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ABSTRACT Fire detection is a critical component of a building safety monitoring system and remains

an important research area with weighty practical relevance. Significant advances have occurred in recent

years in building automation, and the operation of buildings has become more complex and requires

ever more effective monitoring systems. In this work, we develop a novel fire detection method using

deep Long-Short Term Memory (LSTM) neural networks and variational autoencoder (VAE) to meet

these increasingly stringent requirements and outperform existing fire detection methods. To evaluate the

effectiveness of our method, we develop high-fidelity simulations, and we use datasets from real-world fire

and non-fire experiments provided by NIST. We compare and discuss the performance of our proposed fire

detection with alternative methods, including the standard LSTM, cumulative sum control chart (CUSUM),

exponentially weighted moving average (EWMA), and two currently used fixed-temperature heat detectors.

The results using the simulation-based and the real-world experiments are complementary, and they indicate

that the LSTM-VAE robustly outperforms the other detection methods with, for example, statistically

significant shorter alarm time lags, no missed detection, and no false alarms. The results also identify

shortcomings of other detection methods and indicate a clear ranking among them (LSTM-VAE≻EWMA ≻
LSTM≻CUSUM ).

INDEX TERMS Fire detection, machine learning, anomaly detection, long short-term memory, variational

autoencoder.

I. INTRODUCTION

We first provide the context within which our work on fire

detection is situated. This includes some background on fire

detection and a brief discussion of machine learning for

anomaly detection. We then delineate our scope and objec-

tives and provide a roadmap for the remainder of this work.

A. BACKGROUND ON FIRE DETECTION

Significant advances have occurred in recent years in building

automation and information systems. The operation of build-

ings has become more complex, and several of its functions

require increasingly more effective and reliable monitoring

of the environment within buildings (their internal state).

Fire detection, as a critical component of a building safety
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monitoring system, uses fire signatures such as smoke, heat,

CO2, or radiation, to identify early signs of fire and trigger

alarms. There can be significant costs associated with missed

fire detection in terms of loss of life and property damage

when signs of fire are not detected early enough to neutralize

or contain the unfolding accident at an early stage. There

can also be significant costs associated with false alarms if,

for example, sprinklers are triggered unnecessarily and water

damage to the building occurs. Advanced fire detections use

statistical models and optimization methods to improve the

detection accuracy and enhance the understanding of fire

event development [1]–[5].

Effective anomaly detection in general, and fire detection

in particular remains a critical research area with substantial

practical relevance [6]. Its focus is to improve, among other

things, the sensitivity of the detection scheme and reduce its

false alarm rate and missed detection. The sensitivity of fire
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detection stands for the ability to detect early signs of fire.

The reduction of missed detection is related to sensitivity.

For example, a highly sensitive detection system is capable of

detecting early, small signatures of fire. Its missed detection

will be low.However, its drawback is that these small detected

signatures might be ambiguous and non-fire related, and as a

result, the false alarm rate will be high. In short, a tradeoff is

generally understood to mediate between these performance

metrics of a fire detection system, its sensitivity on the one

hand, and its false alarm rate (the complement of specificity)

on the other hand.1

Fire detection methods can be classified into two broad

categories based on the alarm triggeringmechanism. The first

category is memoryless threshold-based detection [7]–[11].

In this category, the fire alarm decision is made based on

the comparison between the present sensor signal and a pre-

defined threshold value above which the alarm is triggered.

Only the present sensor output is accounted for in this deci-

sion. For example, fixed temperature heat detectors [7]–[9]

belong to this category. They use materials with different

melting points to set different temperature thresholds to

achieve different sensitivity. This first category is subsumed

under the broader heading of point anomaly detection [12].

The second category is history-based fire detection. In this

category, the fire alarm is triggered based on past and present

sensor output, the information contained in or extracted from

the time-series data, not just the sensor’s present output as

in the previous, memoryless threshold category. One pop-

ular history-based method is the cumulative sum control

chart (CUSUM) for fire detection [13], [14]. The CUSUM

detector calculates a partial sum of the abnormal sensor signal

and triggers the fire alarm when the sum exceeds a given

threshold. In this case, there is memory of past sensor out-

puts in the alarm triggering decision. The challenge for this

category of fire detection methods is to probe the dynamics

of the sensor’s output and extract meaningful features that are

reliably predictive of fire occurrence. This second category is

subsumed under the broader heading of contextual anomaly

detection [12]. Conceptually, this second category of fire

detection methods can be viewed as seeking to ‘‘accumulate

evidence’’ over time before making a decision, whereas point

anomaly detection methods operate with a single observa-

tion, e.g., ‘‘exhibit A’’, as the primary and only evidence in

support of the decision to trigger the fire alarm. The present

work belongs to the second category of methods of contex-

tual anomaly detection: our objective is to leverage state-of-

the-art machine learning tools to improve both the sensitivity

and reliability of fire detection without compromising the

false alarm rate. We expand on this shortly.

B. MACHINE LEARNING FOR ANOMALY DETECTION

There is a broader context within which our work on fire

detection is situated. It is related to advances in machine

1There are several other detection performance metrics, generally
included in the ‘‘confusion matrix’’. Details can be found in [15]; they are
not relevant for our introductory purpose.

learning (ML) in general, and unsupervised learning in par-

ticular for reliability and safety applications. We recently

provided a review of this broad analytical landscape, and

we include here a short excerpt for the convenience of the

reader. More details can be found in [16]. Recent appli-

cations of Machine learning models in reliability engineer-

ing include methodology development, system diagnostic,

remaining useful life estimation and prognostic health man-

agement [17]–[21]. Unsupervised learning consists in exam-

ining datasets with only input variables or features, and no

labels or response variable. Its general objective is to explore

the feature space and find patterns in the dataset. Two major

sub-categories or tasks of unsupervised learning are based

on the nature of the patterns sought: clustering and anomaly

detection. Clustering consists in dividing the observations

into clusters that share some similarities in the feature space.

Anomaly detection consists in identifying unexpected obser-

vations in a dataset. The term anomaly in this ML contest is

used in a broader sense than how it is understood in relia-

bility and safety contexts. Within this ML context, anomaly

detection refers to ‘‘the problem of finding patterns in data

that do not conform to expected normal behavior’’ [12].

Anomaly detection algorithms have found applications in

many domains because they produce critical information

that can be acted upon and prompt meaningful intervention.

For example, anomaly detection is used in cyber-security

and intrusion detection [22], in banking and insurance fraud

detection, in a host of medical applications [23], and increas-

ingly in reliability and safety applications, which is where

our work on fire detection fits in. Anomaly detection is

particularly well-suited for and used in early fault detection

of equipment and structures. It is related to sensor data, and

for industrial machinery and equipment, the data typically

comes in streaming fashion. Early detection of anomalies

is essential in some contexts to prevent further damage and

preempt catastrophic failures. The literature includes applica-

tions of anomaly detection in support of prognostic and health

management (PHM) for different systems, for example, air-

craft flight data recorders [24], industrial gas turbines [25],

spacecraft operation and health monitoring [26], [27], and

induction motors with a focus on ball-bearing faults [28].

Applications of anomaly detection algorithms for structural

damage detection also abound, a discussion of which can be

found in [12].

C. SCOPE AND OBJECTIVE

In this work, we consider fire as an anomaly in the moni-

tored environment, and we leverage advanced ML anomaly

detection algorithms, Long Short-Term Memory (LSTM),

and variational autoencoder (VAE), to improve the sensitivity

and reliability of fire detection. We develop a novel architec-

ture and the supporting analytics for the next generation fire

detection system. To evaluate the effectiveness of ourmethod,

we develop computational experiments with high-fidelity

large eddy simulation (LES) data, and we also use real-world

fire and non-fire datasets [29]. We compare our proposed
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FIGURE 1. Architecture of the proposed LSTM-VAE fire detection.

fire detection with alternative methods, including standard

LSTM detection [27], CUSUM fire detection [13], [14],

exponentially weighted moving average (EWMA) anomaly

detection [30], and fixed-temperature heat detection [7]–[9].

