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Building DNA barcode databases for plants has historically been ad hoc, and often with

a relatively narrow taxonomic focus. To realize the full potential of DNA barcoding for

plants, and particularly its application to metabarcoding for mixed-species environmental

samples, systematic sequencing of reference collections is required using an augmented

set of DNA barcode loci, applied according to agreed data generation and analysis

standards. The largest and most complete reference collections of plants are held in

herbaria. Australia has a globally significant flora that is well sampled and expertly curated

by its herbaria, coordinated through the Council of Heads of Australasian Herbaria. There

exists a tremendous opportunity to provide a comprehensive and taxonomically robust

reference database for plant DNA barcoding applications by undertaking coordinated

and systematic sequencing of the entire flora of Australia utilizing existing herbarium

material. In this paper, we review the development of DNA barcoding and metabarcoding

and consider the requirements for a robust and comprehensive system. We analyzed

the current availability of DNA barcode reference data for Australian plants, recommend

priority taxa for database inclusion, and highlight future applications of a comprehensive

metabarcoding system. We urge that large-scale and coordinated analysis of herbarium

collections be undertaken to realize the promise of DNA barcoding and metabarcoding,

and propose that the generation and curation of reference data should become a national

investment priority.
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INTRODUCTION

The concept of utilizing DNA for large-scale identification
purposes was first seriously proposed by Hebert et al. (2003),
who considered DNA barcoding (hereafter “barcoding”) to be
the only serious option for widespread taxonomic identification
and description in the face of collapsing taxonomic expertise
and the dramatic rate of biodiversity loss. Since then, barcoding
has been a growing area of research (Figure 1) with over 6,000
papers published at the time of writing. In the years that
followed Herbert et al.’s seminal paper, vigorous debate in the
literature continued regarding the potential role of barcoding
and its relationship with taxonomy. Serious concerns were raised
that barcoding could be touted as a replacement for traditional
taxonomic research, resulting in further erosion of funding
and recognition of the intrinsic value of biological reference
collections, their curation, and the taxonomic foundational
nature of the studies upon which most other biological sciences
are built (Ebach and Holdrege, 2005a,b; Gregory, 2005; Hebert
and Gregory, 2005; Schindel and Miller, 2005; Will et al.,
2005; de Carvalho et al., 2007; Miller, 2007). There has been
greater recognition recently of the need for barcoding initiatives
to be built on strong and dynamic taxonomic foundations
in order to provide reliable identification capabilities (Collins
and Cruickshank, 2013; Pečnikar and Buzan, 2014). Museums
and herbaria are well placed to lead the development of such
high quality barcoding reference libraries, utilizing the curated
specimens they house (Puillandre et al., 2012). Indeed, the
prevailing modern view amongst herbaria is that twentyfirst
century collections institutions should be leading participants
and collaborators in “big” data initiatives (Funk, 2018).

DNA metabarcoding (hereafter “metabarcoding”) is a special
case of barcoding applied to samples that contain more
than one organism. Metabarcoding utilizes the same reference
databases as barcoding, but allows identification of taxa from
mixed samples by using high throughput sequencing methods
(Taberlet et al., 2012; Cristescu, 2014). Metabarcoding is an
emerging area of research with over 600 papers at the time of
writing (Figure 1). The potential of metabarcoding applications
is expansive, with the prospect of rapidly determining the
species composition of virtually any sample. From environmental
monitoring (Kimmerling et al., 2018; Yan et al., 2018) to diet
analysis (Xiong et al., 2017; Buglione et al., 2018; Robeson et al.,
2018), enhanced biosecurity capabilities (Borrell et al., 2017) and
detection of illegal trade (Arulandhu et al., 2017; de Boer et al.,
2017), metabarcoding could provide cost-effective and reliable
identification for a wide range of regulatory, conservation and
commercial purposes. However, the practical applications of both
barcoding andmetabarcoding are often hampered by the absence
of quality reference databases on which to base identifications.

Of all the taxonomic groups to which barcoding and
metabarcodingmethods are applied, identification of plants is the
most common (Figure 1). Identification of aquatic organisms is
also well represented in the literature, although the taxonomic
breath of this group is obviously large and potentially overlapping
with other groups. Identification of insects, fungi, and mammals
are all less well represented with fewer than half the number

FIGURE 1 | Publication trends in DNA barcoding and metabarcoding from ISI

Web of Science. (A) Number of publications per year for DNA barcoding (gray)

and DNA metabarcoding (black). (B) Number of DNA barcoding (gray) and

metabarcoding (black) publications for different groups of

organisms. Database searches undertaken 6th June 2018. See

Supplementary Data for exact search terms used.

