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Abstract: Water resources are closely linked to human productivity and life. Owing to the deteriorating

water resources environment, accurate and rapid determination of the main water quality parameters

has become a current research hotspot. Ultraviolet-visible (UV-Vis) spectroscopy offers an effective

tool for qualitative analysis and quantitative detection of contaminants in a water environment. In this

review, the principle and application of UV-Vis technology in water quality detection were studied.

The principle of UV-Vis spectroscopy for detecting water quality parameters and the method of

modeling and analysis of spectral data were presented. Various UV-Vis technologies for water quality

detection were reviewed according to the types of pollutants, such as chemical oxygen demand,

heavy metal ions, nitrate nitrogen, and dissolved organic carbon. Finally, the future development of

UV-Vis spectroscopy for the determination of water quality was discussed.

Keywords: ultraviolet-visible spectroscopy; chemical oxygen demand; heavy metal ions; nitrate

nitrogen; dissolved organic carbon

1. Introduction

Since the 21st century, with the continuous improvement in human living standards, the problems

of global climate change, rapid population growth, and environmental pollution have become

increasingly serious. Human activities have exerted great pressure on the environment. Among the

many environmental problems, addressing water pollution is an urgent need [1].

Water is an indispensable element of human production and life, and is also related to food security,

environmental protection, and human health, among other aspects. With rapid social development

and the increasing use of agricultural fertilizers, an increasing number of industrial pollutants are

discharged into rivers and oceans, causing eutrophication. When the original ecosystem is destroyed,

the oxygen content of water is reduced, and many fish and other species are killed, leading to challenges

in terms of water resource conservation [2]. As the living standards of consumers have standardized

upward, demand for higher a quality and quantity of water has emerged relative to the past [3].

Scientifically based water quality index (WQI) models then become important to measure the

degree of contamination and advise whether specific water resources require restoration and to

what extent [4]. The main water quality parameters include chemical oxygen demand (COD), heavy

metal content, nitrate nitrogen (NO3-N), dissolved organic carbon (DOC), and turbidity. At present,

the methods for determining water quality parameters mainly include chemical, biological, and physical

methods [5]. As shown in Figure 1, the main chemical methods are titration analysis and electrochemical

analysis, both of which determine the pollutant content in the laboratory. The instrument used is

bulky and expensive, and a large number of reagents are required, leading to secondary pollution;
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further, the results are not real-time results. Biological methods mainly include enrichment analysis

and biosensor technology; however, the detection accuracy and sensitivity are far lower than in other

methods. Physical methods mainly include hyper spectral remote sensing technology and molecular

spectroscopy technology. Spectroscopy is a method to identify substances and conduct quantitative

determination through the emission or absorption spectra of substances, which have been frequently

used in the field of rapid water quality determination in recent years [6].
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In recent years, due to the advantages of high precision, high detection efficiency, nondestructive

sampling, environmental protection, low cost, and portability, ultraviolet-visible (UV-Vis) technology

combined with a variety of advanced technologies has developed into an excellent and effective tool

for detecting pollutants in aqueous environments [7]. UV-Vis spectrum analysis is an important

development direction for water quality monitoring, which evaluates the degree of water pollution by

establishing a correlation model of absorbance, organic matter, and inorganic matter concentration

(Section 3.3) [8].

Although some researchers have tried to summarize the field before [9], with the deepening of

UV-Vis spectroscopy in this field of water quality detection, its research objects and research methods

have also undergone tremendous changes. Many researchers have proposed many novel research

methods for different water quality parameters. For example, Giudicianni et al. [10] used principal

component analysis (PCA) and wavelet transform to calculate water quality index. Its applicability

was discussed. Ma et al. [11] used the modified water quality index (WQI) to evaluate the water

quality of the aquaculture area. The main factors affecting water quality were determined by using

PCA. Therefore, a review is very necessary to sort out the research process and methods in this field,

especially in the latest application progress of ultraviolet spectroscopy technology.

This paper introduced the theoretical basis of determining various water quality parameters

by UV-Vis spectroscopy and expounds the complete spectral data analysis process, including data

preprocessing (Section 3.1), extraction of the characteristic wavelength (Section 3.2), establishment of

absorbance and relevant water quality parameter model (Section 3.3), as shown in Figure 2. In addition,

the research progress on the determination of COD, heavy metal ions, nitrate nitrogen, and DOC by

UV-Vis spectroscopy was described in detail.
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The polluted water from left to right is eutrophication water body, factory sewage, domestic wastewater

and marine pollution. The instrument used to collect spectral data is UV-2450. Savitzky–Golay

smooth filter (SG), Wavelet transform (WT), Standard normal variate (SNV), Multiple scattering

correction (MSC), Principal component analysis (PCA), Successive projections algorithm (SPA), Genetic

algorithm (GA), Competitive adaptive reweighted sampling (CARS), Particle swarm optimization

(PSO), Random frog (RF) algorithm, Partial least squares regression (PLSR), Support vector machine

regression (SVR), Extreme learning machine (ELM) model, Principal component regression (PCR),

and Stepwise regression (SR).

