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Simple Summary: Dysregulated glutamine metabolism is one of the metabolic features evident in
cancer cells when compared to normal cells. Cancer cells utilize glutamine for energy generation as
well as the synthesis of other molecules that are critical for cancer growth and progression. Therefore,
drugs targeting glutamine metabolism have been extensively investigated. However, inhibition of
glutamine metabolism in cancer cells results in the activation of other metabolic pathways enabling
cancer cells to survive. In this review, we summarize and discuss the targets in glutamine metabolism,
which has been probed in the development of anticancer drugs in preclinical and clinical studies.
We further discuss pathways activated in response to glutamine metabolism inhibition, enabling
cancer cells to survive the challenge. Finally, we put into perspective combined treatment strategies
targeting glutamine metabolism along with other pathways as potential treatment options.

Abstract: Tumor growth and metastasis strongly depend on adapted cell metabolism. Cancer cells
adjust their metabolic program to their specific energy needs and in response to an often challenging
tumor microenvironment. Glutamine metabolism is one of the metabolic pathways that can be
successfully targeted in cancer treatment. The dependence of many hematological and solid tumors
on glutamine is associated with mitochondrial glutaminase (GLS) activity that enables channeling of
glutamine into the tricarboxylic acid (TCA) cycle, generation of ATP and NADPH, and regulation of
glutathione homeostasis and reactive oxygen species (ROS). Small molecules that target glutamine
metabolism through inhibition of GLS therefore simultaneously limit energy availability and increase
oxidative stress. However, some cancers can reprogram their metabolism to evade this metabolic trap.
Therefore, the effectiveness of treatment strategies that rely solely on glutamine inhibition is limited.
In this review, we discuss the metabolic and molecular pathways that are linked to dysregulated
glutamine metabolism in multiple cancer types. We further summarize and review current clinical
trials of glutaminolysis inhibition in cancer patients. Finally, we put into perspective strategies
that deploy a combined treatment targeting glutamine metabolism along with other molecular or
metabolic pathways and discuss their potential for clinical applications.

Keywords: cancer; metabolism; glutamine metabolism; cancer treatment; glutaminolysis inhibition;
drug resistance

1. Introduction

The molecular landscape of cancer cells strongly differs from that of normal cells
and contributes to features that are known as cancer hallmarks [1]. The dysregulated
metabolism, adjusted to meet the increased energy and biomass production demands,
enabling sustained cell division, was described as one of the vital cancer hallmarks [1].
There is a wide spectrum of metabolic processes activated by cancer cells [2]. These extend
beyond the initial observation of increased glucose consumption with simultaneous lactate
production, independent of the oxygen availability, known as the Warburg effect [3]. For
instance, accelerated purine and pyrimidine metabolism and enhanced lipid synthesis
are features significantly contributing to the proliferative capacity of cancer cells [4,5].
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To cope with this demand, cancer cells modulate their nutrient acquisition mode and
redirect their metabolic pathways [2]. The enhanced fluxes of glucose, various amino
acids (e.g., glutamine, arginine, serine, and branched-chain amino acids (BCAAs)), folate,
and unsaturated fatty acids were previously described along with altered tricarboxylic
acid (TCA) cycle metabolism [2,5-9]. Yet, dysregulated glutamine (GIn) metabolism was
recognized as central to cancer cell fitness due to its contribution to various metabolic
pathways including synthesis of nucleotides, lipids, nonessential amino acids (NEAAs),
energy generation, and redox homeostasis.

The metabolic alterations attributed to cancer cells have become an attractive treatment
target. One of the first treatment strategies utilizing dysregulated cancer metabolism was
targeting elevated nucleotide synthesis [10], proposed by Sidney Farber, the father of
modern chemotherapy [11].

Identification of GIn metabolism as central to cancer cells resulted in multiple attempts
probing it as a treatment target. Molecules predominantly hampering glutaminolysis by
inhibiting glutaminase (GLS), the enzyme catalyzing metabolism of GIn to glutamate, were
shown to attenuate cancer growth and proliferation. One of the GLS inhibitors CB-839
(telaglenastat) is currently being investigated in multiple different clinical trials, frequently
in combination with chemotherapeutics. Although inhibition of GLS reduces cancer prolif-
eration, we and others have shown that such interventions result in activation of alternative
metabolic compensations enabling cancer cell survival under the treatment [12,13]. There-
fore, to design rational treatment strategies efficiently targeting cancer, it is critical to
carefully analyze those compensatory pathways.

In this review, we focus on various aspects of dysregulated glutamine metabolism
observed in cancer cells and its interaction with molecular signaling. We further summarize
the treatment strategies proposed to target dysregulated GIn metabolism and will comment
on pathways activated in response to such a treatment as potential cancer survival options.
Finally, we put in perspective combined treatment options targeting glutamine metabolism
along with other molecular or metabolic pathways and discuss their potential for clinical
applications. The interplay between GIn metabolism and the immune system, along with
GIn metabolism targets contributing to enhanced cancer immunotherapy, was recently
reviewed [14] and will not be covered in this review.

2. Overview of Glutamine Metabolism

The amino acid glutamine (Gln) can be synthesized by the human body and is thus
considered as a nonessential amino acid (NEAA) [15]. Nevertheless, due to the involvement
of Gln in multiple processes, under specific conditions, this amino acid was recognized
as conditionally essential [16]. Among all the amino acids, GIn is the most abundant in
the body [17] and its concentration depends on the overall body metabolism; the balance
between exogenous supply, endogenous synthesis, and release; and its utilization by
various tissues. The Gln metabolism across different organs was captured for the first
time by Adolf Krebs in 1935 [15]. The Gln synthesis preliminary occurs in the skeletal
muscle, lungs, and adipose tissue and is orchestrated by glutamate ammonia ligase (GLUL),
also known as glutamine synthase (GS), an enzyme that resides in the cytosol and that
catalyzes Gln synthesis from glutamate and ammonium ions (NH**). The catabolism of
Gln is preliminary conducted by the intestinal mucosa, immune cells, renal tubule cells,
and liver, where glutaminase (GLS), located in mitochondria, catalyzes the conversion of
Gln into glutamate [18].