of papers compared to those that address plants or aquatic
organisms (Figure 1). Despite this appetite for genetic plant
identification, systematic development of barcoding reference
databases that comprise whole (or majority) flora of particular
regions are sparse (but see de Vere et al., 2012; Saarela et al.,
2013; Kuzmina et al., 2017). Instead, most studies develop partial
reference databases and/or utilize genetic repositories such as
GenBank to augment their resources which then requires post
hoc data quality control (Leontidou et al., 2018; e.g., Kumar
et al., 2018). The responsibility for accurate initial specimen
identification and sequence data quality lies solely with the data
generator for standard submissions to GenBank and there is
often very little information upon which veracity can be assessed
(e.g., voucher specimen meta-data, raw sequencing data files).
Reliance on data that has not been derived from well curated and
vouchered specimens poses risks of misidentification, an issue
that is well recognized for GenBank data (Crocetta et al., 2015;
Smith et al., 2016; Balakirev et al., 2017). A recent study of fish
barcode sequences found evidence for potential errors in∼4% of
sequences (Li et al., 2018). Other data repositories, such as the
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Barcode of Life Data system (BOLD) (Ratnasingham and Hebert,
2007), address this issue through the requirement for more
complete meta-data and appropriately vouchered specimens
before sequence data can be accepted. However, due to these
stricter requirements, the number of species included in BOLD
is far fewer than that represented in other repositories with
less rigorous requirements. Recent estimates suggest that BOLD
currently contains some barcoding information for ∼20% of
described land plants and, at the current rate of addition, it will
take >64 years for the database to be complete (Wilkinson et al.,
2017) without consideration of undescribed species.

The flora of Australia contains over 23,000 formally
recognized species and is characterized by several biodiversity
hotspots and high species and genus level endemism (Crisp
et al., 1999; Costion et al., 2015; Keith and Tozer, 2017). It is
well sampled and expertly curated across the nation’s herbaria,
coordinated through the Council of Heads of Australasian
Herbaria (CHAH). To date, most DNA barcoding publications
in Australia deal with a specific taxon of interest, e.g., Acacia
(Nevill et al., 2013), Poaceae (Birch et al., 2017), with very
few systematically approaching the task for specific regions in
conjunction with herbaria (but see Costion et al., 2011; Shapcott
et al., 2015, 2017; Howard et al., 2016). We posit that there now
exists a tremendous opportunity to augment existing barcoding
initiatives in Australia and undertake coordinated and systematic
sequencing of the entire flora, harnessing the vast collections
of herbarium specimens (including vouchered tissues in silica
ready for DNA extraction) to provide a comprehensive and
taxonomically robust reference database for plant barcoding and
metabarcoding applications.

In the remainder of this paper, we consider the technical
advances that now make large-scale herbarium sampling
the most cost-effective approach for database development
and identify priorities for additional specimen and sequence
collection to improve the taxonomic coverage and local
completeness of reference databases. We also highlight future
applications of a comprehensive barcoding and metabarcoding
system for Australian plants.

APPROACHES FOR BARCODING AND
METABARCODING IN PLANTS

The issue of appropriate barcoding loci is a particular challenge
for plants, where the mitochondrial cytochrome c oxidase 1
(CO1) locus used almost ubiquitously in animals with great
success (but see Deagle et al., 2014), fails to provide useful
resolution due to the generally slow rate of mitochondrial
evolution in plants (Chase et al., 2007; Erickson et al., 2008).
The challenge is threefold: (1) Selection of (an) appropriately
variable marker(s) to allow a standardized barcoding approach
that provide(s) sufficient resolution to distinguish species; (2)
Selection of an appropriately short and variable marker to allow
a standardized metabarcoding approach; and (3) Development
of protocols for barcoding reference database building that are
robust to advances in 1 and 2 above. Here we consider each of
these challenges in turn.

Barcoding Approaches
A selection of standard barcoding loci for plants was made in
2009 by the Consortium for the Barcode of Life (CBOL) Plant
Working Group which recommended that rbcL andmatK be the
loci of choice, plus other plastid or DNA markers as required.
The decision was made with recognition that these two loci can
only distinguish ∼70% of species and represent a trade off in
terms of universality, sequence quality, discriminatory power and
cost of application (CBOL Plant Working Group, 2009). While
rbcL and matK remain the standard, a number of other loci are
now also routinely used in plant barcoding studies in order to
improve resolution in the specific taxon of interest (Kress and
Erickson, 2007; Fazekas et al., 2008; Vijayan and Tsou, 2010;
Hollingsworth et al., 2011; Li et al., 2015), ITS is recommended
as a third core locus for seed plants (China Plant Bol Group
et al., 2011) and psbA-trnH is themost commonly used additional
locus (Kress and Erickson, 2012). A number of cpDNA loci
have been found to be variable within species in Australia
(Byrne and Hankinson, 2012) and elsewhere (Dong et al., 2012;
Shaw et al., 2014). These loci have also proved valuable in
assessment of relationships at lower taxonomic levels and have
been used to distinguish closely related species and intraspecific
taxa (Shepherd et al., 2013; Anderson et al., 2016). Ultimately,
as sequencing technology continues to advance, larger and more
numerous genomic regions can be applied to barcoding to
improve specimen identification capabilities for specific purposes
(e.g., Tonti-Filippini et al., 2017). In particular, developments
that facilitate the discovery and application of more informative
nuclear loci will have a greater role to play, due to the limits
of species resolution within the plastid genomes that currently
dominate barcoding and metabarcoding loci thanks mainly to
their relative abundance in specimen tissues (Hollingsworth
et al., 2016).

