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Advances on the Hamiltonian Problem - A Survey

Ronald J. Gould

Emory University, Atlanta GA 30322

July 8, 2002

Abstract

This article is intended as a survey, updating earlier surveys in the area. For completeness

of the presentation of both particular questions and the general area, it also contains material

on closely related topics such as traceable, pancyclic and hamiltonian-connected graphs and

digraphs.

1 Introduction

A graph G is hamiltonian if it contains a spanning cycle. The hamiltonian problem is generally
considered to be determining conditions under which a graph contains a spanning cycle. Named
for Sir William Rowan Hamilton, this problem traces its origins to the 1850s. Today, however, the
constant stream of results in this area continues to supply us with new and interesting theorems
and still further questions.

To many, including myself, any path or cycle problem is really a part of this general area and
it is difficult to separate many of these ideas. Thus, although I will concentrate on spanning cycles
(the classic hamiltonian problem), other related results, both stronger and weaker, will be presented
in order to provide you with a better picture of the overall theory and problems as they exist today.

In doing this I shall generally restrict my attention to work done since [137] appeared in 1991,
as earlier hamiltonian and related surveys (see [28], [42], [31], [185], [242], [25], [194], [43], [9], [88]
and [137] ) provide ample background on previous work. Thus, I shall expect my reader to be
somewhat familiar with this area already. Since this area is so vast, I shall certainly be unable to
mention everything, but shall do my best to cover important topics. However, I will cover only a
limited amount dealing with closure operations as the recent survey [63] provides an excellent view
of developments in this area and I shall not attempt to cover hamiltonian digraph results.

Throughout this article we consider finite simple graphs G = (V, E), unless otherwise indicated.
We reserve n to denote the order (|V |) and q the size (|E|) of G. We use δ(G) and ∆(G) for the
minimum and maximum degrees of G respectively, and let N(x) and N(S) denote the neighborhood
of the vertex x and set S respectively. Further, let c(G) denote the circumference of G, that is, the
length of a longest cycle, g(G), the girth, that is the length of a shortest cycle and

σk(G) = min {deg x1 + . . . + deg xk | x1, . . . , xk are independent in G}.

Graphs satisfying lower bounds on σk with k ≥ 2 will often be called Ore-type graphs, while if
k = 1, Dirac-type graphs. If G contains no induced subgraph isomorphic to any graph in the set
F = {H1, . . . , Hk}, we say G is F -free, or H1-free if F contains only H1. For terms not defined
here see [68].
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2 Extending the Classics

In this section I will concentrate on results that generalize, or extend in some way, well-known
hamiltonian results. Several such directions either emerged or were greatly developed over the past
decade and a number of intriguing conjectures were solved.

An interesting problem concerning powers of hamiltonian cycles proved to be very difficult and
developed in stages until finally resolved. The kth power of a graph G is the graph obtained from
G by inserting edges between vertices at a distance at most k in G. Part (a) of the following
Conjecture is due to Pósa (see [101] ) while part (b) is due to Seymour [221]. Both parts generalize
the classic result of Dirac [92].

Conjecture 1 (a) If δ(G) ≥ 2n/3, then G contains the square of a hamiltonian cycle.

(b) If δ(G) ≥ kn
k+1 , then G contains the kth power of a hamiltonian cycle.

Pósa’s conjecture dates to 1962, but it was many years before a series of real advances were
made on this question. Seymour indicated the difficulties involved here by observing that the truth
of his conjecture would imply the difficult Hajnal-Szemerédi Theorem [143], that if ∆(G) < r, then
G is r colorable such that the sizes of the color classes are all ⌊n/r⌋ or ⌈n/r⌉.

A flurry of work on the Pósa conjecture began when M. S. Jacobson (unpublished) showed
that if δ(G) ≥ 5n/6, then the conjecture holds. Then, Faudree, Gould, Jacobson and Schelp [118]
showed that δ(G) ≥ (3/4 + ǫ)n + c(ǫ) suffices. They later improved this to δ(G) ≥ 3n/4 (again
unpublished). Fan and Häggkvist [107] further lowered the bound to δ(G) ≥ 5n/7. Fan and
Kierstead (manuscript) then improved the bound to (17n + 9)/24. Faudree, Gould and Jacobson
(manuscript) decreased the bound to 7n/10 and Fan and Kierstead [108] showed that the Pósa
condition was nearly optimal when they showed that (2/3 + ǫ)n + c(ǫ) suffices. They also showed
that ǫ = 0 suffices if we only seek the square of a hamiltonian path [110]. Kierstead and Quintana
[171] showed the Pósa Conjecture holds on graphs with minimum degree 2n/3 that also contain a
maximal 4-clique. Fan and Kierstead [109] also gave conditions for a graph to contain two edge
disjoint square hamiltonian cycles.

Turning to the Seymour conjecture, in [118] it was shown that for any ǫ ≥ 0 and positive integer
k, there is a constant C such that if a graph G satisfies δ(G) ≥ ((2k − 1)/(2k) + ǫ)n + C, then G
contains the kth power of a hamiltonian cycle. In [172], the above was improved to ( k

k+1 + ǫ)n.
Ultimately, in [173] and [174], the truth of both the Pósa and Seymour Conjectures were verified

for large n by Komlós, Sáközy and Szemerédi. I combine these results below.

Theorem 1 [173], [174] There exists a natural number n0 such that if G has order n and n ≥ n0

and δ(G) ≥ kn/(k + 1), then G contains the k-th power of a hamiltonian cycle.

The main tools used in proving these results are the well-known regularity lemma [230] and the
powerful Blow-up Lemma [176]. The regularity lemma has long been recognized as one of the best
tools for dealing with problems on dense graphs. Recently, it has been emerging as a very effective
approach to difficult cycle results.

A related result, also of Dirac type, is due to Aigner and Brandt [4]. This one concerns subgraphs
of maximum degree two, originally conjectured in a somewhat weaker form by Sauer and Spencer
[216].

Theorem 2 [4] Every graph G of order n with δ(G) ≥ (2n− 1)/3 contains any graph with at most
n vertices and maximum degree two.
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Corollary 3 [4] Let G be a graph of order n with δ(G) ≥ (2n − 1)/3 and suppose n ≥ n1 +
n2 + . . . + nk where ni ≥ 3 for all i. Then G contains the vertex disjoint union of the cycles
Cn1

∪ Cn2
∪ . . . ∪ Cnk

.

Clearly then, any such graph contains any 2-factor we would want and hence provides a strong
analogue to Dirac’s theorem. I should mention that Alon and Fischer [6] also provided a solution
to the Sauer-Spencer conjecture (δ = 2n/3). Their result used work dependent on the regularity
lemma and thus holds only for large graphs.

Related to the last result is another old conjecture due to El-Zahar [95].

Conjecture 2 Let G be a graph of order n = n1 + n2 + . . . + nk with δ(G) ≥ ∑k
i=1 ⌈ni/2⌉, then

G contains the 2-factor Cn1
∪ . . . ∪ Cnk

.

Note that the graph Ks−1 + K⌈n−s+1

2
⌉,⌈n−s+1

2
⌉ has minimum degree (n + s − 1)/2 but contains

no s vertex disjoint odd length cycles. Thus, the conjecture is best possible.

El-Zahar [95] provided an affirmative answer to the case k = 2, while Dirac’s Theorem handles
k = 1. Recently, Abbasi [1] announced a solution for large n using the regularity lemma. It would
still be interesting to find a solution to this beautiful conjecture for all n. It should be noted that
Corrádi and Hajnal [87] provided an affirmative answer to the El-Zahar conjecture for the case that
each ni = 3

An old conjecture of Erdös and Faudree [102] generalizes the Corrádi-Hajnal theorem in another
direction.

Conjecture 3 Let G be a graph with order n = 4k and δ(G) ≥ 2k, then G contains k vertex
disjoint 4-cycles.

Alon and Yuster [8] proved that for any ǫ > 0, there exists k0 such that if G has order 4k and
δ(G) ≥ (2 + ǫ)k with k ≥ k0, then G contains k disjoint 4-cycles. In [207], a near solution was
provided by Randerath, Schiermeyer and Wang.

Theorem 4 Let G be a graph of order 4k and minimum degree at least 2k. Then G contains a
vertex disjoint collection of subgraphs, k − 1 of which are 4-cycles and the remaining subgraph has
order 4 and at least four edges.

Finally, in [175], a solution for large n was indicated as a consequence of another result (again
dependent upon the regularity lemma).

Next we turn our attention to another generalization of the classic results of Dirac [92] and Ore
[199]. Recall that a 2-factor is a 2-regular spanning subgraph of G. A hamiltonian cycle is then a
2-factor, and in one sense, it is the simplest 2-factor as it is composed of a single cycle. In another
sense, it may be the most difficult 2-factor to find, as we must force a single cycle. We now ask the
question: If we weaken the conditions that allow total control of the structure of a 2-factor (as was
done above), can we still at least control the number of cycles in the 2-factor?

Theorem 5 [56] If G is a graph of order n satisfying
(1) δ(G) ≥ n/2 and n ≥ 4k or
(2) σ2(G) ≥ n and n ≥ 4k
then G contains a 2-factor with exactly k cycles, and this result is best possible.
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To see this result is best possible we need only consider the complete bipartite graph Kn/2,n/2.
Clearly, the smallest cycle in any 2-factor of this graph is a 4-cycle and hence the bound on n is
sharp. Further, K(n−1)/2,(n+1)/2 (n odd), does not contain a 2-factor, hence the degree conditions
are also sharp.

Theorem 5 was a natural direction to take, given the fact that Ore-type graphs are either
pancyclic (contain cycles of all possible lengths) or Kn/2,n/2. Upon viewing Theorem 5, the next
question is obvious.

Question 1 Which of the conditions implying a graph G of order n is hamiltonian also imply that
G contains a 2-factor with k cycles for all values of k, 1 ≤ k ≤ f(n). Further, in each case how
large can f(n) be?

A number of results along these lines followed. I shall only mention a few.

Generalizing the result of Matthews and Sumner [192] on claw-free hamiltonian graphs, the
following was shown in [72].

Theorem 6 Let G be a 2-connected, claw-free graph of order n ≥ 51 with δ(G) ≥ 1
3(n − 2). Then

for each k with 1 ≤ k ≤ n−24
3 , G has a 2-factor with exactly k cycles.

The next result is from [71] and concerns a bipartite version of the question.

Theorem 7 Let k be a positive integer and let G be a balanced bipartite graph of order 2n where
n ≥ max{51, k2

2 + 1}. If deg u + deg v ≥ n + 1 for every u ∈ V1 and v ∈ V2, then G contains a
2-factor with exactly k cycles.

Extending Jung’s [165] result on 1-tough graphs (restricted to minimum a degree condition),
the following was shown in [117].

Theorem 8 If G is a 1-tough graph of sufficiently large order n with δ(G) ≥ n−t
2 (0 ≤ t ≤ 4), then

G contains a 2-factor with k cycles where 1 ≤ k ≤ n
4 − t.

