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—— Abstract

One of the Grand Challenges in Science is the construction of the Tree of Life, an evolutionary
tree containing several million species, spanning all life on earth. However, the construction of the
Tree of Life is enormously computationally challenging, as all the current most accurate methods
are either heuristics for NP-hard optimization problems or Bayesian MCMC methods that sample
from tree space. One of the most promising approaches for improving scalability and accuracy for
phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping subsets,
trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we
present Exact-RFS-2; the first polynomial-time algorithm to find an optimal supertree of two trees,
using the Robinson-Foulds Supertree (RFS) criterion (a major approach in supertree estimation
that is related to maximum likelihood supertrees), and we prove that finding the RFS of three input
trees is NP-hard. We also present GreedyRFS (a greedy heuristic that operates by repeatedly using
Exact-RFS-2 on pairs of trees, until all the trees are merged into a single supertree). We evaluate
Exact-RFS-2 and GreedyRF'S, and show that they have better accuracy than the current leading
heuristic for RFS.
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1 Introduction

Supertree construction (i.e., the combination of a collection of trees, each on a potentially
different subset of the species, into a tree on the full set of species) is a natural algorithmic
problem that has important applications to computational biology; see [7] for a 2004 book
on the subject and [25, 38, 14, 18, 17, 16, 9, 10] for some of the recent papers on this subject.
Supertree methods are particularly important for large-scale phylogeny estimation, where it
can be used as a final step in a divide-and-conquer pipeline [45]: the species set is divided
into two or more overlapping subsets, unrooted leaf-labelled trees are constructed (possibly
recursively) on each subset, and then these subset trees are combined into a tree on the full
dataset, using the selected supertree method. Furthermore, provided that optimal supertrees
are computed, divide-and-conquer pipelines can be provably statistically consistent under
stochastic models of evolution: i.e., as the amount of input data (e.g., sequence lengths when
estimating gene trees, or number of gene trees when estimating species trees) increases, the
probability that the true tree is returned converges to 1 [24, 44].

Unfortunately, the most accurate supertree methods are typically local-search heuristics
for NP-hard optimization problems [4, 29, 25, 38, 33, 27, 34, 16], and are computationally
intensive on large datasets. However, divide-and-conquer strategies, especially recursive ones,
may only need to apply supertree methods to two trees at a time, and hence the computational
complexity of supertree estimation given two trees is of interest. One optimization problem
where optimal supertrees can be found on two trees is the NP-hard Maximum Agreement
Supertree (SMAST) problem (also known as the Agreement Supertree Taxon Removal
problem), which removes a minimum number of leaves so that the reduced trees have
an agreement supertree [17, 14]. Similarly, the Maximum Compatible Supertree (SMCT)
problem, which removes a minimum number of leaves so that the reduced trees have a
compatibility supertree [5, 6], can also be solved in polynomial time on two trees (and note
that SMAST and SMCT are identical when the input trees are fully resolved). Because
SMAST and SMCT remove taxa, methods for these optimization problems are not true
supertree methods, because they do not return a tree on the entire set of taxa. However,
solutions to SMAST and SMCT could potentially be used as constraints for other supertree
methods, where the deleted leaves are added into the computed SMAST or SMCT trees, so
as to optimize the desired criterion.

When restricting to methods that return trees on the full set of taxa, much less seems to
be understood about finding supertrees on two trees. However, if the two input trees are
compatible (i.e., there is a supertree that equals or refines each tree when restricted to the
respective leaf set), then finding that compatibility supertree is solvable in polynomial time,
using (for example) the well known BUILD algorithm [1], but more efficient algorithms exist
(e.g., [6, 3]).

Since compatibility is a strong requirement (rarely seen in biological datasets), optimiza-
tion problems are more relevant. One optimization problem worth discussing is the Maximum
Agreement Supertree Edge Contraction problem (which takes as input a set of rooted trees
and seeks a minimum number of edges to collapse so that an agreement supertree exists).
This problem is NP-hard, but the decision problem can be solved in O((2k)Pkn?) time when
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the input has k trees and p is the allowed number of number of edges to be collapsed [14].
Note that the algorithm for AST-EC proposed by [14] may be exponential even for two trees,
when the number of edges that must be collapsed is Q(n) (e.g., imagine two caterpillar trees,
where one is obtained from the other by moving the left-most leaf to the rightmost position).

In sum, while supertree methods are important and well studied, when restricted to the
major optimization problems that do not remove taxa, polynomial time methods do not
seem to be available, even for the special case where the input contains just two trees. This
restriction has consequences for large-scale phylogeny estimation, as without good supertree
methods, divide-and-conquer pipelines are not guaranteed to be statistically consistent, are
not fast, and do not have good scalability [44].

In this paper we examine the well known Robinson-Foulds Supertree (RFS) problem
[2], which seeks a supertree that minimizes the total Robinson-Foulds [30] distance to
the input trees. Although RFS is NP-hard [20], it has several desirable properties: it is
closely related to maximum likelihood supertrees [36] and, as shown very recently, has good
theoretical performance for species tree estimation in the presence of gene duplication and
loss [23]. Because of its importance, there are several methods for RFS supertrees, including
PluMiST [18], MulRF [8], and FastRFS [42]. A comparison between FastRFS and other
supertree methods (MRL [25], ASTRAL, ASTRID [41], PluMiST, and MulRF) on simulated
and biological supertree datasets showed that FastRFS matched or improved on the other
methods with respect to topological accuracy and RFS criterion scores [42]. Hence, FastRFS
is currently the leading method for the RF'S optimization problem.