2.1. Organ-Dependent Glutamine Fate

The role of GIn depends on the tissue of origin. For instance, GIn synthesized in the
muscle is released into the bloodstream to support visceral organs with amino nitrogen.
Corticosteroids stimulate GIn synthesis and its release by the skeletal muscle, which can be
seen during stress conditions such as fasting, injury, and illness when increased GIn amount
is released [19]. The primary site for the utilization of released GlIn is the gastrointestinal
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tract and the liver. The cells of the gastrointestinal tract, e.g., colonocytes and enterocytes,
utilize GlIn as the main respiratory fuel, rather than glucose [20]. The nitrogen generated
from GIn during this process is used to synthesize ammonia, alanine, proline, and citrulline,
which are released into the bloodstream and then utilized by the liver and kidney [21].
In the liver, the absorbed GIn supports the proliferation of hepatocytes and generation
of energy, as well as contributing to gluconeogenesis (de novo glucose synthesis) [15,22].
Additionally, the liver utilizes nitrogen from GIn to fuel the urea cycle and urea formation,
which serves as detoxification and regulation of the blood pH [23]. In the kidney, GIn-
dependent ammoniagenesis enables the generation of bicarbonate and thus maintains the
acid-base balance in the body [24]. The Gln absorbed by the kidney is also utilized for
gluconeogenesis and contributes to blood glucose homeostasis [25]. Importantly, the cells
of the immune system, including lymphocytes, macrophages, and neutrophils, depend
more on Gln than on glucose [26-28]. Immunological challenges increase the demand for
GIn in those cells [29]. Immune cells utilize GIn both for energy generation and synthesis
of macromolecules [30]. In summary, Gln metabolism is regulated in an organ-dependent
manner and contributes to a broad spectrum of processes in the body.

2.2. Glutamine Metabolism on the Cellular Level

Extracellular GIn cannot cross the plasma membrane and requires transporters to
enter the cells. There are in total 14 such transporters, classified into four different families:
SLC1, SLC6, SLC7, and SLC38, which can all support either GIn influx into the cell or efflux
from the cell into the extracellular space [31]. These transporters differ in their substrate
specificity (as most of the transporters contribute to the transport of other neutral or cationic
amino acids), ion- and pH-dependence, and role under physiological and cancer conditions,
as described in great detail by Bhutia et al. [31].

Once in the cell, Gln can be incorporated into a versatile spectrum of metabolic
pathways in which GIn-derived nitrogen or carbon are utilized. As a nitrogen source, Gln
is particularly used for the synthesis of nucleotides (pyrimidines and purines), NEAAs,
and glucosamine, whereas carbon from Gln is used for gluconeogenesis, TCA cycle, and
glutathione metabolism.

De novo nucleotide synthesis, critical for DNA and RNA, is supported by Gln, which
contributes along with nitrogen to the assembly of purines and pyrimidines [32]. In the
purine synthesis pathway, Gln serves as a substrate for three enzymes: (1) phosphoribosyl
pyrophosphate amidotransferase (PPAT), involved in the conversion of 5-phosphoribosyl-
1-pyrophosphate (PRPP) into 5-phosphoribosyl-1-amine (PRA) by deploying nitrogen from
GIn [33]; (2) 5-phosphoribosylformylglycinamidine synthase (FGAM synthase), which
catalyzes the formation of formylglycinamidine ribonucleotide in an ATP-dependent re-
action in which the amino group of glutamine is transferred into formylglycinamidine
ribonucleotide (FGAR) [34]; and (3) guanosine monophosphate (GMP) synthetase, which
catalyzes the formation of GMP in an ATP-dependent reaction in which amino group from
glutamine is transferred to replace the oxygen in the C-2 position of xanthine monophos-
phate (XMP) [35]. In the pyrimidine pathway, GIn serves as a substrate in two reactions:
(1) ATP-dependent synthesis of carbamoyl phosphate, the first step in pyrimidine synthesis,
catalyzed by the enzyme carbamoyl phosphate synthetase II (CPS II) [36], and (2) synthesis
of cytidine triphosphate (CTP) by amination of uridine triphosphate (UTP), catalyzed by
CTP synthase in an ATP-dependent reaction [37].

Gluconeogenesis is a critical process for maintaining glucose homeostasis in the
body under different conditions, including fasting [38]. It was shown that Gln is a major
gluconeogenic precursor [39]. The process of glucose formation from Gln requires two
deamination steps; the first is catalyzed by GLS and results in the formation of gluta-
mate [15], and the second is catalyzed by glutamate dehydrogenase (GDH) and leads to
the synthesis of a-ketoglutarate [40]. There are two GLS isoforms, one characterized as
kidney (also known as brain)-type (GLS1) and the other defined as liver-type (GLS2) [15,41].
The acquired «-ketoglutarate is incorporated into the TCA cycle where it is metabolized
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into malate. The malate can be either further oxidized in the mitochondria by malate
dehydrogenase (MDH) into oxaloacetate or transported into the cytoplasm and converted
into oxaloacetate by the cytosolic form of MDH [42]. The obtained oxaloacetate is de-
carboxylated to phosphoenolpyruvate (PEP) by the mitochondrial or cytosolic form of
phosphoenolpyruvate carboxykinase (PEPCK), dependent on the reaction site [43]. The
PEP, synthesized in mitochondria, is transported into the cytosol, and the cytosolic PEP is
used for gluconeogenesis [44].

Alternatively, under conditions where glucose is not required, PEP can be metabolized
by pyruvate kinase (PK) into pyruvate [45], which further can be incorporated into the
lipogenic pathway:.

In fact, GIn can serve as a source of lipid synthesis via two routes: (1) the oxidative
route, involving metabolism into pyruvate and further formation of acetyl-CoA, precursor
for palmitic acid synthesis, in the reaction catalyzed by pyruvate dehydrogenase complex
(PDC), and (2) the reductive route, involving incorporation into TCA cycle in the form of
a-ketoglutarate which in the reaction of reductive carboxylation, catalyzed by isocitrate
dehydrogenase (IDH), is metabolized into citrate and further utilized for lipogenesis [46].

Redox homeostasis, predominantly regulated by NADPH and reduced glutathione
(GSH) molecules that neutralize reactive oxygen species (ROS), is critical for proper cell
function [47]. The glutamate metabolized from GIn is a substrate in the first step of GSH
synthesis, where y-glutamylcysteine is obtained from glutamate and cysteine in a reaction
catalyzed by cysteine ligase [48].

Additionally, glutamate generated from GIn can be utilized as a substrate for the
synthesis of other NEAAs, including alanine, aspartate, proline, and serine, as well as
v-aminobutyric acid (GABA) [49].

The NEAA asparagine is the only one generated from GIn and not glutamate in the
reaction catalyzed by the asparagine synthetase (ASNS) [50].

3. Dysregulated Glutamine Metabolism in Cancer

In cancer cells, same as in normal cells, Gln contributes to multiple different processes.
However, to meet the energy and biomass production requirements, GIn metabolism is
accelerated in cancer cells in comparison to normal, non-proliferative cells, and thus the
demand is higher. One of the first observations showing enhanced glutamine metabolism in
cancer was described by Roberts et al., who found identyfied levels of glutamine in tumors
in comparison with normal tissue [51]. This observation was followed by multiple other
studies in which dysregulated glutamine metabolism, in the context of various cancers,
was described [52-58]. The summary of the Gln-related dysregulations in the context of
involved molecules and cancer type is provided in Table 1.