Recall, a dominating circuit of a graph G is a circuit of G with the property that every edge of
G either belongs to the circuit or is adjacent to an edge of the circuit. The next classic result is by
Harary and Nash-Williams [144].

Theorem 9 Let G be a graph without isolated vertices. Then L(G) is hamiltonian if and only if
G ≃ K1,n, for some n ≥ 3, or G contains a dominating circuit.

In order to generalize Theorem 9 we say that G contains a k-system that dominates if G contains
a collection of k edge disjoint circuits and stars, (here stars are K1,ni

, ni ≥ 3), such that each edge
of G is either contained in one of the circuits or stars, or is adjacent to one of the circuits. With
this in mind, the following was shown in [140].

Theorem 10 Let G be a graph with no isolated vertices. The graph L(G) contains a 2-factor with
k (k ≥ 1) cycles if, and only if, G contains a k-system that dominates.

Using Theorem 10, Hynds [153] investigated Question 1 in various graphs whose line graphs
were already known to be hamiltonian.
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Now we turn to another strong hamiltonian property introduced by Chartrand (see [198]). A
graph is k-ordered (hamiltonian) if for every ordered sequence of k vertices there is a (hamiltonian)
cycle that encounters the vertices of the sequence in the given order. Clearly, every hamiltonian
graph is 3-ordered hamiltonian.

Ng and Schultz [198] were the first to investigate such graphs.

Theorem 11 [198] Let G be a graph of order n and let k be an integer with 3 ≤ k ≤ n. If
deg(u) + deg(v) ≥ n + 2k − 6 for every pair u, v of nonadjacent vertices of G, then G is k-ordered
hamiltonian.

Corollary 12 [198] Let G be a graph of order n and let k be an integer with 3 ≤ k ≤ n. If
deg(u) ≥ n/2 + k − 3 for every vertex u of G, then G is k-ordered hamiltonian.

Clearly, this theorem and corollary are analogs of Ore’s [199] and Dirac’s [92] fundamental
results, respectively. Both bounds for k-ordered hamiltonicity were improved for small k with
respect to n. Theorem 11 was improved by Faudree, Faudree, Gould, Jacobson and Lesniak [114].

Theorem 13 [114] Let k ≥ 3 be an integer and let G be a graph of order n ≥ 53k2. If deg(u) +
deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered
hamiltonian.

Corollary 12 was improved by Kierstead, Sárközy and Selkow [170] as follows.

Theorem 14 [170] Let k ≥ 2 be an integer and let G be a graph of order n ≥ 11k − 3. If

deg(u) ≥
⌈

n
2

⌉

+
⌊

k
2

⌋

− 1 for every vertex u of G, then G is k-ordered hamiltonian.

We note that both of these bounds are sharp for the respective values of k. Unexpectedly, for
small k, the Dirac type bound does not follow from the Ore type bound. In [119], this was further
investigated and the following shown:

Theorem 15 [119] Let k be an integer with 3 ≤ k ≤ n/2 and let G be a graph of order n. If
deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is
k-ordered hamiltonian.

The bound in Theorem 15 is sharp and for large k it implies the bound of Dirac-type. Thus,
(a) for large k, the Ore type bound yields the Dirac type bound;
(b) for small k, the Ore type bound is more than twice the Dirac type bound; and
(c) for moderate k, the situation is still not clear.

We summarize the above more precisely as follows. Let δ(n, k) be the smallest integer m for
which any graph of order n with minimum degree at least m is k-ordered hamiltonian. The following
theorem is from [119].

Theorem 16 For positive integers k, n with 3 ≤ k ≤ n we have

(i) δ(n, k) =
⌈

n
2

⌉

+
⌊

k
2

⌋

− 1, for k ≤ (n + 3)/11;

(ii) δ(n, k) > n
2 + k

2 − 2, for (n + 3)/11 < k ≤ n/3;
(iii) δ(n, k) ≥ 2k − 2, for n/3 < k < 2(n + 2)/5;

(iv) δ(n, k) =
⌈

n/2 + 3k−9
4

⌉

, for 2(n + 2)/5 ≤ k ≤ n/2;

(v) δ(n, k) = n − 2, for n/2 < k ≤ 2n/3; and
(vi) δ(n, k) = n − 1, for 2n/3 < k ≤ n.
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Ng and Schultz [198] showed that k-ordered graphs must be (k − 1)−connected. The degree
conditions of the above results are enough to accomplish this level of connectivity. It is natural to
ask if strengthening the connectivity conditions would allow us to lower the degree conditions. In
[73] this question was investigated.

Theorem 17 [73] Let G be a graph on n vertices with σ2(G) ≥ n. Let k ≤ n/176 be an integer. If
G is ⌊3k/2⌋-connected, then G is k-ordered hamiltonian.

The connectivity bound is best possible, as illustrated by the following graph G2. Let L2, M2,
R2 be complete graphs with |R2| = ⌊k/2⌋, |M2| = 2⌊k/2⌋ − 1, |L2| = n − |M2| − |R2|. Let G′

2 be
the union of these three graphs, adding all possible edges containing vertices of M2. Let xi ∈ L2

if i is odd, and let xi ∈ R2 otherwise. Add all edges xixj whenever |i − j| 6∈ {0, 1, k − 1}, and the
resulting graph is G2. The degree sum condition is satisfied and G2 is (⌊3k/2⌋− 1)-connected. But
there is no cycle containing the xi in the proper order, since such a cycle would contain 2⌊k/2⌋
paths through M2.

A slight improvement is possible when considering only minimum degrees. Again, the connec-
tivity bound is best possible.

Theorem 18 [73] Let G be a graph on n vertices with minimum degree δ(G) ≥ n/2. Let k ≤ n/176
be an integer. If G is 3⌊k/2⌋-connected, then G is k-ordered hamiltonian.

We note also that a consequence of a result of Bollobás and Thomason [39] implies that every
22k-connected graph is k-ordered. Thus, connectivity alone will suffice. They naturally raise the
following question.

Question 2 What is the least connectivity f(k) so that any f(k)-connected graph is k-ordered?

A natural variation of k-ordering would be to consider ordered edge sets, and in fact, even more
can be said. We say L is a (k, t, s)-linear forest if L is a sequence L = P 1, P 2, . . . , P t (1 ≤ t ≤ k)
of t disjoint paths, s of them being singletons such that |V (L)| = k. A graph G is (k, t, s)-ordered
if for every (k, t, s)-linear forest L in G, there exists a cycle C in G that contains the paths of
L in the designated order. Further, if the paths of L are each oriented and C can be chosen to
encounter the paths of L in the designated order and according to the designated orientation on
each path, then we say G is strongly (k, t, s)-ordered. If C is a hamiltonian cycle then we say G
is (k, t, s)-ordered hamiltonian and strongly (k, t, s)-ordered hamiltonian, respectively. Note that
saying G is (s, s, s)-ordered is the same as saying G is s-ordered. The following two results were
shown in [70].

Theorem 19 [70] For k ≥ 1 and 1 ≤ t ≤ k, if G is a (strongly) (k, t, s)-ordered graph on n ≥ k
vertices with δ(G) ≥ n+k−t+s

2 , then G is (strongly) (k, t, s)-ordered hamiltonian.

Theorem 20 [70] If s = t = k ≥ 3 or 0 ≤ s < t < k, and G is a graph of order n ≥
max {178t + k, 8t2 + k} with

σ2(G) ≥











n + k − 3 if s = 0
n + k + s − 4 if 0 < 2s ≤ t
n + k + t−9

2 if 2s > t
,

then G is strongly (k, t, s)-ordered.
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Finally, Ellingham, Zha and Zhang [94] took a different approach. Define a 2-trail as a trail
that uses every vertex at most twice. Thus, spanning 2-trails generalize hamiltonian paths and
cycles. They prove the following three results, each of which is sharp.

Theorem 21 (1) If σ3(G) ≥ n − 1, then G has a spanning 2-trail, unless G = K1,3.
(2) If σ3(G) ≥ n, then either G has a hamiltonian path or a closed spanning 2-trail.
(3) If G is 2-edge connected and σ3(G) ≥ n, then G has a closed spanning 2-trail, unless G = K2,3

or K∗
2,3 (the 6 vertex graph obtained from K2,3 by subdividing one edge).

3 Density

By density we mean conditions that force the existence of a sufficient number of edges to imply
the desired result. Since most hamiltonian results are of this type, I shall restrict attention in
this section to results involving size, degrees, or neighborhood conditions. Degree conditions are
the classic approach to hamiltonian problems and neighborhood unions are a form of generalized
degree condition. Early results of this type are discussed in a number of the previously mentioned
surveys.

We shall consider several strengthenings of classic results as well as density conditions that imply
new strong hamiltonian properties or generalizations of old properties. The first such generalization
we consider is due to Brandt [53]. He defines a graph to be weakly pancyclic if it contains cycles of
every length from the girth to the circumference. Brandt then showed the following.

Theorem 22 If G is a nonbipartite graph of order n and size q > ⌊(n − 1)2/4 + 1⌋, then G is
weakly pancyclic.

Note that such graphs contain triangles. Brandt, Faudree and Goddard [55] then considered
degree conditions for weakly pancyclic graphs.

Theorem 23 [55] (a) Let G be a 2-connected nonbipartite graph with δ(G) ≥ n/4 + 250. Then
G is weakly pancyclic unless G has odd girth 7, in which case it has every cycle from 4 up to its
circumference except for the 5-cycle.
(b) Every nonbipartite graph with δ(G) ≥ (n + 2)/3 is weakly pancyclic (and has girth 3 or 4).

Brandt [52] also considered other degree conditions for weakly pancyclic graphs.

Theorem 24 Let G 6= C5 be a nonbipartite triangle-free graph of order n. If δ(G) > n/3, then
G is weakly pancyclic with girth 4 and circumference min {2(n − α(G)), n}, (where α(G) is the
independence number of G).

Brandt [53] also conjectured the following.

Conjecture 4 Every nonbipartite graph of order n and size at least (n− 1)(n− 3)/4 + 4 is weakly
pancyclic.

Bollobás and Thomason [40] came very close to solving this conjecture. In fact, their work
actually shows that a minimal counterexample to Brandt’s Conjecture has small order ( ≤ 132).

Theorem 25 [40] Let G be a nonbipartite graph of order n and size at least ⌊n2/4⌋−n+59. Then
G contains a cycle of length ℓ for 4 ≤ ℓ ≤ c(G).
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Xiong [243] also considered weakly pancyclic line graphs (although using the term subpancyclic)
satisfying a degree condition for adjacent pairs.

In a very different strengthening of Dirac’s Theorem, Kaneko and Yoshimoto [167] show small
subsets of vertices can be distributed along a hamiltonian cycle. Here distC means the distance
along the cycle C.

Theorem 26 Let G be a graph of order n with δ(G) ≥ n/2 and let d be a positive integer with
d ≤ n/4. Then for any vertex subset A with at most n/2d vertices, there exists a hamiltonian cycle
C with distC(u, v) ≥ d for any u, v ∈ A.

This result is sharp in that the bound on the cardinality of A cannot be increased. With this
interesting result in hand, we raise a natural problem.