The main contributions of this paper are:

We prove that RFS is solvable in O(n?|X|) time for two trees, where n is the number of

leaves and X is the number of shared leaves (Theorem 2) and NP-hard for three or more

trees (Lemma 10).

We present Exact-RFS-2, a polynomial time algorithm for the RFS problem when given

only two source trees, and explore its performance on simulated data, both within a

natural divide-and-conquer pipeline and within a greedy heuristic (Section 3). We show

that Exact-RFS-2 outperforms FastRFS [42] on two trees, the current most accurate
method for RFS, and that GreedyRFS is better than FastRFS for small to moderate

numbers of source trees (Section 4).

We prove that divide-and-conquer pipelines using Exact-RFS-2 are statistically consistent

methods for phylogenetic tree estimation (both gene trees and species trees) under

standard sequence evolution models (Theorem 12).

We establish equivalence between RFS and some other supertree problems (Lemma 1).

We show critical differences between RFS and SMAST/SMCT problems, that establish

that methods for SMAST or SMCT cannot provably be used to constrain the search for

RF'S supertrees (Lemma 23 in Appendix in the full version on bioRxiv).

The remainder of the paper is organized as follows. In Section 2, we provide terminology
and define the optimization problems we consider. We present the Exact-RFS-2 algorithm
and establish theory related to the algorithm in Section 3. Our experimental performance
study is presented in Section 4, and we conclude in Section 5 with a discussion of trends and
future research directions.

2 Terminology and Problem Statements

We let [N] ={1,2,...,N} and A= {T; | i € [N]} denote the input to a supertree problem,
where each T; is a phylogenetic tree on leaf set L(T;) = S; C S (where L(t) denotes the leaf
set of t) and the output is a tree T" where L(T) is the set of all species that appear as a leaf
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in at least one tree in A, which we will assume is all of S. We use the standard supertree
terminology, and refer to the trees in A as “source trees” and the set A as a “profile”. For a
tree T, let V(T') and E(T) denote the set of vertices and edges of T, respectively.

Robinson-Foulds Supertree

Each edge e in a tree T defines a bipartition 7. := [A|B] of the leaf set, and each tree is
defined by the set C(T) := {n. | e € E(T)}. The Robinson-Foulds distance [30] (also called
the bipartition distance) between trees T' and 7" with the same leaf set is RF(T,T") :=
|C(MT\C(T")| + |C(TH\C(T')|. We extend the definition of RF distance to allow for 7" and
T’ to have different leaf sets as follows: RF(T,T') := RF(T|x,T’|x), where X is the shared
leaf set and t|x denotes the homeomorphic subtree of ¢ induced by X. Letting Ts denote
the set of all phylogenetic trees such that L(T) = S and 7Z denote the binary trees in Tg,
then a Robinson-Foulds supertree [2] of a profile A is a binary tree

Trrs = argmin Z RF(T,T;).
TETS ie[N]

We let RF(T', A) := 3, v RF (T, T}) denote the RFS score of T' with respect to profile A.
Thus, the Robinson-Foulds Supertree problem takes as input the profile A and seeks a
Robinson-Foulds (RF) supertree for A, which we denote by RFS(A).

Split Fit Supertree

The Split Fit (SF) Supertree problem was introduced in [46], and is based on optimizing the
number of shared splits (i.e., bipartitions) between the supertree and the source trees. For
two trees T, T” with the same leaf set, the split support is the number of shared bipartitions,
ie., SF(T,T") := |C(T) N C(T")|. For trees with different leaf sets, we restrict them to the
shared leaf set before calculating the split support. The Split Fit supertree for a profile A of
source trees, denoted SFS(A), is a tree Tgrs € T& such that

Tgps = argmax Z SF(T,T;).
TGTSB i€[N]

Thus, the split support score of T' with respect to A is SF(T, A) := >,y SF(T', T;). The
Split Fit Supertree (SFS) problem takes as input the profile A and seeks a Split Fit
supertree (the supertree with the maximum split support score), which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

The relaxed versions of the problems where we do not require the output to be binary

(i.e., we allow T € Tg) are named RELAX-RFS and RELAX-SFS.

We append “-N” to the name to indicate that we assume there are N source trees. If no

number is specified then the number of source trees is unconstrained.

We append “-B” to the name to indicate that the source trees are required to be binary;

hence, we indicate that the source trees are allowed to be non-binary by not appending -B.
Thus, the RFS problem with two binary input trees is RF'S-2-B and the relaxed SFS problem
with three (not necessarily binary) input trees is RELAX-SF'S-3.
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Other notation

For any v € V(T'), we let N (v) denote the set of neighbors of v in T'. A tree T” is a refinement
of T iff T can be obtained from T” by contracting a set of edges. Two bipartitions 71 and
of the same leaf set are said to be compatible if and only if there exists a tree T such that
m; € C(T),i=1,2. A bipartition m = [A|B] restricted to a subset R is 7|gp = [AN R|B N R].
For a graph G and a set F' of vertices or edges, we use G + F to represent the graph obtained
from adding the set F' of vertices or edges to GG, and G — F' is defined for deletions, similarly.

