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Background

Ant colony (optimization) algorithm, as most of the bio-inspired computational tech-

niques, provides a very good solution to difficult optimization problems (Dorigo and 

Stutzle 2004). Techniques based on this nature-inspired approach have been widely 

applied in many engineering areas including image processing though their applications 

for image interpolation purposes are still few. �e most common issue in image inter-

polation is the low-pass filtering process which reduces, to some degree, the resolution 

of interpolated image. However, high resolution image interpolation process has been 

a problem of prime importance in many fields due to its wide application in satellite 

imagery, biomedical imaging, particularly in military and consumer electronics domains.

In our previous work (Rukundo et al. 2011), ant colony optimization has been used to 

reinforce locally the traditional bilinear weighting scheme, in order to achieve a higher 

resolution interpolation. Furthermore, in Tian et al. (2011), it has been applied to classify 

each wavelet coefficient into one of the Gaussian component, positive exponential and 

negative exponential components, before estimating the parameters of each component, 

but this is beyond the scope of this paper.

�e local weighting scheme used in our previous work improved the peak signal to 

noise ratio (PSNR). However, that scheme could not avoid the influence of isotropic 

weighting of the conventional bilinear. Such isotropic weighting is responsible for many 
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blurring artefacts which make the interpolated image look smoother than the original, 

thus reducing its resolution. As a solution, we propose a global weighting scheme which 

employs the pheromone matrix information solely, present on any group of four adja-

cent pixels, to decide which case deserves a maximum global weight value or not.

 �is paper is organized as follows: first section is the “Background”; second section 

introduces the “Ant colony (optimization) algorithm”; third section presents “�e pro-

posed global weighting scheme”; fourth section gives the “Experimental results” and last 

section the “Conclusion and recommendations”.

Ant colony (optimization) algorithm

Dorigo and Gambardella (1997) introduced modifications in ant system (AS) to increase 

its performance (Dorigo et al. 1991), and be able to find a very good solution to difficult 

optimization problems. Such modifications are: (a) a different transition rule; (b) differ-

ent pheromone trail updating rules: global and local; and (c) a candidate list to restrict 

the choice of the next node to visit (Dorigo and Gambardella 1997), (Dorigo and Stutzle 

2004).

Ant colony optimization state transition rule

Figure  1 shows an ant arriving in node i, while Table  1 shows the pseudocode of the 

implementation process. As shown in Fig. 1, the ant chooses the next node to move to as 

a function of the pheromone values τi,j and the heuristic values ηi,j on the arcs connect-

ing node i to the nodes j the ant has not visited yet. 

 �e next node is chosen among the non-visited nodes according to the following pseu-

dorandom proportional rule, in which the transition probability depends on a random 

variable q that is uniformly distributed over [0, 1] and a control parameter q0(0 ≦0≤ 1)

If q ≤ q0, then the transition that maximizes τi,j(η)β is chosen otherwise, and the proba-

bilistic decision rule, Eq. (1) with α = 1, is used. �e value of q0 determines the degree of 

exploration of the ants: with probability q0, the ant chooses the transition with the high-

est τi,j(η)β , while with probability 1 − q0, it performs a biased exploration of the edges. 

j =

{

arg max
f ∈�k

i
{τif (ηif )

β}, if q ≤ q0 (Exploitation)

J , else (Exploration)

Fig. 1 The selection of the node
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�e balance between biased exploration and pheromone exploitation can be tweaked by 

adjusting the value of q0.

In Eq. (1), τi,j is the amount of pheromone deposited for transition from state i to state j. 

α ≥ 0 and β ≤ 1 are parameters to control the influence of τi,j and ηi,j , respectively. ηi,j is 

the desirability of the state transition i, j and is equal to 1/di,j where d is the distance in 

Traveling Salesman Problem (TSP). �e �k
i
 represents an acceptable neighborhood for 

an ant k while being at city i (here, the probability of selecting a city outside acceptable 

neighborhood is zero).

Ant colony optimization pheromone trail updating

Local updating

Ants use a local pheromone update rule after leaving the arc (i, j) during the construc-

tion process as follows:

where ϕ, (0 < ϕ < 1), τi,j is the current value of the pheromone trails at i, j, and τ0 is the 

initial value for the pheromone trails.