Overall, in cancer cells, there is a significant demand for Gln, which can be either
synthesized or obtained from the bloodstream. The enhanced transport of Gln from the
system into the cancer cell can be linked with the observed decrease in the plasma level
of Gln in cancer patients across various cancer types [54,59,60]. In fact, enhanced Gln
uptake by tumors was suggested to be utilized for tumor imaging where glucose-based
positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (18F-FDG) is
inaccurate due to the high background, especially in tissue with high glucose demand,
e.g., brain [61]. An investigational PET radiotracer, the 18F-(25,4R)-4-fluoroglutamine
(18F-FGIn), was proven as a sensitive strategy to monitor Gln transport and metabolism in
human malignancies [62].
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Table 1. An overview of metabolic fate of glutamine across different cancers.
Pathway Involved Molecules Cancer Type Study Type References
Lung cancer Clinical and in vitro [63]
SLC1AS Breast cancer (TNBC) In vitro and in vivo [64]
Head and neck cancer In vitro and in vivo [65]
. Colorectal cancer In vitro and in vivo [66,67]
Increased glutamine transport
SLC6A14 Pancreatic cancer Chnlca}, mn .Vltro’ and [68]
in vivo
Breast cancer (TNBC) Chmca!, n .Vltro’ and [69]
SLC38A5 n vivo
Pancreatic cancer Clinical and in vivo [70]
Cervical cancer Clinical [71]
Increased glutamine /arginine SLC6A14 Colorectal cancer Clinical [72]
transport
Breast cancer (ER") In vitro and in vivo [73]
Increased glutamine efflux SLC7A5 Colorectal cancer (K-Ras mutation) In vivo [74]
Breast cancer Chmca}, in .VltrO, and [75-77]
in vivo
Prostate cancer Clinical and in vitro [78-80]
Increased glutaminolysis GLS1 Clinical, in vitro, and
Colorectal cancer Jo [81]
in vivo
Lung cancer ChmcaL in .VltI‘O, and 82]
in vivo
Increased glutaminolysis GLS2 Pancreatic cancer In vivo [83]
Controls glutamine metabolism " .
and ROS level GLS2 Hepatocellular cancer In vitro [84,85]
Breast cancer In vitro and in vivo [86]
GCL Lung cancer In vitro and in vivo [87]
Glutamine contributes to Liver cancer In vivo [88]
antioxidative capacity of Lung cancer In vitro and in vivo [89]
cancer cell GDH1
Breast cancer In vitro and in vivo [90]
GOT1/GOT2 Pancreatic cancer In vitro and in vivo [91]
GOT2 Pancreatic cancer In vitro [92]
Glutamine contributes to citrate Renal cell carcinoma deficient in
and lipid synthesis through the von Hippel-Lindau (VHL) In vitro and in vivo [93]
reductive carboxylation (RC) of IDH?2 tumor suppressor gene
a-ketoglutarate (xKG) as well as
contributing to aspartate and Renal cell carcinoma and In vit o4
pyrimidine synthesis glioblastoma n vitro [94]
Glutamine oxidation maintains GDH1 Lung cancer In vitro and in vivo [95]
TCA cycle Glioblastoma In vitro [96]
GMPS Prostate cancer Clinical and in vitro [97]
Glutamine contributes to de novo GLSI.’ PPAT, and their Lung cancer/potential role in In vitro and in vivo [98]
. . ratio PPAT/GLS1 other cancers
nucleotide synthesis
PPAT and PAICS Lung cancer Clinical, 11(1)‘\:;&0, and in [99]
NA Breast cancer with SIRT3 loss In vitro and in vivo [100]
Glutamine contributes to de novo Different cancer cell lines In vitro [101]
. . ASNS
asparagine synthesis Lung cancer Clinical and in vitro [102]
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Table 1. Cont.

Pathway

Involved Molecules Cancer Type Study Type References

Glutamine synthesis

Clinical, in vitro, and

Pancreatic cancer N [103,104]
in vivo

GLUL

Clinical, in vitro, and

Glioblastoma Jo [105]
in vivo

The key metabolic enzymes contributing to GIn metabolism: SLC1A5, neutral amino acid transporter belonging
to the solute carrier (SLC) family 1 member 5; SLC6A14, neutral and basic amino acid transporter belonging
to SLC family 6 member 14; SLC38A5, neutral amino acid transporter belonging to SLC family 38 member 5;
SLC7AS5, essential amino acid transporter, neutral amino acid antiporter belonging to SLC family 7 member
5; GLS1, glutaminase (characterized as kidney (also known as brain)-type); GLS2, glutaminase (characterized
as liver-type); GCL, glutamate cysteine ligase; GDHI1, glutamate dehydrogenase 1; GOT1, glutamate oxaloac-
etate transaminase 1 (cytosolic); GOT2, glutamate oxaloacetate transaminase 2 (mitochondrial); IDH2, isocitrate
dehydrogenase 2 (mitochondrial); GMPS, guanosine monophosphate synthetase; PPAT, phosphoribosyl pyrophos-
phate amidotransferase; PAICS, phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole
succinocarboxamide synthetase; ASNS, asparagine synthetase; GLUL, glutamate ammonia ligase (also known
as glutamine synthase). Other abbreviations: ROS, reactive oxygen species; TCA, tricarboxylic acid; TNBC,
triple-negative breast cancer; ER*, estrogen-receptor-positive; K-Ras, Kirsten rat sarcoma virus. SIRT3, sirtuin 3
(mitochondrial). “*” reflects decreased expression of GLS2 supporting growth of hepatocellular cancer.

Many transporters enabling GIn transport but also antiport were found to be altered
across different cancers [31]. The role of SLC1A5 in GIn transport mediation was shown in
various lung cancers [63]; breast cancers, including triple-negative breast cancer [64]; head
and neck cancer [65]; and colorectal cancer [66,67]. A novel variant of SLC1A5 residing in the
inner mitochondrial membrane was recently reported as a key contributor to mitochondrial
GIn metabolism and metabolic reprogramming in pancreatic cancer, further pinpointing the
importance of Gln in mitochondrial metabolism [106]. The interplay between SLC1A5 and
SLC7A5, belonging to the SLC7 family of glutamine antiporters, was previously suggested,
pointing towards the enhanced entry of essential amino acids via SLC7A5, activated by GIn
flux through SLC1AD5, as a strategy contributing to cancer progression [66]. In agreement, the
critical role of SLC7A5, exporting glutamine in exchange for essential amino acids to meet
cellular demands, in colorectal cancer progression and metastasis was recently reported [74].
However, a study by Cormerais et al. showed the capacity of SLC1A5 as an independent
transporter promoting lung tumor growth [66], further suggesting that the tumor-specific
landscape of Gln transporters adjusts to meet the metabolic demand.