3 Theoretical Results

In this section we establish the main theoretical results, with detailed proofs provided in [47]
or in the Appendix in the full version on bioRxiv [48].

3.1 Solving RFS and SFS on two trees

» Lemma 1. Given an input set A of source trees, a tree T € TSB is an optimal solution for
RFS(A) if and only if it is an optimal solution for SFS(A).

The main result of this paper is Theorem 2 (correctness is proved later within the main
body of the paper, and the running time is established in the Appendix):

» Theorem 2. Let A = {T,To} with S; the leaf set of T; (i = 1,2) and X := S1 N S,.
The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n?|X|) time, where n :=
max{\51|, |SQ‘}

3.1.1 Exact-RFS-2: Polynomial time algorithm for RFS-2-B and
SFS-2-B

The input to Exact-RFS-2 is a pair of binary trees 77 and T5. Let X denote the set of shared
leaves. At a high level, Exact-RFS-2 constructs a tree Ti,;; that has a central node that is
adjacent to every leaf in X and to the root of every “rooted extra subtree” (a term we define
below under “Additional notation”) so that T}, contains all the leaves in S. It then modifies
Tinit by repeatedly refining it to add specific desired bipartitions, to produce an optimal Split
Fit (and optimal Robinson-Foulds) supertree (Figure 3). The bipartitions that are added are
defined by a maximum independent set in a bipartite “weighted incompatibility graph” we
compute.

Additional notation

Let 2% denote the set of all bipartitions of X; any bipartition that splits a single leaf from

the remaining | X| — 1 leaves will be called “trivial” and the others will be called “non-trivial”.

Let C(T1,T2,X) denote C(T1|x) U C(T3]x), and let Triv and NonTriv denote the sets of
trivial and non-trivial bipartitions in C(T4, T, X), respectively. We refer to T;|x,i = 1,2 as
backbone trees (Figure 2). Recall that we suppress degree-two vertices when restricting a
tree T; to a subset X of the leaves; hence, every edge e in T;|x will correspond to an edge or
a path in T (see Fig. 1 for an example). We will let P(e) denote the path associated to edge
e, and let w(e) := |P(e)| (the number of edges in P(e)). Finally, for 7 € C(T;|x), we define
ei(m) to be the edge that induces 7 in T;|x (Fig. 1).

15:5
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Figure 1 T and 75 depicted in (a) and (b) have an overlapping leaf set X = {l1,ls,...,l7}. Each
of a1,...,a6 and b1,...,bs can represent a multi-leaf extra subtree. For e € T1|x as shown, P(e) is
the path from vy to vs4, so w(e) = 3. Using indices to represent the shared leaves, let m = [12|34567];
then e1(m) = e and ea(w) = €'. TR(e) = {a1,a2}, TR(e') = {b2}, so TR*(7) = {a1,a2,b2}. Let
A =1{1,2,3}, B = {4,5,6,7}. Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]}
and BP(B) = {[1234/567], [12345|67], [12346]57]}. TRS(A) = {a1,az,b1,bs} and TRS(B) =
{ag, b4, b5, be}.

(a) Tlx (b) T2|x (c) incompatibility graph

Iy [ [ [ lg Iy ] ] ] I5 e o

20— @ 76
\61 es | es 64/ \65 es | er cs/.

T3 @ @ 77
l1/ \l7 ll/ \17 TI@&—————@Ts

Figure 2 We show (a) T1|x, (b) T2|x, and (c) their incompatibility graph, based on the trees
T1 and T in Figure 1 (without the trivial bipartitions). Each m; is the bipartition induced by e;,
and the weights for 71,...,7ms are 3,4,1,1,2,2,2 3, in that order. We note that w1 and ns are the
same bipartition, but they have different weights as they are induced by different edges; similarly

for w3 and 77. The maximum weight independent set in this graph has all the isolated vertices
(1, s, s, w7) and also 72, s, and so has total weight 15.

The next concept we introduce is the set of extra subtrees, which are rooted subtrees
of T and T5, formed by deleting X and all the edges and vertices on paths between vertices
in X (i.e., we delete T;|x from T;). Each component in T; — T;| x is called an extra subtree
of T;, and note that the extra subtree ¢ is naturally seen as rooted at the unique vertex r(t)
that is adjacent to a vertex in T;|x. Thus, Extra(7;) = {¢ | t is a component in T; — T;|x }.

We can now define the initial tree Ti,;; computed by Exact-RFS-2: Ti,;; has a center
node that is adjacent to every x € X and also to the root r(t) for every extra subtree
t € Extra(T)) UExtra(T5). Note that Tin; has a leaf for every element in S, and that Tint
is a contraction of T;, formed by collapsing all the edges in the backbone tree T;|x.

Si

We say that an extra subtree ¢ is attached to edge e € E(T;|x) if the root of ¢ is adjacent
to an internal node of P(e), and we let TR(e) denote the set of such extra subtrees attached
to edge e. Similarly, if 7 € C(Ty,Ts, X), we let TR*(m) refer to the set of extra subtrees
that attach to edges in a backbone tree that induce 7 in either T7|x or Tz|x. For example,
if both trees Ty and T3 contribute extra subtrees to m, then TR™(7) := ;g5 TR(ei()).