Problem 1 What other density conditions allow the distribution of “small” sets of vertices along
a hamiltonian cycle? Are there density conditions that do not allow such a distribution, except
possibly on a constant number of vertices?

Another generalization of hamiltonian graphs is the idea of cyclable sets. A subset S of V (G)
is called cyclable in G if all the vertices of S belong to a common cycle in G. Clearly, if V (G) is
cyclable, then G is hamiltonian. Also, if G is hamiltonian, then S is cyclable for any S ⊂ V (G). If S
is a subset of V (G), we let G[S] denote the subgraph induced by S and α(S, G) be the independence
number of G[S]. A number of set restricted density results imply cyclability. The first extends the
well-known Chvátal-Erdös Theorem [80].

Theorem 27 [130] Let G be a k-connected graph (k ≥ 2) and S a subset of V (G). If α(S, G) ≤ k
then S is cyclable in G.

The next result is due independently to Bollobás and Brightwell [33] (as a corollary to a more
general result) and Shi [226] (stated as a lemma). It uses the classic Dirac-type density condition
for the subset S of V (G). Let δ(S, G) be the minimum degree in G of a vertex of S.

Theorem 28 Let G be a 2-connected graph and S a subset of V (G). If δ(S, G) ≥ n/2 then S is
cyclable in G.

Ota [201] made the natural extension to degree sums of pairs of nonadjacent vertices in S,
denoted σ2(S, G).

Theorem 29 Let G be a 2-connected graph of order n and S a subset of V (G). If σ2(S, G) ≥ n,
then S is cyclable in G.

This was further pushed to sums of three vertices in [127], extending an earlier result of Flandrin,
Jung and Li [126].

Theorem 30 [127] Let G be a 2-connected graph of order n and S a subset of V (G). If deg x +
deg y + deg z ≥ n + |N(x) ∩ N(y) ∩ N(z)| for any three independent vertices x, y, z ∈ S, then S is
cyclable in G.

The next result of Broersma, Li, Li, Tian and Veldman [61] extends the hamiltonian work in
[20]. Here κ(S, G) is the minimum cardinality of a set of vertices separating two vertices of S and
σt(S, G) is the degree sum in G of any t nonadjacent vertices of S.
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Theorem 31 Let G be a 2-connected graph of order n and S a subset of V (G). If σ3(S, G) ≥
n+min {κ(S, G), δ(S, G)}, then S is cyclable in G.

While in [145] 3-connected graphs were studied.

Theorem 32 Let G be a 3-connected graph of order n and S a subset of V (G).
(a) If σ4(S, G) ≥ n + 2α(S, G) − 2, then S is cyclable.
(b) If σ4(S, G) ≥ n + δ(S, G) and deg v ≥ n/2 for every v ∈ S − N [w], where w ∈ S and deg w =
δ(S, G), then S is cyclable in G.
(c) If σ2(G) ≥ n/2 + δ(G), then G is hamiltonian.

Recently, a bipartite version for cyclable sets was also found.

Theorem 33 [2] Let G = (X ∪ Y, E) be a 2-connected balanced bipartite graph of order 2n and
S is a subset of X. If deg x + deg y ≥ n + 1 for every nonadjacent pair x ∈ S, y ∈ Y , then S is
cyclable in G.

Polický [206] defined ω(u, v) as the number of components of G[N(u)] containing no neighbor
of v. He then proved the following result.

Theorem 34 In a graph G of order n, if deg u + deg v+ max{ω(u, v), ω(v, u)} ≥ n for each pair
of nonadjacent vertices u and v, then G is hamiltonian.

Stacho [217] gave a sufficient condition of degree sum type for a graph to be hamiltonian. This
condition generalizes several old results. The condition is: Let G be a connected graph with degree
sequence d1 ≤ d2 ≤ . . . ≤ dn. Suppose that whenever i ≤ n/2, i 6= j, di ≤ i and dj ≤ j − 1 all
hold, then at least one of four properties for the pair (di, dj) also holds. The four conditions are
based on Polický’s parameter for the number of components not containing a neighbor of a vertex
v. They are technical and not presented here.

Stacho further exploited the Polický parameter to study cycles through specified vertices [219]
and a closure type result for long cycles [218].

In [98], Enomoto, Kaneko and Tuza conjectured that if σk(G) ≥ n or α(G) < k, then V (G) can
be covered by k − 1 cycles, edges or vertices. Note that when k = 2 this conjecture is answered by
Ore’s Theorem [199]. The case k = 3 was shown by Enomoto, Kaneko, Kouider and Tuza [97]. In
[179], this conjectured was settled in general.

Theorem 35 Let G be a graph of order n and let X ⊂ V (G). If σk(X, G) ≥ n or α(X, G) < k,
then X can be covered with k − 1 cycles, edges or vertices.

It is worth mentioning that a weaker statement: If δ(G) ≥ n/k, then G can be covered by
k − 1 cycles, edges or vertices, was previously considered. It clearly generalizes Dirac’s Theorem
for k = 2. The case k = 3 was shown by Enomoto, Kaneko and Tuza [98] and for every k ≥ 2 by
Kouider [178].

Bondy [41] showed that all graphs satisfying Ore’s condition are either pancyclic or isomorphic to
Kn/2,n/2. Aldred, Holton and Min [5] relaxed Ore’s condition by considering graphs with σ2 ≥ n−1.

Theorem 36 If G satisfies σ2(G) ≥ n − 1, then G is pancyclic unless G is isomorphic to one of
the following graphs:
(a) a graph of order n consisting of two complete graphs joined at a vertex,
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(b) a subgraph of the join of a complete graph of order (n − 1)/2 and an empty graph of order
(n + 1)/2,
(c) Kn/2,n/2,
(d) C5.

Brandt and Veldman [58] considered deg x + deg y ≥ n for every adjacent pair x, y in G. They
showed that if G satisfies the degree condition on edges then the circumference of G is precisely
n − s(G), where s(G) = max{0, maxS(|S| − |N(S)| + 1)}, where the inner max ranges over all
nonempty sets S of independent vertices of G with S ∪ N(S) 6= V (G).

A graph is pancyclic modulo k if it contains cycles of all lengths modulo k. Dean [89] asked the
following question:

Question 3 Which graphs are pancyclic modulo k?

Dean [89] showed that every 3-connected planar graph (except K4) with minimum degree at
least k is pancyclic modulo k.

Density conditions in G certainly effect the line graph L(G). In [239], van Blanken, van den
Heuvel, and Veldman considered f(n) as the smallest integer such that for every graph G of order
n with minimum δ(G) > f(n), then L(G) is pancyclic whenever L(G) is hamiltonian. They were
able to provide results showing that f(n) = Θ(n1/3).

Another interesting Ore-type result involving even more structure than a hamiltonian cycle was
found by Mao-cheng, Li and Kano [190]. Here a [k, k + 1]-factor means a factor where each vertex
has degree k or k + 1.

Theorem 37 [190] Let k ≥ 2 be an integer and G a graph of order n ≥ 3 with δ(G) ≥ k. Assume
that n ≥ 8k−16 for even n and n ≥ 6k−13 for odd n. If σ2(G) ≥ n, then for any given hamiltonian
cycle C, G has a [k, k + 1]-factor containing C.

This result extents a similar Dirac-type result in [241].

Turning to regular graphs, a number of results appeared attempting to strengthen or generalize
Jackson’s classic result [155] that every 2-connected k-regular graph on at most 3k vertices is
hamiltonian.

Theorem 38 [147] Let G be a 2-connected k regular graph on at most 3k + 3 vertices, Then G is
hamiltonian or G is the Petersen graph or the Petersen graph with one vertex replaced by a triangle.

The following conjecture would improve Jackson’s Theorem for 3-connected graphs.

Conjecture 5 [157] For k ≥ 4, every 3-connected k-regular graph on at most 4k vertices is hamil-
tonian.

This conjecture is a special case of a conjecture of Häggkvist (see [157]) which was shown not to
hold in general. A number of others have considered the question of dominating cycles in regular
graphs. For more information on this see [59].

Turning to neighborhood conditions, I would advise the reader new to these conditions to begin
with [185] and [137]. I will try not to repeat earlier results mentioned in these two papers.

In [120] independence number is tied to neighborhood union conditions. Here we let δk(G) =
min| ∪u∈S N(u)|, where the minimum is taken over all k element subsets S of V (G).

10
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Figure 1: Three exceptional families of graphs.

Theorem 39 Let r ≥ 1 and m ≥ 3 be integers. Then for each nonnegative function f(r, m)
there exists a constant C = C(r, m, f) such that if G is a graph of order n (n > r, n > m) with
δr(G) ≥ n/3 + C and at most f(r, m) independent vertices, then
(a) G is traceable if δ1(G) ≥ r and G is connected;
(b) G is hamiltonian if δ1(G) ≥ r + 1 and G is 2-connected;
(c) G is hamiltonian-connected if δ1(G) ≥ r + 2 and G is 3-connected.

Similar results are also shown for claw-free graphs in [120].
Song [227] considered a Fan-like neighborhood condition.

Theorem 40 Let G be a 2-connected graph of order n ≥ 3 with connectivity k. If there exists an
integer t such that for any distinct vertices u and v, dist(u, v) = 2 implies that |N(u)∪N(v)| ≥ n−t,
and for any independent set S of cardinality k + 1 we have that max {deg u | u ∈ S} ≥ t, then G
is hamiltonian.

Broersma, van den Heuvel and Veldman [64] sharpened earlier results with the following theo-
rem.

Theorem 41 If G is a 2-connected graph of order n such that |N(u)∪N(v)| ≥ n/2 for every pair
of nonadjacent vertices u and v, then either G is hamiltonian, the Petersen graph, or belongs to
one of three families of exceptional graphs with connectivity 2 (see Figure 1).

Clearly a consequence of the last theorem is that if G is 3-connected and satisfies the neigh-
borhood condition, then G is hamiltonian or the Petersen graph. This result verifies a conjecture
of Jackson [156] concerning 2-connected graphs and a conjecture of Chen concerning 3-connected
graphs.

Chen and Schelp [77] extended many known results with the following idea. A sequence of real
numbers c1, . . . , ck+1 is called an Hk-sequence if c1|S1| + c2|S2| + . . . + ck+1|Sk+1| > n − 1 for any
independent set S of order k + 1, where Si = {v ∈ V (G)| |N(v) ∩ S| = i}.

Theorem 42 A sequence c1 ≤ 1, c2, . . . , ck, ck+1 ≤ 2 is an Hk sequence if the following two
conditions are satisfied.
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(1) For each collection of indices i1, i2, . . . , il, . . . ( allowing repetitions)

∑

il

(il − 1) ≤ k − 1 implies
∑

il

(cil − 1) ≤ 1.

(2) ci + 2ck+2−i ≤ 5 for 2 ≤ i ≤ k − 1.

Subsequently, Ainouche and Schiermeyer [12] further generalized this work. For an independent
set S ⊂ V (G) of t + 1 vertices define the t + 1 neighborhood intersections Si = { v ∈ V (G) −
S | |N(v) ∩ S| = i}, 1 ≤ i ≤ t + 1. Let |Si| = si.