There are also other GIn transporters, including SLC6A14 and SLC38A5, reported to be
upregulated in various tumor types (for SLC6A14: cervical cancer [71], colorectal cancer [72],
estrogen-receptor-positive breast cancer [73], and pancreatic cancer [68]; for SLC38A5:
TNBC [69] and pancreatic cancer [70]) and contributing to the overall GIn pool, which further
highlights the importance of this nutrient in cancer cell metabolism. Furthermore, enhanced
expression of SLC38A5 was shown to promote glutamine dependence and oxidative stress
resistance in breast cancer [107]. The enhanced expression of different GIn transporters
could be multifactorial and might depend on the cancer type, stage, and site, as well as the
overall metabolic balance and interplay between cancer and its microenvironment.

The enhanced GIn catabolism in cancer cells was shown to be streamed predomi-
nantly to supply TCA cycle, glutathione metabolism [9], and synthesis of lipids [56] and
NEAAs [108]. The enzyme GLS1, enabling further processing of Gln and its incorporation
into various pathways, was reported as significantly upregulated in a broad spectrum of
cancers, including breast [75-77], prostate [78-80], colorectal [81], and lung [82] cancers,
and was shown to be crucial for cancer cell fitness. Interestingly, the other glutaminase iso-
form, namely GLS2, was observed to be suppressed during malignant transformation [109].
Moreover, GLS2 overexpression greatly reduced tumor cell colony formation and inhib-
ited cancer cell proliferation, suggesting its antitumoral function [84,85]. However, GLS2
expression was shown to strongly depend on the microenvironment as enhanced GLS2
expression was reported under hypoxia in pancreatic cancer [83]. Those studies further
highlight the importance of environmental factors contributing to metabolic alterations
and adding to the complexity of the network.
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The glutamate generated under enhanced GLS1 was shown to serve as a substrate for
glutathione synthesis to protect cancer cells from oxidative stress, a feature important for
their acquired drug resistance [86]. The glutamate cysteine ligase, catalyzing the first and
rate-limiting reaction in glutathione synthesis, where glutamate serves as a substrate, was
reported as upregulated in cancer and associated with drug resistance [87,110]. Interestingly,
in liver cancer, depletion of glutamate cysteine ligase was associated with decreased
glutathione level and higher sensitivity to oxidative stress [88], further highlighting the
importance of redox balance in cancer.

Nevertheless, glutathione metabolism is not the only pathway supported by glutamate,
as its enhanced contribution to the TCA cycle in the form of a-ketoglutarate was found in
malignant cells [9,95]. The metabolism of glutamate into x-ketoglutarate is catalyzed by
glutamate dehydrogenase 1 (GDH1), glutamate pyruvate transaminase 2 (GPT2), or gluta-
mate oxaloacetate transaminase 1 and 2 (GOT1 (cytoplasmic) and GOT2 (mitochondrial)),
which were al previously reported to be overexpressed in cancer [89-92]. The activity
of enzymes catalyzing glutamate metabolism and the metabolic route of the produced
a-ketoglutarate depends on cancer type and metabolic condition of the cell, e.g., nutritional
status, and is optimized towards proliferative advantages to cancer cells. For instance,
the overexpression of GDH1, observed in breast and lung cancer, associated with tumor
progression [89,111], can be related to redox homeostasis beyond the role of feeding the
TCA cycle intermediates. Jin et al. suggested that «-ketoglutarate formation controls
the level of fumarate, which binds and activates the ROS-scavenging enzyme GPx1 [89].
However, different metabolic dependencies were found in pancreatic cancer, in which two
subsequent reactions occur: (1) noncanonical pathway, metabolizing glutamate to aspartate
and a-ketoglutarate through GOT?2, followed by (2) metabolism of aspartate to oxaloacetate
by GOT1 [91,112]. Interestingly, the activation of these reactions was shown to increase the
NADPH/NADP+ ratio, thereby maintaining ROS balance, and was indicated as a key path-
way for coping with oxidative stress in pancreatic cancer [91]. In breast cancer, reversible
transamination catalyzed by GPT2 was shown to be channeled towards glutamate rather
than o-ketoglutarate and was linked with the enhanced need for building block production
in those cells [90]. On the other hand, the metabolic rerouting towards glutamate generation
can also support the maintenance of the cellular redox balance. However, not all cancers
utilize the given pathway in a similar manner. For instance, in colon cancer cells, GPT2 was
shown to enhance o-ketoglutarate synthesis and incorporation as a Gln-delivered carbon
source for the TCA cycle under the enhanced Warburg effect [113]. The diverse strategies
of deploying enzymatic machinery further point towards dynamic metabolic adjustments
optimized for cancer cell demands.

Upon incorporation into the TCA cycle, a-ketoglutarate can undergo different routes
while adjusting to the nutritional status, proliferation rate, and environmental stimuli,
which all impact the directionality (oxidative vs. reductive) of the TCA cycle [58]. Citrate,
required for the formation of lipid structures to cope with cell proliferation, might be
deficient in cancer cells exhibiting the Warburg effect and can be supported by reductive
carboxylation of o-ketoglutarate [56]. In this process, mitochondrial isocitrate dehydroge-
nase (IDH2) catalyzes the metabolism of x-ketoglutarate into isocitrate, which can then
be isomerized to citrate [94]. The increase in the o-ketoglutarate/citrate ratio signals re-
ductive carboxylation [114], which was shown to also be upregulated under hypoxia [94].
Under hypoxia, along with the enhanced reductive carboxylation, an elevated level of
2-hydroxyglutarate (2HG) was detected [94]. Interestingly, the 2HG was recognized as an
epigenetic modifier and potent oncometabolite [115,116].

Although reductive carboxylation is frequently deployed by cancer cells, the oxidative
pathway can also be activated in response to various stimuli to resist metabolic stress [95,96].
For instance, Yang et al. showed that inhibition of the mitochondrial pyruvate carrier
(MPC), functioning as a pyruvate supply, contributes to GDH activation further rerouting
a-ketoglutarate to generate both oxaloacetate and acetyl-CoA, enabling proper TCA cycle
function [95]. Similar observations were made in glioblastoma cells, where under impaired
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glucose metabolism, glutamine was shown to supply the TCA cycle and production of
oxaloacetate [96].

