
Advances on Access-Driven Cache Attacks on
AES�

Michael Neve1 and Jean-Pierre Seifert2,3

1 Intel Corporation, CTG STL Trusted Platform Laboratory,
2111 NE 25th Avenue, Hillsboro Oregon 97124, USA

michael.neve.de.mevergnies@intel.com
2 Applied Security Research Group

The Center for Computational Mathematics and Scientific Computation
Faculty of Science and Science Education

University of Haifa
Haifa 31905, Israel

3 Institute for Computer Science
University of Innsbruck
6020 Innsbruck, Austria

jeanpierreseifert@yahoo.com

Abstract. An access-driven attack is a class of cache-based side chan-
nel analysis. Like the time-driven attack, the cache’s timings are under
inspection as a source of information leakage. Access-driven attacks scru-
tinize the cache behavior with a finer granularity, rather than evaluating
the overall execution time. Access-driven attacks leverage the ability to
detect whether a cache line has been evicted, or not, as the primary
mechanism for mounting an attack. In this paper we focus on the case of
AES and we show that the vast majority of processors suffer from this
cache-based vulnerability. Our best results are indeed performed on a
processor without the multi-threading capabilities — in contrast to pre-
vious works in this area that had suggested that multi-threading actually
improved, or even made possible, this class of attack.

Despite some technical difficulties required to mount such attacks, our
work shows that access-driven cache-based attacks are becoming easier
to understand and analyze. Also, when such attacks are mounted against
systems performing AES, only a very limited number of encryptions are
required to recover the whole key with a high probability of success, due
to our last round analysis from the ciphertext.

1 Introduction

Side channels have been studied for many years in the context of smart cards
and embedded systems. Recently some researches demonstrated that micropro-
cessors are also vulnerable to side channels [2, 13, 14, 17], by showing that the

� This work has first been presented during the rump session of Crypto 05 by
E. Brickell.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 147–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 M. Neve and J.-P. Seifert

cache mechanism induces a variability in the execution time due to the different
memory accesses. This represents a threat for cryptographic software, since the
cache accesses are dependent on the inputs of the software, namely the plain-
text and the key. Hence, the analysis of the execution time provides information
about the key.

The cache has been mentioned earlier as a potential vulnerability regarding
covert channels [6,9,19] and side channels [7,8]. Tsunoo et al. demonstrated in [17]
the first practical results on DES. They also mentioned results on AES but did not
provide further details. In [2], Bernstein showed results of side channel analysis
against AES, based on the first round. [10] and [11,12,13] independently provided
an analysis of the second round of AES. These attacks belong to the class of time-
driven cache-based attacks as they analyze the overall execution time.

Moreover [11,12,13] detailed also techniques to perform access-driven attacks
on AES, where a process spies on another one using the cache accesses. [14] used
a similar technique against RSA implementations. [3] recently provided software
mitigation strategies for AES that reduce the cache leakage.

In this paper, we detail a new and very efficient access-driven cache-based side
channel attack. We focus on 128-bit AES implementations that uses four 1KB
precomputed SBox tables (such as OpenSSL [1]) and we show that an analysis
of the ciphertexts can lead to the recovery of the entire secret key.

Previous attacks [14,12,11,13] exploited the hardware-assisted multi-threading
capability of some microprocessors, cf. [15], in order to run a spy process quasi
parallel to a crypto process. However, today most processors are single-threaded,
therefore, this paper investigates and demonstrates that one can successfully per-
form such attacks also on this common class of processors.

In practical cases, many processes are quasi-parallel executed at the same
time as our crypto and spy processes. Those other processes generate noise in
the measurements of the spy process. In this paper however, we are interested
in deriving expected numbers of measurements necessary to disclose the full key
with perfect measurements, i.e. without noise. Nevertheless, we will discuss the
consequence of noise on our strategies. Moreover, we will also elaborate on the
number of snapshots that the spy process can take per encryption. In addition
we will discuss the impact of the measurement resolution upon the quality of
the attack.