Our pool of alternative methods includes both point anomaly

and contextual anomaly detections for a fair comparison.

We also develop a two-sample t-test to statistically com-

pare the performance of our method against the alternative

fire detections in the simulation-based computational experi-

ments. We restrict the present work to heat detectors in order

to focus and expand on the method proposed and demonstrate

its effectiveness. In a follow-up work, we extend this method

to a host of other sensors, including smoke detectors, CO2 and

CO sensors, and we examine sensor data fusion to further

improve the performance of this fire detection system.

The main contribution of this work is the development and

validation of a novel LSTM with VAE fire detection method,

which provides robust and significant advantages over other

fire detection approaches in terms of improved sensitivity and

reduced false alarm rate.

The remainder of the article is organized as follows. Our

LSTM-VAE fire detection framework along with its techni-

cal details are provided in Section II. The simulation-based

computational experiments and the real-world fire (and non-

fire) datasets used to train and validate the LSTM-VAE fire

detection are discussed in Section III. The results are provided

and examined in Section IV. Section V concludes this work.

II. LSTM-VAE FIRE DETECTION METHOD

In this section, we first provide a high-level overview of the

LSTM-VAE fire detection architecture. We then discuss its

technical details, including the LSTM neural network, the

variational autoencoder, and the Kalman filter.

A. OVERVIEW OF LSTM-VAE FIRE DETECTION METHOD

We begin with the LSTM-VAE fire detection architecture

shown in Fig. 1.

The following discussion is a cursory overview of the fire

anomaly detection process. The technical details are provided

in the next subsections. The LSTM-VAE fire detection con-

sists of (1) a variational autoencoder with deep LSTM net-

works for both the encoder and decoder, and (2) a denoising

Kalman filter. We use the LSTM-VAE neural network to

encode the input signal. The encoder learns the most salient

features or properties of the input signal. Next, the decoder

rebuilds the input signal based on the previously learned

lower dimensional representation of the signal. It might

appear otiose to copy an input signal to a neural network

and reproduce it as its output. This is the essence of an

autoencoder, except the significant benefit obtained is in the

features learned, and in our architecture, in the difference

between the input signal and the output. More specifically,

we compare the rebuild signal, ŷ (t), with the sensor signal,

y (t), and we calculate a corresponding fire score S(t) based

on their difference, which can indicate a possible anomaly.

We then use the Kalman filter to denoise S(t) and produce a

smoothed fire score, S̃(t). The fire detection decision is based

on this smoothed fire score.

The encoder and decoder networks are trained using the

normal, non-fire operating conditions (details in the next

subsections). The objective of the training is to have the

LSTM-VAE ‘‘learn’’ the dynamics of the sensed quantity in

non-anomalous conditions, and subsequently to reconstruct

the signal based on these learned non-fire dynamics.

Once trained, the LSTM-VAE is used to supervise the

sensor signal.2 We compare the reconstructed signal ŷ(t),

the output of the decoder, with the online sensor signal y(t),

the input to the encoder, and we derive a fire score S(t) as

expressed in Eq. 1:

S(t) = y(t) − ŷ(t)

σtrain
(1)

σtrain is the root mean square error (RMSE) of the training

sequence. This training RMSE is calculated using the training

sensor signal and the LSTM-VAE reconstructed signal, and

it reflects the noise level in the training performance of the

network. The general idea of this fire detection mechanism

is as follows: under non-anomalous conditions, the LSTM-

VAE, having learned these nominal environmental dynamics

from the times series data, can accurately reconstruct the

sensor signal (subject to the noise reflected in the RMSE), and

2The sensor signals are imported into the LSTM-VAE encoder to cal-
culate the encoded mean, µ (t) and standard deviation, σ (t) of the hidden
states (layer). These hidden states are random variables sampled from a
Gaussian distribution with the encoded mean and standard deviation. The
sampled hidden layer is then decoded to rebuild an estimation of the input
signal, ŷ (t).
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the corresponding fire score is small. The situation changes

when a fire anomaly occurs: the environmental dynamics as

captured by the sensor having shifted, the signal reconstruc-

tion by the LSTM-VAE, ŷ(t), will increasingly diverge at

every time step from the input signal y(t). The signal recon-

struction increasingly deviates from the sensor signal because

the former ŷ(t) is based on the learned environmental dynam-

ics under the nominal conditions that trained LSTM-VAE,

whereas the latter y(t) evolve based on different, anomalous

(fire) dynamics. This provides a richer basis for anomaly

detectionwith temporal depth comparedwith thememoryless

threshold-based detection discussed previously.The growing

difference between the y(t)and ŷ(t)accumulates evidence

that an anomaly has occurred and increases the fire score;

when this increase becomes large enough and clearly dis-

tinguishable from the noise, the fire alarm is triggered.

We also include a Kalman filter in our detection architec-

ture as shown in Fig. 1 to produce a smoothed fire score S̃(t)

based onwhich the fire detection decision ismade. The sensor

noise distribution may have small probability tail events with

large values, and this can cause large variations in the fire

score, which in turn can result in false alarms. The Kalman

filter is appended to mitigate this problem. The details of this

entire process are discussed next, and the testing, validation,

and benchmarking of this detection method against others are

provided in the next sections.

B. LONG SHORT-TERM MEMORY (LSTM)

NEURAL NETWORK

LSTM is one of the most effective type of recurrent neural

network (RNN) for dealingwith sequential data and capturing

dependencies over multiple time scales [31]. It has been suc-

cessful in many applications, including speech recognition

and machine translation [32]. LSTM can learn with high

accuracy the environmental dynamics of the sensed quantity

under nominal conditions, and consequently, it is sensitive to

shifts in these dynamics for detecting anomalies and trigger-

ing the fire alarm [27]. We provide here a brief introduction

to LSTM. The reader is referred to Ref. [31] for more details.

The purpose of LSTM is to deal with the exploding and

vanishing gradient problem in the traditional RNN mod-

els [33], and it can capture as noted previously time depen-

dencies over multiple time scales including from long past

data. A standard LSTM network is shown in Fig. 2 with a

hidden state, h(t), a cell state, C(t), and four gates: forget,

input, cell, and output gates.

The forget gate, f (t), determines what the LSTM should

forget from the previous cell state, C(t−1), as shown in

Eq. 2. The input gate, i(t), determines what value should be

updated to the cell state C(t), as shown in Eq. 3. The cell

gate, C̃(t), uses current state input and the previous hidden

state to generate a candidate for the new cell state, as shown

in Eq. 4. The output gate, o(t), determines what should the

output be and updates to hidden state, h(t), as shown in Eq. 5.

The updated hidden and cell states as Eq. 6 and 7 are used to

model the state of the current system and propagate to the next

FIGURE 2. The cell structure of a single neuron within the LSTM.

FIGURE 3. Two-layer deep structure of the encoder and decoder in the
VAE.

cell for the prediction of system future performance. Here,

a two layers deep LSTM network is used for the encoder,

and another two-layer deep network for the decoder in the

VAE as shown in Fig. 3. Their parameters are trained with

the Adam optimizer [34]. Depth in autoencoder networks

has been experimentally shown to provide significantly better

performance than shallow autoencoders [32].

