simple

detection rates as evaluation metrics since there are still no

common performance metrics to evaluate the lane detection

performance. Li et al. designed a complete testing scheme

for intelligent vehicles mainly focusing on the whole vehicle

performance rather than just the lane detection system [98].

In [20], five major requirements for a lane detection system

were given: shadow insensitivity, suitable for unpainted roads,

handling of curved roads, meeting lane parallel constraints,

and reliability measurement. Kluge introduced feature level

metrics to measure the gradient orientation of the edge pixels

and the angular deviation entropy [99]. The proposed metrics

are able to evaluate the edge points, the road curvatures, and

the vanishing point information.

Veit et al. proposed another feature-level evaluation method

based on a hand labelled dataset [100]. Six different lane

feature extraction algorithms were compared. The authors con-

cluded that the feature extraction algorith, which combines the

photometric and geometric features achieved the best result.

McCall and Trivedi examined the most important evaluation

metrics to assess the lane detection system [101]. They con-

cluded that it is not appropriate to merely use detection rates

as the metrics. Instead, three different metrics, which include

standard deviation of error, mean absolute error, and standard

deviation of error in rate of change were recommended.

Satzoda and Trivedi introduced five metrics to measure

different properties of lane detection systems and to examine

the trade-off between accuracy and computational efficiency

[102]. The five metrics consist of the measurement of lane fea-

ture accuracy, ego-vehicle localisation, lane position deviation,

computation efficiency and accuracy, and the cumulative devi-

ation in time. Among these metrics, the cumulative deviation

in time helps determine the maximum amount of safety time

and can be used to evaluate if the proposed system meets the

critical response time of ADAS. However, all of these metrics

pay much attention to the detection accuracy assessment and

do not consider the robustness.

In summary, a lane detection system can be evaluated sepa-

rately from the pre-processing, lane detection algorithms, and

tracking aspects. Evaluation metrics are not limited to measur-

ing the error between detected lanes and ground truth lanes but

can also be extended to assess the lane prediction horizon, the

shadow sensitivity, and the computational efficiency, etc. The

specific evaluation metrics for a system should be determined

based on the real-world application requirements. Generally

speaking, there are three basic properties of a lane detection

system, which are the accuracy, robustness, and efficiency. The

primary objective of the lane detection algorithm is to meet

the real-time safety requirement with acceptable accuracy and

at low computational cost. Accuracy metrics measure if the

algorithm can detect lanes with small errors for both straight

and curved lanes. Lane detection accuracy issues have been

widely studied in the past and many metrics can be found in

literatures. However, the robustness issues of the detection sys-

tem have not yet been sufficiently studied. Urban road images

are usually used to assess the robustness of the system since

more challenges are encountered in such situations. However,

many other factors can also affect lane performances, such as

weather, shadow and illumination, traffic, and road conditions.

Some representative lane detection studies are illustrated in

Table II. Specifically, in Table II, the pre-processing column

records the image processing methods used in the literature.

The integration column describes the integration methods used

in the study, which may contain different levels of integration.

Frame images and visual assessment in the evaluation column

indicate that the proposed algorithm was only evaluated with

still images and visual assessment method without any com-

parison with ground truth information. As shown in previous

studies, a robust and accurate lane detection system usually

combines detection and tracking algorithms. Besides, most

advanced lane detection systems integrate with other objects

detection systems or sensors to generate a more comprehensive

detection network.

V. DISCUSSION

In this part, the current limitations of vision-based lane

detection algorithm, integration, and evaluation are analyzed

based on the context of above sections. Then, the framework of

parallel vision-based lane detection system, which is regarded

as a possible efficient way to solve the generalization and

evaluation problems for lane algorithm design, is discussed.