The present paper is organized as follows. The next Section briefly recalls
some facts about AES and cache-based side-chanel attacks. In Section 3, we
detail how access-driven attacks can be mounted on single-threaded processors
and we demonstrate our practical success by showing a snapshot of a cache
activity on such a processor. In common implementations of AES the last round
uses a separate SBox table from the other rounds. We show in Section 3 how this
information can be combined with the ciphertexts in order to deduce the key. In
Section 4 we compute the expected number of cache lines accessed during the
last round. We discuss the different cases of attack resolution in Section 5, and
two different analysis methods are described in Section 6. Finally we provide our
conclusions in Section 7.

Advances on Access-Driven Cache Attacks on AES 149

2 Definitions and Preliminaries

AES. AES is a popular and commonly used block cipher. We only recall here
the particular features of AES that we use in this paper. Refer to [4] for full
details. AES operates in a succession of identical rounds, where four operations
are performed on the state (i.e. the temporary value): an SBox permutation
SubBytes, a byte transposition ShiftRows, a collumn by column permutation
MixColumn and a sub key addition AddRoundKey. The last round however is
slightly different since the MixColumn operation is skipped.

The key schedule ExpandedKey derives the sub keys K(i) from the secret key
k. The non-linearity is given by the mean of SubBytes. ExpandedKey is invertible
and, in the case of 128-bit AES, it is possible to derive the secret key from any
single sub key. We will use this property in our attack.

Efficient software implementations take advantage of precomputed SBox ta-
bles to reach high performances. In OpenSSL for example there are five 1KB
tables (T0, T1, T2, T3, T4) necessary for the encryption part. All rounds but the
last one use 4 of them (T0 to T3) whereas the last round and the key schedule
use the special fifth one (T4).

Cache-Based Side Channel Attacks. Access-driven side channels consider
that two (or more) processes are executed quasi-parallel on the processor. One
process (called here the crypto process) is performing a cryptographic function
(i.e. AES in this case) involving a secret key. As aforementioned, precomputed
values are involved in the execution of the crypto process and their accesses are
done through the memory hierarchy. On each data request, the cache checks
whether it holds the data, or not. If it does, a cache-hit occurs and the data is
immediately transmitted to the processor. Otherwise, a cache-miss occurs and
the data must be fetched from a higher memory level, with a longer access time.

A second process, called a spy process, spies on the cache accesses of the
crypto process. It continuously loads a table S of the size of the cache. From
time to time, the crypto process is executed and it inevitably evicts some parts
of S by accessing particular data. Therefore, the next time that the spy process
is executed, the access time of each part of S (i.e. the time necessary to reload
a given part of S) indicates which part has been evicted by the crypto process
during the last execution of the crypto process.

Thus, the cache is leaking information about the crypto process’s memory ac-
cesses. Since the software implementation is known, an attacker can infer partial
knowledge of the secret key. It is however worth underlining the fact that the spy
process cannot diretly access the data of the crypto process; it only observes the
cache activity generated by the crypto process and deduces (partial) information
from this activity.

3 Exploiting OS Scheduling Instead of Simultaneous
Multithreading

Recall that previously described attacks [12, 11, 13, 14] take advantage of the
multi-threading capacity of certain processors. It allows them to have two

150 M. Neve and J.-P. Seifert

processes running quasi parallel on the same processor, as if there were two logi-
cal processors [15,16]. In this manner some logical elements are shared, while the
quasi parallelism enables one process to spy on the other through the use of the
shared logic elements. The cache architecture is one such example of a shared
element. Although hardware-assisted multi-threading seems to be mandatory at
first sight, we show in the rest of this section that it is not.

Although single-threaded processors run threads/processes serially, the OS
manages to execute several programs also in a quasi parallel way, only at a
coarser resolution, cf. [16]. The OS basically decomposes an application into
a series of short threads that are ordered with other application threads. The
processor’s resources are thus temporally shared according to the OS’s ascribed
prioritization.