For any @ C X, we let BP;(Q) denote the set of bipartitions in C(T;|x) that have one side
being a strict subset of @, and we let TRS;(Q) denote the set of extra subtrees associated with
these bipartitions. In other words, BP;(Q) := {[A|B] € C(Ti|x) | A € Q or B C @}, and
TRSi(Q) = Urenp, (@) TR(ei(r)). Intuitively, TRS;(Q) denotes the set of extra subtrees in
T; that are “on the side of Q”. By Corollary 14, which appears in the Appendix, for any = =
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Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees (see Figure 3).

Input: two binary trees T4, T with leaf sets S1 and S2 where S1 NSy = X # ()
Output: a binary supertree 7" on leaf set S = S1 U S2 that maximizes the split support score
: compute C(T1|x) and C(T2|x)
: for each m = [A|B] € C(T1,T2,X) do
for i € [2] do
compute TR(es (7)), w(es(m))
compute BP(A), BP(B), TRS(A), TRS(B), and TR* (),
: construct T' as a star tree with leaf set X and center vertex v and with the root of each t €
Extra(77) U Extra(7T2) connected to © by an edge >let Tinit =T
: construct the weighted incompatibility graph G of T1|x and T2|x
: compute the maximum weight independent set I* in G
: let I be the set of bipartitions associated with vertices in I*
: for each m = [{a}|B] € Triv do
detach all extra subtrees in TR*(7) from ¥ and attach them onto (9, a) such that TR(e1(m)) are
attached first with their ordering matching their attachments on e1(7) and TR(e2(n)) are attached
to the right of all subtrees in TR(e1(w)) with the ordering of them also matching their attachments
on ez ()

S Ut W

—
=0 © o1

> let T = T after for loop
12: H(?v) = NonTriv, set sv(mw) = v for all # € NonTriv
13: for each m € NonTrivN I (in any order) do
14: T <+ Refine(T, 7, H, sv) > let T* = T after for loop

15: arbitrarily refine 7" to make it a binary tree
16: return T

[A|B] € C(T;|x), BP;(A) UBP;(B) is the set of bipartitions in C(T;|x) that are compatible
with 7. Finally, let BP(Q) = BP1(Q) U BP2(Q), and TRS(Q) = TRS1(Q) U TRS2(Q).
We give an example for these terms in Figure 1.

The incompatibility graph of a set of trees, each on the same set of leaves, has one vertex
for each bipartition in any tree (and note that bipartitions can appear more than once) and
edges between bipartitions if they are incompatible (see [28]). We compute a weighted
incompatibility graph for the pair of trees Th|x and T|x, in which the weight of the
vertex corresponding to bipartition 7 appearing in tree T;|x is w(e; (7)), as defined previously.
Thus, if a bipartition is common to the two trees, it produces two vertices in the weighted
incompatibility graph, and each vertex has its own weight (Figure 2).

We divide C = C(T1)UC(T3) into two sets: II; = {[A|B] € C | ANX # 0 and BNX # 0},
and IT, = {[A|B] e C | ANX =0 or BNX = (}. Intuitively, II; is the set of bipartitions
from the input trees that are induced by edges in the minimal subtree of T} or T, spanning
X, and IIy are all the other input tree bipartitions. We define p1(+) and po(-) on trees T € Tg
by:

pi(T) =Y |C(T|s) NC(T) NI, pa(T) = Y [C(T]s,) NC(T;) NTy.
i€l2] i€[2]

Note that p1(T) and p2(T) decompose the split support score of T' into the score con-
tributed by bipartitions in II; and the score contributed by bipartitions in Ils; thus, the split
support score of T with respect to Ty, T5 is p1(T) + p2(T).

As we will show, the two scores can be maximized independently and we can use this
observation to refine T, so that it achieves the optimal total score.

Overview of Exact-RFS-2

Exact-RFS-2 (Algorithm 1) has four phases. In the pre-processing phase (lines 1-5), it
computes the weight function w and the mappings TR, TR", BP, and TRS for use in latter
parts of Algorithm 1 and Algorithm 2. In the initial construction phase (line 6), it constructs
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a tree Tinis (as described earlier), and we note that T, maximizes po(-) score (Lemma 3).
In the refinement phase (lines 7-14), it refines Ty so that it attains the maximum p; ()
score. In the last phase (line 15), it arbitrarily refines T' to make it binary. The refinement
phase begins with the construction of a weighted incompatibility graph G of T |x and Ta|x
(see Figure 2). It then finds a maximum weight independent set of G that defines a set
I C C(Ty, Tz, X) of compatible bipartitions of X. Finally, it uses these bipartitions of X in
T to refine Tipi;, to achieve the optimal p;(-) score, by repeatedly applying Algorithm 2 for
each m € I (and we note that the order does not matter). See Figure 3 for an example of
Exact-RFS-2 given two input source trees.