A. Current Limitation and Challenges

Lane detection systems have been widely studied and suc-

cessfully implemented in some commercial ADAS products in

the past decade. A large volume of literatures can be found,

which use vision-based algorithms due to the low cost of

camera devices and extensive background knowledge of image

processing. Although the vision-based lane detection system

suffers from illumination variation, shadows, and bad weath-

ers, it is still widely adopted and will continue dominating

the future ADAS markets. The main task of a lane detection

system is to design an accurate and robust detection algorithm.

Accuracy issues were the main concerns of previous studies.

Many advanced algorithms that are based on machine learning

and deep learning methods are designed to construct a more

precise system. However, the robustness issues are the key

aspects that determine if a system can be applied in real

life. The huge challenge to future vision-based systems is to

maintain a stable and reliable lane measurement under heavy

traffic and adverse weather conditions.

Considering this problem, one efficient method is to use

the integration and fusion techniques. It has been proved that

a single vision-based lane detection system has its limitation

to deal with the varying road and traffic situation. Therefore,

it is necessary to prepare a back-up system that can enrich

the functionality of ADAS. Basically, a redundancy system

can be constructed in three ways based on algorithm, system,

and sensor level integration. Algorithm integration is a

choice with the lowest cost and easy to implement. A system

level integration combines lane detection system with other

perception systems such as road and surrounding vehicle
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TABLE II

SUMMARY OF VARIOUS PREVIOUS LANE DETECTION SYSTEMS

Ref. Preprocessing Lane detection Tracking Integration Evaluation Comments

[12] IPM Lane marking

clustering

Particle

filter

Lidar and CCD cam-

era

Frame images and visual

assessment

Avoid strong assumption for lane ge-

ometry and use weak tracking models

[5] IPM, steerable

filters, adaptive

template

Statistical and

motion based

outlier removal

Kalman

filter

Cameras, laser range

finder GPS, CAN

Quantitative analysis us-

ing evaluation metrics

Rich experiments and metrics applied

to test the VioLET system

[35] Temporal blur,

IPM, adaptive

threshold

RANSAC Kalman

filter

Camera Quantitative analysis and

visual assessment

The proposed ALD 2.0 is used for

efficient video ground truth labeling

[103] Edge detection Hough

transform

None Camera Frame images and visual

assessment

Road is divided into near field and far

field with straight and curve model

[56] Road detection,

centerline

estimation

RANSAC Route

network

descrip-

tion

Lidar and cameras Confidence and centerline

evaluation

Obstacle detection and free road area

is determined before lane detection

[21] Vanishing point de-

tection, canny

Control point

detection

None Camera Frame images and visual

assessment

The proposed B-snake model is robust

to shadow and illumination variation

[28] Ridge feature RANSAC None Camera Quantitative analysis Synthesized lane ground truth data