Metabarcoding Approaches
Metabarcoding relies on determining unique taxa from mixed
samples and so presents some specific requirements in terms
of locus selection. To be truly universal, metabarcoding would
require the inclusion of multiple loci, each optimized to capture
species-level resolution in different taxa (e.g., CO1 for fauna,
matK/rbcL for plants, ITS for fungi). However, whereas multiple
loci sequence data can be combined for analysis of individual
specimens in barcoding to improve taxonomic resolution (e.g.,
Li et al., 2017), the single bulk sample used in metabarcoding
prohibits such treatment. Instead where multiple loci are utilized
in metabarcoding, their results must be analyzed independently
then combined to produce a list of likely taxa in the sample
(Arulandhu et al., 2017). Further, variation in primer binding
sites around metabarcoding loci often require the inclusion of
multiple primer sets that are optimized to amplify various taxa,
andmismatching of primer binding sites within a sample can lead
to species detection failure (e.g., Miya et al., 2015).

Locus selection must also be mindful of the quality of DNA
likely to be recovered from a sample. In samples where target
organisms are likely to be alive, such as the microorganisms
in soil, good quality DNA can be anticipated and hence longer
loci employed. However, where remnants of organisms are the
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likely DNA source (such as trace plant or animal material in the
environment), DNA is likely to be degraded and hence present
challenges to the successful amplification of long loci. There are
additional restrictions from the sequencing platform maximum
read length, which is typically shorter than some of the longer
barcoding loci (e.g., matK) meaning only partial sequences can
be obtained. Therefore, short but highly informative loci are
optimal for metabarcoding applications, with due consideration
given to universality of priming sites within the target taxa
(Coissac et al., 2012). Similarly to barcoding, the options for
genomic regions to be applied to metabarcoding will expand as
sequencing capabilities expand (Porter and Hajibabaei, 2018).
There have been a number of modifications of the standard
barcoding loci which target shorter, taxonomically informative
parts of the sequence in metabarcoding studies especially when
using degraded DNA (e.g., García-Robledo et al., 2013; de Vere
et al., 2017; Erickson et al., 2017).

Metabarcoding of mixed samples has the potential for
additional information to be derived from analyses, namely the
quantification of DNA contributors as a proxy for abundance.
However, while there can be a correlation between the
proportions of sequencing reads and species in a mixture
(Kraaijeveld et al., 2015; Evans et al., 2016) this is generally
weak and not a reliable indicator of mixture proportions
(Smart et al., 2017). There are multiple biases that can impact
quantification accuracy; some specific to the loci being used
(e.g., copy number in the genome, Angly et al., 2014; primer
mismatches, Elbrecht and Leese, 2015; Piñol et al., 2015; Deiner
et al., 2017) and some independent of loci choice (e.g., DNA
isolation methods, Brooks et al., 2015; polymerase sequence
affinity, Nichols et al., 2018; sampling approaches, Deiner et al.,
2017). Various methods have been proposed to control for
these biases to better facilitate accurate quantification of relative
abundance from metabarcoding data, including the utilization of
degenerate primers (Krehenwinkel et al., 2017a,b), incorporation
of gene copy number information (Kembel et al., 2012) and the
inclusion of control species to generate relative correction factors
(Thomas et al., 2016). We anticipate that methods for more
accurate abundance quantification through metabarcoding will
be available in the coming years through further expansion of
metabarcoding loci, improved understanding of biases, and the
use of PCR-free sequencing approaches (Liu et al., 2016).