Theorem 43 [12] Let G be a 2-connected graph of order n. Then G is hamiltonian or there exists
an independent set X ⊂ V (G) of cardinality t + 1, 1 ≤ t ≤ κ(G) such that

t+1
∑

i=1

wisi ≤ n − 1 −
∑

j>2

|Nj(X)|

where wi, 1 ≤ i ≤ t+1 are real numbers satisfying 0 ≤ w1 ≤ 1, and for 1 < i1 ≤ i2 ≤ . . . ≤ im ≤ t+1
and

∑m
j=1 ij ≤ t + 1 we have

∑m
j=1 (wij − 1) ≤ 1; where Nj(X) denotes the set of vertices whose

nearest vertex in X is at distance j.

Song and Zhang [228] also improved several known results with the following stronger theorem.

Theorem 44 Let G be a graph of order n ≥ 3 with connectivity k ≥ 2 and independence number
α. Let every independent set S of k + 1 vertices satisfy one of the following:
(1) there exists u 6= v in S such that deg u + deg v > n or |N(u) ∩ N(v)| ≥ α;
(2) for any pair u 6= v in S, |N(u) ∪ N(v)| ≥ n − ∆(S);
then G is hamiltonian.

Chen and Liu [76] considered arbitrary independent k-sets for their neighborhood unions.

Theorem 45 Let k ≥ 1 be a fixed integer. In a (4k − 4)-connected graph G of order n ≥ 3, if
|N(S)| + |N(T )| ≥ n for every two disjoint independent sets S and T of k vertices, then G is
hamiltonian.

In a different direction, Faudree and van den Heuvel [125] showed a weakening of the classic
Ore-type condition, along with a new structure assumption was possible.

Theorem 46 Let G be a 2-connected graph of order n with σ2(G) ≥ n− k and suppose that G has
a k-factor. Then G is hamiltonian.

Finally, Chen and Jacobson [74] provided an improved degree condition in k-partite graphs.

Theorem 47 If G is a balanced k-partite graph of order kn such that for each pair of nonadjacent

vertices x, y in different parts, deg x + deg y >

(

k − 2

k + 1

)

n for k odd and deg x + deg y >
(

k − 4

k + 2

)

n for k even, then G is hamiltonian.
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4 More Than One Hamiltonian Cycle

The fundamental question that dominates this section is: When does a graph contain more than
one hamiltonian cycle? A natural extension of this type of question is determining how many
different cycles are possible. Another natural question is: When can the edge set of a graph be
decomposed into disjoint hamiltonian cycles? We begin with the first question.

A classic result of Smith (see [238] ) says that every edge of a 3-regular graph is contained in
an even number of hamiltonian cycles. Thus, every 3-regular hamiltonian graph contains a second
(and a third) hamiltonian cycle. Thomason [231] extended Smith’s result to all r-regular graphs
where r is odd (in fact, to all graphs in which all vertices have odd degree).

Sheehan [223] conjectured that every hamiltonian 4-regular graph has a second hamiltonian
cycle. Since every r-regular graph (r even) is the union of pairwise edge-disjoint spanning 2-regular
graphs, Sheehan’s conjecture combined with the results of Smith and Thomason implies that every
hamiltonian regular graph, except the cycle, has a second hamiltonian cycle. Thomassen [233]
added the last piece of the puzzle when m is sufficiently large.

Theorem 48 [233] If G is hamiltonian and m-regular with m ≥ 300, then G has a second hamil-
tonian cycle.

Thomassen’s proof uses a version of the Lovász Local Lemma [104] and is related to his proof
of another cycle result in [234]. Using a Theorem of Fleischner and Stiebitz [129], Thomassen [234]
verified that every longest cycle in a 3-connected, 3-regular graph has a chord. Thomassen [234]
also provided the following general sufficient condition for the existence of a second hamiltonian
cycle.

Theorem 49 Let G be a graph with a hamiltonian cycle C. Let A be a vertex set in G such that
A contains no two consecutive vertices of C and A is dominating in G − E(C), then G has a
hamiltonian cycle C ′ such that C ′ − A = C − A and there is a vertex v in A such that one of the
two edges of C ′ incident with v is in C and the other is not in C.

Refining Thomassen’s method, Horak and Stacho [152] obtained the following extension.

Theorem 50 For any real number k ≥ 1, there exists f(k) so that every hamiltonian graph G with

∆(G) ≥ f(k) has at least δ(G) − ⌊∆(G)
k ⌋ + 2 hamiltonian cycles. In particular, every hamiltonian

graph with ∆(G) ≥ f(∆(G)/δ(G)) has a second hamiltonian cycle.

A graph is uniquely hamiltonian if it contains exactly one hamiltonian cycle. A question related
to Sheehan’s is the following:

Question 4 Does every uniquely hamiltonian graph have a vertex of low degree?

Entringer and Swart [100] constructed an infinite family of uniquely hamiltonian graphs with
minimum degree three. However, it is not known if there exists a uniquely hamiltonian graph
of minimum degree four [see [158]]. Jackson and Whitty [158] also showed that any uniquely
hamiltonian graph contains a vertex of degree at most (n + 9)/4 and if there is a unique 2-factor,
then the graph contains a vertex of degree 2. Bondy and Jackson [48] provided the best bound to
date.

Theorem 51 Every uniquely hamiltonian graph on n vertices has a vertex of degree at most
c log2 (8n) + 3 where c = (2 − log2 3)−1 ≈ 2.41.
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They further showed that every uniquely hamiltonian plane graph has at least two vertices of
degree less than four and conjecture the following.

Conjecture 6 Every uniquely hamiltonian planar graph has at least two vertices of degree two.

The hunt for a additional hamiltonian cycles is certainly not a new pursuit. In 1957 Kotzig
(see [50]) asked which 4-regular, 4-connected graphs have a decomposition into two hamiltonian
cycles. Independently, in 1971, Nash-Williams [196] asked if every 4-regular, 4-connected graph has
a hamiltonian cycle and if in fact, it has two edge-disjoint hamiltonian cycles.

In 1956, Tutte [237] showed every 4-connected planar graph is hamiltonian. Martin [191] and
independently Grunbaum and Malkevitch [142] showed 4-regular, 4-connected planar graphs need
not have two edge disjoint hamiltonian cycles. Grunbaum and Malkevitch further asked if every
5-connected planar graph has two edge disjoint hamiltonian cycles. Zaks [244] and Rosenfeld [211]
provided constructions yielding infinitely many examples of 5-connected planar graphs (both regular
and nonregular) in which every pair of hamiltonian cycles have common edges.

Thomassen [235] considered the question of the number of hamiltonian cycles in bipartite graphs.
He once again applied the techniques of Thomason [231].

Theorem 52 [235] Let C : x1, y1, x2, y2, . . . , xn, yn, x1 be a hamiltonian cycle in a bipartite graph
G.
(a) If all the vertices y1, . . . , yn have degree at least 3, then G has another hamiltonian cycle con-
taining the edge x1y1.
(b) If all the vertices y1, . . . , yn have degree d > 3 and if P1, P2, . . . , Pq (0 ≤ q ≤ d− 3) are paths in
C of length 2 of the form yi−1xiyi, then G has at least 2q+1−d(d− q)! hamiltonian cycles containing
P1 ∪ · · · ∪ Pq.

Thomassen [235] also considered bipartite graphs of large girth. The following is a counterpart
to part (b) above.

Theorem 53 Let G be a bipartite graph of girth g and let C : x1, y1, x2, y2, . . . , xn, yn, x1 be a
hamiltonian cycle in G. Assume that each vertex yj (1 ≤ j ≤ n) has degree 4. Let P1, P2, . . . , Pq

be a (possibly empty) collection of paths each of the form yi−1xiyi. Let E be the set of edges in G
each joining two vertices of P1 ∪ · · · ∪ Pq which have degree 2 in P1 ∪ · · · ∪ Pq. Let c denote the
number of components of P1 ∪ · · · ∪ Pq ∪ E, put k = |V (P1) ∪ · · · ∪ V (Pq)|. If g ≥ k + 5c + 1, then
the number of hamiltonian cycles in G which contain P1 ∪ · · · ∪ Pq is at least (3/2)(g−k−5c)/8.

Thomassen [235] also posed a number of interesting problems. The first of these centers on a
reduction method for hamiltonian graphs. We denote by G/e the graph obtained from G upon
contracting the edge e.

Problem 2 [235] Does every hamiltonian graph G of minimum degree at least 3 contain an edge
e such that G − e and G/e are both hamiltonian?

If G has two distinct hamiltonian cycles and e is an edge which belongs to one but not both,
then e satisfies the question. Thus, Theorem 52(a) gives an affirmative answer to the problem
for bipartite graphs. An affirmative answer for all graphs would prove the following conjecture by
Thomassen [235]. Let P (G, λ) denote the chromatic polynomial of the graph G.

Conjecture 7 [235] If G is a hamiltonian graph with n vertices then (−1)nP (G, λ) is positive for
1 < λ < 2.
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Note that Theorem 52(b) gives a lower bound of 21−dd! on the number of hamiltonian cycles
in a bipartite graph where all vertices of one color class have degree at least d. That this bound
cannot be replaced by (d!)2 can be seen by taking a cycle x1, y1, x2, y2, . . . , xn, yn, x1 and adding all
edges of the form xiyj . Note that n may be arbitrarily large here. This leads to the problem:

Problem 3 [235] Does there exist a 4-regular bipartite hamiltonian graph with more than 1010

vertices and less than 100 hamiltonian cycles?

The above question is answered affirmatively if 4-regular is replaced by 3-regular, thus leading
one to suspect an affirmative answer.

Conjecture 8 [235] There exists a function f(g) tending to infinity as g tends to infinity such that
every bipartite hamiltonian graph of minimum degree 3 and girth g has at least f(g) hamiltonian
cycles.

Finally, sufficiently strong conditions on minimum degree or girth may allow the above bipartite
results to generalize to nonbipartite graphs.

Problem 4 [235] Does there exist a graph of minimum degree 1010 with precisely one hamiltonian
cycle?

We do not yet even know if there exist graphs of minimum degree 4 with precisely one hamil-
tonian cycle.

All the above problems and conjectures deal with hamiltonian graphs. This condition is not
easily dropped as large girth in 3-connected cubic graphs need not imply the graph is hamiltonian.
But perhaps large cyclic connectivity is sufficient. (The cyclic connectivity of a graph is the smallest
number of edges that must be deleted in order to obtain a graph with at least two components
containing cycles.)

Problem 5 [235] Does there exist a natural number m such that every cubic graph of cyclic con-
nectivity at least m is hamiltonian?

Density conditions have also been used to obtain results on multiple edge-disjoint hamiltonian
cycles. Faudree, Rousseau and Schelp [123] gave an Ore-type condition for the existence of multiple
edge disjoint hamiltonian cycles.

Theorem 54 Let k be a positive integer.
(a) If G is a graph of order n ≥ 60k2 such that σ2(G) ≥ n+2k−2, then G contains k edge disjoint
hamiltonian cycles.
(b) If G has order n ≥ 6k and size at least

(n−1
2

)

+2k, then G contains k edge disjoint hamiltonian
cycles.