are generated with known geometry

parameters

[25] IPM, Gaussian ker-

nel filter

Hough

transform,

RANSAC

None Camera Quantitative analysis with

public Caltech dataset

The proposed method is robust to

shadow and curves but can be influ-

enced by crosswalks and road paint-

ing

[76] Layered ROI,

steerable filter

Hough

transform

Kalman

filter

Radar and camera fu-

sion

Visual assessment and

correct detection rate

metrics

Adaptive ROI created with range data

makes lane detection robust to nearby

vehicles and other road markings

[104] IPM, steerable

filter

RANSAC None Camera Performed on KITTI dataset

using correct and false

positive rate

Detection algorithm is robust to

shadow, and optical flow was used to

construct lane departure aware ness

system

[37] ROI, IPM CNN, RNN None Surrounding cameras Quantitative analysis with

ROC curve

Proposed RNN uses long-short-term-

memory which can capture lane spa-

tial structures over a period of time in

the video sequences

[38] ROI, artificial im-

age generation

CNN None Two lateral cameras

facing down the road

Pixel level distance evalu-

ation

End-to-End lane recognition proce-

dure which is able to apply in real

time

[26] IPM, temporal blur RANSAC Kalman

filter

Camera Visual assessment and

correct detection rate metrics

Lane detection algorithm is designed

with main focus on night vision

[56] YCbCr color space

transform, vanish-

ing point detection

Lane turning

point detection

None Lane and vehicle in-

tegration using single

camera

Frame images and visual

assessment

Vehicles that have same color with

lanes are distinguished with shape,

size, and motion information

[59] YIQ color space

transform, vanish-

ing point detection

Fan-scanning

line detection

None Lane and front vehi-

cle integration using

camera

Visual assessment and

correct detection rate

The highway lane departure warning

and front collision system is built with

straight lane model

[88] Median filter,

ground plane

extraction

Lane segmenta-

tion

None Camera and Lidar in-

tegration

Visual assessment and

correct detection rate

Lane position detected with vision

and Lidar is fused with a voting

scheme

[55] IPM, adaptive

threshold

Morphological

filters

None Stereo camera for

lane and obstacle

detection

Frame images and visual

assessment

Lanes are detected mainly with color

features which may be less robust to

illumination change

[58] IPM, steerable fil-

ter

RANSAC Kalman

filter

Lane and nearby ve-

hicles integration us-

ing single camera

Evaluate using hand label

frames with multiple met-

rics

Lane detection is robust in heavy traf-

fic situation with improved surround-

ing vehicle detection and localization

[77] IPM Template

matching

None Camera, IMU and

GPS fusion

Evaluate using hand label

frames with mean abso-

lute error (MAE)

Lanes detected with camera are cross

validated with road geometry knowl-

edge given by road map and GPS to

improve detection accuracy

[51] Lane marking tex-

ture extraction

Scanning line Kalman

filter

Camera Frame images and visual

assessment

Two lower level detection algorithms

are combined

[79] Dynamic threshold-

ing, Canny edge

detector

Hough Transform

and least square

model fitting

Kalman

filter

Camera, IMU, Lidar,

and GPS fusion

Spatial and slope criterion

for real time assessment

and MAE with ground

truth position

A robust redundant lane detection

and lateral offset measurement is pro-

posed based on the detection given by

camera and Lidar

[80] IPM, Top-Hat

transform, Prewitt

vertical gradient,

adaptive threshold

Progressive

probabilistic

Hough

transform

None IMU, GPS, Lidar and

cameras fusion

Visual assessment and

correct detection rate

Lane marking detection is performed

only after road and optimal drivable

area is detected based on sensor fu-

sion



656 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 3, MAY 2018

detection to improve the accuracy and robustness of the

system. However, the two aforementioned integration methods

still rely on camera vision systems and have their inevitable

limitations. Sensor level integration, on the other hand, is the

most reliable way to detect lanes under different situations.

Another challenging task in lane detection systems is to

design an evaluation system that can verify the system perfor-

mance. Nowadays, a common problem is the lack of public

benchmarks and data sets due to the difficulty of labelling

lanes as the ground truth. Besides, there are no standard

evaluation metrics that can be used to comprehensively assess

the system performance with respect to both accuracy and

robustness. Online confidence evaluation is another important

task for lane detection systems. For ADAS and lower level

automated vehicles, the driver should be alerted once a low

detection confidence occurs. In terms of autonomous vehicles,

it is also important to let the vehicle understand what it does

in the lane detection task, which can be viewed as a self-aware

and diagnostic process.

B. Apply Parallel Theory Into Vision-Based Lane Detection

Systems

Considering the aforementioned issues, a novel parallel

framework for lane detection system design will be proposed

in this part. The parallel lane detection framework is expected

to be an efficient tool to assess the robustness as well as the

lane detection system.