In the VAE structure shown in Fig. 3, the input of the

encoder is the input signal (y) and the outputs are mean

value µ(t) and the standard deviation σ (t) of the hidden

Gaussian distribution. The input of the two-LSTM-layer deep

decoder is the sampled VAE hidden state, and the output is the

reconstructed signal (ŷ). For both the encoder and decoder,

the first LSTM layer maps the input to a latent state, and this

latent state serves as the input to the second LSTM layer for

the output [35]. The details of the VAE structure and process

are introduced in the next subsection.

f (t) = σ (Wf · [h(t−1),x(t)] + bf ) (2)

i(t) = σ (Wi · [h(t−1),x(t)] + bi) (3)

C̃(t) = tanh(WC · [h(t−1),x(t)] + bC ) (4)
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o(t) = σ (Wo · [h(t−1),x(t)] + bo) (5)

C(t) = ft × C(t−1)+it × C̃ (t) (6)

h(t) = o(t) × tanh(C(t)) (7)

C. VARIATOINAL AUTOENCODER

The Variational autoencoder (VAE) is an unsupervised learn-

ing method used to infer potentially complex distributions of

the input layer. The VAE is an advanced ML anomaly detec-

tion method that is highly robust to signal noise. As noted

previously, the use of LSTM can make the detection method

more sensitive, however, it can also increase the false alarm

rate [27]. We leverage this VAE to reduce the likelihood of

false alarms.We examine shortly how theVAE can effectively

deal with these issues in our computational experiments. The

difference between the VAE input and the reconstructed sig-

nal is used to calculate the fire score (Eq. 1). Here, we provide

a brief introduction to VAE. The reader is referred to Ref. [36]

for more details.

Similar to a standard autoencoder architecture, the VAE

consists of an encoder and a decoder. First, the input layer

of the sensor signal is encoded as random variables in the

hidden state by the encoder. The coded posterior distribution

is a diagonal Gaussian distribution as shown in Eq. 8, and

the encoder maps the input x(t) into mean µ(t) and standard

deviation σ (t) values of the hidden distribution, as shown

in Eq. 9. Second, the hidden state z(t) is sampled from

the previously coded hidden distribution. Third, the decoder

reconstructs the signal x′(t) based on the sampled hidden

state, as shown in Eq. 10. Finally, the VAE loss function is

calculated as shown in Eq. 11. The first part of VAE loss,
(

x(t)−x′(t)
)2
, is sum square error (SSE) of the reconstruction

x′(t) compared with the input layer x(t). The second part,
1
2
(− log

(

σ (t)2
)

+ σ (t)2 + µ(t)2−1), is Kullback-Leibler

(KL) divergence between p (z(t) | x(t)) and standard normal

distribution. The VAE is trained to provide an accurate recon-

struction of the original signal and ensure the hidden state

distribution is more likely to be Gaussian. The training data

for VAE in our computational experiments are discussed in

Section III.

p (z(t) | x(t)) = N (z(t)|µ(t),σ (t)2) (8)

[µ(t),σ (t)] = encoder(x(t)) (9)

x′(t) = decoder(z(t)) (10)

LVAE (x(t)) =
(

x(t)−x′(t)
)2 + 1

2
(− log

(

σ (t)2
)

+ σ (t)2

+µ(t)2−1) (11)

D. KALMAN FILTER

Kalman filtering, also known as linear quadratic estimation

(LQE), is an algorithm that uses a series of measurements

observed over time and corrupted with statistical noise to

estimate the future trend of the temporal signal. The Kalman

filter has many applications in guidance and navigation [37],

for example, and control theory [38].We use theKalman filter

to denoise the fire score in our fire detection method with the

objective to lower a potential false alarm ratewithout compro-

mising the improved sensitivity obtained by the LSTM-VAE.

Here, we provide a brief introduction to theKalman filter. The

reader is referred to Ref. [39] for more details.

The Kalman Filter is commonly used for system state

estimation and prediction with disturbance and measurement

noise, as shown in Eq. 12, where x is the state variable,

u is the control input, w is the state disturbance, y is the

measurement, and v is the measurement noise. A, B, C are the

systemmatrices for the state transition, control, and measure-

ment. The noise is assumed belonging to a centered Gaussian

distribution with fixed covariance, R, and Q in Eq. 13.

x(t+1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + v(t)E (v) = E (w) = 0 (12)

R = E
(

vvT
)

Q = E
(

wwT
)

(13)

The parameters of the model are tuned to minimize the error

of the posterior state estimation e = x̂ − x, where x̂ denotes

the estimated state, and its covariance P = E(eeT ) given the

measurements. The posterior state estimation consists of five

equations, Eq. 14-18, which can be divided into two parts,

the prior prediction, and the correction update. The prediction

process propagates the current estimation to the next time

step, as shown in Eq. 14 and Eq. 15, where the x̂ ′ and P′

denote prior measurement predictions of the state variable

and error covariance, respectively.

x̂ ′(t+1) = Ax̂(t) + Bu(t) (14)

P′(t+1) = AP(t)AT + Q (15)

After taking the next measurement, the correction process

updates the prior prediction, as shown in Eq. 16 and Eq. 17,

where Kt is the Kalman gain shown in Eq. 18:

x̂(t) = x̂ ′(t) + K (t)
(

y(t)−Cx̂ ′(t)
)

(16)

P(t) = (I − K (t)C)P′(t) (I − K (t)C)T + K (t)RK (t)T

(17)

K (t) = P′(t−1)CT
(

CP′(t−1)CT + R
)−1

(18)

The parameters of the denoising Kalman filter include

(A,B,C,R,Q, x
′
0,P0

′), and they are automatically tuned by

the expectation-maximization method [40]. We denote the

output of the Kalman filter as the smoothed fire score (SFS),

based on which the fire alarm is triggered, as discussed in the

next subsection.

E. ALARM CRITERIA FOR THE SMOOTHED FIRE SCORE

The alarm criteria are set as thresholds on the smoothed

fire score (SFS). Assuming that under normal operating con-

ditions the SFS is normally distributed (diagnostic of this

assumption is provided in Appendix A), different thresholds

can be set based on this (z-like) score and the correspond-

ing confidence interval. This threshold can be continuously

varied, and the corresponding sensitivity and false alarm rate

noted. In section VI, we first illustrate the detection results

30640 VOLUME 9, 2021



Z. Xu et al.: Advances Toward the Next Generation Fire Detection: Deep LSTM VAE

TABLE 1. Illustrative fire alarm detection threshold values on the
smoothed fire score.

of the LSTM-VAE for three commonly used thresholds,

with 90%, 95%, and 99% confidence intervals, as shown

in Table 1. We then provide more general results by varying

the detection threshold.

III. EXPERIMENTS FOR EVALUATING AND

BENCHMARKING THE PERFORMANCE OF THE LSTM-VAE

AGAINST OTHER FIRE DETECTION METHODS

To evaluate the effectiveness of our LSTM-VAEfire detection

method and benchmark its performance against other meth-

ods, we adopt two different approaches:

1) Simulation-based experiments: The first approach con-

sists of simulation-based computational experiments

with different fire and non-fire scenarios. We lever-

age the Fire Dynamic Simulation (FDS) computational

fluid dynamic (CFD) software to this end. This is

a free software developed by National Institute of

Standards and Technology (NIST). FDS numerically

solves a form of the Navier-Stokes equations appro-

priate for low speed (Mach number less than 0.3)

thermally-driven flow with an emphasis on smoke and

heat transports from the fire. FDS has been extensively

validated [41]. We design different scenarios and run

multiple simulations with FDS under different condi-

tions. We let the LSTM-VAE and other methods detect

the fire, or react to the non-fire scenarios, and we calcu-

late high-level statistics for the different fire detection

methods to benchmark their performance.