Li and Zhu [189] also considered an Ore-type bound.

Theorem 55 If G is a graph of order n ≥ 20 with δ(G) ≥ 5 and σ2(G) ≥ n, then G has at least
two edge disjoint hamiltonian cycles.

Li [187] earlier had shown a more general result on edge disjoint cycles.
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Theorem 56 Let k be a positive integer. If G is a graph of order n ≥ 8k2 − 5 with σ2(G) ≥ n
and 2k + 1 ≤ δ(G) ≤ 2k + 2, and if l1, . . . , lk are integers with 3 ≤ l1 ≤ . . . ≤ lk ≤ n, then
G contains edge disjoint cycles of lengths l1, . . . , lk respectively. In particular, G contains k edge
disjoint hamiltonian cycles.

Egawa [93] greatly strengthened the earlier works on k edges disjoint hamiltonian cycles by
providing a linear bound for Ore-type graphs.

Theorem 57 Let n, k ≥ 2 be integers with n ≥ 44(k−1). If G is a graph of order n with σ2(G) ≥ n
and δ(G) ≥ 4k − 2, then G contains k edge disjoint hamiltonian cycles.

Next, we say a graph is of Fan-type 2k if the distance distG(u, v) = 2 implies that max
{deg u , deg v} ≥ n/2 + 2k, The motivation for this term is the result of Fan [105], that says a
2-connected Fan-type 0 graph is hamiltonian.

In this spirit, Zhou [248] gave a sufficient condition for G to contain two edge disjoint hamiltonian
cycles.

Theorem 58 [248] Let G be a 4-connected graph of order n that is Fan-type 2. Then G contains
two edge disjoint hamiltonian cycles.

Zhou [248] also conjectured the following extension, recently proved by Li [186].

Theorem 59 [186] Every 2(k+1)-connected Fan-type 2k graph has k+1 edge disjoint hamiltonian
cycles.

Still open would be the question(s) of decomposing Fan-type 2k graphs into other fixed cycle
lengths, or the question of how many cycles may be present in a 2-factor of a Fan-type 2k graph.

Several other questions can now be considered. A natural one is that of hamiltonian decomposi-
tions, that is, partitioning the edge set of G in hamiltonian cycles (if G is 2d-regular) or hamiltonian
cycles and a perfect matching (if G is (2d + 1)-regular).

Perhaps the most general conjecture in this area is due to Nash-Williams [195] (and strengthened
by Jackson [154]). For early work in this general area see [9].

Conjecture 9 Every k-regular graph on at most 2k + 1 vertices is hamiltonian decomposable.

For questions of hamiltonian decomposition, various graph products have received considerable
attention. The typical question is:

Question 5 If G1 and G2 are hamiltonian decomposable, is the appropriate product of G1 and G2

also hamiltonian decomposable?

Since various products are often known under different names, I shall define the products in
question. Each product graph has vertex set V (G1) × V (G2).

The cartesian product G = G1 × G2 has edge set

E(G) = {(u1, u2)(v1, v2) | u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1)}.

The direct product (or conjunction) G = G1 · G2 has edge set

E(G) = {(u1, u2)(v1, v2) | u1v1 ∈ E(G1) and u2v2 ∈ E(G2)}.

16



The strong product G = G1 ⊗ G2 has edge set

E(G) = {(u1, u2)(v1, v2) | u1 = v1 and u2v2 ∈ G2, or

u2 = v2 and u1v1 ∈ E(G1), or both u1v1 ∈ E(G1) and u2v2 ∈ E(G2)}.
Finally, the lexicographic product (sometimes called composition, tensor or wreath product) G =
G1[G2] has edge set

E(G) = {(u1, u2)(v1, v2) | u1v1 ∈ E(G1), or u1 = v1 and u2v2 ∈ E(G2)}.

Notable advances on product decompositions include the following:

Theorem 60 [16] The lexicographic product of two hamiltonian decomposable graphs is hamilto-
nian decomposable.

This following conjecture is due to Alspach, Bermond and Sotteau [9] and is suggested by
Theorem 60.

Conjecture 10 If D1 and D2 are hamiltonian decomposable digraphs, then the lexicographic prod-
uct of D1 and D2 is hamiltonian decomposable in general.

The phrase “in general” above is necessary in the case that |V (D2)| = 2 where failure can occur
(see [197]). Ng [197] considers this question in digraphs and shows that the lexicographic product
of hamiltonian decomposable digraphs is hamiltonian decomposable when the first digraph has odd
order and the second has at least 3 vertices.

In 1978, Bermond [29] conjectured that the set of hamiltonian decomposable graphs is closed
under cartesian product. Although this conjecture is not completely settled, the following result of
Stong [229] makes a major contribution.

Theorem 61 Let G1 and G2 be two graphs that are decomposable into s and t hamiltonian cycles,
respectively, with t ≤ s. Then G1 × G2 is hamiltonian decomposable if one of the following holds:
(1) s ≤ 3t
(2) t ≥ 3
(3) the order of G2 is even, or
(4) the order of G1 is at least 6⌈s/t⌉ − 3.

It is easy to see that if G1 and G2 are both bipartite, then the direct product G1 · G2 is
disconnected. Hence, the set of hamiltonian decomposable graphs is not closed under the direct
product. Bosak [49] and Zhou [248] independently provided a case in which it is closed.

Theorem 62 Suppose both G1 and G2 are hamiltonian decomposable. If at least one of them has
odd order, then G1 · G2 is hamiltonian decomposable.

We say G is k-regularizable if multiple edges can be added to G (if necessary) to make the
resulting multigraph G∗ k-regular. Further, if at most one edge is added between any pair of
vertices, we say G is k∗-regularizable, that is, provided the resulting multigraph G∗ has at most
two edges between any pair of vertices. Let H be a 4∗-regularizable connected spanning subgraph
of a graph G. Then H∗ is eulerian and is said to be a UOET graph if it admits an eulerian tour
in which no proper closed subtrail is of even length. Using these ideas Balakrishnan and Paulraja
[13] characterized those graphs G such that G · K2 has a hamiltonian cycle.
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Theorem 63 [13] For any graph G, G ·K2 is hamiltonian if and only if G has a UOET-subgraph.

They also provided counterexamples to several conjectures of Jha [164]. These include: If
G is a nonbipartite hamiltonian decomposable graph of even order, then G · K2 is hamiltonian
decomposable, as well as then G · Cn is hamiltonian decomposable.

For strong products, Zhou [248] provided the following:

Theorem 64 If both G1 and G2 are hamiltonian decomposable and at least one of them has odd
order, then G1 ⊗ G2 is hamiltonian decomposable.

This was improved recently in [106] where Fan and Liu show:

Theorem 65 The set of hamiltonian decomposable graphs is closed under strong products, that is,
if G1 and G2 are hamiltonian decomposable, then so is G1 ⊗ G2.

Kriesell [181] considered the hamiltonian question for the lexicographic product of two graphs,
where the graphs have broader conditions than those stated above. In particular, he showed the
following:

Theorem 66 (a) If G is 1-tough and contains a 2-factor and |E(H)| ≥ 2 then G[H] is hamiltonian.
(b) If G is 2-tough and |E(H)| ≥ 2, then G[H] is hamiltonian.
(c) If G is connected and 2k-regular and |V (H)| ≥ k, then G[H] is hamiltonian.
(d) If G is (2k + 1)-regular and connected and G has a 1-factor and |V (H)| ≥ k + 1, then G[H] is
hamiltonian.
(e) If G is connected and vertex transitive of degree k and |V (H)| ≥ k/2, then G[H] is hamiltonian.
(f) If G is connected and vertex transitive and |E(H)| ≥ 2, then G[H] is hamiltonian.
(g) If G is cubic and 2-edge connected and |V (H)| ≥ 2, then G[H] is hamiltonian. If G is 4-regular
and connected and |V (H)| ≥ 2, then G[H] is hamiltonian.

Kriesell’s result suggests the following general problem.

Problem 6 What natural graph properties of G and H are sufficient to imply that the product of
G and H is hamiltonian.

The block-intersection graph for the Steiner System (S, B) is the graph G(S, B) with V (G(S, B)) =
B and where two vertices are joined by an edge if and only if the corresponding blocks in (S, B)
have a common element. It has been shown that graphs for a variety of designs including Steiner
triple systems are hamiltonian (see [10] and [151]). Pike [203] showed the block-intersection graph
of a Steiner triple system of order n ≤ 15 is hamiltonian decomposable. Further, he conjectures:

Conjecture 11 [203] If (S, B) is a Steiner triple system, then its block-intersection graph is hamil-
tonian decomposable.

A number of other special case conjectures are also worthy of mention here. A graph Ok (called
the odd graph) is a k-regular graph whose vertices are indexed by the (k− 1)-subsets of a (2k− 1)-
set and two vertices are adjacent if, and only if, their indexing subsets are disjoint. For example,
O3 is the Petersen graph. Meredith and Lloyd [193] showed that O4, O5 and O6 are hamiltonian
decomposable. Further, they conjectured:
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Conjecture 12 The odd graphs Ok are hamiltonian decomposable for k ≥ 4.

The boolean graphs Bk are k-regular bipartite graphs with the vertices of one part indexed by
the (k − 1)-subsets of a (2k − 1)-set and the vertices of the other part indexed by the k-subsets.
Adjacency is given by containment. Thus, Bk is really the middle two levels of the boolean lattice.

Conjecture 13 The boolean graphs Bk are hamiltonian.

It is also interesting to note that for k = 2m, m ≥ 1, if Ok has a hamiltonian decomposition,
then in fact, so does Bk (D. Duffus, personal communication).

Jaeger [159] proved that if G can be decomposed into an even number of hamiltonian cycles,
then its line graph L(G) is 1-factorable. He used the fact that if G can be decomposed into two
hamiltonian cycles, then L(G) can be decomposed into three hamiltonian cycles. This leads to the
following conjecture of Bermond [30].

Conjecture 14 If G has hamiltonian decomposition, then so does L(G).

Recent results using regularity and line graphs are the following results of Pike:

Theorem 67 [204] If G is a 2k-regular graph that has a perfect 1-factorization, then the line graph
L(G) of G is hamiltonian decomposable.

Theorem 68 [205] If G is a bipartite (2k+1)-regular graph that is hamiltonian decomposable, then
L(G) is also hamiltonian decomposable.

5 Toughness

Let ω(G) denote the number of components of the graph G. A graph G is t-tough if |S| ≥ t ω(G−S)
for every subset S of the vertex set V (G) with ω(G − S) > 1. The toughness of G, denoted τ(G),
is the maximum t for which G is t-tough (taking τ(Kn) = ∞). Chvátal [78] introduced the idea of
toughness. He also raised a problem that has stirred interest ever since.

Problem 7 Does there exist a t0 such that every t0-tough graph is hamiltonian?

For a number of years the focus of the investigation was on 2-tough graphs. In [96] it was shown
that every k-tough graph of order n with n ≥ k + 1 and kn even has a k-factor. Further, for every
ǫ > 0, there exists a (k − ǫ)-tough graph on n vertices with n ≥ k + 1 and kn even which has no
k-factor.

