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Abstract

One of the Grand Challenges in Science is the construction of the Tree of Life, an evolutionary

tree containing several million species, spanning all life on earth. However, the construction of the

Tree of Life is enormously computationally challenging, as all the current most accurate methods

are either heuristics for NP-hard optimization problems or Bayesian MCMC methods that sample

from tree space. One of the most promising approaches for improving scalability and accuracy for

phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping subsets,

trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we

present Exact-RFS-2, the first polynomial-time algorithm to find an optimal supertree of two trees,

using the Robinson-Foulds Supertree (RFS) criterion (a major approach in supertree estimation

that is related to maximum likelihood supertrees), and we prove that finding the RFS of three input

trees is NP-hard. We also present GreedyRFS (a greedy heuristic that operates by repeatedly using

Exact-RFS-2 on pairs of trees, until all the trees are merged into a single supertree). We evaluate

Exact-RFS-2 and GreedyRFS, and show that they have better accuracy than the current leading

heuristic for RFS.
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1 Introduction

Supertree construction (i.e., the combination of a collection of trees, each on a potentially

different subset of the species, into a tree on the full set of species) is a natural algorithmic

problem that has important applications to computational biology; see [7] for a 2004 book

on the subject and [25, 38, 14, 18, 17, 16, 9, 10] for some of the recent papers on this subject.

Supertree methods are particularly important for large-scale phylogeny estimation, where it

can be used as a final step in a divide-and-conquer pipeline [45]: the species set is divided

into two or more overlapping subsets, unrooted leaf-labelled trees are constructed (possibly

recursively) on each subset, and then these subset trees are combined into a tree on the full

dataset, using the selected supertree method. Furthermore, provided that optimal supertrees

are computed, divide-and-conquer pipelines can be provably statistically consistent under

stochastic models of evolution: i.e., as the amount of input data (e.g., sequence lengths when

estimating gene trees, or number of gene trees when estimating species trees) increases, the

probability that the true tree is returned converges to 1 [24, 44].

Unfortunately, the most accurate supertree methods are typically local-search heuristics

for NP-hard optimization problems [4, 29, 25, 38, 33, 27, 34, 16], and are computationally

intensive on large datasets. However, divide-and-conquer strategies, especially recursive ones,

may only need to apply supertree methods to two trees at a time, and hence the computational

complexity of supertree estimation given two trees is of interest. One optimization problem

where optimal supertrees can be found on two trees is the NP-hard Maximum Agreement

Supertree (SMAST) problem (also known as the Agreement Supertree Taxon Removal

problem), which removes a minimum number of leaves so that the reduced trees have

an agreement supertree [17, 14]. Similarly, the Maximum Compatible Supertree (SMCT)

problem, which removes a minimum number of leaves so that the reduced trees have a

compatibility supertree [5, 6], can also be solved in polynomial time on two trees (and note

that SMAST and SMCT are identical when the input trees are fully resolved). Because

SMAST and SMCT remove taxa, methods for these optimization problems are not true

supertree methods, because they do not return a tree on the entire set of taxa. However,

solutions to SMAST and SMCT could potentially be used as constraints for other supertree

methods, where the deleted leaves are added into the computed SMAST or SMCT trees, so

as to optimize the desired criterion.

When restricting to methods that return trees on the full set of taxa, much less seems to

be understood about finding supertrees on two trees. However, if the two input trees are

compatible (i.e., there is a supertree that equals or refines each tree when restricted to the

respective leaf set), then finding that compatibility supertree is solvable in polynomial time,

using (for example) the well known BUILD algorithm [1], but more efficient algorithms exist

(e.g., [6, 3]).

Since compatibility is a strong requirement (rarely seen in biological datasets), optimiza-

tion problems are more relevant. One optimization problem worth discussing is the Maximum

Agreement Supertree Edge Contraction problem (which takes as input a set of rooted trees

and seeks a minimum number of edges to collapse so that an agreement supertree exists).

This problem is NP-hard, but the decision problem can be solved in O((2k)pkn2) time when
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the input has k trees and p is the allowed number of number of edges to be collapsed [14].

Note that the algorithm for AST-EC proposed by [14] may be exponential even for two trees,

when the number of edges that must be collapsed is Ω(n) (e.g., imagine two caterpillar trees,

where one is obtained from the other by moving the left-most leaf to the rightmost position).

In sum, while supertree methods are important and well studied, when restricted to the

major optimization problems that do not remove taxa, polynomial time methods do not

seem to be available, even for the special case where the input contains just two trees. This

restriction has consequences for large-scale phylogeny estimation, as without good supertree

methods, divide-and-conquer pipelines are not guaranteed to be statistically consistent, are

not fast, and do not have good scalability [44].

In this paper we examine the well known Robinson-Foulds Supertree (RFS) problem

[2], which seeks a supertree that minimizes the total Robinson-Foulds [30] distance to

the input trees. Although RFS is NP-hard [20], it has several desirable properties: it is

closely related to maximum likelihood supertrees [36] and, as shown very recently, has good

theoretical performance for species tree estimation in the presence of gene duplication and

loss [23]. Because of its importance, there are several methods for RFS supertrees, including

PluMiST [18], MulRF [8], and FastRFS [42]. A comparison between FastRFS and other

supertree methods (MRL [25], ASTRAL, ASTRID [41], PluMiST, and MulRF) on simulated

and biological supertree datasets showed that FastRFS matched or improved on the other

methods with respect to topological accuracy and RFS criterion scores [42]. Hence, FastRFS

is currently the leading method for the RFS optimization problem.