2. Basic Principles

2.1. Lambert–Beer Law

The Lambert-Beer law is the basis of quantitative analysis of water quality parameters using UV-Vis

spectroscopy. The measurement principle of the Lambert-Beer law relies on a beam of monochromatic

parallel light that irradiates the surface of the tested medium [12]. After passing through the medium

with a certain thickness, the medium absorbs part of the light energy, weakening the intensity of the

transmitted light passing through the medium. The absorbance of the absorption medium is directly

proportional to its thickness (Figure 3, Equation (1)).
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Mathematical expression of the Lambert Beer law is as follows:

A = log(1/T) = Kal. (1)

In Equation (1): A is the absorbance; T is the transmittance that the ratio of the intensity of the

outgoing light (I) to the intensity of the incident light (I0); K is the molar absorption coefficient related to
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the nature of the absorbing substance and the wavelength λ of the incident light; a is the concentration

of the absorbing substance in mol/L; and l is the thickness of the absorbing layer in cm.

2.2. Basic Principle of UV-Vis Spectrometry

UV-Vis spectroscopy is based on the fact that pollutant molecules in the water can absorb UV-Vis

light of a specific wavelength. Light of specific wavelength is absorbed by electron movement from

the ground state to an excited state, which reduces the amount of transmitted light. According to

the Lambert–Beer law, the absorption spectrum and the concentration of the substance have a strong

correlation, which is the principle of UV-Vis spectroscopy being used to detect water pollutants [13].

Pollutants differ by absorption characteristics and yielded spectral curves but most of them absorb

light in the UV-Vis region. Therefore, by using the Lambert–Beer law as the theoretical basis, we can

effectively detect the concentration of pollutants in water. Various parameters commonly used for

water quality detection, such as the spectral absorption range of NO3-N and NO2-N, are 200–250 nm.

Organic matter and turbidity are effectively absorbed within the range of 380–750 nm (Table 1).

Table 1. Absorption spectrum range and substance characteristics of various substances.

Wavelength Range Material Characteristics

200–220 nm nitrate, nitrite
220–250 nm conjugated diene, unsaturated aldehyde, unsaturated ketone
250–380 nm organic matter
380–750 nm turbidity

3. Theoretical Basis of UV-Vis Spectrum Data Processing

The accuracy of the UV-Vis method used to detect water quality parameters is highly dependent

on the established mathematical model. Therefore, the selection of an appropriate mathematical

model to improve the prediction accuracy has become the focus of water quality parameter study

in UV-Vis detection. The UV spectrum data processing is divided into four steps: spectrum data

preprocessing (Section 3.1), characteristic wavelength extraction (Section 3.2), water quality parameter

model establishment (Section 3.3), and model performance evaluation (Section 3.4). In recent years,

researchers have improved and innovated based on various algorithms in the field of UV-Vis spectrum

detection of water quality parameters and established a high-precision prediction model between water

quality spectrum data and water quality parameters. These studies have significantly contributed to

rapid, accurate detection of water quality parameters [14].

3.1. Data Preprocessing

During data acquisition, due to high-frequency noise, personnel operation, external environment,

and other factors of the instrument and equipment, some undesirable factors are often involved in the

establishment of the model, which affect its prediction accuracy. This interference information

cannot completely depend on the equipment modification and can be eliminated. Therefore,

before the qualitative and quantitative analysis of spectral data, effective preprocessing should

be completed. The prediction accuracy of the model can be improved by selecting the appropriate

preprocessing method.

Since Savitzky and Golay published their research results in 1967, the Savitzky-Golay (SG)

smoothing filter has gradually become a broadly used method to improve the signal-to-noise ratio of

most signals [15]. Therefore, the SG smoothing filter plays an important role as a data preprocessing

method for the UV-Vis spectrum. If the window size changes, the smoothing effect will be different.

The larger the window is, the smoother the spectral curve becomes. However, with the increase in the

window size, the spectral data also loses some information. Quan et al. [16] proposed a time-domain

method to analyze the estimation performance of SG filters, which included estimation performance of

SG smoothing filters and SG differentiation filters.
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In recent years, with continuous algorithm innovation, wavelet analysis has been gradually

adopted by many researchers to effectively suppress spectral data noise. The wavelet algorithm can

effectively solve the problem that spectral data are often disturbed by high-frequency noise. Wavelet

analysis has more advantages in processing non-stationary process signals and broadband noise

signals [17,18]. Through the use of wavelet transform and other noise reduction algorithms to process

UV-Vis spectrum data followed by complete wavelength modeling, the researchers found that the

wavelet transform can not only remove noise from the spectrum data but also improve the modeling

effect. Other common algorithms for reducing the noise impact of spectral data include standard normal

variate (SNV), first-order differential, second-order differential, and multiple scattering correction

(MSC) (Table 2).