However, despite this supporting evidence, Bauer, Broersma, and Veldman [21] were able to
show that 2-tough was not enough. Recall a graph is traceable if it contains a spanning path
(hamiltonian path).

Theorem 69 [21] For every ǫ > 0, there exists a (9/4 − ǫ)-tough nontraceable graph.

This result calls into question the existence of any such t0 that will suffice. There does not seem
to be a natural candidate for t0 at the moment.

Despite this development, many other questions remain concerning toughness and hamiltonian
properties. One such problem concerns chordal graphs. Recall that a graph is chordal if every cycle
of length four or more has a chord. Chvátal [78] produced (3/2 − ǫ)-tough chordal graphs without
a 2-factor, for arbitrary ǫ > 0. However, recently in [24] it was shown that every 3/2-tough chordal
graph has a 2-factor. Thus, the problem remains:
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Problem 8 Is there a t0 such that every t0-tough chordal graph is hamiltonian?

In [21], it was also shown that there exists a (7/4 − ǫ)-tough chordal nontraceable graph for
every ǫ > 0. However, an upper bound was provided by Chen, Jacobson, Kézdy and Lehel in [75],
which still leaves a considerable gap for further investigation.

Theorem 70 [75] Every 18-tough chordal graph is hamiltonian.

We note that far less toughness is needed for certain special classes of chordal graphs. In [168]
it was shown that 1-tough interval graphs are hamiltonian and in [90] it was shown that 1-tough
cocomparability graphs are hamiltonian. In [32] it was also established that not all 1-tough chordal
planar graphs are hamiltonian, however they also established the following:

Theorem 71 [32] Let G be a chordal, planar graph with τ(G) > 1. Then G is hamiltonian.

The condition that G is chordal is needed above since in [200], nonhamiltonian maximal planar
graphs G with τ(G) > 3/2 − ǫ for arbitrarily small positive ǫ are constructed.

Recall a graph is split if it can be partitioned into an independent set and a clique. In [180]
it was shown that every 3/2-tough split graph is hamiltonian and that there is a sequence of split
graphs {Gk}∞k=1 without 2-factors and with τ(Gk) → 3/2.

Jung [165] showed that the classic degree condition of Ore could be lowered under a toughness
assumption.

Theorem 72 Let G be a 1-tough graph on n ≥ 11 vertices with σ2 ≥ n−4. Then G is hamiltonian.

In [117], a generalization of the weaker minimum degree condition was obtained (see Theorem
8). Several other generalizations of Jung’s Theorem have also been found. Bauer, Chen and Lasser
[23] showed that if n ≥ 30, τ(G) > 1, and σ2(G) ≥ n − 7, then G is hamiltonian. Fassbender [111]
considered degree sums of three independent vertices.

Theorem 73 If G is a 1-tough graph of order n ≥ 13 such that σ3 ≥ 3n−14
2 , then G is hamiltonian.

Further, the following blend of Ore-type and Fan-type conditions appeared in [22].

Theorem 74 If G is a 1-tough graph of order n such that σ3(G) ≥ n and for all x, y ∈ V (G),
dist(x, y) = 2 implies that max {deg(x), deg(y)} ≥ (n − 4)/2, then G is hamiltonian.

In [166], the following was shown, generalizing earlier work of Dirac [92] that c(G) ≥ min{2δ, n}
and of Bauer, et al [19] that if n < (t + 1)δ + t + 1, then G is hamiltonian.

Theorem 75 [166] If G is a 2-connected t-tough graph with minimum degree δ, then c(G) ≥
min{(t + 1)δ + t, n}.

Also along these lines, Li [188] and Hoa [149] and [150] also provided bounds on the circumfer-
ence of 1-tough graphs. Wei [240] also showed the following:

Theorem 76 Let G be a graph and let

σ̄3 = min{
3

∑

i=1

d(ui) − | ∩3
i=1 N(ui)| : ui, i = 1, 2, 3 is an independent set}.

Then if σ3(G) ≥ n and σ̄3 ≥ n − 4, then G is hamiltonian.
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Hoa [148] used toughness and neighborhood conditions together to obtain the following. Here
NCt(G) =max {∪t

i=1N(vi) | v1, . . . , vt is an independent set }.

Theorem 77 Every 1-tough graph G of order n with σ3(G) ≥ n contains a cycle of length at least
min{n, 2NCσ3−n+5}.

This implies results of Fassbender [111] and Flandrin, Jung and Li [126] as well as others .
For a broader survey of toughness results see [18].

6 Random Graphs

In this section we present results concerning hamiltonian properties in random graphs. For readers
unfamiliar with this subject, I suggest [163] and the survey on matchings and cycles in random
graphs by Frieze [131] as starting points. I assume a fundamental knowledge of the area and
the models Gn,p (binomial random graph on n vertices) and Gn,M (uniform random graph on n
vertices). Other models will be described as needed.

One general question that received considerable attention over the past decade deals with hamil-
tonian properties of random regular graphs and digraphs. The first major result here came in a
series of two papers by Robinson and Wormald [208] and [209], the first handling the cubic case,
the second the general case.

Theorem 78 For every r ≥ 3, almost all r-regular graphs are hamiltonian.

Cooper, Frieze and Molloy [86] followed with the digraph case.

Theorem 79 For every fixed r ≥ 3, almost every r-regular digraph is hamiltonian.

Another interesting extension is finding hamiltonian cycles containing j specified edges (such as
matchings). Recently Robinson and Wormald [210] strengthened their results on r-regular graphs
by showing that a random r-regular graph with j = o(

√
n) distinguished edges which are also

provided with an orientation, asymptotically almost surely has a hamiltonian cycle containing
these edges and respecting the orientations. Further, they showed that a random cubic graph has a
hamiltonian cycle that contains the given edges and respects the given orientations of those edges
with probability (e−2j2

/3n) + o(1). They also obtain analogs for values of r ≥ 3.
Recently, Kim and Wormald [169] also considered the following question.

Question 6 Given a set of randomly generated perfect matchings of an even number of vertices,
what is the probability that each of a prescribed set of pairs of those matchings induces a hamiltonian
cycle?

They select four perfect matchings of 2n vertices, independently at random. Then they find the
asymptotic probability that each of the first and second matchings forms a hamiltonian cycle with
each of the third and fourth matchings. They generalize this to any fixed number of matchings,
where a prescribed set of matchings must produce hamiltonian cycles. They use this to show that
a random r regular graph, for fixed even r ≥ 4, asymptotically almost surely decomposes into r/2
hamiltonian cycles.

In a related vein, let π be a permutation of the set [n]. The undirected graph Gπ has vertex
set [n] and edge set Eπ consisting of edges {i, j} such that π(i) = j or π(j) = i. Then ∪k

i=1 Eπi
is

a 2k-regular multigraph. Frieze [132] showed the following.
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Theorem 80 If π1 and π2 are chosen independently and uniformly at random, then Eπ1
∪ Eπ2

is
hamiltonian with probability tending to 1 as n tends to infinity.

For the directed version of this problem, Frieze [132] shows that three permutations suffice and
Cooper [83] shows that two permutations do not suffice.

A slightly weaker, but still interesting question is the following:

Question 7 Given a random graph or digraph, under what conditions can we find multiple edge
disjoint hamiltonian cycles?

In order to consider the question of edge disjoint hamiltonian cycles in random graphs, we define
the following. Let Gn,m,k denote the class of graphs with n vertices, m edges and minimum degree
at least k, with each graph being equiprobable. Also, we say G has the property Ak if G contains
⌊(k− 1)/2⌋ edge disjoint hamiltonian cycles, and if k is even, a perfect matching. In [34], Bollobás,
Cooper, Fenner and Frieze show the following.

Theorem 81 Let k ≥ 3. There exists a constant Ck ≤ 2(k + 1)3 such that if 2m = cn, c ≥ Ck,
then with probability tending to 1 as n tends to infinity G ∈ Gn,m,k has property Ak.

Earlier, Bollobás, Fenner and Frieze [36] established the threshold for the stronger property A∗
k.

A graph G has property A∗
k if G contains ⌊k/2⌋ edge disjoint hamiltonian cycles and if k is odd, an

edge disjoint perfect matching. In [36] it is shown that for 2m = n(log n/(k +1)+klog log n+dn),
the probability G ∈ A∗

k approaches 0, e−θk(d), or 1 respectively for dn approaching −∞ sufficiently
slowly, constant d, or +∞ respectively. They also give an explicit formula for θk(d).

Also using the probabilistic method, Adler, Alon and Ross [3] showed that the maximum
number of directed hamiltonian paths in a complete directed graph with n vertices is at least
(e − o(1))(n!/2n−1).

Now let H(G) denote the number of hamiltonian cycles in G and let Gn,r denote the random
r-regular graph on n vertices and E the expectation.

Frieze, Jerrum, Molloy, Robinson and Wormald [133] considered r-regular random graphs and
showed that with high probability

H(G) ≥ 1

n

√

π

2n

[

(r − 1)
r − 2

r

r−2

r

]n

.

Janson [160] found the expected number of hamiltonian cycles for the random graph Gn,p and that
the hamiltonian cycles have a log-normal distribution. This varies from his findings for tournaments
[162] where he showed the following.

Theorem 82 Let H(Tn) be the number of directed hamiltonian cycles in the random tournament
Tn. Then

E(H(Tn)) = (n − 1)!2−n

and H(Tn) is asymptotically normally distributed.

Using a more general theorem of Janson [161] we obtain the following result.
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Theorem 83 Let r ≥ 3 be fixed. Then,

H(Gn,r)

E(H(Gn,r))
d→ W =

∏

i≥3

i odd

(1 − 2/(r − 1)i)Zie1/i

where Zi ∈ Po((r− 1)i/2i) are independent Poisson random variables, and
d→ denotes convergence

in distribution.

Note that Theorem 83 may be extended to multigraphs as well. The interested reader should
see [163] for a more detailed discussion of this work.

Cooper [81], [82] considered another interesting variation. A given hamiltonian cycle H in
a graph is called k-pancyclic if for each s, (3 ≤ s ≤ n − 1) we can find a cycle C of length
s using only the edges of H and at most k other edges. Cooper [82] showed that the threshold
p = (log n+log log n+c)/n (the original threshold for Gn,p provided in [177]) for being hamiltonian
is also the threshold for the existence of a 1-pancyclic hamiltonian cycle, while in [81] he showed
this threshold is also the threshold for a 2-pancyclic hamiltonian cycle.

Broder, Frieze and Shamir [66] considered a random graph G composed of a hamiltonian cycle
on n labeled vertices and dn random edges that “hide” the cycle. They ask the question: Is it
possible to efficiently find a hamiltonian cycle in G? Their solution is an O(n3log n)-step algorithm
and they show that this algorithm succeeds almost surely.