In order to transfer the (hardware-assisted) multi-threaded processor attacks
from [12, 11, 13, 14] to single-threaded processors, one has to leave the comfort
of hardware-assistance and exploit subtle OS particularities — which may vary
from OS to OS. While this seems quite possible for attacks such as [14], the
very fast execution time of AES seems to require the aforementioned hardware-
assistance in order to efficiently switch between the spy and the crypto process.
Indeed, the objective is to ensure is that the crypto thread runs only for a small
amount of time between any two runs of the spy thread, or in other words we
are able to implement the following strategy:

spy: Continuously watches the cache usage of the parallel crypto thread.
crypto: Runs only for a small amount of time between any two runs of spy.

Interestingly enough, the basic idea is already pointed out in one of the funda-
mental papers on cache-based side channel attacks, cf. Hu [6], and can adapted
to today’s OS to stretch the AES execution time over several OS quantums,
cf. [6, 16]. According to cf. [6], the so called preemptive scheduling property,
cf. [16], “. . . allows a process to control when it yields the CPU to another pro-
cess without waiting until the end of the quantum.” Therefore, using the Linux
command sleep instead of the VAX security kernel command WAIT and the fol-
lowing repetitive spy process paradigm we are able to achieve an implementation
of the above attack strategy:

– Watch the cache usage.
– Spend most of the OS quantum.
– Yield the CPU to another process via an appropriate sleep near to the quan-

tum end.

This paradigm uses the fact that the OS will reschedule the (very short) re-
maining quantum part to the crypto thread which will be able to execute a few
instructions, after which the OS will quickly reschedule to the spy thread, allow-
ing him to spy on the recently used memory accesses. As the above paradigm
and all its subtle implementation details heavily depend on the underlying OS,
CPU type and frequency, etc. we will not deepen further this technical details
here.

Advances on Access-Driven Cache Attacks on AES 151

Figure 1 shows the successful implementation of the above strategy and was
actually created by observing an unmodified AES implementation through the
cache accesses. In this Figure, there are 80 columns. Each column represents a
single cache line. The 80 columns are divided into five tables of 16 cache lines,
each table representing an SBox (starting with T0 at the left and continuing to
T4 at the right). Each row in this figure indicates a different measuring time
(the uppermost being the first measurement). Each point in a row displays the
activity of the particular cache line that it represents. The brighter the point, the
longer the time it takes to access an element in the cache line. It is important to
understand that we get no information about the order of the accesses within one
measurement. By using this kind of picture, an attacker can follow the activity
of one or more specific cache lines. We obtained similar patterns on another OS
and we believe that any multitasking OS could lead to the same access results.

Figure 1 depicts 4 successive AES encryptions. In this particular example,
each encryption is repeated 5 times. The time resolution enables us to perform
a few measurements per encryption. However, we do not have any distinction
between the AES rounds. We only know that they are interrupted several times
by the spy program at some points during the encryption.

SBox T4
1 plays a particular role here, as it is invoked only on the last round.

Therefore, the SBox T4 accesses indicate the end of an encryption, and all lines
within the SBox T4 accesses are then linked to a single encryption.

4 Analysis of the Last Round

Previously cited attacks use the information about the first or the first and
second rounds of one encryption2. However, we focus here on the accesses of the
last round. Indeed, if the time resolution of the spy process enables us to see the
accesses of one encryption, SBox T4 will also appear clearly.

The ciphertext is now under investigation in order to take advantage of the
last round accesses. Recall from our introduction, the last round of AES is par-
ticularly of interest in the sense that the MixColumns operation is never applied.
And for that particular reason, OpenSSL uses SBox T4, especially for the last
round. With c := EAES(p, k) being the ciphertext, we have the following rela-
tions linking c and the last round:

c = K(10) ⊕ ShiftRows[SubBytes[x(9)]],

where x(9) is the initial state of round 10 (i.e. the output of round 9 and input
to round 10). Since round 10 uses SBox T4, we denote the actual access to T4
by [SBox T4 outputs]. The relation becomes:

c = K(10) ⊕ [SBox T4 outputs].