Yet, the latest study by Kodama et al. suggested that a shift from the TCA cycle towards
nitrogen metabolism is a rather crucial feature of malignant progression in cancer [98].
The authors showed that an increase in phosphoribosyl pyrophosphate amidotransferase
(PPAT) and PPAT /GLS ratio is required to trigger nitrogen shift towards nucleotide biosyn-
thesis in lung cancer and could be considered as a universal phenomenon in other cancer
types apart from colorectal cancer [98]. Moreover, the authors further suggested, contrary
to the previous observations, that GLS1 possesses antitumor effect rather than protumoral
activity, which would call into question all previous reports showing, for instance, involve-
ment of GIn in cancer cell redox homeostasis [117] or lipogenesis [56] and aspartate [108]
metabolism. Thus, it would be interesting to investigate multiple tumors under various
conditions and assess whether the tumor heterogeneity could explain the inconsistency
between the recent report and previous studies. It could be hypothesized that a subpopu-
lation of cancer cells would activate the Gln shift towards nucleotide generation whereas
the other population of cells would sustain the GIn incorporation into the TCA cycle to
ensure either the oxidative or reductive pathway and lipogenesis. In fact, the cancer cell
metabolic program depends on various factors modulating cellular adjustments. The
metabolic subpopulations of cancer cells inside the tumor, exhibiting different metabolic
programs, were shown to exist in symbiosis, contributing to tumor growth [83]. Given
that different populations of cancer cells reside in the tumor, it could be reasoned that both
metabolic strategies can be utilized in parallel. Moreover, the utilization of Gln to supply
nucleotide synthesis in malignant cells was previously described [99,100,118]; however, the
actual shift from the TCA cycle and glutathione metabolism was not previously reported.

De novo asparagine synthesis, catalyzed by ASNS, requires glutamine, in contrast
to other NEAAs, which can be obtained from glutamate [50]. The expression levels of
ASNS vary across different cancers and impact the asparagine level. For instance, in acute
lymphoblastic leukemia (ALL), in which low ASNS expression was found, further depletion
of asparagine achieved by the introduction of asparaginase (hydrolyzing asparagine to
aspartic acid and ammonia) was shown to be lethal in ALL cells and used as a treatment
strategy [119,120]. However, cancers with elevated ASNS expression showed resistance
to asparaginase [119]. Moreover, elevated ASNS level was shown to promote cancer cell
proliferation [101] and was linked to drug resistance [119,121,122].

Finally, the high and diverse tumor demands for glutamine might be challenging to
meet under steady state in which Gln production is predominantly supported by the muscle,
which further suggests a need for activation of GIn synthesis in some cancers. Indeed,
enhanced proliferation rate, along with faulty vascularization in, e.g., pancreatic cancer,
result in scarce access to the nutrients and activation of other processes such as extracellular
protein scavenging [104]. Furthermore, glutamine synthesis, but not glutaminolysis, was
found to be upregulated in pancreatic cancer [103,123] and glioblastoma [124]. GS activity
was linked with nucleotide synthesis in glioblastoma under glutamine restriction [105], and
de novo synthesized glutamine was shown to be essential for nitrogen anabolic processes in
pancreatic cancer [103,125].

In summary, there are multiple metabolic processes activated in cancer cells that rely
on GIn. The way in which GIn metabolism is altered in the tumor is multifactorial and
depends on cancer type and site, nutrient access, and molecular signaling.

4. Key Components Regulating Glutamine Metabolism
4.1. Environmental Factors

The rapid cancer cell proliferation resulting in tumor tissue growth leads to enhanced
oxygen demand, which could not be fulfilled due to distanced existing vasculature or
defective angiogenesis causing limited oxygen supply and thus hypoxia (low oxygen level
in tumor tissue) [126,127]. The hypoxic microenvironment was shown to be implicated in
metabolic reprogramming, further contributing to cancer cell progression and aggressive-



Cancers 2022, 14, 553

9o0f23

ness [128,129]. The adaptation to hypoxia can be modulated by hypoxia-inducible factors
HIF-1 and HIF-2 «, overexpressed by cancer cells in response to low oxygen levels [130],
which in turn induce metabolic genes involved in glycolysis and Gln metabolism [131,132].
It was shown that HIF-1« suppresses glucose-dependent anabolic synthesis with a simulta-
neous increase in lactate production [131]. Hypoxia-driven alterations result in a reduction
in pyruvate entering the TCA cycle [133,134], which could further trigger reprogramming
in Gln metabolism. Indeed, enhanced GIn transport and upregulation in the expression of
GlIn transporters were observed under hypoxia [106,135,136]. The expression of SLC1A5 is
controlled and upregulated by HIF-2ox [106], whereas SLC38A1 is activated by HIF-1« [135]
and presents different strategies to modulate the Gln level in the cell.

Yet, the GIn transported into the cell is further utilized to sustain the needs of hypoxic
cells in which oxidative pathway changes more towards reductive carboxylation [136,137].
The utilization of glutamine under hypoxia is enhanced, and glutaminolysis catalyzed by
increased activation of both GLS1 and GLS2 was shown to be upregulated [81,83]. The
activation of GLS1 was found to be critical for colon cancer growth [81], whereas hypoxia-
activated GLS2 was found in pancreatic cancer [83]. Further, the GIn-derived carbon is
utilized for the formation of x-ketoglutarate, which undergoes reductive carboxylation
catalyzed by IDH2 to form isocitrate followed by isomerization to citrate [94]. Noteworthily,
this metabolic upregulation was shown to be associated with increased synthesis of 2HG, rec-
ognized as an oncometabolite [94,115]. The generated citrate is further transported into the
cytoplasm to generate acetyl-CoA, which serves as a source for fatty acid synthesis [138,139].
The utilization of Gln as a lipid source was recognized as critical for the proliferation of
cancer cells under hypoxia in multiple studies [56,92,94,132,136,137]. Interestingly, hypoxia
was shown to inhibit carnitine palmitoyltransferase 1A (CPT1A) and thus beta-oxidation,
which resulted in the accumulation of lipids in form of stored droplets in clear cell renal cell
carcinoma [140]. It could be reasoned that cancer cells might store fatty acids generated un-
der reductive carboxylation for their potential future utilization under changed conditions.
Given that reductive carboxylation was shown to be necessary for tumor growth under
hypoxia, this pathway could be considered as a promising treatment target [132].

Nevertheless, under hypoxia, enhanced oxidative GIn metabolism resulting in ATP
production in addition to glutathione synthesis can be maintained in some cancers despite
decreased mitochondrial respiration [135,141-143]. In a Myc-inducible human Burkitt
lymphoma model, oxidative GIn metabolism supporting the TCA cycle was reported
under hypoxia [142], further suggesting the potential involvement of the Myc oncogene in
determining the fate of glutamine. The differences in TCA directionality under hypoxia
could reflect the cellular demands at a given time and further point towards the metabolic
plasticity of cancer cells.

The fate of Gln-derived nitrogen under hypoxia was also investigated. Noteworthily,
the utilization of GIn-derived carbon for lipogenesis generates byproducts such as nitrogen
(ammonia/ammonium) and oxaloacetate that could not be effectively catabolized under
limited oxygen [136] and could be even toxic to the cell [144]. Therefore, under the hypoxic
condition, the cancer cell activates an alternative pathway in which GIn-derived nitrogen is
incorporated into dihydroorotate. The conversion of dihydroorotate to UMP was shown to
be hampered and followed by dihydroorotate accumulation and further excretion [136,145].
The observed accumulation of dihydroorotate indicates a cellular strategy to scavenge po-
tentially toxic nitrogen byproducts resulting from enhanced GIn utilization for lipogenesis
under hypoxia.