Cooper and Frieze [84] continued the investigations of thresholds by considering the following
model. The random digraph Dk−in,l−out has vertices 1, 2, . . . , n and each vertex v chooses indepen-
dently and uniformly at random k arcs into v and l arcs out of v. They show that with probability
tending to 1 as n → ∞, the random digraph D3−in,3−out is hamiltonian. While in [85] they show
that with probability tending to 1 as n tends to infinity, D2−in,2−out is hamiltonian while D1−in,2−out

and D2−in,1−out are not hamiltonian. In particular, this implies that G4−out the underlying graph
of D2−in,2−out is hamiltonian, continuing a long line of results of this type. In particular, this
improved upon the result of Frieze and ÃLuczak [135] that G5−out is hamiltonian. Still open is the
question of G3−out.

Palmer [202] considered another classic approach to the hamiltonian question, namely the result
of Chvátal and Erdös [80] that if the connectivity κ is at least as large as the independence number
α, then G is hamiltonian. Palmer showed the following.

Theorem 84 If G is a random graph with edge probability p given by p2n = c log n, then for
constant c > 1, almost all graphs have κ > α, and hence are hamiltonian.

As a consequence, an algorithm of Chvátal [79] for finding a hamiltonian cycle almost always
succeeds if c > 1.

Finally, Frieze, Karoński and Thoma [134] showed that the probability that the sum of two
random trees with 2n vertices contains a perfect matching and the sum of five random trees of
order n contains a hamiltonian cycle both tend to 1 as n tends to infinity.

7 Forbidden Subgraphs

During the 1980’s a number of fundamental results were proved showing that, in a 2-connected
graph, when particular pairs of induced subgraphs were forbidden, the graph was hamiltonian.
Notable among these were the following results (see Figure 2 for graphs and note that Z2 is obtained
from Z3 by removing the vertex of degree one).
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Figure 2: Common forbidden graphs.

Theorem 85 [91] If G is a {K1,3, N}-free graph, then
(a) if G is 2-connected, then G is hamiltonian;
(b) if G is connected, then G is traceable.

Other notable results similar to Theorem 85 are:

Theorem 86 [65] If G is a 2-connected {K1,3, P6}-free graph, then G is hamiltonian.

Theorem 87 [141] If G is a 2-connected {K1,3, Z2}-free graph, then G is hamiltonian.

Theorem 88 [26] If G is a 2-connected {K1,3, W}-free graph, then G is hamiltonian.

I should also point out that recently, in [51], a linear time algorithm for finding a hamiltonian
cycle in a {K1,3, N}-free graph was given. This prompts the following question.

Question 8 Does a linear time algorithm for finding a hamiltonian cycle exist for any of the other
major families described by forbidden pairs, that is, in {K1,3, P6}-free, {K1,3, Z3}-free, {K1,3, W}-
free or even {K1,3, Z2}-free graphs?

Since the completion of the above theorems, this area has experienced a very significant de-
velopment in both theory and techniques. Far more results have appeared than I will be able to
discuss here. Hence, I will limit my presentation mainly to characterizations, strong technique
developments and significant open problems and supporting results.

We begin with the work of Bedrossian [26] who characterized all pairs of forbidden graphs which
imply all 2-connected such graphs are hamiltonian. In his proof Bedrossian used a nonhamiltonian
graph of order 9 to eliminate some possibilities. The four major graphs in his characterization were
N, P6, Z2 and W , as all others were induced subgraphs of one of these. Later, the following was
shown.

Theorem 89 [121] If G is a 2-connected {K1,3, Z3}-free graph of order n ≥ 10, then G is hamil-
tonian.

This result indicated that if one considers all sufficiently large graphs, something more can be
said about the pairs. In [112] this was investigated (for graphs of order n ≥ 10). We now summarize
the combined results of [26] and [112]. We include the proof as an indication of proofs of this type.
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Figure 3: 2-Connected nonhamiltonian graphs.

Theorem 90 ([26] and [112]) Let R and S be connected graphs (R, S 6= P3) and G a 2-connected
graph of order n. Then G is {R, S}-free implies G is hamiltonian if, and only if, R = K1,3 and S
is one of the graphs N , P6, W , Z2, or Z3 (when n ≥ 10), or a connected induced subgraph of one
of these graphs.

Proof: That each of the pairs implies G is hamiltonian follows from Theorems 85, 86, 89 and 88
and our remarks about induced subgraphs of forbidden graphs.

Now consider the graphs G0, . . . , G6 of Figure 3. Each is 2-connected and nonhamiltonian.
Without loss of generality assume that R is a subgraph of G1.

CASE 1: Suppose that R contains an induced P4.

Since G4, G5, and G6 are all P4-free, then S must be an induced subgraph of each of them. But
if S is an induced subgraph of G4, then either S is a star or S contains an induced C4. However,
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G5 is C4-free, hence S must be a star. Since the only induced star in G6 is K1,3, we have that
S = K1,3.

CASE 2: Suppose that R does not contain an induced P4.

Then, using G0 we see immediately that R must be a tree containing at most one vertex of
degree 3 and since R contains no induced P4, we see that R = K1,3. Thus, for the remainder of the
proof we assume without loss of generality that R = K1,3.

Now, S must be an induced subgraph of G1, G2, and G3 (each of which is claw-free). The fact
that S is an induced subgraph of G1 implies that S is a path or S is K3, possibly with a path
off each of its vertices. Suppose that S is a path. Since S is an induced subgraph of G3 which is
P7-free, we see that if S is a path, it is one of P4, P5 or P6.

Hence, we now assume that S contains a K3, possibly with a path off each of its vertices. Note
that G3 is Z4-free. Further, any triangle in G2 with a path of length 3 off one of its vertices can
have no paths off its other vertices (leaving Z3, Z2, Z1, and K3). Again examining G2 we see it
contains no triangle with a path of length 2 from one of its vertices and a path of length 1 from
the other two vertices (leaving B or W ). Now the graph G∗

3 obtained by deleting the edges from
the upper Km to the lower Km of G3 is claw-free and contains no induced K3 with a 2-path off two
vertices. The only remaining possibility is a path of length 1 off each of the vertices of K3, that is,
the graph N . ✷

You may ask why pairs were considered instead of a single graph, but it is an easy observation
that P3 is the only nontrivial single graph that when forbidden implies G is hamiltonian (see
[112]). Faudree and Gould [112] went on to characterize the forbidden pairs for several other strong
hamiltonian properties.

Theorem 91 [112] Let R, S be connected graphs (R, S 6= P3) and let G (G 6= Cn) be a 2-connected
graph of order n ≥ 10. Then G is {R, S}-free implies G is pancyclic if, and only if, R = K1,3 and
S is one of P4, P5, P6, Z1 or Z2.

Theorem 92 [112] Let R, S be connected graphs (R, S 6= P3) and let G be a 3-connected graph.
Then G is {R, S}-free implies G is panconnected if, and only if, R = K1,3 and S = Z1.

Recently, all pairs that imply all 3-connected graphs are pancyclic were given in [139]. Here,
Ni,j,k is a graph which consists of K3 and vertex disjoint paths of length i, j, k rooted at its vertices
and L, the graph which consists of two vertex-disjoint copies of K3 and an edge joining them.

Theorem 93 Let X and Y be connected graphs on at least three vertices such that X, Y 6= P3 and
Y 6= K1,3. Then the following statements are equivalent:
(a) Every 3-connected {X, Y }-free graph G is pancyclic.
(b) X = K1,3 and Y is a subgraph of one of the graphs from the family F = {P7, L, N4,0,0, N3,1,0,
N2,2,0, N2,1,1}.

In each of the above pair results, the claw K1,3 must be one of the two graphs. This led
naturally to the question: If we consider triples of forbidden subgraphs implying hamiltonicity,
must the claw always be one of the three graphs? This was answered negatively in [116] where all
triples containing no K1,t with t ≥ 3 for sufficiently large 2-connected graphs were given. Further,
in [113] other forbidden triples for sufficiently large graphs were investigated. Brousek [67] gave the
collection of all triples which include the claw that imply all 2-connected graphs are hamiltonian.
While in [113], all remaining triples for all graphs were given, thus completing the characterization
in this case.
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A graph G is said to be cycle extendable if any nonhamiltonian cycle can be extended to a cycle
containing exactly one more vertex, that is, C is extended to a cycle C ′ with V (C ′) = V (C) ∪ {x}
for some vertex x not on C. We say G is fully cycle extendable if G is cycle extendable and every
vertex of G lies on a triangle. This concept was introduced by Hendry [146]. In that paper he also
showed the following:

Theorem 94 [146] If G is a 2-connected graph of order n ≥ 10 that is {K1,3, Z2}-free, then G is
cycle extendable.

The cycle extendable pairs were also characterized.

Theorem 95 [112] Let R, S be connected graphs (R, S 6= P3) and G a 2-connected graph of order
n ≥ 10. Then G is {R, S}-free implies G is cycle extendable if, and only if, R = K1,3 and S is one
of C3, P4, Z1 or Z2.

More information on forbidden subgraphs and cycle extendability can be found in [124].
The property of being hamiltonian connected has proven to be more elusive. Shepherd [224]

considered 3-connected claw-free graphs.

Theorem 96 [224] If G is a 3-connected {K1,3, N}-free graph, then G is hamiltonian-connected.

However, no complete characterization of pairs for hamiltonian-connected graphs is known. The
next result is from [112].

Theorem 97 Let R, S be connected graphs (R, S 6= P3) and let G be a 3-connected graph. If G is
{R, S}-free implies G is hamiltonian-connected, then R = K1,3 and S satisfies each of the following:
(a) ∆(S) ≤ 3.
(b) The longest induced path in S is at most a P12.
(c) S contains no cycles except for C3.
(d) All triangles in S are vertex disjoint.
(e) S is claw-free.

(Note: there are only a finite number of possible graphs for S).

Besides the progress made in characterizing pairs and triples for various hamiltonian properties,
a new and powerful tool for dealing with hamiltonian problems in claw-free graphs was developed
by Ryjác̆ek [212]. This tool has not only allowed people to attack new questions, but also provided
ways to prove a number of the previously established results in much simpler ways.

For a vertex x such that G[N(x)] is connected, a local completion of G at x means the graph
obtained by replacing G[N(x)] by a clique on N(x). Ryjác̆ek [212] then showed the local completion
was well defined and if G was claw-free then the resulting graph was claw-free. With this result,
a closure operation was now possible. This graph is called the closure of G and is denoted cl(G).
(Note this graph is different from the well-known degree sum closure due to Bondy and Chvátal
[45] or any of several other closures that have been developed. For more information on closures,
see [63], [62] and [214].) Ryjác̆ek’s main result is:

Theorem 98 [212] Let G be a claw-free graph. Then
(a) the closure cl(G) is well-defined,
(b) there is a triangle-free graph H such that cl(G) = H,
(c) c(G) = c(cl(G)), where c(G) is the circumference of G.
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Now, for a class C we say that C is stable under closure (or simply stable) if cl(G) ∈ C for every
G ∈ C. Ryjác̆ek [212] then had proved the following important result.

Theorem 99 The length of a longest cycle and hamiltonicity are stable properties in the class of
claw-free graphs.