The main contributions of this paper are:

We prove that RFS is solvable in O(n2|X|) time for two trees, where n is the number of

leaves and X is the number of shared leaves (Theorem 2) and NP-hard for three or more

trees (Lemma 10).

We present Exact-RFS-2, a polynomial time algorithm for the RFS problem when given

only two source trees, and explore its performance on simulated data, both within a

natural divide-and-conquer pipeline and within a greedy heuristic (Section 3). We show

that Exact-RFS-2 outperforms FastRFS [42] on two trees, the current most accurate

method for RFS, and that GreedyRFS is better than FastRFS for small to moderate

numbers of source trees (Section 4).

We prove that divide-and-conquer pipelines using Exact-RFS-2 are statistically consistent

methods for phylogenetic tree estimation (both gene trees and species trees) under

standard sequence evolution models (Theorem 12).

We establish equivalence between RFS and some other supertree problems (Lemma 1).

We show critical differences between RFS and SMAST/SMCT problems, that establish

that methods for SMAST or SMCT cannot provably be used to constrain the search for

RFS supertrees (Lemma 23 in Appendix in the full version on bioRxiv).

The remainder of the paper is organized as follows. In Section 2, we provide terminology

and define the optimization problems we consider. We present the Exact-RFS-2 algorithm

and establish theory related to the algorithm in Section 3. Our experimental performance

study is presented in Section 4, and we conclude in Section 5 with a discussion of trends and

future research directions.

2 Terminology and Problem Statements

We let [N ] = {1, 2, . . . , N} and A = {Ti | i ∈ [N ]} denote the input to a supertree problem,

where each Ti is a phylogenetic tree on leaf set L(Ti) = Si ⊆ S (where L(t) denotes the leaf

set of t) and the output is a tree T where L(T ) is the set of all species that appear as a leaf

WABI 2020
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in at least one tree in A, which we will assume is all of S. We use the standard supertree

terminology, and refer to the trees in A as “source trees” and the set A as a “profile”. For a

tree T , let V (T ) and E(T ) denote the set of vertices and edges of T , respectively.

Robinson-Foulds Supertree

Each edge e in a tree T defines a bipartition πe := [A|B] of the leaf set, and each tree is

defined by the set C(T ) := {πe | e ∈ E(T )}. The Robinson-Foulds distance [30] (also called

the bipartition distance) between trees T and T ′ with the same leaf set is RF(T, T ′) :=

|C(T )\C(T ′)| + |C(T ′)\C(T )|. We extend the definition of RF distance to allow for T and

T ′ to have different leaf sets as follows: RF (T, T ′) := RF (T |X , T ′|X), where X is the shared

leaf set and t|X denotes the homeomorphic subtree of t induced by X. Letting TS denote

the set of all phylogenetic trees such that L(T ) = S and T B
S denote the binary trees in TS ,

then a Robinson-Foulds supertree [2] of a profile A is a binary tree

TRFS = argmin
T ∈T B

S

∑

i∈[N ]

RF(T, Ti).

We let RF(T, A) :=
∑

i∈[N ] RF(T, Ti) denote the RFS score of T with respect to profile A.

Thus, the Robinson-Foulds Supertree problem takes as input the profile A and seeks a

Robinson-Foulds (RF) supertree for A, which we denote by RFS(A).

Split Fit Supertree

The Split Fit (SF) Supertree problem was introduced in [46], and is based on optimizing the

number of shared splits (i.e., bipartitions) between the supertree and the source trees. For

two trees T , T ′ with the same leaf set, the split support is the number of shared bipartitions,

i.e., SF(T, T ′) := |C(T ) ∩ C(T ′)|. For trees with different leaf sets, we restrict them to the

shared leaf set before calculating the split support. The Split Fit supertree for a profile A of

source trees, denoted SFS(A), is a tree TSFS ∈ T B
S such that

TSFS = argmax
T ∈T B

S

∑

i∈[N ]

SF(T, Ti).

Thus, the split support score of T with respect to A is SF(T, A) :=
∑

i∈[N ] SF(T, Ti). The

Split Fit Supertree (SFS) problem takes as input the profile A and seeks a Split Fit

supertree (the supertree with the maximum split support score), which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

The relaxed versions of the problems where we do not require the output to be binary

(i.e., we allow T ∈ TS) are named Relax-RFS and Relax-SFS.

We append “-N” to the name to indicate that we assume there are N source trees. If no

number is specified then the number of source trees is unconstrained.

We append “-B” to the name to indicate that the source trees are required to be binary;

hence, we indicate that the source trees are allowed to be non-binary by not appending -B.

Thus, the RFS problem with two binary input trees is RFS-2-B and the relaxed SFS problem

with three (not necessarily binary) input trees is Relax-SFS-3.
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Other notation

For any v ∈ V (T ), we let NT (v) denote the set of neighbors of v in T . A tree T ′ is a refinement

of T iff T can be obtained from T ′ by contracting a set of edges. Two bipartitions π1 and π2

of the same leaf set are said to be compatible if and only if there exists a tree T such that

πi ∈ C(T ), i = 1, 2. A bipartition π = [A|B] restricted to a subset R is π|R = [A ∩ R|B ∩ R].