2) Real-world fire and non-fire datasets: The second

approach is meant to further test and evaluate the per-

formance of the LSTM-VAE and other methods, and

build more confidence in the simulation results. To this

effect, we use real-world fire and non-fire datasets

provided by the National Institute of NIST [29].We test

the LSTM-VAE and other detection methods on all

69 real datasets in [29], 27 fire and 42 nuisance but

non-fire experiments, and we calculate alarm time lag,

missed detection rates, false alarms rates, and F1 scores

for all the detection methods. To clarify what these

experiments are, for example, one real fire dataset used

is that of a flaming chair experiment (SDC02) NIST

conducted. And one non-fire dataset is another exper-

iment NIST conducted by heating polyurethane (PU)

foam.

We compare our LSTM-VAE (lv) with several competing

methods: (1) the standard LSTM (ls) anomaly detection [27];

(2) the CUSUM (cu) fire detection [13], [14], the EWMA

(ew) anomaly detection [30], and two currently used fixed

FIGURE 4. The basic fire scenario: propane fire inside the adiabatic room.

temperature detectors with thresholds of 47◦C and 58◦C each

(ft1 and ft2) [7]–[9].

In this section, we introduce the simulation-based exper-

iments and two of the real-world datasets. We then discuss

the performance metrics used to assess and benchmark their

performance. We also develop a relative sensitivity test to sta-

tistically compare the performance of the LSTM-VAE against

alternative fire detection methods in the simulation-based

experiments.

A. SIMULATOIN-BASED COMPUTATIONAL EXPERIMENTS

1) TEST SCENARIOS

As noted previously, we leverage the Fire Dynamic Simu-

lation (FDS) for the computational experiments. We assess

the performance of the detection methods in four different

scenarios. The first basic fire scenario is a propane fire at the

center of the bottom of an adiabatic room as shown in Fig. 4.

The temperature sensor is located at the center of the ceiling.

The gravity is along the negative z direction. The initial and

normal operating condition temperature inside the room is

20◦C. The propane fire is simulated with the reaction as

Eq. 19 [42], which releases heat, CO2 and soot (C0.9H0.1) as

fire signatures, and the fire ignition occurs at t= 0s.

C3H8+4.81308 (O2+3.7619N2)

→ 18.10631N2+2.81813CO2+3.98990H2O

+0.20208C0.9H0.1 (19)

In addition to this basic fire scenario, we devise three addi-

tional scenarios to test and compare the performance of the

different detection methods. It is sometimes the case that in

real-world situations, an obstacle might exist between the fire

source and the detection sensor, which in effect delays mass

and heat transports, thus delaying the fire alarm. To simulate

this situation, we develop a fire-obstacle scenario by adding

a 2m × 2m × 2m adiabatic obstacle located at the center of

the room, as shown in Fig. 5 (a). Furthermore, there can be

various disturbances in real-world applications, which might

cause false alarms. To simulate such possibilities, we develop

two additional scenarios with human presence in the room

but no fire to test for false alarm rates. The third scenario

consists of human presence modeled as a constant
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FIGURE 5. Additional scenarios: (a) fire-obstacle scenario; (b) single
human presence, light perturbation but no fire scenario; (c) multiple
human presence, medium perturbation but no fire scenario.

temperature (37.5◦C) volumetric heat source with dimension

1m × 1m × 1.8m at the bottom center of the room as shown

in Fig. 5 (b).We add a ventilation effect in the human presence

scenario with a 3m×3m20◦C constant temperature window.

The fourth scenario is an expansion of the third one, and it

consists in placing four heat sources as proxies for humans in

the adiabatic ‘‘room’’ as shown in Fig. 5 (c).

To recap, we consider four scenarios in our simulation-

based computational experiments to test and compare the

performance of the different detection methods. They are:

the basic fire scenario; the obstacle fire scenario; a light

perturbation but no fire scenario; and a medium perturbation

but no fire scenario. The initial temperature is 20◦C and the

temperature sensor is located at the top center of the room

ceiling.

2) FIRE DYNAMIC SIMULATION

We simulate these four scenarios with FDS version 6.7.2 on

a Windows 10 platform. The simulations are carried out over

100s period with time step dt= 0.01s. The simulation results

are provided in Fig. 6.

Note for example that in the basic and obstacle fire sce-

narios, the temperature measurements keep increasing within

the 100s period. Note also that the obstacle causes a delay

in temperature sensor measurement compared with the basic

fire scenario. The temperature disturbances in the non-fire

scenarios are rather weak but still captured by the sensors.

These results will be fed to the detection methods to assess

their alarm time lag and accuracy as discussed shortly.

3) EXPERIMENTS WITH SENSOR SIGNAL NOISE

In real-world applications, the sensor measurements have

noise caused by the noisy environment and/or the sensor

inherent uncertainty. To model these noise effects in our

simulation-based experiments, we computationally add sen-

sor signal noise (ǫ) with standard Gaussian distribution and

variance m, as shown in Eq. 20. We examine the effect of dif-

ferent noise levels of 0.4, 1.0,and 2.0◦C to test the robustness

of our method to sensor noise.

e ∼ N (0, 1)

ǫ = m× e (20)

FIGURE 6. FDS fire event simulation of the temperature sensor
measurements.

We use the 300 samples before fire ignition (−3s ≤ t ≤ 0s)

with this signal noise to train both the LSTM-VAE and LSTM

anomaly detection and for the EWMA threshold [30].

To evaluate high-level statistics of the performance of each

detection method, we run 100 independent simulations for

each scenario with different random numbers for the sen-

sor noise and model initialization. This is further examined

in subsection III.D where the relative efficiency t-test is

discussed.

B. REAL-WORLD DATASETS

As noted previously, we use in addition to the simulation-

based experiments 69 real-world datasets provided by the

National Institute of Standards and Technology (NIST) [29]

of fire and non-fire experiments. We used these datasets to

further evaluate and compare the performance of the differ-

ent detection methods. We briefly discuss here two of these

datasets, and the details of the remaining ones can be found

in [29].

1) NIST FLAMING CHAIR FIRE DATASET

We use the temperature sensor signal from the NIST flaming

chair fire experiment (SDC02) [29]. The temperature signal

is provided in Fig. 7.

The data consists of 515 temperature observations sam-

pled at 0.5Hz starting from t= −646s to t= 382s. The

fire is ignited at t= 0s. The time sequence consists of

three periods based on the temperature signal: (1) the

nominal, non-fire phase, (2) the fire ramp-up phase, and

(3) the fire exhaustion phase. In the nominal phase

(−646s ≤ t< 0s), the temperature is around 20◦C with

sensor signal noise before the fire ignition. During the

fire ramp-up phase (0s ≤ t< 206) the temperature signal
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FIGURE 7. Temperature sensor signal of NIST flaming chair experiment.

FIGURE 8. Temperature sensor signal from the NIST nuisance experiment
(MHN42).

increases and reaches a peak temperature of 51.2◦C at

t= 206s. During the exhaustion phase (206s ≤ t ≤ 382s),

the temperature decreases because of the exhaustion of fuel.

We use the first 300 samples in the nominal phase to train both

the LSTM-VAE and LSTM anomaly detection and to calcu-

late/set the EWMA threshold [30]. The trained LSTM-VAE

and other detectionmethods are then used to supervise the fire

event after ignition (t= 0s) and to evaluate their performance.

2) NIST NON-FIRE NUISANCE DATASET: HEATED

POLYURETHANE (PU) FOAM

In addition to the real fire dataset, we use another dataset

(MHN42) from a NIST experiment [29] to evaluate the possi-

bility of false alarms by the different fire detection methods.

This was termed a nuisance experiment and the real tem-

perature signal recorded, which shows clear noise as seen

in Fig. 8.