Global updating

�e best ant reinforces its tour by depositing additional pheromone trails along the tour 

length

where �τ bsi,j = 1/Cbs (here, Cbs is the best-so-far tour) and ρ represent the pheromone 

evaporation. For this case, the computational complexity is reduced from ∂(n2) to ∂(n) 

(where n is the instance being solved) by only performing the pheromone updates to the 

arc of T bs (not to all arcs as in ant system).

(1)pki,j =

(τα
i,j)(η

β
i,j)

∑
f ∈�k

i
(τα

i,f )(η
β

i,f )
if

j ∈ �k
i

α = 1

(2)τi,j ← (1 − ϕ)τi,j + ϕ�τ0

(3)τi,j ← (1 − ρ)τi,j + ρ�τ bsi,j , ∀(i, j) ∈ T bs

Table 1 A pseudocode of implementation

Do initialization procedures

for each iteration n = 1:N do

for each construction_step l = 1:L do

for each ant k = 1:K do

Select and go to next pixel according to exploitation and exploration mechanism

Apply the local pixel’s updating rule

end

end

Apply the global updating rule using the best visited pixels’ pheromones

end

Decide a global weight based the best visited pixel’s pheromone information

End
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Ant colony optimization candidate list

A candidate list is a list of preferred cities to visit. Instead of examining all the cities, 

non-visited cities are examined first. �is list is ordered by increasing distance and helps 

to select the next city when other cities have been visited.

Previous works on ant colony optimization for image interpolation

Tian et al. (2011) proposed a wavelet-based technique, employing ant colony optimiza-

tion, for image interpolation. Firstly, a J-level wavelet decomposition was applied on the 

input low-resolution image. �e proposed TCEM model was used to formulate the sta-

tistical distribution of the above J-level wavelet coefficients and the model parameters 

of the proposed TCEM model were estimated using the ant colony optimization. �e 

distribution of the desired high-pass filtered wavelet coefficient in the 0th level sub-

band was estimated and then generated the 0th level wavelet coefficients. Finally, the 

(J + 1)-level inverse wavelet transform was applied to produce the final reconstructed 

image.

Experiments, using grayscale test images, were conducted to compare the perfor-

mance of the proposed approach with that of algorithm mentioned. However, the basic 

wavelet based technique idea used in Tian et al. (2011) is beyond the scope of this paper.

Rukundo et  al. (2011) applied ant colony optimization pheromone information to 

supplement the bilinear isotropic weighting scheme in order to achieve improved (or 

higher) resolution results. Here, ant colony optimization was used to construct the 

pheromone matrix and then find the pixels on which more pheromone information was 

deposited. �is pheromone matrix information was used to strengthen the traditional 

bilinear algorithm weighting scheme shown in Eq. (4).

where (x, y) represents the coordinates of unknown-value location, (u, v), (u + 1, v),

(u, v + 1), and (u + 1, v + 1) are coordinates of each of the four (known-value) pixels sur-

rounding (x, y) location.

Our previous OBACA algorithm used the pheromone matrix information (obtained 

after both updates were performed), to create additional but necessary weights. In other 

words, the pheromone matrix information was assigned on every pixel with reference to 

the neighboring pixels intensity variations. �e pheromone information attached to each 

pixel became its weight, to locally supplement the traditional bilinear weighting scheme, 

as shown in Eq. (6),

where p4, p2, p3, p1 represent the pheromone information at (u, v), (u + 1, v), (u, v + 1) 

and (u + 1, v + 1), respectively. In this way, OBACA achieved higher PSNR or image 

quality when compared to that of the traditional bilinear. However, it could not avoid 

the influence of isotropic weighting of the conventional bilinear which is responsible for 

smoothing/blurring the output/interpolated images, thus reducing their resolutions. 

(4)Px,y = w4Pu,v + w2Pu,v+1 + w3Pu+1,v + w1Pu+1,v+1

(5)
w1 = {[x − u][y − v]},w2 = {[x − (u + 1)][y − (v)]},

w3 = {[x − (u)][y − (v + 1)]},w4 = {[x − (u + 1)][y − (v + 1)]}

(6)Px,y = p4w4Pu,v + p2w2Pu,v+1 + p3w3Pu+1,v + p1w1Pu+1,v+1
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�is is the aim of our research to develop a global weighting scheme whose basic func-

tion is shown by Eq. (7), where wg the global weight produced by ant colony optimiza-

tion algorithm.