(a) Tinic: star with leaf set X and all (b) T: after adding all Triv to T|x
extra subtrees attached to center

(d) After adding s = [12346|57]

Iy Is Iy la ls bs bg

NN 1
il T

ap az bg az a4 as bg b4 bs b@ ap az bg az a4 as bg ()4 ae
(e) After adding m1 = 75 = [12]34567] (f) After adding m3 = w7 = [1234|567]
I3 ly lg bs bg I3 ly l bs bg

AN R LD N B N 1%
UL ™ U

by ap az p, a3z a4 a5 phs by ag by ap az p, a3z a4 a5 hs by ag

Figure 3 Algorithm 1 working on 77 and 7> from Figure 1 as source trees; the indices of leaves
in X = {ly,la,...,l7} represent the leaves and the notation of 71, ..., ns is from Figure 2. In (a) to
(), the px(-) score of the trees are 14, 16, 20, 23,27, 29, in that order. We explain how the algorithm
obtain the tree in (c) from T by adding 7> = [123|4567] to the backbone of T'. Let A = {l1,l2,13}
and B = {l4, ls,ls, l7}. The center vertex c of T is split into two vertices vq, vy with an edge between
them. Then all neighbors of ¢ between ¢ and A are made adjacent to v, while the neighbors
between ¢ and B are made adjacent to v,. All neighbors of ¢ which are roots of extra subtrees are
moved around such that all extra subtrees in TR*(m2) are attached onto (vq,vs); all extra subtrees
in TRS(A) = {a1,a2,b2} are attached to v, and all extra subtrees in TRS(B) = {b4, bs,bs} are
attached to vy. We note that in this step, bs can attach to either vq or v, because it is not in TRS(A)
or TRS(B). However, when obtaining the tree in (d) from the tree in (c), b3 can only attach to the
left side because for A" = {l1,12,13,14,16}, [124]3567] € BP(A’) and thus b3 € TRS(4').

Algorithm 2 refines the given tree T on leaf set S with bipartitions on X from C(Ty, T, X)\
C(T|x). Given bipartition 7 = [A|B] on X, Algorithm 2 produces a refinement 7" of T such
that C(T"|s,) = C(T|s,) U {n' € C(T;) | n’'|x = «} for both i = 1,2. To do this, we first
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Algorithm 2 Refine.

Input: a tree T on leaf set S, a nontrivial bipartition = = [A|B] of X, two data structures H and sv
Output: a tree T’ which is a refinement of T such that for both i = 1,2, C(T"|s,) = C(T|s,) U{r' €
o) | n'|x =7}

1 v sv(m)

T T+ vg + v + (Va,vp)

: compute Ng := {u € Nr(v) | Ja € A s.t. u can reach a in T — v} and N := {u € Nr(v) | I3 € B
s.t. w can reach b in T — v}.

: for each u € Na U N do

if u € N then connect u to v,

else connect u to vy

: detach all extra subtrees in TR*(7) from v and attach them onto (va,vs) such that TR(e1(w)) are
attached first with their ordering matching their attachments on ei(7) and TR(e2(7)) are attached
to the right of all subtrees in TR (e1(w)) with the ordering of them also matching their attachments
on ea(7)

8: for each t € TRS(A) do

9: if ¢t is attached to v, detach it and attach to vg

10: for each t € TRS(B) do

11: if ¢ is attached to v, detach it and attach to v

12: for each remaining extra subtree attached to v do

13: detach it from v and attach it to either v, or vy

14: H(va) < 0, H(vp) < 0

15: for each ' € H(v) do

16: if 7’ € BP(A) then

—

w N

17: sv(m') = va, H(ve) + H(ve) U {n'}
18: else if 7’ € BP(B) then

19: sv(m') = vp, H(vp) < H(vp) U{r'}
20: else

21: discard 7’

22: return 7/ =T — v

find the unique vertex v such that no component of T'— v has leaves from both A and B.

We create two new vertices v, and v, with an edge between them. We divide the neighbor
set of v into three sets: N4 is the set of neighbors that split v from leaves in A, Ng is the

set of neighbors that split v from leaves in B, and Nytper contains the remaining neighbors.

Then, we make vertices in N4 adjacent to v, and vertices in Np adjacent to v,. We note
that Nogher = @ if X = S and thus there are no extra subtrees. In the case where X # S,
Nother contains the roots of the extra subtrees adjacent to v and we handle them in four
different cases to make 7" include the desired bipartitions:

those vertices that root extra subtrees in TR () are moved onto the edge (vq,vp) (by

subdividing the edge to create new vertices, and then making these vertices adjacent to

the new vertices)

those vertices that root extra subtrees in TRS(A) are made adjacent to v,

those that root extra subtrees in TRS(B) are made adjacent to v,

the remaining vertices can be made adjacent to either v, or v
Algorithms 1 and 2 also use two data structures (functions) H and sv: (1) For a given node
veV(T), H(v) C C(T1,Ts, X) is the set of bipartitions of X that can be added to T'|x by
refining T'|x at v, and (2) Given m € C(T1,T», X), sv(w) = v means 377, a refinement of T
at v, so that C(T"|x) = C(T|x) U {w}.

» Lemma 3. For any tree T € Tg, p2(T) < |Ia|. In particular, let Tiniy be the tree defined
in line 6 of Algorithm 1. Then, pa(Tinit) = |Ta|.

Lemma 3 formally states that the tree Tinis we build in line 6 of Exact-RFS-2 (Algorithm 1)
maximizes the pa(-) score. This lemma is true because there are only |IIz| bipartitions that
can contribute to pa(+) and Tinit contains all of them by construction. We define the function
w* : II = N>q as follows:
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O 1f7T gC(Tl,TQ,X),
w(m) = w(ex () ifme C(T|x)\ C(Talx),
w(ez()) if € C(Tz|x) \ C(T1lx),

Dic wlei(m))  else.
For any set F' of bipartitions, we let w*(F) = > __pw*(7).