Table 2. Algorithms for reducing spectral data noise.

Pretreatment
Method

Algorithm Principle Advantages Related Literature

Savitzky–Golay (SG)
smooth filter

Polynomial smoothing
algorithm based on the least

squares principle.

Improve smoothness of
spectrum to reduce
noise interference.

Savitzky Abraham (1964),
Zhang Liu (2020),
Li Jingwei (2018),

Wu Yuanqing (2011),
Kang Bei (2018),

Cao Hong (2014),
Xue Haifeng (2019)

Chen Xiaowei (2019).

Wavelet transform
(WT)

The wavelet coefficients
larger than the threshold are
generated by signal, and the

ones smaller than the
threshold are generated

by noise.

It can effectively solve the
interference problem of high

frequency noise of spectral data.

Li Guan (2018),
Wu Decao (2016),

Zhao Mingfu (2018),
Li Jingwei (2018),
Li Guan (2019),
Kang Bei (2018),

Xue Haifeng (2019).

Standard normal
variate (SNV)

The calculation processes a
spectrum based on the row

of the spectrum array.

To eliminate the influence of the
size of solid particles, surface
scattering and the change of
optical path on the spectrum.

Zhang Liu (2020),
Li Jingwei (2018),

Wu Yuanqing (2011),
Kang Bei (2018),

Wang Xiaoming (2016),
Cao Hong (2014).

First-order
differential

Second-order
differential

A simple derivative method
of discrete spectrum.

Eliminating the interference of
baseline and other background,
overlapping peaks, improving

resolution and recognition.

Li Jingwei (2018),
Kang Bei (2018),

Wang Xiaoming (2016),
Cao Hong (2014),
Li Xinxing(2020),

Wang Jiamin (2019),
Chen Xiaowei (2019).

Multiple scattering
correction (MSC)

The average spectrum is
regarded as the standard

spectrum, and each sample
spectrum is regressed with

the standard spectrum.

It can effectively eliminate the
influence of scattering and

enhance the spectral absorption
information related to the

content of components.

Zhang Liu (2020),
Li Jingwei (2018),

Wang Xiaoming (2016),
Cao Hong (2014).

Two dimensional
recombination
Dynamic pane

The pane slides in the
coefficient matrix calculates
the denoising threshold by
using a wavelet coefficient,
and constructs a denoising

threshold vector.

It removes the nonstationary
noise, retains the detail

information, and improves the
measurement accuracy.

Wu Decao (2016).

Compressed sensing
algorithm

The non adaptive linear
projection of the collected

signal is used to reconstruct
the original signal through
the optimization algorithm.

The complex selection of
wavelet threshold is avoided.

Zhao Mingfu (2018).

In addition to the above-mentioned common algorithms for noise reduction of spectral data,

some researchers have explored some relatively novel noise reduction methods and made significant

contributions in processing UV-Vis spectral data. Wu et al. [19] conducted made a continuous sampling
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of a water sample spectrum with equal intervals and stretched the spectrum data into a two-dimensional

matrix composed of a spectrum axis and time axis. After two-dimensional wavelet transforms, a window

pane with variable width was set to slide horizontally in the coefficient matrix, using the wavelet

coefficient in the windowpane to calculate the dynamic denoising threshold, and building the denoising

threshold vector along with the windowpane slide to perform the spectrum denoising. Zhao et al. [20]

applied the compressed sensing de-noising algorithm based on wavelet transform to the on-line water

quality detection system of ultraviolet visible spectrometry. The core idea of compressed sensing theory

is to acquire a non-adaptive linear projection of the signal, and then reconstruct the original signal from

the measured value through an optimization algorithm. This method can effectively de-noise as the

absorption characteristics of the original spectral signal of the water samples are retained. Moreover,

the de-noising effect is superior to that of the wavelet threshold denoising algorithm.

3.2. Characteristic Wavelength Extraction of Spectral Data

In water quality detection, there are serious non-linear overlaps in water quality spectral data.

The high-dimensional data contain many redundant, hidden important relationships. Modeling directly

using the original spectrum increases the model complexity and calculation time, which is not conducive

to the application and promotion of the model. Because the whole spectrum data may contain irrelevant

information that participates in the model building, the prediction accuracy of the model cannot

be improved by using the above-preprocessing methods. Through data dimensionality reduction,

the dimension and complexity can be reduced while enhancing the extraction of useful information [21].