Requirements for Database Building
Given the variety of loci that have been targeted in barcoding
and metabarcoding studies, along with the future capacity for
further expansion in the breadth of genomic regions used,
there is pressure for database-building approaches to maximize
their future utility. Most of the effort in reliable database
formation is in the collection and curation of taxonomically
robust reference specimens, and their sampling for DNA analysis.
Sequencing costs, although by no means trivial, are a minor
component by comparison. Hence, there is great value in
ensuring that the process of collection and sampling does
not have to be repeated each time a new locus is optimized
for barcoding or metabarcoding purposes. Both silica-dried
DNA vouchers (Gaudeul and Rouhan, 2013) and extracted

DNA banks (Hodkinson et al., 2007) are expected to become
increasingly valued for this reason, thus having central locations
for curation and storage of these resources is likely to facilitate
more efficient database-building. There are well documented
protocols available for how to create and curate DNA barcode
reference libraries (Kress and Erickson, 2012). Future databases
will ideally seek to employ sequencing methods that provide
the most information (whilst maintaining cost efficiency and
practicality), such as various whole-genome sequencing and
target-enrichment approaches (Hollingsworth et al., 2016; Tonti-
Filippini et al., 2017; Porter and Hajibabaei, 2018).

HERBARIA AS THE NATURAL HOME FOR
PLANT DNA DATABASES

We suggest that large-scale plant-barcoding reference-database
building is highly relevant to the core business of all herbaria,
due to their unique positioning as repositories of the world’s
flora. A recent review by a leading collections institution botanist
states; “Collections are a gold mine of both information and
tissue samples and more advances are on the way” (Funk,
2018). Effective plant barcoding and metabarcoding applications
require the following with respect to reference databases: (1)
Inclusion of multiple individuals from a broad suite of taxa to
encompass a high proportion (if not all) of the possible species
and to capture intraspecific diversity; (2) Accurate taxonomic
identification of the included reference specimens; (3) Curation
of reference specimens to retain as a resource for further study;
(4) Availability of suitable material for destructive sampling for
DNA extraction; (5) Extraction of DNA for sequencing and
archiving; (6) Sequencing of a broad range of genomic regions
according to standard protocols; (7) Data analysis according
to standard protocols and meta-data sharing nomenclature; (8)
Data archiving according to standard protocols; (9) Data fit for
purpose, including ongoing data curation, and easily available for
broad utility. We consider that points 1–4, which deal with the
collection and curation of voucher material, are already fulfilled
by herbaria. Point 5 considers the extraction and storage of
DNA, which is also currently undertaken by many herbaria or
in conjunction with research partners. Points 6–9, are concerned
with data generation, analysis, storage and availability, which we
contend should be further developed through consensus as part
of large-scale and coordinated analyses of herbarium collections
in conjunction with participating research organizations such as
universities.

Collection and Curation of Physical
Samples
Herbaria exist primarily to collect and help preserve the world’s
flora and interpret taxonomic relationships (point 1), but
herbarium data also has a wide breadth of other important
applications (Heberling and Isaac, 2017; James et al., 2018). It can
be argued that no identification can be guaranteed to be 100%
accurate (point 2) but that is the purpose of ongoing curation
(point 3), to facilitate corrections and updates to taxonomic
designations of specimens (Funk et al., 2005) and provide the
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means to avoid or correct the “error cascades” that can result
from misidentification of reference materials (Bortolus, 2008).

One of the major reasons that herbaria have not historically
been the automatic go-to place for barcoding reference specimens
is the availability of material suitable for DNA extraction. The
issue is twofold; firstly, herbaria are understandably reluctant to
allow extensive destructive sampling of their often irreplaceable
and finite resources (although it is usually permitted under
controlled conditions, except in some special circumstances such
as with type specimens or where destructive sampling would
damage the future utility of the specimen); secondly, the methods
of collection and preservation (plus the length of time since
collection) of herbarium specimens generally leaves the DNA that
can be extracted in various stages of degradation. Degraded DNA
is usually difficult to barcode due to short fragment lengths, an
issue of greatest concern with the longer DNA barcodes.

Several advances have now been made to largely overcome
the above concerns. Firstly, it is now common practice for
herbaria to include material suitable for DNA extraction in
their field collection protocols; leaf or other suitable tissue
can now be routinely used for DNA extraction without
compromising the integrity of voucher specimens (Gaudeul
and Rouhan, 2013; Funk et al., 2017). These tissues are also
stored in a way that preserves the tissue for high quality DNA
extraction, usually rapidly desiccated and stored on silica gel
(point 4). In other special cases, extraction methods have been
developed that avoid destructive sampling (Shepherd, 2017).
Further, advances in sequencing approaches have reduced the
requirements for long unfragmented sections of high molecular
weight DNA (Hart et al., 2016; Hollingsworth et al., 2016)
making herbarium material progressively more suitable for
DNA extraction. However, some preservation methods used for
herbarium specimens (particularly in the tropics where humidity
often prevents efficient and continual desiccation) have a negative
impact on plant DNA quality, such as the use of ethanol
and formalin (Staats et al., 2011). These issues make historic
collections preserved in this way more unsuitable for DNA
extractions. Despite improvements in extraction and sequencing
of DNA from herbarium specimens, there remain issues with
potential sequence modification and sequencing errors that need
to be understood and accounted for in downstream analyses
(Staats et al., 2011; Weiß et al., 2016). Archiving of silica-dried
leaf material for DNA extraction, as well as extracted DNA
samples, are also increasingly routine procedures in herbaria and
associated research organizations where appropriate long-term
storage facilities are available (Seberg et al., 2016) (points 4 and 5).