» Lemma 4. Let 7 = [A|B] € II. Let T € Tg be any tree with leaf set S such that
7w ¢ C(T|x) but 7 is compatible with C(T|x). Let T' be a refinement of T such that for all
7' e C(T's,)\C(T|s;) for some i € [2], n’'|x = . Then, p1(T") — p1(T) < w*(nm).

» Lemma 5. For any compatible set FF C 11, let T € Tg be any tree with leaf set S such that
C(T|x)=F. Then p1(T) < w*(F).

Lemma 4 shows that w*(7) represents the maximum potential increase in p;(-) as a
result of adding bipartition 7 to T|x. The proof of Lemma 4 follows the idea that for
any bipartition 7 of X, there are at most w*(7) edges in either 77 or T5 whose induced
bipartitions become 7 when restricted to X. Therefore, by only adding 7 to T'|x, at most
w* () more bipartitions get included in C(T|g,) or C(T'|s,) so that they contribute to the
increase of p1(T"). The proof of Lemma 5 uses Lemma 4 repeatedly by adding the compatible
bipartitions to the tree in an arbitrary order.

» Proposition 6. Let T be the tree constructed after line 11 of Algorithm 1, then p; (T) =
w*(Triv).

The proof naturally follows by construction (Line 8 of Algorithm 1), and implies that the
algorithm adds the trivial bipartitions of X (which are all in I) to T'|x so that p;(T') reaches
the full potential of adding those trivial bipartitions.

» Lemma 7. Let T be a supertree computed within Algorithm 1 at line 14 immediately before
a refinement step. Let m = [A|B] € NonTrivNI. Let T' be a refinement of T obtained from
running Algorithm 2 with supertree T, bipartition 7, and the auxiliary data structures H and
sv. Then, p1(T") — p1(T) = w*(m).

The idea for the proof of Lemma 7 is that for any non-trivial bipartition = € I of X to
be added to T'|x, Algorithm 2 is able to split the vertex correctly and move extra subtrees
around in a way such that each bipartition in T} or T, that is induced by an edge in P(e1 (7))
or P(eg(m)), which is not in T'|s, or T|g, before the refinement, becomes present in T'|g, or
T|s, after the refinement. Since there are exactly w* () such bipartitions, they increase p; ()

by w* ().

» Proposition 8. Let G be the weighted incompatibility graph on Ti|x and Ts|x, and let I be
the set of bipartitions associated with vertices in I*, which is a maximum weight independent
set of G. Let F be any compatible subset of C(Ty,Ts, X). Then w*(I) > w*(F).

We now restate and prove Theorem 2:

» Theorem 2. Let A = {T1,T2} with S; the leaf set of T; (i = 1,2) and X := S; N Ss.
The problems RFS-2-B(A) and SFS-2-B(A) can be solved in O(n?|X|) time, where n :=
max{|S1], [Sa}.
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Proof. First we claim that p;(T™*) > p1(T) for any tree T' € Tg, where T™ is defined as from
line 14 of Algorithm 1. Fix arbitrary T' € Tg and let F = C(T'|x). Then by Lemma 5, p1(T") <
w*(F). We know that w*(m) = 0 for any 7 ¢ C(T1,Ts, X), so w*(F) = w*(FNC(Ty, Tz, X))
and thus pi(T) < w*(F N C(Ty, T2, X)). Since F N C(Ty, T2, X) is a compatible subset of
C(T1, T3, X), we have w*(F N C(Ty, T, X)) < w*(I) by Proposition 8. Then p;(T) < w*(I).
Since Triv C C(T1|x) N C(Tz|x) C I, we have I = (NonTriv N I) U (TrivNI) = (NonTriv N
I) U Triv. Therefore, by Proposition 6 and Lemma 7, we have

p1(T*) = pi(T) + Z w*(m) = w*(Triv) + w*(NonTriv N I) = w*(I).

mw&€NonTrivnI
Therefore, p1 (T*) = w*(I) > p1(T).

From Lemma 3 and the fact that a refinement of a tree never decreases p1(-) and pa(-),
we also know that po(T™*) > po(Tinit) > p2(T) for any tree T € Tg. Since for any T € Tg,
SF(T, A) = p1(T) + p2(T), T* achieves the maximum split support score with respect to A
among all trees in Tg. Thus, T* is a solution to RELAX-SFS-2-B (Corollary 9). If T* is not
binary, Algorithm 1 arbitrarily resolves every high degree node in 7 until it is a binary tree
and then returns a tree that achieves the maximum split support score among all binary
trees of leaf set S. See the Appendix for the running time analysis. <

» Corollary 9. Let A = {T1,T>} with S; the leaf set of T; (i = 1,2) and X := S1 N Ss.
RELAX-SFS-2-B can be solved in O(n?|X|) time, where n := max{|Sy|,|S2|}.
» Lemma 10. RFS-3, SFS-3, and RELAX-SFS-3 are all NP-hard.

The proof for this lemma can be found in the Appendix.