The nuisance dataset consists of 4500 data points from

t= 0s to t= 900s with a sampling frequency of 5Hz. The

main trend of the temperature increase is the result of a

heated polyurethane foam in this experiment. We use the

first 300 samples to train both the LSTM-VAE and LSTM

anomaly detection and to calculate/set the EWMA thresh-

old [30]. The trained ML models are used to supervise the

temperature signal and to evaluate the possibility of false

alarms.

C. PERFORMANCE METRICS

We propose different performance metrics to benchmark the

sensitivity, missed detection rate, and false alarm rate of the

fire detection methods in our computational experiments.

First, we use the fire alarm time lag, as shown in Eq. 21,

to evaluate the sensitivity of fire detection.

1t = talarm − tfire (21)

talarm is the time when the alarm is triggered and tfire the time

the fire was ignited. In the simulation-based computational

experiments, we examine the mean value and standard devia-

tion of the time lag to assess the overall sensitivity and stabil-

ity of the fire detection in our 100 independent simulations.

In the real-world data experiments, we use this alarm time

lag to benchmark and compare the sensitivity of the different

fire detection methods. In addition to the alarm time lag,

we measure the missed detection rate, the false alarm rate,

and the F1 score. We also calculate a criterion used in pattern

recognition, namely accuracy (ACC), to further evaluate the

type I (alarm without fire) and type II (fire without an alarm)

errors. Accuracy (ACC) is defined as the ratio of correct

detection (true positive or true negative) to the total number

of decisions as shown in Eq. 22:

ACC = truepositive+ truenegative

alldecisions
(22)

A true positive occurs when the fire detection triggers the

alarm and an actual fire is present, a false positive when the

alarm is triggered but no fire is present (type I). Similarly,

a true negative is when no alarm is triggered and indeed no

fire is present. A false negative (type II) is a missed detection

when the alarm is triggered but a fire is present.

D. RELATIVE FIRE DETECTION SENSITIVITY TEST

In the simulation-based computational experiments, we inde-

pendently conduct 100 simulations for all four scenarios and

develop a relative sensitivity test to statistically compare the

sensitivity of the LSTM-VAE with the other fire detection

methods based on the student’s t-distribution. The student’s

t-distribution is a family of continuous probability distribu-

tions that estimate the mean of a Gaussian distribution in

situations where the sample size is small and distribution

variance is unknown. Given n observations from the distribu-

tion, the student’s t-distribution with the degree of freedom

ν = n − 1 is defined as the distribution of the sample

mean relative to the true mean of the distribution divided by

the sample standard deviation. Furthermore, the two-sample

student’s t-distribution and test are used for assessing the

statistical significance of the difference between the two

means. Here, we apply a one-sided two-sample t-test [43]

to determine if our LSTM-VAE method is more sensitive

than an alternative fire detection denoted by A. We define

the mean of LSTM-VAE fire alarm time lag as µL and the

mean of method A as µA. The null hypothesis can be stated

as follows: the mean of LSTM-VAE (µL) is identical to

the mean of the detection method A (µA), H0:µA = µL .

The one-sided alternative hypothesis therefore states that the

mean of the alarm time lags of A is larger than that of

LSTM-VAE, Ha:µA > µL , and consequently, the fire detec-

tion alarm time lag of LSTM-VAE is smaller and the method

is more sensitive. This statistical test will allow us either

to (1) reject the null hypothesis and assert that LSTM-VAE

provides statistically significant smaller alarm time lag than

the alternative fire detection method; or (2) fail to reject the
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FIGURE 9. One-sided t-test with ν= 99 and t99%.

null hypothesis that LSTM-VAE performs equivalently to the

alternative method. The one-sided t-test is defined as follows:

Relative efficiency t-test

H0:µA = µL

Ha:µA > µL

Test statistic: t = ȲA−ȲL
sp

√
1/NA+1/NL

with significance level α , rejecting the null

hypothesis if t > t1−α .

ȲL , ȲA are the calculated mean time lag of LSTM-VAE and

the alternative fire detection method (Eq. 23), NL ,NA= 100

are the number of computational experiments for YL ,YA
respectively, and sp is calculated by Eq. 24. The calculated

standard deviation sL , sA are defined by Eq. 25. Here, we use

n= 100 iterations in the Monte-Carlo simulation with a

degree of freedom ν= 99. We use significance level α= 1%,

to reject the null hypothesis, this corresponds to a critical t

value t99% ≈ 2.365 shown in Fig. 9.

Ȳ = 1

N

N
∑

i=1

Yi (23)

sp =

√

(NL − 1) s2L + (NA − 1) s2A
NL + NA − 2

(24)

s =

√

√

√

√

1

N − 1

N
∑

i=1

(

Yi − Ȳ
)2

(25)

IV. RESULTS AND DISCUSSION

In this section, we first present and discuss the results of

the simulation-based computational experiments. We then do

the same for the two real-world datasets, the flaming chair

and heated PU foam. Finally, we provide the results for the

entire 69 datasets, and we conclude with a synthesis of the

comparative performance analysis of our LSTM-VAE fire

detection against other methods. Our objective is to evalu-

ate and benchmark the performance of different detection

methods.

A. FIRE DETECTION PERFORMANCE IN THE

SIMULATION-BASED COMPUTATIONAL EXPERIMENTS

We first present the results of the different fire detection

methods in the simulation-based computational experiments.

The mean and standard deviation of alarm time lag (1t)

and the accuracy in the basic fire scenario with different

sensor signal noise levels are provided in Fig. 10. For the fire

detection method on the x-axis, lvi stands for the LSTM-VAE

with different confidence intervals shown in Table 1, ls for

the standard LSTM anomaly detection, cu for the CUSUM

fire detection; ew for the EWMA anomaly detection, and

ft1 and ft2 for the fixed temperature heat detectors of 47◦C,
58◦C respectively. The mean value of 1t stands for the

overall alarm time lag and the sensitivity of the corresponding

method. The standard deviation of 1t reflects the stability or

consistency of the fire detection method.

First, we note the perfect accuracy (1.0) of all fire detec-

tion methods with different noise levels. This indicates that

all methods are capable of capturing this basic fire event

(no missed detection), and as a result no differentiation can

be made based on this metric in this case. The interesting

results appear when we examine the top panels in Fig. 10.

The mean alarm time lag is the shortest for the LSTM-VAE

compared with the other five detection methods for all noise

levels. This represents an earlier fire detection on average for

our proposed method compared with the others. Increasing

sensor noise shrinks this advantage but maintains the edge

of the LSTM-VAE. Next, comparing the performance of

the LSTM-VAE with different confidence intervals (lv1, lv2,

and lv3), we note that the standard deviation of the alarm

time lag decreases with increasing the confidence interval.

A lower confidence interval, say, with lv1, allows a faster fire

detection but the detection time is more variable than, say,

with lv3. Conversely, with a higher confidence interval, say

lv3, detection takes a bit longer, but the detection time is more

robust with less variability than with, say, lv1. This reflects

one aspect of the tradeoff noted previously in fire detection

threshold setting, and it provides flexibility to adjust the

alarm criteria according to different end-user requirements

and preferences. Among the other detectionmethods, we note

that the standard LSTM and EWMA outperform, on aver-

age, the other detection methods. But the LSTM exhibits a

noticeable standard deviation (e.g., variability of the detection

time) when the noise level is small. The CUSUMalso exhibits

significantly high variability when noise level is high. This

suggests that this method is not robust to increasing sensor

noise.

Next, we consider the fire-obstacle scenario. The mean

and standard deviation of the alarm time lag and the accu-

racy of the different fire detection methods are provided

in Fig. 11.