Generation and Curation of Data
There is no global consensus on the best technical methods for
generating and analyzing plant sequence data for building large-
scale barcoding reference databases. Advances in technology will
continue to reduce sequencing costs and increase the sequence
coverage, hence adopting a single rigid sequencing approach
is probably unwise. There is an opportunity for consortia
of herbaria and other research institutions to develop and
implement local standard protocols for sequencing and data

analysis in the pursuit of complete regional flora databases (e.g.,
Kress and Erickson, 2012; Kuzmina et al., 2017) (points 6 and 7).

Appropriate archiving and publication to allow broad re-
use of the data are important for effective plant DNA barcode
databases (Wilkinson et al., 2016) (points 8 and 9). Currently,
archiving of molecular data is routinely undertaken by partners
of the International Nucleotide Sequence Database Collaboration
(INSDC) (Karsch-Mizrachi et al., 2018), which have a variety
of database products suitable for different data types. BOLD
also accepts barcoding reference data and integrates with
GenBank, with a particular identifier included to indicate that the
sequence data meets the stricter barcode criteria with respect to
reference specimen taxonomy and curation. With barcode data
retrieved from existing herbarium collections, there is also the
opportunity to link to the great wealth of information already
collected and made available on specimens through national
data portals such as the Australasian Virtual Herbarium (AVH;
avh.chah.org.au), the Atlas of Living Australia (ALA; ala.org.au),
and Canadensys (canadensys.net). Other international networks
include the Global Genome Biodiversity Network (GGBN;
ggbn.org) and the Global Biodiversity Information Facility (GBIF;
gbif.org). The challenge lies in developing synergies between
these offerings to ensure that data links remain dynamic and
updates to taxonomy propagate throughout the system. DNA
sequence data also requires curation, not just the specimens
themselves. The release of the GGBNData Standard specification
(Droege et al., 2016) goes some way to supporting that
end. In 2017, the GGBN conducted a public consultation
on their proposed set of augmented terms dedicated to high
throughput sequence library preparation, the results of which
are yet to be released at the time of writing. International
data standards for biodiversity information are developed and
maintained by Biodiversity Information Standards, also known
as the Taxonomic DatabasesWorking Group, (TDWG; tdwg.org)
which provides a technical framework for developing appropriate
data sharing nomenclature. We anticipate that there will be
further developments in public access portals over the coming
years that will offer more fit-for-purpose solutions for archiving
and accessing complex genomic data derived from reference
specimens, the practical requirements of which will be best
understood through collaborative efforts to undertake large-scale
reference database generation.

APPLICATIONS OF BARCODING AND
METABARCODING BASED ON
COMPREHENSIVE FLORAL REFERENCE
DATABASES—AN AUSTRALIAN
PERSPECTIVE

The practical applications of an accurate and affordable
barcoding andmetabarcoding system in Australia are substantial.
Its development would provide many benefits through a
concerted effort of national science infrastructure building.
Here, we review the DNA reference data currently available
through GenBank for Australian plant taxa and present a
range of potential applications of a comprehensive floral DNA
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reference database, with both economic and environmental
benefits to Australia. This provides a basis for the development
of a comprehensive barcoding reference database for Australian
plants.

DNA Reference Data for the Australian
Flora
We used the Australian Plant Census (anbg.gov.au/chah/apc;
accessed 21/3/2018 and 24/07/2018) to generate a list of accepted
plant species names for Australian Embryophyta. We used the
Matrix Maker script (Freyman and Thornhill, 2016) to search
GenBank (searches conducted April and July 2018) against the
resultant list of Australian plant names for seven commonly used
barcoding loci (matK, rbcL, ITS, ndhF, trnL-trnF, atpB-rbcL, and
psbA-trnH).

We found that 10,779 of 23,057 (47%) of Australian species
listed in the Australian Plant Census (current taxa) had no DNA
barcoding data available for any of the seven loci evaluated, and
44% have no data on GenBank of any kind. Only 14% of species
had data for all three of the core loci (matK, rbcL, ITS). At the
family level, 11 of 360 families (3%) had no data at all for any
of the seven loci, with 130 families (36%) containing no data
on the three core loci. For the largest 43 families, which each
contain >100 species and together represent 78% of the flora of
Australia, 50% of species had no data for the seven loci and only
12% of species had data for all three core loci. Results can be
found in Supplementary Material. From our GenBank survey
data we make recommendations for prioritizing taxa for future
barcoding database-building initiatives in Australia to improve
identification capacity (Table 1).