For a graph G and a set F of vertices or edges, we use G + F to represent the graph obtained

from adding the set F of vertices or edges to G, and G − F is defined for deletions, similarly.

3 Theoretical Results

In this section we establish the main theoretical results, with detailed proofs provided in [47]

or in the Appendix in the full version on bioRxiv [48].

3.1 Solving RFS and SFS on two trees

◮ Lemma 1. Given an input set A of source trees, a tree T ∈ T B
S is an optimal solution for

RFS(A) if and only if it is an optimal solution for SFS(A).

The main result of this paper is Theorem 2 (correctness is proved later within the main

body of the paper, and the running time is established in the Appendix):

◮ Theorem 2. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.

The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|) time, where n :=

max{|S1|, |S2|}.

3.1.1 Exact-RFS-2: Polynomial time algorithm for RFS-2-B and
SFS-2-B

The input to Exact-RFS-2 is a pair of binary trees T1 and T2. Let X denote the set of shared

leaves. At a high level, Exact-RFS-2 constructs a tree Tinit that has a central node that is

adjacent to every leaf in X and to the root of every “rooted extra subtree” (a term we define

below under “Additional notation”) so that Tinit contains all the leaves in S. It then modifies

Tinit by repeatedly refining it to add specific desired bipartitions, to produce an optimal Split

Fit (and optimal Robinson-Foulds) supertree (Figure 3). The bipartitions that are added are

defined by a maximum independent set in a bipartite “weighted incompatibility graph” we

compute.

Additional notation

Let 2X denote the set of all bipartitions of X; any bipartition that splits a single leaf from

the remaining |X| − 1 leaves will be called “trivial” and the others will be called “non-trivial”.

Let C(T1, T2, X) denote C(T1|X) ∪ C(T2|X), and let Triv and NonTriv denote the sets of

trivial and non-trivial bipartitions in C(T1, T2, X), respectively. We refer to Ti|X , i = 1, 2 as

backbone trees (Figure 2). Recall that we suppress degree-two vertices when restricting a

tree Ti to a subset X of the leaves; hence, every edge e in Ti|X will correspond to an edge or

a path in T (see Fig. 1 for an example). We will let P (e) denote the path associated to edge

e, and let w(e) := |P (e)| (the number of edges in P (e)). Finally, for π ∈ C(Ti|X), we define

ei(π) to be the edge that induces π in Ti|X (Fig. 1).

WABI 2020
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(a) T1

v1
v2 v3 v4

l1

l2

l3 l4 l5

l6

l7

a1 a2

a3 a4 a5

a6

e

(b) T2

l1

l2

l3l4

l5

l6

l7

b1

b2

b3

b4

b5 b6

e′

Figure 1 T1 and T2 depicted in (a) and (b) have an overlapping leaf set X = {l1, l2, . . . , l7}. Each

of a1, . . . , a6 and b1, . . . , b6 can represent a multi-leaf extra subtree. For e ∈ T1|X as shown, P (e) is

the path from v1 to v4, so w(e) = 3. Using indices to represent the shared leaves, let π = [12|34567];

then e1(π) = e and e2(π) = e′. T R(e) = {a1, a2}, T R(e′) = {b2}, so T R∗(π) = {a1, a2, b2}. Let

A = {1, 2, 3}, B = {4, 5, 6, 7}. Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]}

and BP(B) = {[1234|567], [12345|67], [12346|57]}. T RS(A) = {a1, a2, b1, b2} and T RS(B) =

{a6, b4, b5, b6}.

(a) T1|X

e1 e2 e3 e4

l1

l2 l6

l7

l3 l4 l5

(b) T2|X

e5 e6 e7 e8

l1

l2

l4 l3 l6
l5

l7

(c) incompatibility graph

π1

π2

π3

π4

π5

π6

π7

π8

Figure 2 We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph, based on the trees

T1 and T2 in Figure 1 (without the trivial bipartitions). Each πi is the bipartition induced by ei,

and the weights for π1, . . . , π8 are 3, 4, 1, 1, 2, 2, 2, 3, in that order. We note that π1 and π5 are the

same bipartition, but they have different weights as they are induced by different edges; similarly

for π3 and π7. The maximum weight independent set in this graph has all the isolated vertices

(π1, π3, π5, π7) and also π2, π8, and so has total weight 15.

The next concept we introduce is the set of extra subtrees, which are rooted subtrees

of T1 and T2, formed by deleting X and all the edges and vertices on paths between vertices

in X (i.e., we delete Ti|X from Ti). Each component in Ti − Ti|X is called an extra subtree

of Ti, and note that the extra subtree t is naturally seen as rooted at the unique vertex r(t)

that is adjacent to a vertex in Ti|X . Thus, Extra(Ti) = {t | t is a component in Ti − Ti|X}.

We can now define the initial tree Tinit computed by Exact-RFS-2: Tinit has a center

node that is adjacent to every x ∈ X and also to the root r(t) for every extra subtree

t ∈ Extra(T1) ∪ Extra(T2). Note that Tinit has a leaf for every element in S, and that Tinit|Si

is a contraction of Ti, formed by collapsing all the edges in the backbone tree Ti|X .

