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This review describes recent advances in the analysis of metabolism using quantitative genetics. It focuses on how recent

metabolic quantitative trait loci (QTL) studies enhance our understanding of the genetic architecture underlying naturally

variable phenotypes and the impact of this fundamental research on agriculture, specifically crop breeding. In particular, the

role of whole-genome duplications in generating quantitative genetic variation within a species is highlighted and the

potential uses of this phenomenon presented. Additionally, the review describes how new observations from metabolic QTL

mapping analyses are helping to shape and expand the concepts of genetic epistasis.

INTRODUCTION

Biochemistry and genetics have long been entwined in a mutu-

alistic relationship beginning with Mendel’s reliance upon met-

abolic phenotypes (anthocyanins and starch) to develop basic

genetic theory. Biochemistry has advanced the understanding of

DNA structure and metabolism, and genetic analyses have been

equally crucial for the construction of biochemical pathways

(Tatum et al., 1950; Watson and Crick, 1953; Yanofsky, 1960).

The relationship between biochemistry and genetics has yielded

great benefits to the broader scientific community. For instance,

the analysis of geneticmutants in theEscherichia coli lactose and

Trp biosynthetic pathways have shaped our current understand-

ing of gene regulation (Yanofsky, 1960; Jacob andMonod, 1961).

Even today, the integration of genetic and modern metabolic

network theory are forging connections between genome-scale

data and organismal phenotypes (Segre et al., 2005; Gjuvsland

et al., 2007; Fu et al., 2009).

The combination of biochemistry and genetics has been of

great utility in the study of plants. Biochemical phenotypes

generated by defects in processes such as flavonol and Trp

biosynthesis have been fundamental to developing basic genetic

approaches withinmodel plants (Koornneef et al., 1982; Last and

Fink, 1988; Shirley et al., 1995). Genetic studies have also

identified biochemical processes that proved recalcitrant to

solely biochemical approaches (Humphreys and Chapple,

2002; Xie et al., 2003). Ecological and evolutionary genetic

studies of plants have relied strongly on biochemical pheno-

types, predominantly those manifested as variation in flower

color, to further our understanding of how both biochemistry and

genetics control fitness in wild plant populations (Brown and

Clegg, 1984; Stanton et al., 1991; Holton et al., 1993).

The combination of biochemistry and genetics can also pro-

vide powerful insights into the origins andmaintenance of natural

variation. Modern biochemical analyses allow quantification of

metabolic diversity that can be associated with specific genetic

markers, mRNA transcripts, and enzyme activities, allowing

linkage between variation from genetic to biochemical levels

that is more complicated for less-defined or more pleiotropic

phenotypes, such as growth or disease susceptibility. The ability

to analyze variation at different functional levels provides an

opportunity to query the mechanisms by which this variation

evolves and is maintained in populations and species.

Recent advances in genome sequencing and high-throughput

phenotyping technologies allow plant biologists to revisit the

study of quantitative genetics and how genetic variation is

connected to phenotypic variation. The combination of bio-

chemistry with quantitative genetics has a long history in plants,

as one of the first identified QTL controls a biochemical pheno-

type, specifically, seed color in Phaseolus (Sax, 1923). More

recently, these combined disciplines have expanded our funda-

mental understanding of how metabolites can provide biotic

stress resistance in both Zea mays and Brassica (Mithen and

Magrath, 1992; Magrath et al., 1993; Mithen and Toroser, 1995;

Byrne et al., 1996, 1998; McMullen et al., 1998). The advent of

broad-spectrum metabolite profiling technologies is enabling a

fuller investigation into the influence of quantitative genetic

variation on the plant metabolome and correspondingly how

the fitness consequences of these metabolic changes alter the

genetic architecture of the species. Several previous reviews

cover the use of metabolic QTL to integrate across different

levels of genomic information (sequence, transcript, and protein)

to better understand biomass production, improve crop breed-

ing, and obtain ecological inference about the corresponding

selective pressure acting on these QTL (Fernie and Schauer,

2009; Keurentjes, 2009; Kliebenstein, 2009). These reviews also

provide significant evidence for the myriad specific molecular

events that can lead to altered phenotypes, including epigenetic,

coding sequence, and regulatory polymorphisms. This review

focuses on how recent metabolic QTL studies enhance our fun-

damental understanding of the genetic architecture underlying
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naturally variable phenotypes and the impact of this basic

research on agriculture, specifically crop breeding.

METABOLICQTL ANDTHEUNDERPINNINGSOFNATURAL

GENETIC VARIATION

At a basic level, we presume that we understand the very

underpinnings of qualitative and consequentially Mendelian ge-

netics, concepts such as allelic dominance, heritability, and

epistasis (Table 1). However, all of these concepts exist on

quantitative scales, and there is little knowledge about the

distributions of these genetic forces. Understanding these dis-

tributions and any relationship between them is essential to

developing predictive approaches for the analysis of natural

genetic variation, irrespective of the field of study. Due to its

relative economy, metabolomics or metabolic profiling is be-

coming a popular phenotyping platform for quantitative genetic

analysis of biochemistry at a genome-wide level.

In a multiyear study of tomato (Solanum lycopersicum) me-

tabolism, 76% of metabolic QTL displayed a dominance rela-

tionship between the alleles, whereas 18% of the metabolic QTL

had a semidominant relationship (Schauer et al., 2006, 2008).