Parallel system is the product of advanced control systems

and the computer simulation systems. It was introduced by

Fei-Yue Wang and developed to control and manage complex

systems [105]−[107]. The parallel theory is an efficient tool

that can compensate the hard modelling and evaluating issue

for the complex systems. The main objective of parallel system

is to connect the real-world system with one or multiple artifi-

cial virtual systems that are in the cyberspace. The constructed

virtual systems will have similar characteristics as the real-

world complex system but not exactly the same. Here, parallel

refers to a parallel interaction between the real-world system

and its corresponding virtual counterparts. By connecting these

systems together, analyzing and comparing their behaviors, the

parallel system will be able to predict the future statuses of

both the real-world system and the artificial one. According to

the response and behaviors of the virtual system, the parallel

system will automatically adjust the parameters of the real-

world model to control and manage the real-world complex

system such that an efficient solution is applied.

The construction of parallel system requires the ACP theory

as the background knowledge. ACP is short for Artificial

Society, Computational experiments, and Parallel execution,

which are three major components of parallel systems. The

complex system is firstly modeled using a holistic approach,

whereas the real-world system is represented using an artificial

system. After this step, the virtual system in the cyberspace

becomes another solution domain of the complex system,

which contributes to the potential complete solution along with

the natural system in the physical space. It is hard to say

that one solution will satisfy all the real world challenges. An

effective solution for the control of complex systems should

have the ability to deal with various situations occurring in the

future. However, the limited testing scenarios in the real world

cannot guarantee the potential solution being comprehensively

tested. Therefore, the computation experiment module will

execute a large number of virtual experiments according to the

constructed artificial system in last step. Finally, since there are

normally no unique solution for complex systems, the parallel

execution provides an effective fashion to validate and evaluate

various solutions. The parallel execution module will online

update the local optimal solution to the real world system that

is found in the cyberspace for better control and management

[108].

Recently, a parallel vision architecture based on the ACP

theory has been summarised and introduced to the computer

vision society [109]. The parallel vision theory offers an effi-

cient way to deal with the detection and evaluation problems

of the vision-based object detection systems. Similarly, the

general idea of ACP theory within the parallel vision scope is

to achieve perception and understanding of the complex real-

world environment according to the combination of virtual

realities and the real world information. In terms of lane

detection tasks, the first artificial society module can be used to

construct a virtual traffic environment and various road scenes

using computer graphics and virtual reality techniques. Next,

in the computation experiment module, the unlimited labelled

traffic scene images and the limited real world driving images

can be combined together to train a powerful lane detector

using machine learning and deep learning methods. This pro-

cess also contains two sub-procedures, namely, learning and

training, testing and evaluating. The large-scale dataset will

benefit the model training task. After that, a large amount of

near-real data will sufficiently facilitate the model evaluation.

Finally, in the parallel execution process, the lane detection

model can be trained and evaluated with a parallel scheme in

both real world and virtual environment. The lane detector can

be online optimized according to its performance in the two

parallel worlds.

In addition, the application of ACP parallel vision systems

will efficiently solve the generalization and evaluation prob-

lems due to the utilization of the large-scale near-real synthesis

images. To improve the generalization of the lane detection

system, the detectors can be tested on virtual environments

that have high similarity with the real world. The performance

can also be sufficiently evaluated from the accuracy and ro-

bustness perspectives. Various computational experiments and

model testing procedures can be continuously executed. In the

computational experiments, the cutting-edge deep learning and

reinforcement learning techniques can be applied to improve

the accuracy and generalisation of the system without consid-

ering the lack of labelled data. Meanwhile, some deep learning

models like the generative adversarial networks (GAN) can

be used to generate near-real road scene images which can

reflect the real world road characteristics such as illumination,

occlusion, and poor visualization. In addition, in the virtual

computational world, the GAN can be trained to discriminate

whether the lane markings exist in the input image.

Fig. 4 shows a simplified architecture of the ACP-based lane
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detection system. The road and lane images are in parallel

collected from the real world and the artificial cyberspace. The

real world data is then used as a guide for generating near-

real artificial traffic scenes, which are automatically labeled.

Both the real world data and synthesis data are fed into the

data-driven computational level.