We say that an extra subtree t is attached to edge e ∈ E(Ti|X) if the root of t is adjacent

to an internal node of P (e), and we let T R(e) denote the set of such extra subtrees attached

to edge e. Similarly, if π ∈ C(T1, T2, X), we let T R∗(π) refer to the set of extra subtrees

that attach to edges in a backbone tree that induce π in either T1|X or T2|X . For example,

if both trees T1 and T2 contribute extra subtrees to π, then T R∗(π) :=
⋃

i∈[2] T R(ei(π)).

For any Q ⊆ X, we let BPi(Q) denote the set of bipartitions in C(Ti|X) that have one side

being a strict subset of Q, and we let T RSi(Q) denote the set of extra subtrees associated with

these bipartitions. In other words, BPi(Q) := {[A|B] ∈ C(Ti|X) | A ( Q or B ( Q}, and

T RSi(Q) :=
⋃

π∈BPi(Q) T R(ei(π)). Intuitively, T RSi(Q) denotes the set of extra subtrees in

Ti that are “on the side of Q”. By Corollary 14, which appears in the Appendix, for any π =
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Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees (see Figure 3).

Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X 6= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do

3: for i ∈ [2] do

4: compute T R(ei(π)), w(ei(π))

5: compute BP(A), BP(B), T RS(A), T RS(B), and T R∗(π),

6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each t ∈
Extra(T1) ∪ Extra(T2) connected to v̂ by an edge ⊲ let Tinit = T

7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G
9: let I be the set of bipartitions associated with vertices in I∗

10: for each π = [{a}|B] ∈ Triv do

11: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that T R(e1(π)) are
attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached
to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their attachments
on e2(π)

⊲ let T̃ = T after for loop
12: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
13: for each π ∈ NonTriv ∩ I (in any order) do

14: T ← Refine(T, π, H, sv) ⊲ let T ∗ = T after for loop

15: arbitrarily refine T to make it a binary tree
16: return T

[A|B] ∈ C(Ti|X), BPi(A) ∪ BPi(B) is the set of bipartitions in C(Ti|X) that are compatible

with π. Finally, let BP(Q) = BP1(Q) ∪ BP2(Q), and T RS(Q) = T RS1(Q) ∪ T RS2(Q).

We give an example for these terms in Figure 1.

The incompatibility graph of a set of trees, each on the same set of leaves, has one vertex

for each bipartition in any tree (and note that bipartitions can appear more than once) and

edges between bipartitions if they are incompatible (see [28]). We compute a weighted

incompatibility graph for the pair of trees T1|X and T2|X , in which the weight of the

vertex corresponding to bipartition π appearing in tree Ti|X is w(ei(π)), as defined previously.

Thus, if a bipartition is common to the two trees, it produces two vertices in the weighted

incompatibility graph, and each vertex has its own weight (Figure 2).

We divide C = C(T1)∪C(T2) into two sets: Π1 = {[A|B] ∈ C | A∩X 6= ∅ and B ∩X 6= ∅},

and Π2 = {[A|B] ∈ C | A ∩ X = ∅ or B ∩ X = ∅}. Intuitively, Π1 is the set of bipartitions

from the input trees that are induced by edges in the minimal subtree of T1 or T2 spanning

X, and Π2 are all the other input tree bipartitions. We define p1(·) and p2(·) on trees T ∈ TS

by:

p1(T ) =
∑

i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ Π1|, p2(T ) =

∑

i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ Π2|.

Note that p1(T ) and p2(T ) decompose the split support score of T into the score con-

tributed by bipartitions in Π1 and the score contributed by bipartitions in Π2; thus, the split

support score of T with respect to T1, T2 is p1(T ) + p2(T ).

As we will show, the two scores can be maximized independently and we can use this

observation to refine Tinit so that it achieves the optimal total score.

Overview of Exact-RFS-2

Exact-RFS-2 (Algorithm 1) has four phases. In the pre-processing phase (lines 1–5), it

computes the weight function w and the mappings T R, T R∗, BP , and T RS for use in latter

parts of Algorithm 1 and Algorithm 2. In the initial construction phase (line 6), it constructs
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a tree Tinit (as described earlier), and we note that Tinit maximizes p2(·) score (Lemma 3).

In the refinement phase (lines 7–14), it refines Tinit so that it attains the maximum p1(·)

score. In the last phase (line 15), it arbitrarily refines T to make it binary. The refinement

phase begins with the construction of a weighted incompatibility graph G of T1|X and T2|X
(see Figure 2). It then finds a maximum weight independent set of G that defines a set

I ⊆ C(T1, T2, X) of compatible bipartitions of X. Finally, it uses these bipartitions of X in

I to refine Tinit to achieve the optimal p1(·) score, by repeatedly applying Algorithm 2 for

each π ∈ I (and we note that the order does not matter). See Figure 3 for an example of

Exact-RFS-2 given two input source trees.