Principal component analysis (PCA) is a method of characteristic wavelength extraction based on

linear algebra [22]. PCA transforms multiple variables into a few uncorrelated comprehensive variables

to reflect the whole dataset comprehensively and uses a few variables to represent all variables to

explain the problems to be studied. PCA can simplify complex data structure and obtain potential

characteristic variables. During processing of UV-Vis spectral water quality parameter data, researchers

often use it to reduce the dimensions, reduce model complexity, and extract useful information from

the spectral data. Hou et al. [23] used PCA to capture the characteristics of the main pollutant varieties

from the spectral matrix and reduce its dimensions, and then constructed a new statistical variable.

The local outlying degree was evaluated according to the chi-square distribution in the main molecular

space. Tang et al. [24] compared the modeling results after a PCA dimensionality reduction with those

obtained without a PCA dimensionality reduction, and found that the model prediction effect of the

input sample after a PCA dimensionality reduction was better.

The successive projections algorithm (SPA) is a forward variable selection algorithm that minimizes

the collinearity of vector space. Its advantage lies in the extraction of several characteristic wavelengths

in the whole band, which can eliminate redundant information in the original spectral matrix and can

be used to screen spectral characteristic wavelengths. In recent years, when using UV-Vis spectroscopy

to detect some parameters in water, researchers selected SPA to extract the characteristic wavelength

of spectral data. Li et al. [25] used SPA to start with an initial feature, then selected a new feature in

each iteration, and ended with a specified number of N features. Finally, the characteristic wavelength

of spectral data was extracted, and the collinearity of spectral data was solved. Zhang et al. [26]

used the SPA algorithm and other algorithms to extract characteristic wavelengths from spectral data,

which eliminated redundant and collinear information in the original spectral data, and improved

the operation speed and robustness of the model. On the basis of analyzing the correlation matrix of

spectral data, Tang et al. [27] proposed a correlation-based SPA (CB-SPA) which can select the variables

subset with more valuable variables and less multicollinearity.

For data dimensionality reduction, many researchers have performed a variety of research on

feature wavelength extraction, among which the methods found to have better modeling effects after

dimensionality reduction are the genetic algorithm (GA), competitive adaptive reweighted sampling

(CARS), particle swarm optimization (PSO), and random frog (RF) algorithm (Table 3).
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Table 3. Algorithms for characteristic wavelength extraction of spectral data.

Characteristic Wavelength
Extraction Algorithm

Algorithm Principle
Advantages and
Characteristics

Disadvantages Related Literature

Principal component
analysis (PCA)

The n-dimension feature is mapped
to the k-dimension (k < n), which is a

new orthogonal feature.

Reduces the algorithm
calculations, removes noise, has

no parameter limitation.

Does not have good nonlinear
dependence,

Does not effectively estimate the number
of potential hidden variables.

Hou Dibo (2013),
Li Guan (2018),

Hou Dibo (2015),
Tang Bin (2015),

Xue Haifeng (2019)

Successive projections
algorithm (SPA)

A forward variable selection
algorithm minimizes the collinearity

of vector space.

Eliminates redundant
information in the original

spectral matrix.

The selection of the initial band is
random, which makes the subsequent

band have more redundant information.

Zhang Liu (2020),
Cao Hong (2014),
Li Xinxing (2020).

Genetic algorithm (GA)
A search algorithm based on natural

selection and a population
genetic mechanism.

Has low complexity, few
parameters, high efficiency, and

is easy to realize.

Limited exploration ability, it is too easy
to converge on the local optimal solution.

L Jiao (2014),
Hu Yingtian (2016),

Competitive adaptive
reweighted sampling (CARS)

Through the search method and the
criteria of evaluating the importance

degree of variables, the optimal
subset of variables can be obtained.

The calculation speed is fast
while the number of
wavelengths is small.

Excessive emphasis on the
cross-validation results of the calibration
set is prone cause inconsistencies between
the calibration set and the validation set.

Zhu Hongqiu (2019),
Wang Xiaoming (2016).

Particle swarm optimization
(PSO)

A random particle is initialized with a
random solution, and then the

optimal solution is found through an
iterative process. In each iteration,

the particle tracks two extremum to
update itself.

There is no crossover or
mutation operation, few

parameters need to be adjusted,
and the structure is simple.

It is easy to fall into the local optimum,
resulting in low convergence accuracy.

Discrete and combinatorial optimization
problems are difficult to solve.

Tang Bin (2015).

Random frog (RF) algorithm
Bionic optimization algorithm based

on swarm intelligence.
This method is easy to

understand and is robust.