1 Recall that T4 has a size of 1KB and therefore it is represented by the last set of 16
points in each row, with 64-byte cache lines.

2 But the accesses contain the cache activity of all rounds and the analysis of the first
round(s) is disturbed by the access of the other rounds.

152 M. Neve and J.-P. Seifert

Fig. 1. Evolution of the cache versus time, displaying several AES encryptions. Each
horizontal line represents the state of the cache lines (represented by a point) at a given
time. The brighter, the longer the time to access its corresponding cache line.

Therefore, we derive a relation defining K(10):

K(10) = c ⊕ [SBox T4 outputs],

from which it is easy to deduce the value of k from K(10) — see our brief recall
of AES in section 2.

However, [SBox T4 outputs] represents the result of all the accesses of the last
round, i.e. for all bytes of the T4 input x(9). Moreover, the cache accesses only
point out the accessed cache lines, but not the individual elements in those lines.
Although the next section will give more details on the last points, we refer the
reader to Handy [5] for a thorough review of cache architectures.

Advances on Access-Driven Cache Attacks on AES 153

Table 1. Expected number of cache lines of SBox T4 accessed in t last rounds for t > 1
and m = 16

t 2 3 4 5 6 7 > 7
E(P (t · 16)) 13.97 15.28 15.74 15.91 15.97 15.99 ≈ 16

5 Average Number of Accesses for the Last Round

Let us first introduce some notations. Let δ = 2o be the cache line size (in
byte) and m = 2l be the number of cache lines of SBox T4. Let also p(b) be the
probability that one specific cache line is accessed in b T4 accesses, and P (b) its
corresponding random variable. Likewise, pn(b) the probability that one specific
cache line is not accessed during b T4 accesses, and Pn(b) its corresponding
random variable. Also, let us assume that the accesses to T4 are independent
and uniformly distributed. We now want to compute the expected number of
different cache accesses into T4. Using that p(1) = 1/m, or pn(1) = 1 − 1/m and
the last assumption yields

pn(16) =
(

1 − 1
m

)16

.

Therefore, the expected number of cache lines not accessed in a last round is
given by

E(Pn(16)) = 16 ·
(

1 − 1
m

)16

.

In the case of caches with 64 bytes per cache line (i.e. δ = m = 16), we get
E(Pn(16)) = 5.70 and thus E(P (16)) = 10.30 as the expected number of cache
lines accessed during a last round.

6 Resolution

On Figure 1, the T4 accesses are all visible within a few vertical lines. Let the
resolution factor t be defined as

t :=
of ciphertexts

of measurements
,

which yields the following different resolution cases:

– low resolution: One measurement covers t encryptions (with t > 1) and
therefore several last round accesses are overlaid. Then E(P (t · 16)) = 16 ·
(1− 1/m)t·16. Table 1 shows that E(P (t · 16)) rapidly gets close to its limits.

– one line resolution: The frequency of measurements isolates one last round
per measurement, i.e. t = 1. We already computed this case. Then E(P (16))
equals 10.30 for m = 16.

154 M. Neve and J.-P. Seifert

– high resolution: There are several measurements (1/t) occurring during the
last round, i.e. t < 1. The observation of the evolution of the accesses gives
a notion of the order in which the accesses have taken place and therefore
narrows down the possible accesses per byte.

For now, we consider one line resolution to detail the analysis of the accesses.
We return to this in Section 8 and discuss the impact of the resolution in the
analysis’s results.

7 Non-elimination and Elimination Methods

We detail here how to deduce the secret key from cache accesses of SBox T4 and
the ciphertexts.