4.2. Oncogenes and Tumor Suppressors Control Altered Glutamine Metabolism

The metabolic landscape of the tumor is dictated not only by the environmental factors
but also by the oncogenes and tumor suppressors. For instance, tumor suppressors such as
retinoblastoma protein (Rb), sirtuin 4 (SIRT4), and p53 were linked with dysregulated Gln
metabolism in various cancers [53,84,85,146-148].
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The depletion of Rb was associated with a specific increase in GIn uptake via upregu-
lated SLC1A5 [53,146] and enhanced glutathione formation [146]. Furthermore, under Rb
loss, enhanced glutaminolysis mediated by GLS1 and GIn incorporation into the TCA cycle
was found and linked with increased ATP production [53], further suggesting activation
of the oxidative pathway. Similarly, loss of SIRT4 was also associated with enhanced GIn
transport and glutaminolysis contributing to enhanced proliferation and growth of lung
and breast cancers [147,148].

The role of p53 has grown lately beyond the canonical activities regulating cell division,
as it has been shown to have a function in cellular metabolism involved in responses to
metabolic stresses [149]. For instance, p53 was shown to be activated in response to low
Gln level [150], in turn promoting expression of different transporters, including SLC1A3
(glutamate/aspartate transporter) [151] and SLC7A3 (enhancing arginine import) [152]. The
enhanced SLC1A3 expression, modulated by p53 in response to low Gln level, was shown to
rescue cell viability by maintaining TCA cycle activity and promoting de novo synthesis of Gln,
glutamate, and nucleotides [151]. The p53-modulated enhancement of different transporters
presents strategies enabling cancer cells to facilitate adaptation to Gln deprivation.

The role of oncogenes were identified as critical for controlling GIn uptake and
metabolism and the contribution of GIn metabolism to malignant transformation. For in-
stance, oncogene c-Myc coordinates the expression of genes required for GIn catabolism by
reprogramming the mitochondrial metabolism towards addiction to glutaminolysis [153].
These changes were linked with suppression of glucose incorporation into the TCA cycle
with simultaneous enhancement of GLS1-mediated glutaminolysis [52] and GIn streaming
to the TCA cycle [153]. Interestingly, the contribution of c-Myc to GIn synthesis was also re-
ported, suggesting the involvement of c-Myc in both anabolic and catabolic pathways [154]
potentially to maximize utilization of Gln by cancer cells. Similarly to the phenotype ob-
served in tumors with Rb loss [53], c-Myc overexpression was also likened with enhanced
GlIn transport via SLC1A5 [153].

Another oncogene, Kirsten rat sarcoma (K-Ras), was also identified as a modulator
of metabolism contributing to malignant transformation and cancer progression [75,119].
K-Ras was found to promote glutaminolysis in a GLS1-dependent manner, and the cancer
cell survival was shown to be Gln-dependent [155] Moreover, the K-Ras-transformed cells
efficiently utilized both Gln-delivered carbon and nitrogen for the synthesis of building
blocks, including amino acids and nucleotides, and for glutathione generation [156]. Such
an efficient metabolic program enables sustaining growth on one hand and protecting from
oxidative stress on the other hand. Interestingly, in K-Ras pancreatic cancer, noncanonical
GIn utilization was reported in which glutamine-derived aspartate is converted into oxaloac-
etate by GOT1 [91]. This non-canonical pathway serves as a key contributor to generating
oxidative capacity of the cell by increasing the NADPH/NADP+ ratio in the series of reac-
tions in which oxaloacetate is converted into pyruvate [91]. Moreover, the cell cycle arrest
caused by suppression of glutamine utilization in K-Ras-driven cancer cells was reversed by
aspartate [157], further underscoring the significance of this noncanonical pathway.

In summary, both environmental factors and molecular signaling pathways contribute
to dysregulated GIn metabolism in cancer cells.

5. Combined Treatment Strategies Targeting Altered Glutamine Metabolism Offer a
Promising Cancer Treatment

The extensive research focused on GIn metabolism in health and disease resulted in the
identification of potential treatment targets, which were further probed in preclinical and
clinical studies. Overall, modulation of GIn metabolism results in inhibition of cancer cell
proliferation; however, it is frequently insufficient to induce cancer cell death, potentially
due to activation of compensating pathways. Here, we provide an overview of preclinical
and clinical studies in which GIn metabolism was targeted, and we further focus on cancer
cell responses to such a treatment, as those can serve as a roadmap for rational designing
of combined treatment strategies.
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5.1. Targeting GLS1 along with Chemotherapy as a Promising Treatment Strategy

The enhanced glutaminolysis orchestrated by GLS1, observed to be essential for mul-
tiple cancers [57,117,158,159], was probed as a treatment target with different inhibitors
such as bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) [160]; bromo-
benzophenanthridinone compound 968 (C.968) [161]; and CB-839, also known as telaglena-
stat, a product of company Calithera [76]. The inhibition of glutaminolysis was shown to
suppress the growth of multiple different cancer cells, including breast [76], renal [93], and
liver [162], in vitro and in vivo and was successful in hampering metastatic progression in
osteosarcoma [158]. Although GLSI inhibition leads to suppression of cancer cell prolifera-
tion, it is frequently insufficient to trigger cancer cell death, as was shown by us and others,
independently of the GLS1 inhibitor used [12,13,93,163,164]. Thus, it can be reasoned
that the inactivation of a single metabolic pathway is insufficient to trigger cancer cell
death due to potential metabolic compensations. This is in agreement with outcomes from
other monotherapies, further suggesting a need for combined treatment strategies [165].
Importantly, we found that GLS1 inhibition resulted in activation of lipid catabolism along
with autophagy as a cancer survival mechanism [12], which was confirmed by others [13].
In fact, activated autophagy [166,167] and accelerated lipid catabolism [168] were recog-
nized as pathways supporting cancer cells under nutritional challenges and thus should be
considered for cotreatment strategies. Our in vitro experiments showed that simultaneous
inhibition of GLS1 along with lipid catabolism or autophagy targeted with trimetazidine
and chloroquine, respectively, could be considered as a potential treatment strategy [12]. In
fact, this treatment option could be explored given that both trimetazidine and chloroquine
are used in clinic. Interestingly, the latest study suggested that metformin, a first-line
antidiabetic drug, possesses the ability of GLS1 inhibition [169,170]. However, in contrast
to a study in which GLS1 inhibitors were used, metformin treatment resulted in autophagy
suppression and apoptosis activation [170]. The differences in cancer cell responses could
be explained by the fact that metformin is not a GLS1-specific inhibitor and impacts other
pathways relevant for cancer cell growth [171].