The local exploration ability is poor, The
optimization result is not ideal, and the

convergence is slow

Alam F (2020),
Wang Xiaoming (2016).
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3.3. Method of Establishing Data Model

According to Lambert-Beer’s law, the amount of spectral absorption has a strong correlation

with the concentration of water quality parameters, such that a high-precision prediction model

between water quality spectral data and water quality parameters can be established [28]. The steps

of establishing the prediction model of water quality parameters was shown in Figure 4. Currently,

the main methods of model analysis include partial least squares regression (PLSR) and support vector

machine regression (SVR).
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In linear analysis modeling, PLSR is a commonly used multivariate analysis method in

chemometrics. The principle of regression modeling is to project prediction variables and observation

variables into a new space and establish a linear correlation between these variables to achieve

the purpose of prediction [29]. The PLSR is a combination of PCA, canonical correlation analysis,

and multiple linear regression analysis. Both PCA and PLSR attempt to extract the maximum

information reflecting data variation; however, PCA only considers an independent variable matrix,

while PLSR has a “response” matrix, so it incorporates a prediction function [30].

SVR is a machine learning algorithm based on structural risk minimization, which can be used

for classification and regression. It specializes in the problem of statistical estimation and prediction

in the case of small samples and discusses how to obtain the best solution in the case of existing

limited samples. This method embodies the idea of compromising empirical risk and confidence range.

Practical problems such as small samples, nonlinearity, and high dimensionality can be solved [31,32].

Many studies have focused on the use of other models to establish the linear relationship between

absorbance and water quality parameter. The modeling algorithms with more notable capabilities in

simulating such a relationship are the extreme learning machine (ELM) model, principal component

regression (PCR), and stepwise regression (SR) (Table 4).
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Table 4. Modeling algorithms of spectral data.

Modeling Algorithm Algorithm Principle Advantages Disadvantages Literature

Partial least squares
regression (PLSR)

Based on the criterion of covariance
maximization, the regression
equation between variables

is established.

It is simple to calculate, has high
prediction accuracy, and is easy to use

for qualitative interpretation.

It has a large fitting error and
less independent variable

deviation information.

Hou Dibo (2013),
Tang Bin (2015)

Peter Skou (2017),
Cook S (2017).

Support vector machine
regression (SVR)

Linear regression is realized by
constructing a linear decision

function in high dimensional space
after dimension increasing.

It can solve high dimensional feature
data and has a large number of

kernel functions.

It is not suitable for a large
sample size and a large

calculation amount.

Wu Yuanqing (2011),
Chen Ying (2019),

Lang Rongqing (2012),
Laura Dioan (2012),

Lv Meng (2017).

Extreme learning
machine (ELM)

A machine learning method based
on a feed-forward neural network.

The learning speed is fast and easy to
use to obtain results.

It is easy to over fit and has poor
robustness.

Wang Xiaoming(2016).

Principal component
regression (PCR)

After multi-collinearity is
eliminated by using PCA, principal
component variables are taken as

independent variables, and the
original variables are replaced with
the new model based on the score

coefficient matrix.

It solves multi-collinearity problems
and provides precise results.

It is difficult to use to solve
nonlinear data, while the

calculation process is complex.

Xue Haifeng (2019),
Li Xinxing (2020).

Stepwise regression (SR)
An independent variable selection

method for a linear
regression model.

This method has high prediction
accuracy, is easy to operate, and

retains significant variables.

The regression results are
affected by the number of

samples used.
Li Xinxing (2020).
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3.4. Model Evaluation Indicators

The selection of appropriate and accurate model evaluation criteria is crucial for selecting the

optimal prediction model and evaluating its performance. The results of the evaluation parameters

determine the final modeling method. The commonly used standard parameters for model evaluation

are the coefficient of determination (R2) and root means square error (RMSE).

The corresponding definitions are as follows:

R2
=



















1−

∑N
i=1

(

yc − yp

)2

∑N
i=1

(

yc − yp

)2



















× 100% (2)

RMSE =

√

∑N
i=1

(

yp − yc

)2

N
(3)

In Formula (2) and (3): where yc represents the actual value of the sample, yp represents the

predicted value of the prediction model, yp represents the average of predicted values, and N represents

the number of test samples. The closer to 1 the correlation coefficient is, the smaller the RMSE, the better

the prediction performance of the model.

4. Research Status and Progress of Main Water Quality Parameters

4.1. Research Status of COD in Water

COD is a very important parameter in water quality detection. COD refers to the amount of

oxidant consumed by the reducing substances in the oxidized one liter water sample under certain

conditions, expressed in milligrams per liter. It reflects the degree of pollution caused by adding

reducing substances to water [33].

Because it is easily influenced by human factors or machine equipment in the process of data

acquisition, many researchers preprocess the spectral data before establishing the COD prediction

model. Kang et al. [34] collected spectral data in the samples to be tested by the UV-Vis spectrum,

preprocessed the data by using the wavelet transform method, reduced the dimension of the data by

using a local linear embedding (LLE) method, and finally established a prediction model based on SVR.