(a) Tinit: star with leaf set X and all
extra subtrees attached to center

l1

l2

l3
l4 l5

l6

l7
a1

a2
a3

a4a5 a6 b1
b2

b3

b4

b5

b6

(b) T̃ : after adding all Triv to T |X

l1

l2

l3
l4 l5

l6

l7
a1

a2
a3

a4 a5 b2
b3

b4

b5

b6

b1 a6

(c) After adding π2 = [123|4567]

va vb
l1

l2

l3
l4 l5

l6

l7

a1 a2 b2
a3 a4 a5 b3 b4 b5 b6

b1 a6

(d) After adding π8 = [12346|57]

l1

l2

l3
l4

l5

l6

l7

a1 a2 b2
a3 a4 a5 b3 b4

b5 b6

b1

a6

(e) After adding π1 = π5 = [12|34567]

l1

l2

l3 l4

l5

l6

l7

a1 a2 b2
a3 a4 a5 b3 b4

b5 b6

b1
a6

(f) After adding π3 = π7 = [1234|567]

l1

l2

l3 l4

l5

l6

l7

a1 a2 b2
a3 a4 a5 b3 b4

b5 b6

b1
a6

Figure 3 Algorithm 1 working on T1 and T2 from Figure 1 as source trees; the indices of leaves

in X = {l1, l2, . . . , l7} represent the leaves and the notation of π1, . . . , π8 is from Figure 2. In (a) to

(f), the pX(·) score of the trees are 14, 16, 20, 23, 27, 29, in that order. We explain how the algorithm

obtain the tree in (c) from T̃ by adding π2 = [123|4567] to the backbone of T̃ . Let A = {l1, l2, l3}

and B = {l4, l5, l6, l7}. The center vertex c of T̃ is split into two vertices va, vb with an edge between

them. Then all neighbors of c between c and A are made adjacent to va while the neighbors

between c and B are made adjacent to vb. All neighbors of c which are roots of extra subtrees are

moved around such that all extra subtrees in T R∗(π2) are attached onto (va, vb); all extra subtrees

in T RS(A) = {a1, a2, b2} are attached to va and all extra subtrees in T RS(B) = {b4, b5, b6} are

attached to vb. We note that in this step, b3 can attach to either va or vb because it is not in T RS(A)

or T RS(B). However, when obtaining the tree in (d) from the tree in (c), b3 can only attach to the

left side because for A′ = {l1, l2, l3, l4, l6}, [124|3567] ∈ BP(A′) and thus b3 ∈ T RS(A′).

Algorithm 2 refines the given tree T on leaf set S with bipartitions on X from C(T1, T2, X)\

C(T |X). Given bipartition π = [A|B] on X, Algorithm 2 produces a refinement T ′ of T such

that C(T ′|Si
) = C(T |Si

) ∪ {π′ ∈ C(Ti) | π′|X = π} for both i = 1, 2. To do this, we first
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Algorithm 2 Refine.

Input: a tree T on leaf set S, a nontrivial bipartition π = [A|B] of X, two data structures H and sv
Output: a tree T ′ which is a refinement of T such that for both i = 1, 2, C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈

C(Ti) | π
′|X = π}

1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈ NT (v) | ∃b ∈ B

s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪NB do

5: if u ∈ NA then connect u to va

6: else connect u to vb

7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that T R(e1(π)) are
attached first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached
to the right of all subtrees in T R(e1(π)) with the ordering of them also matching their attachments
on e2(π)

8: for each t ∈ T RS(A) do

9: if t is attached to v, detach it and attach to va

10: for each t ∈ T RS(B) do

11: if t is attached to v, detach it and attach to vb

12: for each remaining extra subtree attached to v do

13: detach it from v and attach it to either va or vb

14: H(va)← ∅, H(vb)← ∅
15: for each π′ ∈ H(v) do

16: if π′ ∈ BP(A) then

17: sv(π′) = va, H(va)← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then

19: sv(π′) = vb, H(vb)← H(vb) ∪ {π′}
20: else

21: discard π′

22: return T ′ = T ′ − v

find the unique vertex v such that no component of T − v has leaves from both A and B.

We create two new vertices va and vb with an edge between them. We divide the neighbor

set of v into three sets: NA is the set of neighbors that split v from leaves in A, NB is the

set of neighbors that split v from leaves in B, and Nother contains the remaining neighbors.

Then, we make vertices in NA adjacent to va and vertices in NB adjacent to vb. We note

that Nother = ∅ if X = S and thus there are no extra subtrees. In the case where X 6= S,

Nother contains the roots of the extra subtrees adjacent to v and we handle them in four

different cases to make T ′ include the desired bipartitions:

those vertices that root extra subtrees in T R∗(π) are moved onto the edge (va, vb) (by

subdividing the edge to create new vertices, and then making these vertices adjacent to

the new vertices)

those vertices that root extra subtrees in T RS(A) are made adjacent to va

those that root extra subtrees in T RS(B) are made adjacent to vb

the remaining vertices can be made adjacent to either va or vb

Algorithms 1 and 2 also use two data structures (functions) H and sv: (1) For a given node

v ∈ V (T ), H(v) ⊆ C(T1, T2, X) is the set of bipartitions of X that can be added to T |X by

refining T |X at v, and (2) Given π ∈ C(T1, T2, X), sv(π) = v means ∃T ′, a refinement of T

at v, so that C(T ′|X) = C(T |X) ∪ {π}.

◮ Lemma 3. For any tree T ∈ TS, p2(T ) ≤ |Π2|. In particular, let Tinit be the tree defined

in line 6 of Algorithm 1. Then, p2(Tinit) = |Π2|.

Lemma 3 formally states that the tree Tinit we build in line 6 of Exact-RFS-2 (Algorithm 1)

maximizes the p2(·) score. This lemma is true because there are only |Π2| bipartitions that

can contribute to p2(·) and Tinit contains all of them by construction. We define the function

w∗ : Π → N≥0 as follows:
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w∗(π) =















0 if π 6∈ C(T1, T2, X),

w(e1(π)) if π ∈ C(T1|X) \ C(T2|X),

w(e2(π)) if π ∈ C(T2|X) \ C(T1|X),
∑

i∈[2] w(ei(π)) else.