Application to Biodiversity Monitoring,
Conservation, and Management
Biodiversity monitoring provides critical baseline data that
enables change detection, and elucidation of temporal patterns
in ecosystem dynamics (Lindenmayer and Gibbons, 2012;
Schmeller et al., 2017). Australia has recognized the need for
collection and curation of this science infrastructure, realized
by the ongoing support of the Terrestrial Ecosystem Research
Network (TERN; tern.org.au), which collects a wide variety
of data and physical samples to enable characterization of
Australian ecosystems and collaborates closely with CHAH
to ensure taxonomic integrity of their data. Accurate and
comprehensive monitoring programs are extremely resource
intensive, as such there is an opportunity to augment these
initiatives with more rapid methods for biodiversity assessment
(Thomsen andWillerslev, 2015; Bonin et al., 2018), and indeed to
validate the utility of these newer methods using comprehensive
data collected from traditional monitoring approaches (Aylagas
et al., 2016). In Australia, the availability of a comprehensive
DNA barcoding reference database for plants would pave the
way for more accurate and cost-efficient plant biodiversity
monitoring tools to augment existing programs (Thompson and
Newmaster, 2014).

Identification of plant species is also a fundamental
component of conservation and management planning

(Margules and Pressey, 2000) and of assessing potential
impacts of development and changing land use (Glasson
and Therivel, 2013). These activities have traditionally used
standard morphological taxonomic approaches, although these
can be problematic where taxonomic expertise is limited, for
species that are difficult to distinguish using morphological
characters, or where surveys need to be conducted at particular
times of the year (e.g., when species are flowering and/or
fruiting) (Hollingsworth et al., 2016). Barcoding of floras can
establish a reference database that provides a basis for molecular
identification of plant species at any time of the year and for small
tissue samples. A project is underway to commence a reference
database of species in the Pilbara region of Western Australia, an
important area of economic development and assessment of flora
for environmental impact assessment. Molecular identification
of plants using barcoding has the potential to provide a timely
and cost-effective approach for application in conservation
planning and environmental impact assessment.

Application to Pollination Services
A variety of animals, predominantly insects, but also some
birds, reptiles and mammals, provide pollination services for
the majority of wild and cultivated plants (Potts et al., 2016;
Hung et al., 2018). In Australia, some 65% of crops rely on the
European honeybee (Apis melifera) for pollination (Keogh et al.,
2010) and many likely also benefit from pollination from native
pollinators (Garibaldi et al., 2013). Understanding pollination
networks is key for optimizing the pollination services provided
in both agricultural and natural settings and for examining the
return of functionality to restored sites; by determining what
floral resources are being utilized by pollinators, it is possible to
develop strategies to maximize a desired outcome. For example,
retaining or planting vegetation that can sustain pollinators
between cropping seasons in order to maximize pollination
services during crop flowering season (Asbjornsen et al., 2014).

Revealing pollination networks has traditionally relied on
labor intensive observation studies, which record pollinator
visitations to particular plant species. As pollination involves
the physical movement of pollen from one plant to another
via a pollinator, floral resource use can also be investigated
by analyzing pollen collected by pollinators. This approach
has been shown to better characterize pollination networks,
revealing more interactions than visitation data alone (Bosch
et al., 2009). Morphological identification of pollen through
microscopy can be undertaken but requires significant time
and skill, and taxonomic resolution is also generally limited
to the genus or (more commonly) family level. Metabarcoding
of collected pollen offers the opportunity to quickly determine
the floral resources visited by pollinators and reveal pollination
network associations (Bell et al., 2017). Metabarcoding has
been shown to be capable of identifying more taxa than
pollen morphological identification, particularly for infrequently
detected species (Keller et al., 2015; Richardson et al., 2015b;
Smart et al., 2017) as well as more connected plant-pollinator
interaction networks (Pornon et al., 2017).

Identification to the species level relies on sufficiently
complete barcode reference databases for plants (Cornman et al.,
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TABLE 1 | Recommendations for priority taxa for barcode database building in Australia, based on a survey of data available in GenBank against the Australian Plant

Census.

# Recommendation for

barcoding prioritization

Justification Families*

1 Species from families so far

un-represented in the public DNA

repositories for the seven loci

(matK, rbcL, ITS, ndhF, trnL-trnF,

atpB-rbcL, and psbA-trnH).

With no barcoding data whatsoever for the seven

loci, it is not possible to identify these families of

Australian plants which represent 40 species.

Apodanthaceae (3); Arnelliaceae (1); Bataceae (1); Cardiopteridaceae

(1); Erythroxylaceae (2); Hydroleaceae (1); Petalophyllaceae (1);

Pleuroziaceae (1); Porellaceae (2); Riellaceae (2); Xyridaceae (25).

2 Species from families that do not

include any data in the public

DNA repositories for the three

core loci (ITS, matK, rbcL)
†
.