Currently, there are a total of 20 registered clinical trials investigating the potential of
telaglenastat (CB-839) as an anticancer drug, out of which 8 have been completed (Table 2).

Table 2. Overview of completed clinical trials testing telaglenastat (CB-839) in various cancer patients.

Cancer Type Treatment Outcome Reference

Triple-negative breast cancer In combination with paclitaxel In heavily pretreated patients with previous

P 8 (TNBC) (chemotherapeutic agent targeting taxane exposure, the treatment demonstrated [172]
microtubules) clinical activity and was well tolerated.

Clear(cc:Il{l Crg\allnceil:::;i:mma In combination with nivolumab CB-839 was well tolerated when combined

non-small-c’ell lun car,lcer (immunotherapy medication targeting with nivolumab in melanoma, ccRCC, and [173]
(NSCLC) 8 programmed cell death (PD-1) receptor) NSCLC patients.
In combination with palbociclib (kinase
Solid tumors with K-Ras mutation inhibitor targeting cyclin-dependent NA NA
kinases CDK4 and CDK&6)

. . o . Acceptable safety profile under continuous

Solid tumors As asingle agent and in combination with  ~p 39, gministration. Treatment resulted in [174]
standard chemotherapy . I L ..
glutaminase inhibition and clinical activity.
. . N . CB-839 administration was well tolerated and
As a single agent or in combination with . S

i A ) resulted in GLS inhibition in blood platelets

Hematological tumors pomalidomide (immunomodulatory and in tumors. Observed reductions in [175]
agent), dexamethasone (glucocorticoid), or o ;
: . marrow and peripheral blast counts suggested
pomalidomide and dexamethasone iy
clinical relevance.

Renal cell carcinoma (RCC) In combination with cabozantinib Did not achieve primary endpoint. [176]

(tyrosine kinase inhibitor)
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Table 2. Cont.

Cancer Type Treatment Outcome Reference
N . . In combination with everolimus, CB-839
In combination with everolimus demonstrated a tolerable safety profile
ccRCC (mammalian t.a rget o f rapamycin (mTOR) Modest (3.8 months from 1.9 months) (1771
kinase inhibitor) . .
progression-free survival was observed.
CB-839 was well tolerated in advanced
CB-839 as a single agent or in combination leukemia and resulted in GLS inhibition in
Leukemia with azacitidine (chemotherapeutic agent, platelets and PBMCs. [175]
antimetabolite) Two patients achieved significant reductions in

blast counts.

Overall, telaglenastat (CB-839) showed safety and was well tolerated in patients with
leukemia and other hematological cancers, as well as those with solid tumors (including
clear cell renal cell carcinoma, melanoma, non-small-cell lung cancer, and triple-negative
breast cancer) [172-175]. The telaglenastat treatment was proved to inhibit GLS1 in the
patients [175], which is in agreement with the initial preclinical study [76]. However, the
observed progression-free survival was moderate [177], and a clinical trial with renal cell
carcinoma patients did not achieve the primary endpoint [176]. Noteworthily, in almost all
clinical trials, telaglenastat was combined either with chemotherapy or immunotherapy and
such a treatment regimen was given to heavily pretreated patients, which could reflect on
the trial outcome. Further, the moderate responses to the treatment could be explained by
the potential compensation mechanisms activated by the tumor. Thus, in-depth analysis of
molecular alterations in response to treatment, preferentially on the metabolic level, should
be considered. Moreover, given the complexity of metabolic dependences in the tumor
and the symbiosis between the cancer cell populations in the tumor [83], markers enabling
better prediction of the responses would be required to guide the selection of treatment
strategies. Noteworthily, GLS1 inhibition was shown to lower the level of glutathione,
suggesting its impact on the antioxidative capacity of cancer cells and their survival under
the treatment [12,76]. Hence, drugs triggering oxidative stress, e.g., doxorubicin, could be
considered for combination with telaglenastat (CB-839), given cancer cell dependency on
glutathione under doxorubicin treatment [178]. Nevertheless, the preclinical data should
be carefully analyzed as doxorubicin-induced site effects related to oxidative stress could
strongly affect patient wellbeing [179].

5.2. Targeting Antioxidative Capacity of the Cell by Modulating Glutamine Metabolism as a
Potential Treatment Option

The antioxidative capacity of a cancer cell supports its fitness and survival [180].
Therefore, targets such as GOT1, which is a contributor to the antioxidative capacity of
pancreatic ductal adenocarcinoma (PDA) [91] but is dispensable in nonmalignant cells,
could be considered as an attractive treatment option. GOT1 is required for proliferation
and tumor growth, and its inhibition leads to attenuated cancer cell progression through
cell cycle blockage [181]. Thus, GOT1 could be considered as a promising and cancer-
specific treatment target. Recently, aspulvinone O was reported as a natural inhibitor
of GOT1 sensitizing PDA cells to oxidative stress and resulting in growth suppression
in vitro and in vivo [182]. Furthermore, a covalent small molecule inhibitor (PF-04859989)
of GOT1 was recently tested and showed selective growth inhibition of PDA cell lines [183].
Nevertheless, Kremer et al. showed diverse cell sensitivity to GOT1 inhibition further
suggesting activation of cancer cell survival mechanisms in response to the treatment [181],
further highlighting the need for taking into account metabolic plasticity. Chronic GOT1
suppression resulted in enhanced cystine import, glutathione synthesis, and lipid antioxi-
dant machinery along with activation of glutathione peroxidase 4 (GPX4), which enabled
cancer cells to cope with oxidative stress and survive the treatment [181]. The simultaneous
inhibition of GOT1 and any of the pathways activated in response to this inhibition resulted
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in ferroptosis [181], a form of cell death [184], further suggesting a potential treatment
strategy for PDA tumors.

Yet another example of an enzyme contributing to the oxidative capacity of cancer cells
is GDHI1, which could serve as a potential treatment target [89]. Inhibition of GDHI, either
by shRNA or small molecule inhibitor R162, was shown to disrupt redox homeostasis in
cancer cells and inhibit their proliferation and tumor growth in vitro and in vivo, causing
minimal toxicity [89]. Another study by Jin et al. suggested that GDH1 plays an important
role during lung cancer metastasis by contributing to «-ketoglutarate synthesis which in
turn modulates the 5 AMP-activated protein kinase (AMPK) signaling pathway [185]. Our
recent study showed an increased level of a-ketoglutarate in breast cancer cell lines with
high metastatic potential, further suggesting the importance of this pathway in cancer
progression [186]. Targeting GDH1 with R162 attenuated tumor metastasis in a patient-
derived xenograft model, offering a potential treatment for lung cancer patients [185].
GDH1 could be also targeted with epigallocatechin gallate (EGCG), a flavonoid isolated
from green tea [187], which was shown to inhibit lung cancer cell proliferation and invasion
in vitro [188]. Importantly, the redox balance and «-ketoglutarate level disrupted by
R162 can be further restored by other metabolic pathways, which should be taken under
consideration in future studies targeting GDHI.