For any set F of bipartitions, we let w∗(F ) =
∑

π∈F w∗(π).

◮ Lemma 4. Let π = [A|B] ∈ Π. Let T ∈ TS be any tree with leaf set S such that

π /∈ C(T |X) but π is compatible with C(T |X). Let T ′ be a refinement of T such that for all

π′ ∈ C(T ′|Si
)\C(T |Si

) for some i ∈ [2], π′|X = π. Then, p1(T ′) − p1(T ) ≤ w∗(π).

◮ Lemma 5. For any compatible set F ⊆ Π, let T ∈ TS be any tree with leaf set S such that

C(T |X) = F . Then p1(T ) ≤ w∗(F ).

Lemma 4 shows that w∗(π) represents the maximum potential increase in p1(·) as a

result of adding bipartition π to T |X . The proof of Lemma 4 follows the idea that for

any bipartition π of X, there are at most w∗(π) edges in either T1 or T2 whose induced

bipartitions become π when restricted to X. Therefore, by only adding π to T |X , at most

w∗(π) more bipartitions get included in C(T |S1
) or C(T |S2

) so that they contribute to the

increase of p1(T ). The proof of Lemma 5 uses Lemma 4 repeatedly by adding the compatible

bipartitions to the tree in an arbitrary order.

◮ Proposition 6. Let T̃ be the tree constructed after line 11 of Algorithm 1, then p1(T̃ ) =

w∗(Triv).

The proof naturally follows by construction (Line 8 of Algorithm 1), and implies that the

algorithm adds the trivial bipartitions of X (which are all in I) to T |X so that p1(T ) reaches

the full potential of adding those trivial bipartitions.

◮ Lemma 7. Let T be a supertree computed within Algorithm 1 at line 14 immediately before

a refinement step. Let π = [A|B] ∈ NonTriv ∩ I. Let T ′ be a refinement of T obtained from

running Algorithm 2 with supertree T , bipartition π, and the auxiliary data structures H and

sv. Then, p1(T ′) − p1(T ) = w∗(π).

The idea for the proof of Lemma 7 is that for any non-trivial bipartition π ∈ I of X to

be added to T |X , Algorithm 2 is able to split the vertex correctly and move extra subtrees

around in a way such that each bipartition in T1 or T2 that is induced by an edge in P (e1(π))

or P (e2(π)), which is not in T |S1
or T |S2

before the refinement, becomes present in T |S1
or

T |S2
after the refinement. Since there are exactly w∗(π) such bipartitions, they increase p1(·)

by w∗(π).

◮ Proposition 8. Let G be the weighted incompatibility graph on T1|X and T2|X , and let I be

the set of bipartitions associated with vertices in I∗, which is a maximum weight independent

set of G. Let F be any compatible subset of C(T1, T2, X). Then w∗(I) ≥ w∗(F ).

We now restate and prove Theorem 2:

◮ Theorem 2. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.

The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n2|X|) time, where n :=

max{|S1|, |S2|}.
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Proof. First we claim that p1(T ∗) ≥ p1(T ) for any tree T ∈ TS , where T ∗ is defined as from

line 14 of Algorithm 1. Fix arbitrary T ∈ TS and let F = C(T |X). Then by Lemma 5, p1(T ) ≤

w∗(F ). We know that w∗(π) = 0 for any π /∈ C(T1, T2, X), so w∗(F ) = w∗(F ∩ C(T1, T2, X))

and thus p1(T ) ≤ w∗(F ∩ C(T1, T2, X)). Since F ∩ C(T1, T2, X) is a compatible subset of

C(T1, T2, X), we have w∗(F ∩ C(T1, T2, X)) ≤ w∗(I) by Proposition 8. Then p1(T ) ≤ w∗(I).

Since Triv ⊆ C(T1|X) ∩ C(T2|X) ⊆ I, we have I = (NonTriv ∩ I) ∪ (Triv ∩ I) = (NonTriv ∩

I) ∪ Triv. Therefore, by Proposition 6 and Lemma 7, we have

p1(T ∗) = p1(T̃ ) +
∑

π∈NonTriv∩I

w∗(π) = w∗(Triv) + w∗(NonTriv ∩ I) = w∗(I).

Therefore, p1(T ∗) = w∗(I) ≥ p1(T ).

From Lemma 3 and the fact that a refinement of a tree never decreases p1(·) and p2(·),

we also know that p2(T ∗) ≥ p2(Tinit) ≥ p2(T ) for any tree T ∈ TS . Since for any T ∈ TS ,

SF(T, A) = p1(T ) + p2(T ), T ∗ achieves the maximum split support score with respect to A

among all trees in TS . Thus, T ∗ is a solution to Relax–SFS-2-B (Corollary 9). If T ∗ is not

binary, Algorithm 1 arbitrarily resolves every high degree node in T ∗ until it is a binary tree

and then returns a tree that achieves the maximum split support score among all binary

trees of leaf set S. See the Appendix for the running time analysis. ◭

◮ Corollary 9. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.

Relax–SFS-2-B can be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.

◮ Lemma 10. RFS-3, SFS-3, and Relax–SFS-3 are all NP-hard.

The proof for this lemma can be found in the Appendix.