Furthermore, the developed weighting scheme considers “the characteristics of phero-

mone information locality” in order to assign that global weight thus achieves a higher 

resolution image interpolation.

The proposed global weighting scheme

As shown by Eq.  (7), wg is the global weight which is applied to a group of pixels sur-

rounding directly an unknown-value location. �is global weight is a function of pher-

omone matrix information on that/each group of four pixels  (see Fig.  2b). Now, the 

problem is how to find the pheromone information present on each group. To solve this 

problem, we started by constructing the pheromone matrix and then we checked pos-

sibilities of the partial or full simultaneous presence of the pheromone trails information 

at the four pixels/locations surrounding directly the unknown-value location Px,y . 

Pheromone matrix construction

Initially a pheromone value τinit is assigned to every pixel location (see Fig. 3a) and, ants 

are randomly distributed on image before moving artificial ants for a certain number of 

steps on that image.

�e ants’ movements are/will be steered by the intensity variation of the grayscale pix-

els (within a permissible range of 8-connectivity neighborhood around P(i,j), as shown in 

Fig. 3b.

�e nth ant’s move from a departing pixel’s position 
(

i0, j0
)

 located within acceptable 

(8-connectivity) neighborhood depends on the attractiveness ηi,j of any adjacent pixel 

[e.g.i, j] and the pheromone trail information τ
(n−1)
i,j  on it. �erefore, an ant will make a 

(7)Px,y = wg

(

w4Pu,v + w2Pu,v+1 + w3Pu+1,v + w1Pu+1,v+1

)

Fig. 2 a Lenna image. b Example of a two-dimensional representation with the pheromone information P 

assigned on each image pixel location
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nth move from any pixel 
(

i0, j0
)

 to an adjacent pixel (i, j) according to the pseudorandom 

proportional rule. �e transition probability will be given by Eq. (8)

where τ
(n−1)
i,j  is the pheromone value on the pixel (i, j); �(i0 ,j0) is an acceptable neighbor-

hood for the pixel (i0, j0); ηi,j is the heuristic information on the pixel (i, j); the phero-

mone and heuristic information constants α and β are always positive. Each time an ant 

visits a pixel, it automatically performs a local update on the adjacent pixel. �e amount 

of pheromone on the pixel (i, j) at the nth iteration, τ
(n)
i,j  is calculated using the local pher-

omone update Eq. (9)

where ϕ ∈ [0, 1] is the pheromone decay coefficient. In each iteration, the pheromone 

trail value changes because local updates are provided together with the solution con-

struction process. As mentioned, the ant’s permissible range of movements is situated 

within the 8-connectivity neighborhood, see Fig.  3b. An ant can move to an adjacent 

pixel on the condition that it moves to a pixel that was not recently visited by any other 

ants. �is condition is backed by an artificial memory assigned to each ant so that it can 

keep records of every visited pixel. After all ants have completed the construction pro-

cess, a global pheromone update is performed only on the pixels that have been visited 

by at least one ant according to Eq. (10)

(8)p
(n)
(i0 ,j0),(i,j)

=

(

τ
(n−1)
i,j

)α(

η
(n−1)
i,j

)β

∑

(i,j)∈�(i0,j0)

(

τ
(n−1)
i,j

)α(

η
(n−1)
i,j

)β

(9)τ
(n)
i,j = (1 − ϕ) · τ

(n)
i,j + ϕ · τinit

(10)τ
(n)
i,j = (1 − ρ) · τ

(n−1)
i,j + ρ ·

K∑

K=1

�τ
(k)
i,j

Fig. 3 a Initial pheromone matrix look. Initially, the pheromone value for each matrix element is set to a non-

zero constant, b the 8-connectivity neighborhood and possible ant’s direction movement
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where �τ
(k)
i,j  is the amount of pheromone deposited by the kth ant on the pixel (i, j). �is 

amount �τ
(k)
i,j  is equal to the average of heuristic information associated with the pixels 

that belong to the tour of the kth ant if the pixel (i, j) was visited by the kth ant in its cur-

rent tour, otherwise the amount �τ
(k)
i,j = 0; ρ is the pheromone evaporation rate; K is 

the number of ants which can be determined by Eq. (11).