The first method is directly inferred from the relation obtained above:

K(10) = c ⊕ [SBox T4 outputs].

This states that K(10) is computed with the ciphertext c and some SBox out-
puts resulting from the SBox T4 accesses. Each access to a particular line outputs
one out of 16 values and we try to discover which one it is, from many cipher-
text/accesses pairs. This finally leads to the value of K(10), when applied in a
byte-wise fashion.

The second method is based on the inverse relation:

K(10) �= c ⊕ ¬[SBox T4 outputs],

where ¬[SBox T4 outputs] refers to the non-accessed cache lines. The relation
simply means that the bytes obtained by the addition of c and the non-accessed
cache lines can be discarded as candidates for K(10). This method, as we are
about to see, requires less ciphertext/accesses pairs than the first one.

Let us call those methods respectively Non-elimination and Elimination meth-
ods, since they share the same philosophy as Tsunoo’s methods [18]. Let us further
suppose that we have a large number of clear measurements of the cache accesses
over the last round and the corresponding ciphertexts. We will now detail each
method individually.

7.1 Non-elimination Method

This method is separated into three steps. All three steps must be applied for
all of the 16 bytes of the key. Suppose we attack byte i, 0 ≤ i ≤ 15.

1. Selection of the ciphertext : The ciphertext/accesses pairs are sorted accord-
ing to the value of byte i of the ciphertext. Since the key is constant, it is
clear that if the ith byte of different ciphertexts have the same value, all the
accesses corresponding to those ciphertexts must contain an access to one
common cache line3.

3 Since the ciphertexts can be considered random, the other bytes will have random
accesses to T4. We seek the constant access among the random ones.

Advances on Access-Driven Cache Attacks on AES 155

Fig. 2. Cache line accesses for ciphertexts with a constant value for byte i. The dark
boxes represent accessed cache lines.

Consider for example Figure 2 as the accesses for a constant value of byte
i (say x 00).

2. Discovery of the correct access : The access corresponding to the value of
byte i is found by taking the unique access present on every encryption (cfr.
Figure 3 where byte i = x 00 is found to be linked to cache line 2. We define
in this case false positives as the wrong candidates present along with the
correct candidate: e.g. the number of false positives on this example is
– 10 on encryption 1,
– 6 on encryption 2,
– 5 on encryption 3,
– 3 on encryptions 4 and 5,
– 1 on encryption 6 and further
– 0 on encryption 7 and further.

The probability of a false positive accessed for k successive encryptions is(
1 − ((m − 1)/m)15

)k and this gives less than 4 percents when k = 7.
3. Application of the difference: The bitwise difference of the selected values

of byte i must also link two elements in the corresponding access of T4.
Operation (2) showed that byte i = x 00 is linked to cache line 2. Let us
assume that the same operation was being executed on a different value
of byte i (e.g. x 01) and the corresponding cache line was 5. Therefore the
bitwise difference of the values for byte i is x 00 ⊕ x 01 = x 01 = 1. Hence
we only need to find, in the cache lines 2 and 5, output values presenting the
same difference. The two lines are shown below:

...
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
...
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
...

156 M. Neve and J.-P. Seifert

Fig. 3. Highlight of the constant access. The dark boxes represent accessed cache lines
and the black boxes show the evolution of the possible candidates.

The only pair having a bitwise difference of 1 are x fd and x fc, when byte i
is equal to respectively x 00 and x 01. Therefore, the byte of K(10) corre-
sponding to byte i has a value of x fd ⊕ x 00 = x fc ⊕ x 01 = x fd. In the
unlikely event of more than one match, the operation (2) must be repeated
to establish other bitwise differences.

The expected number of pairs to find the correct key byte is

∞∑
n=2

pfp(n) · N(n) ≈ 186,

with pfp(n) and N(n) respectively being the probability of having a false positive
after n pairs and the average number of pairs necessary to get two values re-
peated. The other bytes of K(10) are found the same way, by considering another
byte number.