Liu et al. [35] used a smoothing algorithm, empirical mode decomposition algorithm, and wavelet

analysis to reduce the noise of UV-Vis spectrum data, and obtained six potential variables from PLSR

modeling as the input of a partial least squares support vector machine (LS-SVM) to establish a COD

prediction model. Wang et al. [36] used a competitive adaptive reweighting algorithm (CARS) to obtain

the characteristic wavelength of the UV-Vis spectrum and used ELM to model, which can accurately

and rapidly detect the COD content in aquaculture water. Cao et al. [37] used the UVE-SPA variable

selection algorithm to obtain the UV-Vis spectrum characteristic wavelength, which when combined

with LS-SVM modeling, quickly and accurately measured COD concentrations in aquaculture water.

Wang et al. [38] accurately determined COD by combining UV-Vis spectroscopy and multivariate

calibration and established a calibration model of COD values by using the partial least squares method

(PLS). To improve the prediction performance of COD content in water, Chen et al. [39] used variable

pathlength UV–Vis spectroscopy combined with PLSR model to achieve high-precision monitoring of

COD in wastewater.

While studying the use of UV-Vis spectroscopy to detect COD of water quality, many researchers

also noticed that the scattering caused by turbidity has an impact on the UV-Vis absorption spectrum

of the water sample, such as baseline drift and nonlinear uplift of spectral lines [40,41]. Turbidity

seriously interferes with the output accuracy of the COD detection model. Xue et al. [42] studied the

influence of temperature and turbidity on COD detection. The single temperature parameter required

a long-span change to have a significant impact on the UV absorbance data of COD detection of water
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quality but the turbidity parameter caused the deviation in COD measurement. Finally, the non-linear

compensation model was used to effectively suppress the influence of turbidity in water; Hu et al. [43]

used the normalization technique to estimate the turbidity and dynamically simulated its absorption

spectrum. The absorption peak in the mixed solution to shift blue was caused by hydrogen bonds;

thus, a numerical fitting curve to describe the relationship between the blue shift and the turbidity was

established, and then the position of the peak was corrected. After the turbidity compensation process,

the coefficient of determination was 0.99 and the predicted RMSE was only 2.42 mg/L, which highlights

the potential of this method in improving the accuracy of COD measurement based on the UV-Vis

spectrum. Jon et al. [44] simultaneously determined COD and turbidity concentration by UV-Vis in the

wavelength range of 200–1100 nm. The PLS method was used to analyze the regression, and relatively

reliable detection results were obtained.

4.2. Detection of Heavy Metal Ions in Water

In recent years, researchers have found that colorimetry can accurately reflect the concentration

of heavy metal ions in water. Colorimetry is a method used to detect the content in substances by

comparing the color change of the substance or measuring the color depth of substance solution [45].

It is performed by selecting a suitable color reagent to react with the component to be tested to form a

colored substance or to change the color of the solution, and then the generated colored substance

is compared with the standard solution, the color of the reaction solution and the standard solution

are observed, or the spectrum of its UV-Vis wave band is measured to quantitatively determine the

substance [46].

The change in the surface properties of nanomaterials will cause an obvious change in their

apparent color. Many kinds of research have established methods based on nanogold colorimetry

to detect the concentration of heavy metal ions. Many metal ions can cause the aggregation and

dispersion state transition of the nanogold probe solution such that the absorbance and color of the

mixed solution can change with an increase in the metal ion concentration [47,48]. Figure 5 shows the

reaction mechanism of using nanogold to detect heavy metal ions.
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Zhu et al. [49] used the Akaike information criterion to select the optimal model. A method

based on modeling was proposed to detect the concentration of Zn2+ and Co2+ ions by using UV-Vis

absorption spectroscopy. In addition, Zhu et al. [50] also proposed a method based on the improved

Monte Carlo uninformative variable elimination (MC-UVE) method to detect the concentration of

multi metal ions, which solved the problem of spectral overlap. Zhao et al. [51] used Hg2+ mediated

gold nanoparticles to rapidly detect Hg2+ ions with high sensitivity and selectivity. Ono et al. [52]

prepared a thymine rich DNA single-strand aptamer by using the characteristic that mercury ions

can be covalently mismatched with thymine, thus establishing a colorimetric sensor for detecting

mercury ion. Based on the adsorption of Hg2+ and polydopamine, Luo et al. [53] agglomerated

gold nanoparticles, which changed the absorption signal of the system and the color of the solution.

The UV-Vis spectrophotometry and a colorimetric method of Hg2+ were established.

Liu et al. [54] established two novel isomeric colorimetric probes for the simultaneous

determination of copper ions. Two new colorimetric probes can produce obvious peaks at 498 nm
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in the UV-Vis absorption spectrum, as well as a rapid color change from colorless to dark yellow.