Although some data exists for some species in

these families, no data exists for the three core

barcoding loci which would most likely be included

in barcoding and metabarcoding initiatives,

hindering attempts to identify these 1710 species

using current resources.

Achariaceae (2); Acrobolbaceae (15); Adelanthaceae (5);

Agapanthaceae (1); Akaniaceae (1); Alseuosmiaceae (2); Anarthriaceae

(9); Aneuraceae (27); Asteliaceae (9); Atherospermataceae (9);

Aytoniaceae (14); Balanopaceae (1); Balanophoraceae (2);

Balantiopsidaceae (9); Balsaminaceae (3); Begoniaceae (2);

Berberidopsidaceae (2); Blandfordiaceae (4); Blepharidophyllaceae (2);

Boryaceae (12); Brevianthaceae (1); Burseraceae (7); Calypogeiaceae

(3); Campynemataceae (1); Centrolepidaceae (30); Cephalotaceae (1);

Cephaloziellaceae (10); Chonecoleaceae (1); Chrysobalanaceae (2);

Connaraceae (2); Corsiaceae (1); Cyatheaceae (16); Cyathodiaceae (1);

Dasypogonaceae (16); Dichapetalaceae (2); Dipteridaceae (1);

Doryanthaceae (2); Dryopteridaceae (38); Dumortieraceae (1);

Ecdeiocoleaceae (3); Emblingiaceae (1); Eriocaulaceae (33);

Escalloniaceae (12); Fossombroniaceae (32); Frullaniaceae (61);

Geocalycaceae (4); Gleicheniaceae (13); Grammitidaceae (7);

Gunneraceae (1); Gymnomitriaceae (5); Haemodoraceae (92);

Haplomitriaceae (2); Herbertaceae (3); Hernandiaceae (6);

Himantandraceae (1); Hymenophyllaceae (49); Hymenophytaceae (2);

Icacinaceae (6); Isoetaceae (15); Jackiellaceae (2); Jamesoniellaceae

(2); Jubulaceae (1); Jungermanniaceae (9); Lejeuneaceae (178);

Lepicoleaceae (2); Lepidolaenaceae (6); Lepidoziaceae (112);

Limeaceae (9); Lindsaeaceae (15); Lomariopsidaceae (10);

Lophocoleaceae (89); Lunulariaceae (1); Marattiaceae (4); Marsileaceae

(10); Mastigophoraceae (2); Metzgeriaceae (11); Monocarpaceae (1);

Myristicaceae (4); Neuradaceae (1); Ochnaceae (3); Oleandraceae (1);

Ophioglossaceae (10); Opiliaceae (2); Osmundaceae (3);

Pallaviciniaceae (14); Paracryphiaceae (5); Pentaphylacaceae (1);

Philydraceae (5); Picrodendraceae (31); Plagiochilaceae (41);

Pleuroziaceae (1); Polypodiaceae (47); Pontederiaceae (8);

Pseudolepicoleaceae (5); Putranjivaceae (4); Radulaceae (31);

Restionaceae (146); Ricciaceae (45); Scapaniaceae (19);

Schistochilaceae (13); Schizaeaceae (7); Selaginellaceae (16);

Solenostomataceae (3); Sphaerocarpaceae (1); Sphenocleaceae (1);

Stemonaceae (4); Surianaceae (5); Symplocaceae (19); Targioniaceae

(1); Tecophilaeaceae (1); Tectariaceae (10); Thelypteridaceae (24);

Thismiaceae (3); Treubiaceae (2); Trichocoleaceae (9);

Trichotemnomataceae (1); Trimeniaceae (1); Triuridaceae (2);

Woodsiaceae (14); Xanthorrhoeaceae (28).

3 Species from families with

greater than 80% of their species

so far un-represented in the

public DNA repositories for the

seven loci (matK, rbcL, ITS,

ndhF, trnL-trnF, atpB-rbcL, and

psbA-trnH)
†
.

Although some barcoding data exists for at least

one representative of each of these families, 980

species have no data, meaning that family level

identification will be possible but further

discrimination to the genus or species level will be

unreliable.

Dilleniaceae (269); Eriocaulaceae (33); Frankeniaceae (45);

Gymnomitriaceae (5); Loganiaceae (99); Pseudolepicoleaceae (5);

Scrophulariaceae (287); Stylidiaceae (283); Zygophyllaceae (52).

*Numbers in brackets indicate number of species in the family.
†
List of families does not include those identified in previous recommendation(s) in the table.