The question remained as to the stability of other hamiltonian type properties. Several of these
were studied in [57] where it was shown that in the class of k-connected claw-free graphs, pan-
cyclicity, vertex pancyclicity and cycle extendability are not stable for any k. Further, traceability
is stable (even for k = 1) and homogeneous traceability is not stable for k = 2 although it is stable
for k = 7.

Several interesting conjectures thus remain. For example: The property of being hamiltonian-
connected is stable in the class of claw-free graphs. This conjecture was recently proved by Brandt
[54] for k = 9. However, the question remains as to the minimum possible k.

Theorem 100 [54] Every 9-connected claw-free graph is hamiltonian connected.

Also, still remaining is the following problem.

Problem 9 Determine the smallest integer k for which the property of being homogeneously trace-
able is stable in the class of k-connected claw-free graphs.

By modifying the closure idea, it was shown in [37] that stability can be obtained. Their idea
was to do a local completion only when a vertex was locally k-connected rather than just locally
connected, that is, when G[N(x)] is k-connected. With this modified closure, denoted clk(G), they
were able to show the following:

Theorem 101 Let G be a claw-free graph. Then
(a) clk(G) is uniquely determined;
(b) G is hamiltonian connected if and only if cl3(G) is hamiltonian connected, and
(c) G is homogeneously traceable if and only if cl2(G) is homogeneously traceable.

Further, they made the following conjecture.

Conjecture 15 Let G be a claw-free graph. Then G is hamiltonian connected if and only if cl2(G)
is hamiltonian connected.

In [213] it was shown that every claw-free graph with a complete closure contains an (n−1)-cycle.
The following was also conjectured:

Conjecture 16 Let G be a claw-free graph of order n whose closure is complete and let c1 and
c2 be fixed constants. Then for sufficiently large n, the graph G contains cycles Ci for all i with
3 ≤ i ≤ c1 and n − c2 ≤ i ≤ n.

In [128], nonhamiltonian closed claw-free graphs with small clique covering number were studied.
Ryjác̆ek [212] also applied his closure to show the following:

Theorem 102 Every 7-connected claw-free graph is hamiltonian.

This still leaves open the fundamental conjecture of Matthews and Sumner [192].
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Conjecture 17 Every 4-connected claw-free graph is hamiltonian.

In [60] it was shown that this conjecture holds in the class of hourglass-free (2 triangles sharing
a single vertex) graphs. Further, it was shown that a weaker form of the conjecture holds, namely
one with hamiltonian replaced by a connected spanning subgraph in which each vertex has degree
two or four.

The Matthews-Sumner conjecture is equivalent to an earlier conjecture due to Thomassen [232].

Conjecture 18 Every 4-connected line graph is hamiltonian.

Besides Brandt’s result (Theorem 100), the following results have been shown.

Theorem 103 [245] Every line graph of a 4-edge connected graph is hamiltonian.

Theorem 104 [184] Every 4-connected line graph of a planar graph is hamiltonian.

Recently, Kriesell [182] showed the next result.

Theorem 105 (a) Every 4-connected line graph of a claw-free graph is hamiltonian connected.
(b) Every 4-connected hourglass-free line graph is hamiltonian connected.

Conjecture 18 is still unsolved even when restricted to classes such as 5 or 6-regular graphs.
Saito (see [183]) considered graphs of small diameter and made the next conjecture.

Conjecture 19 Every 3-connected line graph of diameter at most 3 is hamiltonian unless it is the
line graph of a graph obtained from the Petersen graph by adding at least one pendant edge to each
of its vertices.

As evidence of this conjecture, Kriesell [183] showed that every 3-connected line graph of diam-
eter at most 3 has a hamiltonian path.

8 Special Topics

In this section we consider a few special problems that do not fit directly into the other sections.
We begin with the following idea. Let Gc denote a graph G whose edges are colored in an arbitrary
way. A properly colored cycle in Gc is a cycle in which adjacent edges have different colors. Such
cycles are termed alternating cycles. In particular, we are interested in alternating hamiltonian
cycles.

Bollobás and Erdös [35] considered this problem in colored complete graphs Kc
n, that is, a

complete graph colored with c colors. Let ∆(Gc) denote the maximum degree in Gc in any one
color. Bollobás and Erdös [35] made the following conjecture.

Conjecture 20 Every Kc
n with ∆(Kc

n) ≤ ⌊n/2⌋ − 1 contains an alternating hamiltonian cycle.

This conjecture, if true, would provide a sharp bound, as can be seen by letting n = 4k + 1.
Then there clearly exists a K2

n so that both its monochromatic subgraphs are regular of degree 2k.
However, such a graph is clearly not alternating hamiltonian, as n is odd.

Bollobás and Erdös [35] were able to show that if ∆(Kc
n) < n/69, then it contains an alternating

hamiltonian cycle. This was later improved by Chen and Daykin [69] who showed ∆(Kc
n) ≤ n/17

worked and then by Shearer [222] who showed ∆(Kc
n) < n/7. The best known result is the recent

improvement due to Alon and Gutin [7].
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Theorem 106 For every ǫ > 0 there exists an n0 = n0(ǫ) so that, for every n > n0, every Kc
n

satisfying

∆(Kc
n) ≤ (1 − 1/

√
2 − ǫ)n

contains an alternating hamiltonian cycle.

Another somewhat unexpected result is due to Barr [17].

Theorem 107 Every Kc
n without monochromatic triangles contains an alternating hamiltonian

path.

The 2-color version of this general question has been considered separately. Manoussakis (see
[215]) posed the problem of finding a polynomial algorithm for finding a longest alternating cycle
in a 2-edge colored complete graph. This was recently answered affirmatively in [15]. Earlier,
Saad [215] proved the existence of a randomized polynomial algorithm for the problem. A natural
problem now presents itself and was given in [27].

Problem 10 Determine the complexity of the alternating hamiltonian cycle problem for c-edge
colored complete graphs when c ≥ 3.

Clearly we can ask a similar question in other important classes of graphs. A related problem
is due to Bang-Jensen and Gutin [14].

Problem 11 Determine the maximum bounds t1 and t2 such that Kc
m,m satisfying ∆(Kc

m,m) ≤ t1
and ∆(Kc

m,m) ≤ t2 is alternating hamiltonian and even-pancyclic, respectively.

For a more complete treatment of this general area see [14].
Next, suppose G is a weighted graph, that is, each edge e of G is assigned a nonnegative number

w(e), called the weight of e. Let the weighted degree degw x =
∑

w(e), where the sum is taken
over all edges incident to x. Bondy and Fan [46] gave a Dirac-type result for weighted graphs.

Theorem 108 Let G be a 2-connected weighted graph such that degw x ≥ r for every vertex x of
G. Then, either G contains a cycle of weight at least 2r, or every cycle of maximum weight in G
is a hamiltonian cycle.

Note that this result is no longer valid if we permit negative weights. To see this, subdivide
each edge of K2,3 m ≥ 1 times and weight each edge of the resulting graph with −1.

Bondy and Fan [46] also raised several natural questions about extending their result. These
questions were all answered negatively. However, with some modification of the type of conclusion
desired, further results are possible. For example, Bondy, Broersma, van den Heuvel and Veldman
[44] were able to show the following.

Theorem 109 Let G be a 2-connected weighted graph such that σw
2 (G) ≥ s. Then G contains

either a cycle of weight at least s or a hamiltonian cycle.

Bondy and Fan also conjectured that weighted versions of the results of Erdös and Gallai [103],
who proved that every graph of order n contains a path of length at least 2q/n and, provided q ≥ n,
a cycle of length 2q/(n − 1)) existed.

Frieze, McDiarmid and Reed [136] proved that every weighted graph contains a “heavy path”.

30



Theorem 110 Let G be a weighted graph of order n. Then G contains a path of weight at least
2w(G)/n.

Bondy and Fan [47] provided the following theorem on heavy cycles.

Theorem 111 Let G be a weighted 2-edge connected graph of order n. Then G contains a cycle
of weight at least 2w(G)/(n − 1).

Bollobás and Scott [38] provided extensions of the theorems of both Dirac and also Erdös and
Gallai to digraphs. Finally, a weighted extension of a result of of Enomoto was found in [247].

9 Suppose G is Hamiltonian

In 1982, Mitchem and Schmeichel [194] suggested that the degree bounds in theorems guaranteeing
pancyclicity or bipancyclicity (that is, a bipartite graph containing all even cycles from 4 to the
order of the graph) could be lowered if hamiltonicity were assumed. This is clearly a strengthening
over simply assuming G is 2-connected. As it turns out, Faudree, Häggkvist and Schelp [122] had
already asked a question of this type.

Theorem 112 [122] If G is a hamiltonian graph on n vertices with q > ⌊(n − 1)2/4⌋ + 1 edges,
then G is either pancyclic or bipartite.

Then, in 1981, Amar, Flandrin Fournier, and Germa [11] showed the following:

Theorem 113 Let G be a hamiltonian, nonbipartite graph of order n ≥ 162. If δ(G) ≥ (2n+1)/5,
then G is pancyclic.

Hakimi and Schmeichel [220] showed that the edge density could be reduced even more by
considering a consecutive pair of vertices.

Theorem 114 If G is a hamiltonian graph of order n ≥ 3 and if x and y are adjacent vertices on
a hamiltonian cycle in G such that deg x + deg y ≥ n, then G is pancyclic, bipartite, or missing
only an (n − 1)-cycle.

While Entringer and Schmeichel [99] gave a purely bipartite version of the Faudree, Häggkvist
and Schelp [122] result.

Theorem 115 [99] Let G be a hamiltonian bipartite graph on 2n vertices and q > n2/2 edges.
Then G is bipancyclic.

This result was followed by several others of this type. Shi [225] showed that if G is a graph of
order n ≥ 40 and deg x + deg y > 4n/5, then either G is pancyclic or bipartite. This result is also
best possible as can be seen by taking five k-sets of independent vertices and cyclically joining all
vertices in one set to all in the next set. This graph has degree sum 4n/5 but lacks triangles.

Zhang [246] showed the following variation in which it suffices to consider one vertex and all its
nonneighbors. He also considered a bipartite version.

Theorem 116 [246] If G is a hamiltonian graph of order n and there exists a vertex x such that
deg x + deg y ≥ n for each y not adjacent to x, then either G is pancyclic or Kn/2,n/2.
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Theorem 117 [246] If G = (X ∪ Y, E) is a hamiltonian bipartite graph with |X| = |Y | = n > 3
and there exists a vertex x ∈ X such that deg x + deg y ≥ n + 1 for each y ∈ Y not adjacent to x,
then G is bipancyclic.

Tian and Zang [236] considered a bipartite variation using the hamiltonian assumption.

Theorem 118 If G is a hamiltonian bipartite graph on 2n vertices where n ≥ 60 and δ(G) >
2n/5 + 2, then G is bipancyclic.

Finally, these ideas have recently been extended to weakly and semipancyclic graphs in [115]
and [138]. We close by posing the following more general problem.

Problem 12 Given a result that assumes G is 2-connected and has properties P1, . . . , Pk to obtain
property P , when does the assumption of hamiltonicity instead of 2-connectivity allow us to lessen
the other assumptions and obtain the same result?
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