3.2 DACTAL-Exact-RFS-2

Let @ be a model of evolution (e.g., GTR) for which statistically consistent methods exist,
and we have some data (e.g., sequences) generated by the model and wish to construct a
tree. We construct an initial estimate of the tree, and we select an edge e in the tree. The
deletion of e and its endpoints creates four subtrees, and we let P be the set of the p nearest

leaves to e taken from each subtree (including all leaves that tie for closest in each subtree).

We define the subsets be AU P and B U P, where 7. = [A|B]), and we re-estimate trees
on these subsets and then combine the trees together using Exact-RFS-2. We call this the
DACTAL-Exact-RFS-2 pipeline, due to its similarity to the DACTAL pipeline [24]. The
DACTAL pipeline differs from the DACTAL-Exact-RFS-2 pipeline only in that it computes
four trees (each containing the set P and otherwise being leaf-disjoint) and then combines
the overlapping subset trees using the Strict Consensus Merger technique, and was proven
statistically consistent when the subset trees are computed using statistically consistent
methods.

Before we prove that DACTAL-Exact-RFS-2 can enable statistically consistent pipelines,
we begin with some definitions. Given a tree T and an internal edge e in T, the deletion
of the edge e and its endpoints defines four subtrees. A short quartet around e is a set
of four leaves, one from each subtree, selected to be closest to the edge. Note that due to
ties, there can be multiple short quartets around some edges. The set of short quartets for
a tree T is the set of all short quartets around the edges of T. The short quartet trees
of T is the set of quartet trees on short quartets induced by T'. It is well known that the
short quartet trees of a tree T define T', and furthermore 7" can be computed from this set in
polynomial time [11, 12, 13].
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» Lemma 11. Let T be a binary tree on leaf set S and let A,B C S. Let Ty = T|a and
T = T|p (i-e., Ta and Tg are induced subtrees). If every short quartet tree is induced

in Ta orin Ty, then T is the unique compatibility supertree for Ta and Tp and Ezact-2-
RFES(Ts,Tp)=T.

Proof. Because T4 and T are induced subtrees of T, it follows that T is a compatibility
supertree for T4 and Tg. Furthermore, because every short quartet tree appears in at least
one of these trees, T is the unique compatibility supertree for T4 and Tp (by results from
[12, 13], mentioned above). Finally, because T is a compatibility supertree, the RFS score of
T with respect to T4, T is 0, which is the best possible. Since Exact-2-RF'S solves the RFS
problem on two binary trees, Exact-2-RFS returns T given input 74 and Tz. |

Thus, Exact-2-RFS is guaranteed to return the true tree when given two correct trees that
have sufficient overlap (in that all short quartets are included). We continue with proving
that these pipelines are statistically consistent.

» Theorem 12. The DACTAL-FEzact-RFS-2 pipeline is a statistically consistent method for
estimating the unrooted tree topology under any model ® for which statistically consistent
unrooted tree topology estimation methods exist.

Proof. The proof is very similar to the proof given for the original DACTAL pipeline in
[24]. Let ® be the stochastic evolution model. To establish statistical consistency of the
DACTAL-Exact-RFS-2 pipeline (see above), we need to prove that as the amount of data
increases the unrooted tree topology that is returned by the pipeline converge to the true
unrooted tree topology. That is, we will show that for any € > 0, there is an amount of data
so that the probability of returning the true tree topology given that amount of data is at
least 1 — e. Hence, let I’ be the method used to compute the starting tree, let G be the
method used to compute the subset trees, and let € > 0 be given. Because F' is statistically
consistent under @, it follows that there is an amount of data so that the starting tree
computed by F will have the true tree topology T with probability at least 1 — €/2. Now
consider the decomposition into two sets produced by the algorithm produced by deleting
edge e, applied to a tree with the true unrooted tree topology. Note that for any p > 1, all the
leaves appearing in any short quartet around e are placed in the set P. Now, subset trees are
computed using G on AU P and B U P, where 7, = [A|B], which we will refer to as T4 and
T, respectively. Since G is statistically consistent, for a large enough amount of data, T4
and T will have the true tree topology on their leaf sets (T'|1(p,) and T'|1(r,), respectively)
with probability at least 1 — e/2. When T4 and Tz are equal to the true trees on their leaf
sets, then every short quartet tree of T is in T4 or T, so that by Lemma 11, T is the only
compatibility supertree for T4 and Tp. Thus, under these conditions, Exact-2-RFS(T4, Tg)
returns 7. Hence, for a large enough amount of data, Exact-2-RFS(T'4, Tg) returns T with
probability at least 1 — e, completing our proof. |

Hence, DACTAL+Exact-2-RFS is statistically consistent under all standard molecular
sequence evolution models and also under the MSC+GTR model [43, 31] where gene trees
evolve within species trees under the multi-species coalescent model (which addresses gene
tree discordance due to incomplete lineage sorting [19]) and then sequences evolve down each
gene tree under the GTR model.

Note that all that is needed for F' and G to guarantee that the pipeline is statistically
consistent is that they should be statistically consistent under ®. However, for the sake of
improving empirical performance, F' should be fast so that it can run on the full dataset but
G can be more freely chosen, since it will only be run on smaller datasets. Indeed, the user
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Figure 4 Results for Experiment 1: Exact-2-RF'S has better RFS criterion scores than FastRFS
(lower is better) in ILS-based species tree estimation (using ASTRAL-III [49], for 501 species with
varying numbers of genes).

can specify the size of the subsets that are analyzed, with smaller datasets enabling the use
of more computationally intensive methods.