2015; Galliot et al., 2017; Pornon et al., 2017). Opportunities
for quantifying pollen carriage using metabarcoding have also
been investigated, with strong indications that the number
of sequencing reads are correlated with taxon abundance
(Keller et al., 2015; Richardson et al., 2015a; Pornon et al.,
2016). These data are of great interest in pollination network

research as they reveal the relative contributions of various
pollen resources to pollinator diets and help quantify the
importance of particular pollinators to plant species. However,
further work is required to understand the limitations of the
approach for accurate quantitative analysis of pollen loads (Bell
et al., 2017). Accurate and comprehensive data on pollinator
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resource utilization in Australia would help in the design and
implementation of strategies to secure pollination services for
crops, and further incorporate the protection and promotion of
pollination services in ecological restoration and conservation
practices.

Application to Trade Monitoring and
Enforcement
Understanding the biological components of traded materials
is critical in order to uphold regulations regarding the legality,
safety and legitimacy of products. The potential applications
of barcoding and metabarcoding here are many, yet there has
been very little utilization of them to date within Australia.
This is in part due to the lack of comprehensive and reliable
reference data. Plant barcoding and metabarcoding can be used
to verify the identification of traded ornamental and agricultural
plants, including timber (Dormontt et al., 2015; Ng et al., 2016;
Staats et al., 2016), to detect the importation or movement
of invasive species (Scriver et al., 2015; Xu et al., 2018), and
determine the contents of botanical products such as traditional
medicines (Newmaster et al., 2013; Seethapathy et al., 2015; Xin
et al., 2015). Barcoding represents a potential additional tool for
border security purposes as well as for businesses who could
also utilize barcoding and metabarcoding services to internally
verify compliance and demonstrate due diligence (Lowe et al.,
2016).

Other Applications
In addition to the applications described above, this section
briefly describes some additional applications that have been
demonstrated in the international literature which could prove
useful in the Australian context. Barcoding and metabarcoding
of pollen and plant fragments have been utilized to assist in
forensic applications where determining geographic origin is
important (Ferri et al., 2009; Bell et al., 2016). Metabarcoding
can be applied to the analysis of gut contents, enabling dietary
analysis of animals. This application can assist in determining
the threat posed to species from herbivory from certain animals
(e.g., Nakahara et al., 2015; Nichols et al., 2016), as well as
enabling the dietary requirements and food webs of threatened
animal species and communities to be determined in order
to facilitate both ex situ and in situ conservation efforts (De
Barba et al., 2014; Srivathsan et al., 2015). The application
of metabarcoding methods to ancient sedimentary DNA can
also help elucidate historical ecosystem dynamics (Thomsen
and Willerslev, 2015; Parducci et al., 2017) and has been
shown to perform better than pollen analysis (Alsos et al.,
2016; Niemeyer et al., 2017) for species richness estimation.
Finally, metabarcoding of air samples has been demonstrated
as effective in assessing pollen loads and therefore allergen
risks, and has potential human health implications (Kraaijeveld
et al., 2015). All of these broad applications of barcoding
and metabarcoding would be facilitated by the availability
of comprehensive barcode reference databases, particularly of
plants.

LARGE-SCALE AND COORDINATED
ANALYSES OF HERBARIUM
COLLECTIONS IN AUSTRALIA

DNA barcoding has developed at an accelerating pace over
the last 15 years, with rapid improvements in information
content thanks to high throughput sequencing approaches,
determination of standard (core) loci, the building of reference
databases, and the determination of community standards.
However, plant barcoding in Australia is currently ad hoc,
with no publicly available reference data for almost half of all
Australian plant species. We recommend that a consortium
of herbaria and other research institutions is formed with
the explicit aim of developing a comprehensive DNA barcode
reference database for the entire flora of Australia, starting with
the plant families identified in Table 1. We further recommend
the consortium pursue integrated funding opportunities that
leverage existing resources, given the success of this consortium
approach by Australian herbaria in other initiatives such as the
AVH and ALA. Exemplar specimens from each species could be
selected from existing collections or sourced through targeting
sampling campaigns to capture both inter and intra specific
species variation and geographic breadth. DNA extractions
and sequencing could be undertaken in specialist partner
laboratories in high volumes to maximize efficiencies and
minimize methodological variation. Data analysis and curation
could be centrally managed to ensure comprehensive and
consistent data availability.

The applications for a robust and comprehensive plant
barcoding system in Australia are diverse, and represent a range
of potential benefits both economically and ecologically. From
improved pollination services for agriculture, to more efficient
monitoring of ecosystems, greater protection of threatened
species, increased capacity for detection of invasive species
and assurance of biological product authenticity, barcoding and
metabarcoding can provide access to unprecedented amounts
of biological information regarding the Australian environment
and how we utilize and interact with it. In order to realize
these benefits, we argue that large scale and coordinated analysis
of herbarium collections are required to ensure the most cost-
effective and taxonomically robust system be available to the
community in perpetuity. The generation and curation of DNA
reference data should become a national investment priority and
recognized as essential science infrastructure.
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