7.2 Elimination Method

Here, all bytes can be treated at the same time. We consider the case of byte i
for the sake of clarity; it is straightforward to apply the method to the other
ones. Let V be the set of all possible key byte values. Initially, V is composed of
all 256 values a byte can take: V = {j : 0 ≤ j ≤ 255|j}. At the end, we want
that V = {k

(10)
i }. Consider for example that the ciphertext’s byte i ci equals

x 2c and the corresponding accesses are the ones displayed in Figure 4.
The accessed cache lines are

1 2 3 5 6 7 9 10 12 14 15

Advances on Access-Driven Cache Attacks on AES 157

Fig. 4. Example of accessed cache lines. The dark boxes represent accessed cache lines.

and the non-accessed ones are

0 4 8 11 13.

This method focuses on the latter list of cache lines. Let Ã represent this
subset of the cache lines and nÃ be the number of elements of Ã:

Ã = {0, 4, 8, 11, 13}, nÃ =
∣∣∣Ã

∣∣∣ = 5.

By the elimination relation, K(10) �= c ⊕ ¬[T4 outputs], each non-accessed
cache line enables us to remove all key candidates corresponding to this access.
In our example, this means that for the first element of Ã we have:

K
(10)
i �= c ⊕ [cache line 0]

�= x 2c ⊕ x{63,7c,77,7b,f2,6b,6f,c5,30,01,67,2b,fe,d7,ab,76}
�= x{4f,50,5b,57,de,47,43,e9,1c,2d,4b,07,d2,fb,87,5a}
= Ve,

where x ... and x{. . . } represent hexadecimal values. All values of Ve can then
be eliminated from V :

V ← {j : 0 ≤ j ≤ 255}\Ve

Then we go to the next element of Ã (i.e. cache line 4) and apply the same
technique. The cache line bytes are

x{09,83,2c,1a,1b,6e,5a,a0,52,3b,d6,b3,29,e3,2f,84}

added with x 2c gives new candidates to eliminate. Then V is updated as:

V ← V\{25,af,00,36,37,42,76,8c,7e,17,fa,9f,05,cf,03,a8}.

This is then repeated for the three other cache lines in Ã.
For one given ciphertext/accesses pair, each cache line ends up eliminating

16 different values from the byte candidates: the ciphertext byte is constant and
the SBox outputs are all different from each other. In our example 80 candidates
have been eliminated with the pair under consideration. Then, another cipher-
text/access pair is analyzed and the same technique is applied with the non-
accessed cache lines of that pair. The ciphertext’s byte i and the non-accessed
cache lines are probably different from the previous analyzed pair. Therefore the

158 M. Neve and J.-P. Seifert

5 10 15 20 25 30 35 40 45 50
0

100

200

of pairs

w

ro
ng

 c
an

di
da

te
s

Fig. 5. Experimental verification of the reduction formula, yielding the number of
wrong key candidates per pairs. The continuous line is the theoretical formula and the
stars are the simulated data.

subset of wrong candidates deduced from this pair should only present a few
collisions with the one of previous pairs.

However, there will be more and more collisions as the number of wrong key can-
didates becomes closer to one. Consider for example the following table showing
the reduction of the number of wrong key candidates, for a practical case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|V| 255 175 119 77 55 33 21 15 6 6 2 2 2 1 1 0

Then other pairs are analyzed until there is only one key byte remaining4. It
is important to note that this method allows to work on all the bytes, at the
same time. In this case, we need 16 subsets (one per byte) keeping the count of
all candidates:

V0, . . . , V15.

Let us first compute the number of pairs needed to distinguish the right
key candidate, for one byte. We can now define s, the number of candidates
eliminated by the analysis of one ciphertext/access pair. At the beginning, we
have 255 wrong candidates. With the first pair, we eliminate s of them and
the number of wrong candidates is 255-s. However, starting at the second pair,
collisions can occur. Therefore, we approximate the number of remaining wrong
key candidates after n pairs by 255 · (1 − s/255)n. This formula is validated by
simulation with s = 16 (see Figure 5).