Fig. 4. Simple architecture of the ACP-based parallel lane detection and

evaluation system.

Machine learning and deep learning methods are powerful

tools in this level. For various driving scenarios occurred in

both real world and the parallel virtual world, the model train-

ing process will try to come up with the most satisfying model.

After that, the lane detection model will be exhaustively

evaluated and validated in the cyberspace world according to

large scale labeled data. Once a well-trained and evaluated lane

detection model is constructed, the model can be applied in

parallel to both the real world environment and the virtual

world for real-time lane detection evaluation. Due to the

safety, human resource limitation, and energy consumption,

the number of experiments in real world is limited, which

may not be able to deal with all the challenges from the road

[110], [111]. In contrary, the experiments in the parallel virtual

world are safer and economical to be applied. Moreover, the

virtual world can simulate many more situations that are less

possibly occur in the real world. Meanwhile, by using the

online learning technique, the experience from the continuous

learning and testing module in the virtual world will improve

the real world performance.

Some previous literatures have partially applied the parallel

vision theory into the construction of lane detection systems

[28], [56]. These studies try to simulate the lane detection

model within the simulation environment, and process the

lane detection model with the first two steps of the ACP

architecture. However, to construct an actual parallel system,

the ACP architecture should be treated as a whole. The

final parallel execution step of the ACP theory is the core

of a parallel system. This step will online update the real

world model and adjust the corresponding model parameters

according to the testing results in the parallel worlds. This

step is also the core step, which guarantees that the learned

lane detection model can be satisfied by various real-world

driving scenarios. Beside applying parallel the theory to the

design of intelligent transport and vehicles, one has widely

used it in some other domains. For example, DeepMind use

multiple processors to train their AlphaGo based on the deep

reinforcement learning methods [112]. The idea behind the

reinforcement learning in this case is actually to construct a

parallel virtual world for the virtual go player to do exercise.

In summary, the parallel theory is drawing increasing attention

from the researchers. The utilization of parallel vision tech-

niques in the future is expected to become another efficient

way to solve the generalization and evaluation problems for

the lane detection algorithms. The ACP-based parallel lane

detection system will not only assist to build an accurate

model that is well tested and assessed, but also enable the

intelligent vehicles to carefully adjust their detection strategies

in real-time. Meanwhile, since there are too many different

lane detection methodologies which can hardly be evaluated

uniformly, a public virtual simulation platform can be used

to compare these algorithms in the future. Those algorithms

which achieve satisfactory performances in the parallel virtual

worlds can then be implemented in the real world.

VI. CONCLUSION

In this study, vision-based lane detection systems are re-

viewed from three aspects, namely, algorithms, integration,

and evaluation methods. Existing algorithms are summarized

into two categories, which are conventional image processing-

based, and novel machine learning (deep learning)-based

methods. Next, previous integration methods of the lane

detection system are divided into three levels, which are

algorithm level, system level, and sensor level. In algorithm

level, multiple lane detection and tracking algorithms are

combined in a serial or parallel manner. System level inte-

gration combines vision-based lane detection with other road

marking or obstacle detection systems. Sensor fusion enhances

the vehicle perception system most significantly by fusion of

multi-modal sensors. Finally, lane detection evaluation issues

are analyzed from different aspects. Evaluation methods are

divided into offline performance assessment and online real-

time confidence evaluation.

As mentioned earlier, although the vision-based lane detec-

tion system has been widely studied in the past two decades,

it is hard to say that research in this area has been mature.

In fact, there are still many critical studies that need to be

done, such as efficient low-cost system integration and the

evaluation system design, especially the construction of paral-

lel lane detection systems. Moreover, an increasing number of

advanced object detection algorithms and architectures have

been developed to optimize the lane detection systems. The

continuous studies and the applications of these techniques

will further benefit the ADAS and automated driving industry.

The ACP-based parallel lane detection approach holds signif-

icant potentials for future implementation.
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