3.2 DACTAL-Exact-RFS-2

Let Φ be a model of evolution (e.g., GTR) for which statistically consistent methods exist,

and we have some data (e.g., sequences) generated by the model and wish to construct a

tree. We construct an initial estimate of the tree, and we select an edge e in the tree. The

deletion of e and its endpoints creates four subtrees, and we let P be the set of the p nearest

leaves to e taken from each subtree (including all leaves that tie for closest in each subtree).

We define the subsets be A ∪ P and B ∪ P , where πe = [A|B]), and we re-estimate trees

on these subsets and then combine the trees together using Exact-RFS-2. We call this the

DACTAL-Exact-RFS-2 pipeline, due to its similarity to the DACTAL pipeline [24]. The

DACTAL pipeline differs from the DACTAL-Exact-RFS-2 pipeline only in that it computes

four trees (each containing the set P and otherwise being leaf-disjoint) and then combines

the overlapping subset trees using the Strict Consensus Merger technique, and was proven

statistically consistent when the subset trees are computed using statistically consistent

methods.

Before we prove that DACTAL-Exact-RFS-2 can enable statistically consistent pipelines,

we begin with some definitions. Given a tree T and an internal edge e in T , the deletion

of the edge e and its endpoints defines four subtrees. A short quartet around e is a set

of four leaves, one from each subtree, selected to be closest to the edge. Note that due to

ties, there can be multiple short quartets around some edges. The set of short quartets for

a tree T is the set of all short quartets around the edges of T . The short quartet trees

of T is the set of quartet trees on short quartets induced by T . It is well known that the

short quartet trees of a tree T define T , and furthermore T can be computed from this set in

polynomial time [11, 12, 13].
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◮ Lemma 11. Let T be a binary tree on leaf set S and let A, B ⊆ S. Let TA = T |A and

TB = T |B (i.e., TA and TB are induced subtrees). If every short quartet tree is induced

in TA or in TB, then T is the unique compatibility supertree for TA and TB and Exact-2-

RFS(TA, TB) = T .

Proof. Because TA and TB are induced subtrees of T , it follows that T is a compatibility

supertree for TA and TB . Furthermore, because every short quartet tree appears in at least

one of these trees, T is the unique compatibility supertree for TA and TB (by results from

[12, 13], mentioned above). Finally, because T is a compatibility supertree, the RFS score of

T with respect to TA, TB is 0, which is the best possible. Since Exact-2-RFS solves the RFS

problem on two binary trees, Exact-2-RFS returns T given input TA and TB . ◭

Thus, Exact-2-RFS is guaranteed to return the true tree when given two correct trees that

have sufficient overlap (in that all short quartets are included). We continue with proving

that these pipelines are statistically consistent.

◮ Theorem 12. The DACTAL-Exact-RFS-2 pipeline is a statistically consistent method for

estimating the unrooted tree topology under any model Φ for which statistically consistent

unrooted tree topology estimation methods exist.

Proof. The proof is very similar to the proof given for the original DACTAL pipeline in

[24]. Let Φ be the stochastic evolution model. To establish statistical consistency of the

DACTAL-Exact-RFS-2 pipeline (see above), we need to prove that as the amount of data

increases the unrooted tree topology that is returned by the pipeline converge to the true

unrooted tree topology. That is, we will show that for any ǫ > 0, there is an amount of data

so that the probability of returning the true tree topology given that amount of data is at

least 1 − ǫ. Hence, let F be the method used to compute the starting tree, let G be the

method used to compute the subset trees, and let ǫ > 0 be given. Because F is statistically

consistent under Φ, it follows that there is an amount of data so that the starting tree

computed by F will have the true tree topology T with probability at least 1 − ǫ/2. Now

consider the decomposition into two sets produced by the algorithm produced by deleting

edge e, applied to a tree with the true unrooted tree topology. Note that for any p ≥ 1, all the

leaves appearing in any short quartet around e are placed in the set P . Now, subset trees are

computed using G on A ∪ P and B ∪ P , where πe = [A|B], which we will refer to as TA and

TB, respectively. Since G is statistically consistent, for a large enough amount of data, TA

and TB will have the true tree topology on their leaf sets (T |L(TA) and T |L(TB), respectively)

with probability at least 1 − ǫ/2. When TA and TB are equal to the true trees on their leaf

sets, then every short quartet tree of T is in TA or TB , so that by Lemma 11, T is the only

compatibility supertree for TA and TB . Thus, under these conditions, Exact-2-RFS(TA, TB)

returns T . Hence, for a large enough amount of data, Exact-2-RFS(TA, TB) returns T with

probability at least 1 − ǫ, completing our proof. ◭

Hence, DACTAL+Exact-2-RFS is statistically consistent under all standard molecular

sequence evolution models and also under the MSC+GTR model [43, 31] where gene trees

evolve within species trees under the multi-species coalescent model (which addresses gene

tree discordance due to incomplete lineage sorting [19]) and then sequences evolve down each

gene tree under the GTR model.

Note that all that is needed for F and G to guarantee that the pipeline is statistically

consistent is that they should be statistically consistent under Φ. However, for the sake of

improving empirical performance, F should be fast so that it can run on the full dataset but

G can be more freely chosen, since it will only be run on smaller datasets. Indeed, the user
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Figure 4 Results for Experiment 1: Exact-2-RFS has better RFS criterion scores than FastRFS

(lower is better) in ILS-based species tree estimation (using ASTRAL-III [49], for 501 species with

varying numbers of genes).

can specify the size of the subsets that are analyzed, with smaller datasets enabling the use

of more computationally intensive methods.