As the value for �τ
(k)
i,j  depends on the heuristic information, ηi,j at the (i, j) can be given 

by Eq. (12)

where P(i,j) is the intensity value of a pixel at (i, j), Vmax is the normalization factor; 

Vc(Pi,j) is the function that operates on the 8-connectivity pixels neighborhood. �e 

value of that function depends on the variation of the pixel’s intensity values and can be 

given by Eq. (13)

Max and mean global weighting scheme

�is is a very important step of our proposed algorithm. �e max function returns the 

greatest element value in a data set whereas the mean returns the average of elements 

values. Equation  (10) gives the pheromone value or level on mostly visited pixel loca-

tions. However, it has been experimentally upgraded to Eq. (14) in order to yield view-

able results.

Intuitively, assigning a direct the global weight, as shown by Eq. (7), would not permit 

to reduce the low-pass filtering process which reduces image resolution. However, in 

order to achieve higher resolution or quality image interpolation, we have introduced a 

weighting scheme which employs solely the Eq. (14) pheromone information, present on 

any group of four adjacent pixels, to decide which interpolated pixel that needs the max-

imum global weight or not. Now, with reference to Fig. 4 and Eq. (12), we can estimate 

the desirability of an ant to select the next pixel using the function Vc(Pi,j).

For instance, Fig. 4 shows that an ant belonging to the upper left black pixel dot 30 

(15), where 30 is the pixel value and 15 is Vc(Pi,j) value, has eight choices in which the 

best one (i.e. one having the highest Vc(Pi,j) value) is acceptable, if and only if it has not 

been chosen by any (other) ants. In this way, the ant will follow the blue, purple or green 

arrows depending on where it was initially put or randomly distributed. �eir moves 

along those arrows shows that the pheromone information can be present (at least) at 

three, two and one locations in a group (of four pixels), because every time an ant moves, 

it drops the pheromone trails on the visited pixel or location.

(11)K =

√

input image width ∗ input image height

(12)η(i,j) =

Vc(Pi,j)

Vmax

(13)
Vc(Pi,j) =

∣

∣P(i−1,j−1) − P(i+1,j+1)

∣

∣ +

∣

∣P(i+1,j−1) − P(i−1,j+1)

∣

∣

+

∣

∣P(i,j−1) − P(i,j+1)

∣

∣ +

∣

∣P(i−1,j) − P(i+1,j)

∣

∣

(14)p(i,j) = exp
(

τni,j

)
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Now, the next problem is how reasonably to assign the global weight in each (simul-

taneous pheromone trails presence) case. To settle this, we label p1, p2, p3 and p4 as the 

pheromone information on each pixel position surrounding directly the unknown-value 

location Px,y shown in Fig. 5, and that A, B, C and Dare different levels or value that p1, 

p2, p3 and p4 can have. Let us now make S a set containing the pheromone trails informa-

tion p1, p2, p3 and p4 as shown by Eq. (15).

(15)S = [p1, p2, p3, p4]

Fig. 4 The estimation of an ant to select the next pixel

Fig. 5 Pheromones trails around the unknown-value location Px ,y
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In order to reduce reasonably the low-pass filtering process in our algorithm we used 

max and mean functions to assign reasonably the global weight with reference to possi-

ble partial or full simultaneous presence of the pheromone trails information at the four 

locations surrounding directly the unknown-value location Px,y.

Assumption 1 When p1 = p2 = p3 = p4 = A (all pheromone trails information 

around Px,y have the same level).

And

Here, there is no special requirement for assigning the highest level of pheromone trails. 

�erefore, any of two weighting procedures can be used, my experimental choice is 

given by Eq. (18)

Assumption 2 When p1 = p2 = p3 = Aand p4 = B (one of the four pheromone trails 

information around Px,y has a different level).

And

Here, a highest level of pheromone trails can be assigned reasonably only when p3 > p4, 

since it is only in this case where you can find one location having the lowest pheromone 

trail level. For this reason, the global weight is given by Eq. (21)

Assumption 3 When p1 = p2 = A, p3 = C and p4 = B(only two of the four phero-

mone trails information around Px,y have the same level).