5.3. Starving Cancer Cells of Glutamine as a Cotreatment Strategy

The dysregulated GIn metabolism could also be managed by controlling the amount
of GIn entering the cell. This can be achieved by targeting SLC1A5, which was shown as a
key GIn transporter contributing to cancer cell proliferation [63-66,106]. Alternatively, Gln
antagonists, by inhibiting GIn-utilizing enzymes, limit the performance of Gln-dependent
pathways and thus impact cancer function [189-193].

The inhibition of SLC1A5 with the small molecule L-y-glutamyl-p-nitroanilide (GPNA)
leads to glutamine starvation in lung cancer cells, which further results in oxidative stress-
mediated autophagy and apoptosis [194]. Given that autophagy is considered as a sur-
vival pathway activated by the cancer cell under nutritional stress [167], its activation
under inhibited GIn influx should be carefully monitored. Another pharmacological
blockade of glutamine flux was recently reported by Schulte et al., who described 2-amino-
4-bis(aryloxybenzyl)aminobutanoic acids (V-9302) as selective and potent competitive
small molecule antagonists targeting SLC1A5 [195]. The SLC1A5 inhibition resulted in
attenuated colon cancer cell growth and proliferation, increased cell death, and increased
oxidative stress in vitro and in vivo [195]. Similarly, a study conducted in head and neck
squamous cell carcinoma (HNSCC) targeting overexpressed SLC1A5 with V-9302 reported
the suppression of the intracellular glutamine level and downstream Gln metabolism,
which in turn inhibited cancer growth and proliferation in vitro and in vivo [65]. Further-
more, the authors showed that inhibition of SLC1A5 sensitized HNSCC to cetuximab,
thus suggesting optimization of treatment strategy by using metabolic modulation [65].
Interestingly, SLC1A5 was recently recognized as a potential target for leukemia [196],
which could be probed with V-9302. Given the sensitized impact of SLC1AS5 inhibition on
chemotherapy [65], a similar outcome might be expected in leukemia. Nevertheless, this
strategy should be carefully investigated given the potentially severe adverse impact of
limited Gln access on normal hematopoiesis in patients. Noteworthily, the decreased GIn
level under SLC1A5 inhibition could be compensated for by either activation of alternative
GlIn transporters or Gln synthesis. In fact, enhanced sensitivity to the inhibition of GIn
transporters was linked with reduced plasticity associated with the capability of activation
of the alternative pathway [197].

Given that Gln can be generated by the cell, Gln antagonists could be considered
as an alternative treatment option to molecules inhibiting GIn transporters. Indeed, GIn
antagonist 6-diazo-5-oxo-l-norleucine (DON), identified in 1956 [139], was shown to impact
GIn-dependent pathways, including synthesis of nucleotides and x-ketoglutarate [190,198],
and thus cancer cell growth in vitro and in vivo [139,189,193,198]. Nevertheless, the initially
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promising clinical development of DON [199,200] was hampered due to its dose-limiting
toxicity related to gastrointestinal (GI) mucosa [193]. The latest development aiming
to optimize DON to the form of a prodrug circulating in the plasma and activated in
the tumor resulted in the successful finding of (DON-based) GIn antagonist prodrugs
that provide selective tumor exposure [191,192,201]. A recent study deploying a DON-
based prodrug, the compound JHUO083, for glutamine blockade in tumor-bearing mice
reported the suppression of oxidative and glycolytic metabolism in cancer cells and a
significant decrease in tumor volume [191]. Moreover, another DON-based prodrug called
sirpiglenastat (DRP-104), a leading candidate of Dracen company, is currently being probed
as a single agent and in combination with immunotherapy (atezolizumab) in a clinical trial
in patients with advanced solid tumors [202]. Given that sirpiglenastat can simultaneously
hamper multiple GIn-dependent pathways, its overall performance in clinical trials might
be superior to that of molecules targeting only one enzyme (e.g., telaglenastat). Although
the performance of sirpiglenastat as a single agent might be limited due to the plasticity of
cancer cells, combined treatment strategies deploying currently suggested immunotherapy
could serve as an attractive option for cancer patients.

In summary, the dysregulated GIn metabolism has become an attractive treatment
target. Although there are many strategies involving the modulation of GIn metabolism
that were proven efficient in preclinical testing, so far, only two molecules, telaglenastat
(CB-839), targeting GLS1, and sirpiglenastat (DRP-104), targeting multiple Gln-dependent
enzymes, have reached clinical trials. Further effort toward understanding cancer survival
mechanisms under the treatment would be needed to optimize combined treatment options
for identified targets.

6. Potential Pitfalls and Future Perspectives

Although dysregulated GIn metabolism is an attractive treatment target, which could
potentially be applied for different cancers, further optimization of current options is
required to achieve better clinical outcomes. Aspects concerning tumor heterogeneity and
metabolic plasticity, which both contribute to cancer cell resistance, are critical roadblocks
that have to be addressed.

Currently, tumor metabolic status and metabolic dysregulations of cancer cell popula-
tions in the tumor and their responses to the stimuli are not considered while designing
treatments. However, these factors may be critical given the interplay between different
components of the tumor and their metabolic symbiosis [83]. A measurement enabling
in-depth characterization of the tumor metabolic processes, ideally in a dynamic man-
ner, would be required for optimized treatment. In fact, metabolomics, which is a strat-
egy for monitoring small molecule composition, offers such a possibility [203]. We used
metabolomics to identify cancer compensation mechanisms in response to glutaminolysis
inhibition [12] and to identify metabolic pathways activated as a tumor response to dox-
orubicin treatment [178]. Although such an approach is informative and can result in the
identification of optimized treatment strategies, it is not ideal as it provides only a snapshot
and not a continuous measurement of the process. Thus, noninvasive approaches enabling
continuous and real-time monitoring of metabolic process, which could be incorporated
inside the tumors, could be a potential step forward. In fact, nanowire sensors enabling
protein and DNA monitoring were recently introduced [204]. Therefore, sensors with the
capacity for dynamic metabolic monitoring of the tumors could be envisioned. Such an
approach would support the optimization and adjustment of treatment strategies in a
dynamic manner.

In conclusion, treatment strategies targeting GIn metabolism constitute an attractive
and promising option for cancer patients. However, due to the metabolic plasticity of the
tumor, alternative pathways can be activated to overcome the treatment. Thus, identifica-
tion of the pathways activated to support cancer cell survival under the treatment is critical
for further development and optimization of any potential therapy. Given the complexity
of the metabolic network, a combined treatment directed towards cancer metabolism could
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be more successful than monotherapies. Finally, a device enabling continuous monitoring
of metabolic processes inside the tumor could support treatment decision making and be a
step forward for cancer precision medicine.
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