We then apply the formula with the expected number of non-accessed cache
lines (i.e. 5.70, for 64-byte cache lines). Hence, substituting s = 5.70 · 16 into
255 · (1 − s/255)n we get the following results5 (cfr. Table 2).

After approximatively 14 pairs, the number of wrong candidates for one byte
should be close to 0. This shows that less than 20 ciphertext/accesses pairs are

4 Note that one can stop anytime and run an exhaustive search on the remaining key
byte candidates.

5 The data differ from the ones in the practical case because there are 5 non-accessed
cache lines whereas 5.70 are considered in Table 2.

Advances on Access-Driven Cache Attacks on AES 159

Table 2. Theoretical results of wrong key candidates, per pair ciphertext/accesses, for
m = 5.70 · 16

pairs |V| # pairs |V|
0 255 8 7
1 164 9 5
2 105 10 3
3 68 11 2
4 43 12 1
5 28 13 0.8
6 18 14 0.5
7 12 15 0.3

needed to recover the whole K(10) subkey and therefore also the secret key k.
This method gives a much better performance than the non-elimination one.

8 Practical Considerations

Let us now re-elaborate the question of the measurement resolution.

– Low resolution: Table 1 highlighted that the expected number of accessed
cache lines rapidly approaches to 16, when the number of encryptions be-
tween two measurements increases. However, even if the leakage gets smaller,
every ciphertext/accesses pair with at least one non-accessed cache line car-
ries information. Moreover, low resolution implies multiple ciphertexts for a
single cache information (i.e. one line combines all the accesses correspond-
ing to the ciphertexts). In this case the analysis must integrate the different
possible ciphertext values and statistically derive the most likely key bytes.

– One line resolution: As detailed above, 5.70 cache lines are not accessed. The
analysis does not need to deal neither with the multiple ciphertexts issue nor
with the order inside the accesses.

– High resolution: Both methods are still possible. But the leakage also gives
some information about the order of the accesses. One can then increase the
performances of the analysis and therefore reduce the number of required
pairs, by correlation of the byte accesses in the AES program and the ac-
cesses visible in the measurements. For t ≤ 1/16, one can clearly identify the
byte accesses. Two to three pairs only makes it possible to find the correct
candidates for all key bytes6.

Finally, we considered in this paper that the cache accesses were exempted
of any measurements noise. However practical attacks must deal with noise in
the measurements. Consider for example Figure 1 which presents vertical stripes
and a diagonal line in the upper half. The presence of noise in the measurements

6 The elimination and non-elimination methods then presents the same performances.

160 M. Neve and J.-P. Seifert

Fig. 6. Different resolutions for access-driven cache-based attacks. The resolution factor
t defines the ratio # of ciphertexts / # of measurements.

increases the number of accessed cache lines. However, the techniques that we
detailed here can still be exploited, by taking into account the noise7.

We gave above the minimum expected number of measurements to perform
the attacks for t = 1. As this boundary is precious and has been practically con-
firmed it should used to evaluate the efficiency and security of current software
implementations which are hardened by corresponding countermeasures.