And

A highest level of pheromone trails can be assigned reasonably only when 

p2 > p3& p2 > p4, because it is in this case where you can only find a biggest number 

of locations with the highest pheromone trail level, at the same time. �erefore, the max 

weighting is given by Eq. (24)

(16)Max(S1) = A

(17)Mean(S1) = A

(18)wg = Mean(S1)

(19)

{

Max(S2) = A if p3 > p4
Max(S2) = B otherwise

(20)Mean(S2) �= A �= B

(21)wg = Max(S2)

(22)







Max(S3) = A if p2 > {p3, p4}
Max(S3) = C if p2 < p3
Max(S3) = B if p2 < p4

(23)Mean(S3) �= A �= B �= C
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Assumption 4 When p1 = A, p2 = D, p3 = C and p4 = B (all pheromone trails infor-

mation around Px,y have different levels).

And

Here, a mean-based weighting procedure is preferable in order to avoid any possible 

influence of a strong noise intrusion. �erefore, the global weight is given by Eq. (27)

Assumption 5 When p1 = p2 = A, p3 = p4 = B (every two pheromone trails infor-

mation around Px,y have the same level).

And

A highest level of pheromone trails can be assigned reasonably only when 

p2 > p3&p2 < p3 and therefore, the max weighting is given by Eq. (29)

Parameter selection

�e ant colony optimization has many parameters that need to be properly selected 

in order to increase the strength of the proposed algorithm. In this regard, the proper 

selection of parameters α and β helps to determine the relative influence of the phero-

mone trail and the path visibility. Information in image content is always more important 

than in pheromone trail, thus, β > α is a general selection and our experiments adopt 

α = 1, β = 2 as in Tian et al. (2011). Other parameters such as τinit , ϕ and ρ determine 

the pheromone trail change, where τinit is the initial value for the pheromone trails and 

this value is always non-zero though very close to zero. ϕ and ρ are adaptation param-

eters. Our experiment adopt τinit = 0.0001, ϕ = 0.00001 and ρ = 0.1. Finally, the num-

ber of iterations, ants and memory size are also important parameters which deserve a 

proper selection. Note that a large number of iterations tend to increase the image edges 

sharpness but at very high computational load plus a possibility of generating too many 

false edge pixels. Furthermore, with a higher number of iterations, the change in image 

quality is not significant as it can be imagined intuitively. Artificial ant’s memory size can 

(24)wg = Max(S3)

(25)











Max(S4) = A if p1 > {p2, p3, p4}
Max(S4) = D if p2 > {p1, p3, p4}
Max(S4) = C if p3 > {p2, p1, p4}
Max(S4) = B if p4 > {p2, p3, p1}

(26)Mean(S4) �= A �= B �= C �= D

(27)wg = Mean(S4)

(28)

{

Max(S5) = A if p2 > p3
Max(S5) = B if p2 < p3

(29)Mean(S3) �= A �= B

(30)wg = Max(S5)
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be determined by Eq. (31) to ensure that each ant is assigned a big enough memory to 

record all ‘visitable’ pixels.

Experimentally, we found that the number of iterations ranging from 1 to 10, the num-

ber of ants given by Eq. (11) and the memory size given by Eq. (31) are adequate param-

eter values for yielding interpolated images in their most pleasant way within a tolerable 

computational load.

Summary of the proposed algorithm

Figure 6 shows a summary of the proposed AACA algorithm. �e proposed algorithm 

includes two important steps namely, the pheromone matrix construction and global 

weighting scheme.

�e proposed approach provides better results than our previously proposed meth-

ods as well as the interpolation algorithms mentioned in this paper. �e novelty in this 

approach is a weighting scheme involved in its process. �is scheme is based on global 

weight assignment rather than local. It uses the max and mean functions to adapt ade-

quately the global weight to an interpolated pixel with reference to partial or full simulta-

neous presence of the pheromone trails information (at the four locations). �is is done 

to reduce reasonably the low-pass filtering process thus achieve a HR image interpolation.

Experimental results

�is section presents the results from the experiments conducted. �e performance of 

the proposed approach was compared with that of the previous works, two traditional 

(31)Memory size =

m ∗ n

K

Fig. 6 Summary of the proposed algorithm
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interpolation algorithms executed by MATLAB toolbox and new edge directed inter-

polation algorithm proposed/whose details are given in Li and Orchard (2001). Two 

image quality assessment measures used are: Peak Signal to Noise Ratio (PSNR) and 

Mean Squared Error (MSE). A higher PSNR would normally indicate the higher quality 

of the output image whereas a higher MSE would indicate the interpolator’s weakness 

to reconstruct faithfully an image. Tables 2 and 3 provide the MSE and PSNR values for 

interpolated Lenna, Cameraman, Lake and Peppers test images. However, Figs. 7, 8, 9 

and 10 show these images after being interpolated using the bilinear, bicubic, OBACA, 