For example, when estimating trees under the GTR [40] model, F' could be a fast but
statistically consistent distance-based method such as neighbor joining [32] and G could be
RAxML [35], a leading maximum likelihood method. For the MSC+GTR model, F and G
could be polynomial time summary methods (i.e., methods that estimate the species tree by
combining gene trees), with F' being ASTRID [41] (a very fast summary method) and G
being ASTRAL [21, 22, 49], which is slower than ASTRID but often more accurate. However,
if the subsets are chosen to be very small, then other choices for G include StarBeast2 [26], a
Bayesian method for co-estimating gene trees and species trees under the MSC+GTR model.

4 Experiments and Results

We performed two experiments: Experiment 1, where we used Exact-2-RFS within a divide-
and-conquer strategy for large scale phylogenomic species tree estimation where gene trees
differ from the species tree due to Incomplete Lineage Sorting (ILS), and Experiment 2, where
we used Exact-2-RFS as part of a greedy heuristic, GreedyRFS, for large-scale supertree
estimation.

4.1 Experiment 1: Phylogenomic species tree estimation

In this experiment, the input is a set of gene trees that can differ from the species tree
due to Incomplete Lineage Sorting [19], ASTRAL [21, 22, 49] is used to construct species
trees on the two overlapping subsets in the DACTAL pipeline described above, and the
two overlapping estimated species trees are then merged together using either Exact-2-RFS
or FastRFS. Because the divide-and-conquer strategy produces two source trees, the RFS
criterion score for Exact-2-RFS cannot be worse than the score obtained by FastRFS; here
we examine the degree of improvement. The simulation protocol produced datasets with
high variability (especially for small numbers of genes), so that there was substantial range
in the optimal criterion scores for 25 and 100 genes (Fig. 4).
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Figure 5 Results for Experiment 2: The percentage of datasets (y-axis) that each method
(FastRFS and GreedyRFS) ties with or is strictly better than the other in terms of RFS criterion
score is shown for varying numbers of source trees (z-axis), based on nine replicate supertree 500-leaf
20% scaffold datasets (from [39]).

On average, Exact-2-RFS produces better RFS scores than FastRFS for all numbers of
genes (Fig. 4), showing that divide-and-conquer pipelines are improved using Exact-2-RFS
compared to FastRFS.

4.2 Experiment 2: Exploring GreedyRFS for supertree estimation

We developed GreedyRF'S, a greedy heuristic that takes a profile A as input, and then merges
pairs of trees until all the trees are merged into a single tree. The choice of which pair
to merge follows the technique used in SuperFine [39] for computing the Strict Consensus
Merger, which selects the pair that maximizes the number of shared taxa between the
two trees (other techniques could be used, potentially with better accuracy [15]). Thus,
GreedyRF'S is identical to Exact-2-RFS when the profile has only two trees.

We use a subset of the SMIDgen [37] datasets with 500 species and varying numbers of
source trees (each estimated using maximum likelihood heuristics) that have been used to
evaluate supertree methods in several studies [37, 39, 25, 38, 42]. See Appendix (in the full
version of the paper on bioRxiv) for full details of this study.

We explored the impact of changing the number of source trees. The result for two source
trees is predicted by theory (i.e., GreedyRFS is the same as Exact-2-RFS for two source
trees, and so is guaranteed optimal for this case), but even when the number of source trees
was greater than two, GreedyRFS dominated FastRFS in terms of criterion score, provided
that the number of source trees was not too large (Fig. 5).

This establishes that the advantage in criterion score is not limited to the case of two
source trees, suggesting that using Exact-2-RFS within GreedyRFS (or some other heuristics)
may be useful for supertree estimation more generally.

5 Conclusions

The main contribution of this paper is Exact-2-RFS, a polynomial time algorithm for the
Robinson-Foulds Supertree (RFS) of two trees that enables divide-and-conquer pipelines to
be provably statistically consistent under sequence evolution models (e.g., GTR [40] and
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MSC+GTR [31]). Our experimental study showed that Exact-2-RFS dominates the leading
RFS heuristic, FastRF'S, when used within divide-and-conquer species tree estimation using
genome-scale datasets, a problem of increasing importance in biology. We also showed that a
greedy heuristic using Exact-2-RFS produced better criterion scores than FastRFS when
the number of source trees was small to moderate, showing the potential for Exact-2-RFS
to be useful in other settings. Overall, our study advances the theoretical understanding of
several important supertree problems and also provides a new method that should improve
scalability of phylogeny estimation methods.

This study suggests several directions for future work. For example, although we showed
that Exact-2-RF'S produced better RFS criterion scores than FastRFS when used in divide-
and-conquer species tree estimation (and similarly GreedyRFS was better than FastRFS
for small numbers of source trees in supertree estimation), additional studies are needed
to explore its performance, including additional datasets (both simulated and biological
datasets) and other leading supertree methods. Similarly, other heuristics using Exact-2-RFS
besides GreedyRF'S should be developed and studied. Finally, our study explored accuracy
rather than computational aspects; hence, a comparison between methods with respect to
running time would also help inform the choice of method, especially for large datasets, and
should be studied.
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