9 Summary

In this paper, we detailed advances on recent processor-oriented side channels.
Our contribution is two-fold: we detailled a software method to achieve snap-
shots of cache accesses on single-threaded processors and we showed that the
analysis of the last round of AES enables the full disclosure of an 128-bit AES
key with less than 20 encryptions. Where previous studies focused exclusively
on a minority of processors, we investigated the access-driven cache-based at-
tacks on single-threaded processors. We explained our strategy and why it is
solely depending on software engineering. Moreover, we chose the challenging
case of AES: its short execution time (compared to RSA’s) demonstrates the
fine granularity of our cache accesses’ snapshots. Our software strategy can eas-
ily be adapted and combined with previously reported access-driven attacks
on any single-threaded processor. Moreover, on common implementations the
last round is performed with the help of a special precomputed table. Through
this feature, we achieved to infer more information than with other strategies.
We gave expected numbers of measurements, depending on the granularity and

7 Also, the location of the vertical stripes is variable between different runs of the
setup.

Advances on Access-Driven Cache Attacks on AES 161

noise of the access-driven measurements. This contribution sets new boundaries
for countermeasures against cache-based attacks. For example, some software
mitigations proposed to apply masking techniques and to renew the mask every
256 encryptions. We showed in this paper that this number might have to be
reconsidered.

Acknowledgment

We would like to thank the anonymous reviewers for their useful comments and
also for this sentence ”Figure 1 should be framed on the wall in front of every
crypto software programmer”.

References

1. Openssl: the open-source toolkit for ssl / tls. Available online at http://www.
openssl.org/

2. Bernstein, D.J.: Cache-timing attacks on AES (2004), Available onlineat
http://cr.yp.to/papers.html#cachetiming

3. Brickell, E., Graunke, G., Neve, M., Seifert, J.-P.: Software mitigations to hedge
aes against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report, 2006/052 (2006), Available online at http://eprint.iacr.org/

4. Daemen, J., Rijmen, V.: The design of Rijndael, AES - The Advanced Encryption
Standard. In: Information Security and Cryptology, Springer, Heidelberg (2001)

5. Handy, J.: The cache memory book (2nd ed.): the authoritative reference on cache
design. Academic Press, Inc., Orlando, FL, USA (1998)

6. Hu, W.-M.: Lattice scheduling and covert channels. In: Proceedings of the IEEE
Symposium on Security and Privacy, vol. 25, pp. 52–61 (1992)

7. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2/3) (2000)

8. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

9. Lampson, B.W.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

10. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: Proceedings of AsiaCCS 2006 (2006)

11. Osvik, D.A., Shamir, A., Tromer, E.: Cache atacks and countermeasures: the
case of AES (extended version) (2005), Available online at http://www.wisdom.
weizmann.ac.il/ tromer/

12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. Cryptology ePrint Archive, Report, 2005/271, (2005) Available online at
http://eprint.iacr.org/2005/271.pdf

13. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of aes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

14. Percival, C.: Cache missing for fun and profit (2005), Available online at
http://www.daemonology.net/hyperthreading-considered-harmful/

http://www.openssl.org/
http://www.openssl.org/
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/
http://www.wisdom.weizmann.ac.il/~tromer/
http://www.wisdom.weizmann.ac.il/~tromer/
http://eprint.iacr.org/2005/271.pdf
http://www.daemonology.net/hyperthreading-considered-harmful/

162 M. Neve and J.-P. Seifert

15. Shen, J., Lipasti, M.: Modern Processor Design: Fundamentals of Superscalar Pro-
cessors. McGraw-Hill, New York (2005)

16. Silberschatz, A., Gagne, G., Galvin, P.B.: Operating system concepts, 7th edn.
John Wiley and Sons, Inc., USA (2005)

17. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of des
implemented on computers with cache. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

18. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of block
ciphers implemented on computers with cache. In: Proceedings of International
Symposium on Information Theory and Its Applications, pp. 803–806 (2002)

19. Wray, J.C.: An analysis of covert timing channels. Journal of Computer Security
1(3-4), 219–232 (1992)

	Advances on Access-Driven Cache Attacks on AES
	Introduction
	Definitions and Preliminaries
	Exploiting OS Scheduling Instead of Simultaneous Multithreading
	Analysis of the Last Round
	Average Number of Accesses for the Last Round
	Resolution
	Non-elimination and Elimination Methods
	Non-elimination Method
	Elimination Method

	Practical Considerations
	Summary
	References