The results are similar to the previous basic fire event

with one notable difference. For example, the accuracy level

is again 1.0 for all fire detection methods with different

noise levels, which indicates that all methods are capable

of detecting the fire despite the obstacle. The trends in the
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FIGURE 10. Mean and standard deviation (STD) of the alarm time lag and accuracy of the different fire detection methods in the
basic fire scenario.

FIGURE 11. Mean and standard deviation (STD) of the alarm time lag and accuracy of different fire detection methods in
fire-obstacle scenario.

mean and standard deviation of 1t are similar to the basic

fire scenario. However, as shown in Fig. 6, the sensor detects

a temperature increase with a time delay compared with

the basic fire scenario due to the presence of the obstacle.

This translates into an increase in the detection time shown

in Fig. 11 (when compared with Fig. 10). Interestingly, this
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FIGURE 12. Accuracy of various fire detection methods with different sensor noise levels in the multiple human presence scenario.

upward shift in the detection time due to the obstacle is

smallest for the LSTM-VAE and largest for the CUSUM and

fixed temperature detectors. This suggests an advantage for

LSTM-VAE in situations where heat transport and tempera-

ture development are delayed to reach the sensors, and the

fire is harder to detect. Similarly, with the real-world datasets

the fire event is weaker than the propane fire considered here,

and the sensitivity differential of the LSTM-VAEwill bemore

pronounced, as will be seen shortly.

In the human presence scenario (no fire), we test for type I

errors (alarm with no fire) and measure the accuracy index.

Here, accuracy reflects the complement of the false alarm rate

since no fires or true positives exist (Eq. 22). The accuracy

results of the multiple human presence scenario are provided

in Fig. 12. The results of the single human presence scenario

are similar but less pronounced, and consequently they are

not provided here but are included in Appendix B.

First, we note that there are no false alarmswith the LSTM-

VAE and the fixed temperature heat detectors, and that these

detection methods are robust to varying sensor noise. The

false alarm rates of the other detectionmethods are significant

at different noise levels. Interestingly, the accuracy of the

LSTM and EWMA improves with increasing sensor noise,

whereas that of the CUSUM method degrades significantly.

This finding will be further confirmed with the results from

the real-world non-fire datasets discussed shortly. The perfect

accuracy of the LSTM-VAE at all noise levels in this scenario,

and the improvement in the LSTM accuracy with increasing

noise levels is due to the way the fire score is calculated.

Recall that the fire score (Eq. 1) is normalized by the training

RMSE σtrain, which can effectively reflect the sensor signal

noise level. As the noise level and σtrain increase, for a

given level of discrepancy between the sensor signal and the

reconstructed signal (y − ŷ) due to the perturbation in this

scenario, the magnitude of the fire score decreases. This leads

to the improvement in accuracy of the LSTM as noise level

increases. Finally, we note in Fig. 12 the roughly similar accu-

racy performance of the EWMA detection method with the

LSTM: poor accuracy at low noise levels, and improvement

as noise levels increase. The results real-world datasets will

further confirm and add more nuances to this finding.

B. RELATIVE SENSITIVITY RESULTS WITH THE

SIMULATION-BASED COMPUTATIONAL EXPERIMENTS

We now examine the results of the one-sided t-test to statis-

tically compare the detection time of the LSTM-VAE with

the other methods. We use the basic fire and obstacle fire

scenarios for this comparison, and we include here for brevity

only the lv2 (the 95% confidence interval setting for the

LSTM-VAE). The results are provided in Table 2. The t-test

results for lv1 and lv3 are provided in Appendix C, and

they are similar to those in Table 2. We use a significance

level α= 1%, which corresponds to a critical t value for our

100 computational experiments of t99% ≈ 2.365.

TABLE 2. t-values of the relative sensitivity test comparing lv2 with other
methods in basic and obstacle fire scenarios (critical value, t99%≈ 2.365).

The results in Table 2 demonstrate that the LSTM-VAE

exhibits statistically significant performance improvement

over the other detection methods in these two fire scenarios

in terms of reduction of the detection time lag. This finding

is robust to sensor noise level, and it is generally the case that

the improvement is more pronounced in the obstacle scenario

than in the basic fire scenario. Table 2 complements the

previous results in Fig. 10 and 11, and instead of comparing

mean values of detection time lag, we obtain with this relative

sensitivity t-test more robust and statistically grounded results

to reject the null hypothesis in favor of the alternative, namely
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FIGURE 13. Temperature measurement, LSTM smoothed error, CUSUM,
EWMA, and smoothed fire score along with the fire alarm triggering point
(red circle) of different detection methods in the NIST flaming chair
dataset.

that the mean alarm time lag of LSTM-VAE is shorter than

that of the alternative fire detection methods.

C. REAL-WORLD DATASETS RESULTS: FLAMING CHAIR

AND HEATED PU FOAM

We now present the results for two of the NIST experiments

to illustrate and uncover particular details of the performance

of different fire detection methods.

For the NIST flaming chair experiment, different quan-

tities are provided in Fig. 13, these include the raw sensor

temperature evolution, the standard LSTM smoothed error,

the CUSUM, EWMA, and smoothed fire scores. We label

the alarm triggering points of different fire detections with

red circles on the figure. The alarm time lag of each method

is provided in Fig. 14.

First, we observe that the temperature signal (top panel

in Fig. 13) remains below 58◦C, and as a result the fixed

temperature heat detector ft2 cannot detect this fire and will

not trigger the alarm. The fixed temperature heat detector

ft1 with a detection threshold of 47◦C triggers the fire alarm

FIGURE 14. Alarm time lag results of different fire detection methods
with the NIST flaming chair dataset.

at 1t= 196s, more than three minutes after the fire started.

Second, we note roughly the same performance for the

standard LSTM and the EWMA detection methods, with

a 1t ≈ 95s, more than twice faster than the detection

with the fixed temperature heat detector ft1. Compared with

the LSTM and EWMA, the CUSUM fire detection slightly

underperforms with a longer detection time lag 1t= 116s.

The CUSUM triggers the fire alarm at a point when the

temperature starts a sharp increase. Finally, we note that

the LSTM-VAE outperforms the other detection methods by

significantly shorter detection time lag. This is a meaningful

achievement if the corresponding false alarm rate is not com-

promised. We will examine this aspect shortly. A closer look

at the smoothed fire score (fifth panel from the top in Fig. 13)

is informative. We observe first that the smoothed fire score

development is consistent with the temperature increase.

Because of the RMSE error (σtrain) effect in Eq. 1 andKalman

filter denoising, the fire score curve is smoother than the raw

temperature development, and it is significantly more ampli-

fied than the quantities shown in the other panels (notice the

range on the y-axis of S̃). This, in effect, is the consequence

of the LSTM-VAE mechanism, to amplify the main trend in

a signal when it differs from the nominal training results and

to remain insensitive to noise in the data. This mechanism

is responsible for the improvement in detection sensitivity

and the shorter detection time lag. However, it comes with a

risk of increasing the false alarm rate in the nuisance, no-fire

cases. We will examine this possibility next.

For the NIST heated PU foam experiment, different quan-

tities are shown in Fig. 15: these include the raw sensor

temperature evolution, the standard LSTM smoothed error,

the CUSUM, EWMA, and smoothed fire scores. We label the

false alarm with red crosses on the figure.

The previous underperformance of the fixed temperature

heat detectors in the previous case of a real fire becomes

their advantage in this non-fire event experiment: we note in

the top panel of Fig. 15 that the temperature signal in this

experiment remains smaller than the threshold values of the

fixed temperature heat detectors (47◦C and 58◦C), and as a

result no false alarm is triggered.