Xue et al. [55] connected the pyridyl group with tetrathiafulvalene by using a double bond bridge,

and the pyridyl group acted as a single dentate ligand of metal ions. π-conjugated double bonds

were designed to optimize the communication between the receptor and the tetrathiafulvalene core.

When exposed to micro molar concentration Pb2+, its UV-Vis spectrum showed obvious changes.

Zhao et al. [56] created a portable analytical system for the detection of metal ions in water, using two

single-step methods based on gold nanoparticles to detect Pb2+ and Al3+ in water with high selectivity

and low detection limit. Zhang et al. [57] established a highly selective visualization method for the

determination of trace Cr3+ in water based on citric acid-modified gold nanoparticles.

4.3. Research on the Detection of Nitrate Nitrogen in Water

Nitrate nitrogen is an important indicator to reflect the degree of water pollution. Increasing

amounts of nitrogen-containing compounds are being discharged into the environment [58]. If the

discharge exceeds the standard, the balance of the water body will be destroyed, resulting in rapid

algae and plankton growth in the water body. The decrease in concentration and the death of fish

and shrimp in a large area will eventually worsen the water quality, thus affecting human production

activities in the ocean [59].

Li et al. [60] obtained the predicted concentration of nitrate by fitting the corrected concentration

and absorbance of nitrate with the PLS method. Chen et al. [61] proposed a fast quantitative prediction

method to determine the nitrate concentration in water by combining UV spectroscopy with the partial

least squares support vector machine (LS-SVM) model, and the prediction accuracy of the model was

significantly improved. Li et al. [62] used the PLSR model established by using wavelet transform,

first-order differential, and SPA to predict the effect very effectively, as it can quickly and accurately

determine the total nitrogen content in water.

Because the UV absorption peaks of nitrate nitrogen and nitrite nitrogen are very close, and the

UV absorption curves overlap significantly, mutual interference is not conducive to the determination

of their concentrations. Wang et al. [63] combined UV-Vis spectrophotometry with the second-order

differential method to solve the problem of serious overlapping of absorption spectra of nitrite nitrogen

and nitrate nitrogen. The rapid determination of nitrite nitrogen and nitrate nitrogen in samples was

realized. Turbidity can reflect the degree of obstruction caused by the solution when light passes

through it, and it includes the reflection of light suspended by the solution and the absorption of light

by solute molecules. Turbidity is not only related to the content of suspended matter, but also its shape,

size, and refractive index. In the detection of nitrate-nitrogen by using UV-Vis spectroscopy, due to

the scattering effect of suspended matter in water, the absorption spectrum will change significantly,

which will cause a large error in the measured modeling data, resulting in an inaccurate detection result.

Chen et al. [64] proposed a method of nitrate concentration measurement based on the first

derivative of the UV absorption spectrum, which can reduce turbidity interference, to improve the

accuracy of rapid detection of nitrate content by using the UV spectrum. Chen et al. [65] analyzed the

influence of formalin turbidity standard solution on the UV absorption spectrum of a nitrate nitrogen

standard solution. Based on this, a turbidity compensation method for the compensation curve method

was proposed to compensate and correct the UV absorption spectrum of nitrate nitrogen, and the

method was verified by using experiments; the RMSE of the prediction set was 0.124.

4.4. Research on the Detection of DOC in Water

DOC is a universal part of the freshwater carbon cycle. It can weaken ultraviolet radiation and

affect the function of aquatic ecosystems. As a by-product of water disinfection, DOC has an impact on

human health [66].

The 0.22 µm membrane is hydrophilic microporous membrane. The 0.45 µm filter membrane is

hydrophobic microporous membrane. DOC is the fraction of organics that pass through a 0.45 µm

membrane. The type of wastewater plays an important role in the quality of DOC and it has been
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shown that DOC may be related to aquatic humic substances, hydrophobic bases, hydrophobic neutrals,

hydrophilic acids, hydrophilic bases, and hydrophilic neutrals [67].

DOC is commonly measured directly using two laboratory methods. DOC can be measured

as ‘non-purgeable’ organic carbon by converting inorganic carbon into carbon dioxide (CO2) and

purging this CO2. The remaining organic carbon is then converted to CO2 through thermal oxidation

and measured by using the absorbance of infrared radiation [68]. The second method involves

measuring total carbon (TC) and inorganic carbon (IC) and deriving the DOC by subtracting the

IC from TC. The water sample and oxygen are respectively introduced into the high temperature

combustion tube and the low temperature reaction tube. The water sample passing through the

high temperature combustion tube is converted into carbon dioxide under the action of the catalyst

and oxygen. The water sample passing through the low temperature reaction tube is acidified to

decompose the inorganic carbonate into carbon dioxide. The generated carbon dioxide enters the

non-dispersive infrared detector in turn. Since the intensity of infrared absorption of carbon dioxide

is directly proportional to the concentration of carbon dioxide, the TC and IC in water samples

can be quantitatively determined [69]. Both these methods require access to relatively expensive

analytical equipment.