For example, when estimating trees under the GTR [40] model, F could be a fast but

statistically consistent distance-based method such as neighbor joining [32] and G could be

RAxML [35], a leading maximum likelihood method. For the MSC+GTR model, F and G

could be polynomial time summary methods (i.e., methods that estimate the species tree by

combining gene trees), with F being ASTRID [41] (a very fast summary method) and G

being ASTRAL [21, 22, 49], which is slower than ASTRID but often more accurate. However,

if the subsets are chosen to be very small, then other choices for G include StarBeast2 [26], a

Bayesian method for co-estimating gene trees and species trees under the MSC+GTR model.

4 Experiments and Results

We performed two experiments: Experiment 1, where we used Exact-2-RFS within a divide-

and-conquer strategy for large scale phylogenomic species tree estimation where gene trees

differ from the species tree due to Incomplete Lineage Sorting (ILS), and Experiment 2, where

we used Exact-2-RFS as part of a greedy heuristic, GreedyRFS, for large-scale supertree

estimation.

4.1 Experiment 1: Phylogenomic species tree estimation

In this experiment, the input is a set of gene trees that can differ from the species tree

due to Incomplete Lineage Sorting [19], ASTRAL [21, 22, 49] is used to construct species

trees on the two overlapping subsets in the DACTAL pipeline described above, and the

two overlapping estimated species trees are then merged together using either Exact-2-RFS

or FastRFS. Because the divide-and-conquer strategy produces two source trees, the RFS

criterion score for Exact-2-RFS cannot be worse than the score obtained by FastRFS; here

we examine the degree of improvement. The simulation protocol produced datasets with

high variability (especially for small numbers of genes), so that there was substantial range

in the optimal criterion scores for 25 and 100 genes (Fig. 4).

WABI 2020



15:14 Advancing Divide-And-Conquer Phylogeny Estimation

Figure 5 Results for Experiment 2: The percentage of datasets (y-axis) that each method

(FastRFS and GreedyRFS) ties with or is strictly better than the other in terms of RFS criterion

score is shown for varying numbers of source trees (x-axis), based on nine replicate supertree 500-leaf

20% scaffold datasets (from [39]).

On average, Exact-2-RFS produces better RFS scores than FastRFS for all numbers of

genes (Fig. 4), showing that divide-and-conquer pipelines are improved using Exact-2-RFS

compared to FastRFS.

4.2 Experiment 2: Exploring GreedyRFS for supertree estimation

We developed GreedyRFS, a greedy heuristic that takes a profile A as input, and then merges

pairs of trees until all the trees are merged into a single tree. The choice of which pair

to merge follows the technique used in SuperFine [39] for computing the Strict Consensus

Merger, which selects the pair that maximizes the number of shared taxa between the

two trees (other techniques could be used, potentially with better accuracy [15]). Thus,

GreedyRFS is identical to Exact-2-RFS when the profile has only two trees.

We use a subset of the SMIDgen [37] datasets with 500 species and varying numbers of

source trees (each estimated using maximum likelihood heuristics) that have been used to

evaluate supertree methods in several studies [37, 39, 25, 38, 42]. See Appendix (in the full

version of the paper on bioRxiv) for full details of this study.

We explored the impact of changing the number of source trees. The result for two source

trees is predicted by theory (i.e., GreedyRFS is the same as Exact-2-RFS for two source

trees, and so is guaranteed optimal for this case), but even when the number of source trees

was greater than two, GreedyRFS dominated FastRFS in terms of criterion score, provided

that the number of source trees was not too large (Fig. 5).

This establishes that the advantage in criterion score is not limited to the case of two

source trees, suggesting that using Exact-2-RFS within GreedyRFS (or some other heuristics)

may be useful for supertree estimation more generally.

5 Conclusions

The main contribution of this paper is Exact-2-RFS, a polynomial time algorithm for the

Robinson-Foulds Supertree (RFS) of two trees that enables divide-and-conquer pipelines to

be provably statistically consistent under sequence evolution models (e.g., GTR [40] and
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MSC+GTR [31]). Our experimental study showed that Exact-2-RFS dominates the leading

RFS heuristic, FastRFS, when used within divide-and-conquer species tree estimation using

genome-scale datasets, a problem of increasing importance in biology. We also showed that a

greedy heuristic using Exact-2-RFS produced better criterion scores than FastRFS when

the number of source trees was small to moderate, showing the potential for Exact-2-RFS

to be useful in other settings. Overall, our study advances the theoretical understanding of

several important supertree problems and also provides a new method that should improve

scalability of phylogeny estimation methods.

This study suggests several directions for future work. For example, although we showed

that Exact-2-RFS produced better RFS criterion scores than FastRFS when used in divide-

and-conquer species tree estimation (and similarly GreedyRFS was better than FastRFS

for small numbers of source trees in supertree estimation), additional studies are needed

to explore its performance, including additional datasets (both simulated and biological

datasets) and other leading supertree methods. Similarly, other heuristics using Exact-2-RFS

besides GreedyRFS should be developed and studied. Finally, our study explored accuracy

rather than computational aspects; hence, a comparison between methods with respect to

running time would also help inform the choice of method, especially for large datasets, and

should be studied.
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