Themost salient result in Fig. 15 is the fact that the standard

LSTM, the CUSUM, and the EWMA methods trigger false

alarms in this experiment. In the case of the LSTM, the sen-

sor noise is widely amplified, and when combined with the

environmental disturbance (heated PU foam), a false alarm is

triggered in this non-fire experiment. In the case of CUSUM
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FIGURE 15. Temperature, LSTM smoothed error, CUSUM, EWMA, and
smoothed fire score development and false alarm point of different fire
detection methods in the NIST heated PU foam experiment.

detection, a related phenomenon occurs: in summing up the

abnormal temperaturemeasurements, and adding them on top

of those the upward drift in the temperature due to heating

the PU foam, the detection threshold is breached and the

CUSUM also triggers a false alarm. The previously noted

sensitivity of the EWMAfire detection becomes its drawback

in this on-fire experiment: it is the fastest to trigger a false

alarm. Finally, we note for LSTM-VAE that the smoothed fire

score is less noisy than the original temperature signal (the

joint effect of the VAE and the Kalman filter). And although

this fire score increases with the heating of the PU foam,

it remains asymptotically below the 90% threshold lv1, and

as a result no false alarm is triggered.

The LSTM-VAE fire detection method appears to com-

bine high sensitivity and good robustness against false

alarms in these two real-world experiments and the previous

simulation-based computational experiments. While this is

encouraging, significantlymore testing and results are needed

to develop further confidence in these findings. We present

these results next.

D. THE COMPETE REAL-WORLD NIST DATASETS RESULTS

Beyond the results obtained using the two datasets dis-

cussed previously, we ran the detection methods on all the

69 real-world datasets provided by NIST (details in

Ref. [29]). These include 27 real-fire datasets and 42 nuisance

(non-fire) datasets. The fire datasets enable us to assess and

benchmark the missed detection rates of the methods con-

sidered here, and the nuisance datasets the false alarm rates.

Among the fire datasets, NIST conducted experiments with

different types of fire: flaming (13 experiments), smolder-

ing (11 experiments), and cooking oil fires (3 experiments).

We provide next the collective results for the mean alarm time

lag, the missed detection rates, the false alarm rates, and the

F-1 scores [44] for all the detection methods. The results on

each individual dataset are provided in Appendix D.

There are several important results in Table 3. The most

salient are the following:

1) The LSTM-VAE is the only detection method that

achieves a perfect F1 score in all 69 experiments (no

missed detection and no false alarms). This is the case

with all detection thresholds, lv1, lv2, and lv3. The only

performance difference between these three settings is

the average detection time increases, as expected, from

231s with lv1 to 371s with lv3;

2) The smoldering fires are the most challenging to detect.

They have the highest missed detections (except for

ft2), and when not missed, they require the longest time

to be detected compared with other types of fire;

3) The EWMA is the second-best detection method with

an F1 score of 64%, markedly below that of the

LSTM-VAE. Interestingly, the EWMA has no missed

detection, which reflects an excellent sensitivity, how-

ever it has a high false alarm rate with 31 of the

42 nuisance experiments incorrectly triggering the fire

alarm (74%);

4) In contrast with the EWMA, both fixed temperature

heat detectors have no false alarm rates. However, they

have abysmal missed detection rates of 67% and 74%

for ft1 and ft2 respectively, which can be more danger-

ous than the shortcoming of the EWMA method;

5) The LSTM method has a 100% false alarm rate, which

for all intents and purposes disqualifies it from real-

istically being considered as a viable fire detection

method;

6) The CUSUM method has 19% missed detection and

90% false alarm rate. The former is still dangerous,

albeit not asmuch as the fti, and the latter is a significant

nuisance. Its F1 score places it in the lowest performing

tier of detection methods.

We present next the final performance analysis of the dif-

ferent methods that have a threshold setting for their detec-

tion, namely the LSTM-VAE (the threshold setting for the

smoothed fire score and the associated confidence inter-

val shown in Table 1), the standard LSTM (Appendix E),

the EWMA (Appendix E), and the CUSUM (Appendix E).

We vary their threshold and assess their diagnostic abil-

ity in terms of missed detection and false alarm rates over

the 69 NIST real-world datasets. The results are provided

in Fig. 16.
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TABLE 3. Mean value of the alarm time lag, missed detection rate, and false alarm rate for all NIST experiments (27 fire and 42 nuisance datasets: the
former consists of 13 flaming fires, 11 smoldering fires, and 3 cooking oil fires).

FIGURE 16. Receiver operating characteristic (ROC) curves for different
fire detection methods over the 69 NIST real-world datasets. The starred
points are the results in Table 3.

The results in Fig. 16 confirm and provide more nuance

to the findings in Table 3. They show the Pareto domi-

nance of the LSTM-VAE fire detection compared with the

other methods. Similarly, the results show that the EWMA

method outperforms the standard LSTM, and that the

CUSUM is consistently the worst-in-class fire detection

method, and consequently it can be discarded from further

consideration as a viable approach to fire detection.

A word of caution is in order: these results, it should be

kept in mind, are restricted to the 69 NIST experiments, and

are therefore not to be considered general under all possible

fire and nuisance circumstances. Nevertheless, the weight

of evidence from both the real-world experiments and the

simulation-based computational experiments strongly sug-

gests the LSTM-VAE has a robust and significant perfor-

mance advantage over other approaches to fire detection.

V. CONCLUSION

In this work, we developed a novel fire detection method

using deep Long-Short Term Memory (LSTM) neural net-

works and variational autoencoder (VAE). Our objective

was to improve on the performance of other existing

detection methods. To evaluate the effectiveness of our

method, we developed a set of computational experiments

with high-fidelity LES data, and we used datasets from

real-world fires (flaming, smoldering, and cooking oil fires)

and non-fire experiments. We evaluated and compared the

performance of our proposed fire detection with alternative
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methods, namely the standard LSTM, CUSUM, exponen-

tially weighted moving average (EWMA), and two currently

used fixed-temperature heat detectors with thresholds of

47◦C and 58◦C each.

The results using both the simulation-based computations

and the real-world fire and non-fire experiments are com-

plementary, and they indicate that the LSTM-VAE robustly

outperforms the other detection methods on all performance

metrics with statistically significant shorter alarm time lags,

no missed detection, and no false alarms. The results also

identify shortcomings of other detection methods and indi-

cate a clear ranking among them. For example, the CUSUM

detection performance degrades with increasing sensor noise,

and it has consistently the highest false alarm rate for any

level of sensitivity of all other methods in the NIST real-

world experiments. The fixed temperature heat detectors,

in contrast, have no false alarm rates, but they have poor

detection rates with the real fire experiments, which is a more

dangerous limitation than the nuisance of false alarms. The

standard LSTM is Pareto-dominated by the EWMA, and the

latter is largely outperformed by the LSTM-VAE.

This work should be considered in light of its limitations.

First, the results reported here are based on computational

simulations and 69 real-world experiments. Although sig-

nificant, the experimental basis for this work does not lend

the results any claim to generalizability. Second, the advan-

tages identified in the computational results may be less

pronounced if non-propane fires were used (in the sensitiv-

ity test) or different perturbations considered (in the false

alarm test). Third, the training of the methods with the NIST

non-fire experiments was carried out on the first few seconds

of the datasets provided. Had other conditions and sensor

data been provided for the training (prior to the onset of

the nuisance experiment), it may be the case that some false

alarms would have been triggered.

Despite these limitations, which affected all methods

equally, the weight of evidence indicates that the proposed

LSTM-VAE has robust and significant advantages over other

approaches to fire detection. In a follow-up work, we extend

our method beyond heat detectors to accommodate a host

of other sensors, including smoke detectors, CO2 and CO

sensors, andwe examine sensor data fusion to further improve

the performance of this fire detection approach. Beyond the

context in which it was used here, in future work, we propose

to further generalize our method as an advanced anomaly

detection tool for a broad range of applications (with sequen-

tial multi-sensor data), including air quality monitoring and

other environmental concerns.