In the water treatment industry, absorbance at 254 nm is often used as a proxy for DOC because

aromatic humic substances are the dominant source of DOC in natural waters, and these absorb light

in the UV region of the electromagnetic spectrum. Cook et al. [70] studied the applicability of UV-Vis

spectroscopy for tropical DOC water samples from any tropical peatland. First, the applicability of

single-wavelength and dual-wavelength proxies for tropical DOC determination was explored; then

calibration data sets and parameter sets were established to indirectly calculate DOC concentrations,

providing researchers with guidance on the best spectrophotometric method.

The aim of Avagyan’s study was to test the performance of a portable, submersible UV-Vis

spectrophotometer during the snowmelt period in a boreal mire-forest catchment. A conceptual

understanding of the spatial and temporal dynamics of DOC concentrations was provided during and

after snowmelt. Based on PLSR, the local calibration showed good agreement with the results obtained

from the high-resolution absorption measurements and the wet persulfate oxidation method [71].

Peacock et al. [72] investigated the appropriateness of different wavelengths (230 nm, 254 nm, and

263 nm) as proxies for DOC concentration. These findings should enable the use of UV-Vis spectroscopy

as a tool to analyze DOC concentration and quality in natural waters.

5. Development Trend of Water Quality Monitoring Based on UV-Visible Spectroscopy

The commonly used water quality monitoring technology involves manually collecting water

samples in the laboratory for analysis, which makes it difficult to use to meet the requirements of

on-line real-time monitoring. Even the more advanced chemical analysis methods for water quality

monitoring require at least 20 min to obtain the detection results, which cannot provide timely warning

for the occurrence of water pollution events [73,74].

5.1. Combination of UV-Vis Spectroscopy and Wireless Communication Network Technology

Since 5G networks are expected to massive expand today’s Internet of Things (IoT), humankind

has entered the era of big data through the rapid development of IoT technology, With the help of the

IoT, key information of target objects can be easily obtained and relevant data stored in cloud space [75].

Through the combination of UV-Vis spectrum technology and data communication technology, real-time

monitoring and early warning water quality parameter data can be obtained, which is one of the main

development trends for water quality monitoring based on UV-Vis spectroscopy in the future [76–78].

Water quality monitoring in the form of an early warning system was shown in Figure 6.
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5.2. Detection of Water Quality Parameters Based on Multi-Source Data Fusion Technology

With deeper scientific research in recent years, many methods to detect water quality parameters

have been proposed by many researchers. Each of these methods has its own advantages and

disadvantages, and significant contributions have been made to the detection of water quality parameter

concentrations [79]. However, the results of a single detection method would be biased. If there are

human errors in the method, then it cannot accurately reflect the water pollution. Therefore, one of

the development trends in water pollution detection in the future is to integrate all the information of

water quality parameters obtained from investigation and analysis such that the information is unified

by the evaluation method. Finally, a unified multi-source data fusion technology can be obtained.

This technology integrates different data, absorbs the characteristics of different data sources, and then

extracts better and richer information than a single data source [80]. The process of multi-source data

fusion to detect water quality parameters was shown in Figure 7.
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6. Conclusions and Discussion

This paper discusses the application of UV-Vis spectroscopy for water quality detection.

As described in this paper, a variety of UV-Vis spectroscopy techniques have been widely used

to detect pollutants in different water environments, including organic and inorganic substances.

In this paper, the detection method of water quality parameters, data analysis method, and existing

problems are introduced in detail. UV-Vis spectroscopy has become a rapid analysis tool for qualitative

and quantitative detection of water quality.

Although these studies show the ability of UV-Vis spectroscopy to detect pollutants in water

environments, the practical application of UV-Vis spectroscopy in water quality detection is still

difficult. One of the main problems is the detection limit. At present, the detection limit of many studies

has been below the environmental safety value; however, it is worth noting that the experimental

processes have been performed in the laboratory rather than in true field environments. The field

environment is complex and contains many pollutants, which have significant impacts on the detection
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results. Another problem is that it is difficult to detect the UV-Vis spectra of some pollutants in

water, such as suspended solids, dissolved inorganic substances, and pathogenic microorganisms.

In addition, there are significant differences in the methods of UV-Vis spectrometric determination

of various pollutants, which may be affected by many factors, including sample preparation and

instrument settings.

Therefore, future research needs to include greater progress in the field of instrumentations.

The miniaturization and integration of instruments for measuring UV-Vis spectra are the key factors for

achieving accurate and rapid detection of water quality parameters in the 5G era. In addition, with the

rapid development of other spectral detection technologies, the combination of Raman spectroscopy

with UV-Vis or near-infrared spectroscopy with UV-Vis technology can also be used in rapid water

quality quantitative detection.
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