Nearest Neighbor Value Interpolation (NNV) proposed in Rukundo and Cao (2012) and 

AACA interpolation algorithms presented in this paper. Furthermore, Figs.  11, 12, 13 

and 14 show the portions of Lenna, Lake, Peppers and Cameraman images interpolated 

using New Edge Directed Interpolation (NEDI) and AACA. �e PSNR and MSE were 

provided in the caption of Figs. 11, 12, 13 and 14.

Conclusions and recommendations

An advance on image interpolation based on ant colony algorithm has been presented 

in this paper. Unlike our previous OBACA algorithm, which employed a local weighting 

scheme, the presented AACA algorithm used however a novel global weighting scheme. 

�e strength of the proposed global weighting depended on employing solely the phero-

mone matrix information, present on any group of four adjacent pixels, to decide which 

case deserves a maximum global weight value or not. �e use of max and mean global 

weight values has shown that the proposed AACA algorithm is able to reduce the inter-

polation errors with reference to the original image. �is was proved by the experiments 

conducted on full and partial Cameraman, Lenna, Lake and Peppers test images. More 

Table 2 MSE of the interpolated images (128 × 512)

Images Methods Values

Cameraman Bilinear 25.2190

Bicubic 24.9344

OBACA 21.9463

NNV 20.9192

AACA 17.4473

Lenna Bilinear 23.0509

Bicubic 22.1158

OBACA 15.9800

NNV 14.9963

AACA 10.6305

Lake Bilinear 43.2509

Bicubic 42.5583

OBACA 39.8727

NNV 38.7641

AACA 33.6966

Peppers Bilinear 27.1935

Bicubic 26.8901

OBACA 22.9027

NNV 21.2183

AACA 17.7068
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Table 3 PSNR of the interpolated images (128 × 512)

Images Methods Values (dB)

Cameraman Bilinear 34.1135

Bicubic 34.1628

OBACA 34.7172

NNV 35.5267

AACA 35.7135

Lenna Bilinear 34.5039

Bicubic 34.6838

OBACA 36.0950

NNV 36.1891

AACA 37.8653

Lake Bilinear 31.7708

Bicubic 31.8410

OBACA 32.1240

NNV 32.1377

AACA 32.8549

Peppers Bilinear 33.7862

Bicubic 33.8349

OBACA 34.5319

NNV 34.5559

AACA 35.6494

Fig. 7 a Interpolated image by AACA, b interpolated image by NNV, c interpolated image by OBACA, d 

interpolated image by bicubic, and e interpolated image by bilinear algorithm
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Fig. 8 a Interpolated image by AACA, b interpolated image by NNV, c interpolated image by OBACA, d 

interpolated image by bicubic, and e interpolated image by bilinear algorithm

Fig. 9 a Interpolated image by AACA, b interpolated image by NNV, c interpolated image by OBACA, d 

interpolated image by bicubic, and e interpolated image by bilinear algorithm
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Fig. 10 a Interpolated image by AACA, b interpolated image by NNV, c interpolated image by OBACA, d 

interpolated image by bicubic, and e interpolated image by bilinear algorithm

Fig. 11 a Interpolated image by AACA (PSNR = 39.2180, MSE = 7.7853), b interpolated image by NEDI 

(PSNR = 37.1192, MSE = 12.6229)
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Fig. 12 a Interpolated image by AACA (PSNR = 37.9615, MSE = 10.3976), b interpolated image by NEDI 

(PSNR = 35.9885, MSE = 16.3769)

Fig. 13 a Interpolated image by AACA (PSNR = 40.1928, MSE = 6.2201), b interpolated image by NEDI 

(PSNR = 37.8635, MSE = 10.6348)

Fig. 14 a Interpolated image by AACA (PSNR = 40.1144, MSE = 6.3334), b interpolated image by NEDI 

(PSNR = 37.4861, MSE = 11.6003)
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particularly, it has been shown by higher quality/resolution images yielded by AACA 

algorithm than other algorithms mentioned in this paper. �e future development of the 

proposed approach may be devoted to settling the computational load issue by restrict-

ing the movements of ants on some parts of an image.
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