APPENDIX

A. VAE RECONSTRUCTION ERROR GAUSSIAN

DISTRIBUTION ASSESSMENT

Here, we examine the standard Gaussian distribution using a

Kolmogorov-Smirenov normality test (K-S test) [45] and nor-

mal probability plot [46] for the fire score of LSTM-VAE in

the normal condition.We use the training data of LSTM-VAE

in the simulation-based computational experiments as dis-

cussed in Section III.A. For this training data, we have 300

temperature measurements in the normal condition without

fire with initial temperature at 20◦C and sensor noise. Here,

we examine the noise level of 0.4, 1.0, and 2.0◦C.
For the K-S test, the null hypothesis is the observed data

comes from the normal distribution, and we use the p-value to

examine the probability of accepting this null hypothesis. The

p-value of different noise level condition is listed in Table 4.

TABLE 4. Illustrative fire alarm detection threshold values on the
smoothed fire score.

Here, we use a p-value threshold of 0.95 with 95% prob-

ability to accept the null hypothesis that the data is under

standard Gaussian distribution. The p-value of all these three

conditions with different noise levels are larger than 0.95 and

the fire score passes the normality test. Then, we use the

normal probability plot to examine the normality hypothesis

visually, and the normal probability plots of the fire score in

these three noise conditions are shown in Fig. 17.

FIGURE 17. The normal probability plots of reconstruction errors in
different noise level conditions.

From the normal plot, the fire score probability curve is

approximating linear and this proves the normality assump-

tion of the reconstruction error in the normal condition

as well.

B. HUMAN PRESENCE SCENARIO SIMULATION-BASED

COMPUTATIONAL EXPERIMENTS RESULTS

In this appendix, we present and discuss the result for the

human presence scenario simulation-based computational

experiments. In the human presence scenario (no fire), we test

for type I errors (alarmwith no fire) andmeasure the accuracy

index. The accuracy results of the human presence scenario

are provided in Fig. 18.

As discussed in Section VI, the results for human scenario

is similar to that of the multiple human presence scenario.

First, our LSTM-VAE and fixed temperature heat detec-

tors are robust to this human environmental disturbance and

achieve excellent accuracy. Second, the LSTM, CUSUM,

EWMA fire detections have false alarm errors in this sce-

nario. The LSTM and EWMA have false alarms when the

sensor noise is small, say, 0.4◦C. The CUSUM fire detection

have significant false alarm rate for large sensor noise level,

say, 2.0◦C.
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FIGURE 18. Accuracy of various fire detection methods with different
sensor noise levels in human presence scenario.

C. THE T-TEST RESULTS OF lv1 AND lv3 IN BASIC AND

OBSTACLE SCENARIOS IN SIMULATION-BASED

COMPUTATIONAL EXPERIMENTS

In this appendix, we present the t-test results of lv1 and

lv2 in basic and obstacle scenarios compared with LSTM,

CUSUM, and EWMA fire detections. These results are

shown in Table 5 for lv1 and Table 6 for lv3. These results are

similar to the t-test result for lv2 in Table 2. The LSTM-VAE

exhibits statistically significant performance improvement

over the other detection methods in these two fire scenarios

in terms of shorter detection time lag for most of the cases.

TABLE 5. t-values of the relative sensitivity test comparing lv1 with other
methods in basic and obstacle fire scenarios.

D. NIST REAL-WORLD TEST RESULTS FOR FIRE AND

NUISANCE EXPERIMENTS

In this appendix, we examine the fire detection sensitivity

and false alarm errors of our LSTM-VAE against alterna-

tive methods by the NIST real-world experiments, including

27 fire test and 42 no fire experiments with household nui-

sance environmental disturbances. The details of the NIST

experiments setup can be found in Ref. [29]. To be noted

the 27 fire datasets can be categorized into three categories:

(1) flaming fire, (2) smoldering fire, and (3) cooking oil fire.

The results of this appendix are summarized in Table 3 in

Section VI.

We use the 27 datasets of experiments with fire events to

benchmark the sensitivity of our LSTM-VAE, and the alarm

time lag results are listed in Table 7 for different methods for

various experiments.

Then, we use 42 nuisance experiments to examine the false

alarm errors of the fire detection methods, and the false alarm

times for different fire detection methods in various NIST

nuisance experiments are listed in Table 8.

TABLE 6. t-values of the relative sensitivity test comparing lv3 with other
methods in basic and obstacle fire scenarios.

TABLE 7. The alarm time lag (s) results of different methods for various
NIST real-word experiments with fire events.

E. CUSUM FIRE DETECTION AND THRESHOLD

CALCULATION FOR STANDARD LSTM AND EWMA

We introduce the CUSUM fire detection, which serves as

an alternative comparison of our LSTM-VAE. The CUSUM

is a sequential analysis technique developed by Page [47].

It is a statistical method used for monitoring the change

point detection, which aims at identifying times when the

probability distribution of a time series changes. Here, we

provide a brief introduction of CUSUM and, the reader is

referred to Ref. [47] for more details.

In the CUSUM, the stopping rule first sums up the inputs

(x(t)), here is the temperature signal, to get a test statistic

(g(t)), which is then thresholded. The updating process of

CUSUMJ is shown in Eq. E. 1, where ta is the output alarm

time, and ν, h are the hyperparameters of CUSUM. νis the

drift hyperparameter to prevent the false alarm caused by the

noise in the sensor signal measurement, and h is the alarm

threshold hyperparameter to trigger the alarm when g(t) >h.

The input x(t) is the temperature sequence centralized by

the mean of normal operating temperature (To) that x (t) =
T (t) − To, where T (t) is the temperature sequence obtained

by NIST data or simulation in our computational experiment.

This To is the calculated mean value of theMLmodel training
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TABLE 8. The false alarm time results (s) for different fire detection
methods for various NIST experiments with nuisance environmental
disturbances.

set.
{

g (t) = max(g (t − 1) + x (t) − v, 0)

ta = t,wheng(t) >h
(E.1)

We conduct a grid-searchmethod to tune the hyperparameters

of ν, h that 0 <ν< 20 with step size 0.5 and 0 <h< 20 with

step size 1.0. The optimal hyperparameters for our problem

set up are ν= 1.5 and h= 5 that if we increase them, it will

significantly damage the CUSUM sensitivity to fire events

and if we decrease them, it will extensively increase the false

alarm rate in human presence scenario of simulation-based

computational experiments. Also, we tested different meth-

ods belonging to the CUSUM category, including CUSUM

LS and CUSUM RLS [48], and method of Eq. E.1. provides

the best performance for our fire detection problem.

The technical details of the standard LSTM and EWMA

can be found in [27] and [30], respectively. Here, we present

the method to determine the fire alarm threshold value in our

computational experiments for these two methods.

For LSTM anomaly detection, in our simulation-based

computational experiments, we use z= 5.0 for the smoothed

error threshold selection since the authors suggested

2 <z< 10 in their work [29] and it provides the best per-

formance. If we increase z, the fire detection sensitivity for

LSTM anomaly detection is degraded significantly. Con-

trarily, if we reduce z, the false alarm rate in the human

presence and multiple human scenarios decreases. In the

real data-based NIST experiments, we vary the threshold for

LSTM for a ROC curve in these 69 datasets.

For EWMA fire detection, we use the suggested value

N= 3 [30] for the threshold calculation in our simulation-

based computational experiments. In the NIST real=world

dataset test, we vary this N value for different threshold

calculations for the ROC curve in Fig. 16.
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