Interestingly, the distribution of dominance effects varied be-

tweenmetabolic classes, with sugar alcohol-linkedQTL showing

the lowest proportion of semidominance and organic acids

showing the highest proportion of semidominance. This sug-

gests that different phenotypic classes can have dissimilar

dominance relationships among naturally variable alleles, pos-

sibly due to their different underlying molecular networks. Within

gene expression QTL, cis-acting expression polymorphisms

show greater additive effects, whereas trans-acting polymor-

phisms are more likely to show a dominant effect. One explana-

tion for this discrepancy is that a cis-acting polymorphism by

definition cannot affect the other allele in a heterozygous indi-

vidual and thereby prevent it from being dominant. It remains to

be seen if this relationship differs between networks or related

phenotypes as with metabolic traits (Stupar and Springer, 2006;

Lemos et al., 2008).

Heritability may also differ among classes of metabolic traits.

The majority of metabolite studies estimate broad-sense herita-

bility (H2), which combines all potential genetic and epigenetic

contributions to the phenotype. Using this approach, an analysis

of tomatometabolites showed that H2 significantly varied among

metabolites, revealing distinct clusters of high and low heritability

metabolites (Schauer et al., 2008). This observation was echoed

by an analysis of Arabidopsis thaliana secondary metabolites

showing that two different classes of secondary metabolite,

indolic and aliphatic glucosinolates, detected on the same

phenotyping platformhaddistinctly different H2 estimates inmul-

tiple mapping populations (Kliebenstein et al., 2001b; Wentzell

et al., 2007). Interestingly, the transcripts encoding the biosyn-

thetic enzymes for these metabolites had higher estimated

heritability than the metabolites themselves (Wentzell et al.,

2007; West et al., 2007). Thus, it is clear that heritability (e.g.,

genetic variation) can differ across molecular levels: transcript,

metabolite, and physiology, for what is typically considered as

the same phenotype, processes involved in glucosinolate accu-

mulation. This difference in heritability could be due to each

higher-order phenotype (transcript, metabolite, and physiology)

integrating more and different inputs than the lower-order phe-

notypes. For instance, larger or more complex regulatory net-

works may affect a phenotype at the metabolic level than at the

transcript level. Alternatively, each additional phenotypic level

may accumulate additional stochastic noise, thus decreasing the

estimate of heritability (Elowitz et al., 2002; Raser and O’Shea,

2004). Broader tests of measurable phenotypes in multiple

species and mapping population are required to separate these

possibilities.

Application

A major goal of combining genomic analysis with quantitative

genetics applications, such as plant breeding, is to allow a

predictive connection from genetic to phenotypic variation. This

would allow crop developers to use genomic information effi-

ciently to engineer a phenotypic change within the crop. How-

ever, this requires a deep understanding of basic genetic

components like heritability and allelic dominance. Understand-

ing how these basic variables differ among phenotypes will allow

genomic information to be incorporated more efficiently into

breeding schemes. A complication of this application is that

broad-sense heritability is less useful for breeding applications

than narrow-sense heritability, which is the genetic variation that

additively contributes to the phenotype (Table 1). Broad- and

narrow-sense heritability estimates can differ dramatically de-

pending on the level of allelic dominance, multilocus epistasis,

and parental influence on the phenotype (Falconer and Mackay,

1996; Lynch and Walsh, 1998). Studies have not yet thoroughly

queried the relationship between these two measures of herita-

bility on a genomic scale, which will be required to enable the full

use of genomics to predict phenotypic consequences and allow

for predictive engineering of crops.

Table 1. How Genetics Terms Are Defined within This Article

Term Definition

Dominance The phenotypic relationship between alleles of a

single gene. Complete dominance indicates

that phenotype associates with one allele

dominates in a heterozygote, whereas

semidominance indicates that the

heterozygote phenotype is intermediate

between the two alleles.

Epistasis A nonadditive interaction of genetic variation

at two or more loci upon a phenotype.

Heritability This can be partitioned into the two following

concepts that are not equivalent due to

the action of dominance and epistasis.

Narrow-sense

heritability

h2 is the degree to which offspring resemble

the parents.

Broad-sense

heritability

H2 is the effect of any aspect of the genotypic

variation upon phenotypic variation.

QTL A region of the genome where genotypic

variation links to phenotypic variation.
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METABOLIC QTL ANDWHOLE-GENOME DUPLICATIONS

The study of metabolic QTL may shed light on evolutionary

questions regarding the fate of duplicated genes. If a duplication

event produces two copies of a gene that are afterwards

maintained, these duplicated genes may diverge from the an-

cestral gene or from each other. This divergence can occur via

neofunctionalization, where one of the duplicates obtains a novel

function, or subfunctionalization, such that the duplicate copies

obtain differential expression patterns in terms of tissue speci-

ficity or stress response (Ohno, 1970; Lynch and Conery, 2000).

Interestingly, most duplicates from whole-genome duplications

are lost over long time frames as represented by speciation

events (Freeling, 2009), yet within species, these duplicates

appear to play significant roles in QTL formation and mainte-

nance (Kliebenstein, 2008). While further work is necessary to

test if this is a biological discrepancy or an observational bias, the

analysis of metabolic QTL has both identified examples of

subfunctionalization and neofunctionalization and identified

new roles for these evolutionary mechanisms within a species.

Neofunctionalization and Metabolic Diversity

The cloning of metabolic QTL, largely for secondary metabolites,

has revealed several examples of neofunctionalization where

duplicated genes have evolved independent biochemical func-

tions (Kliebenstein et al., 2001a; Lambrix et al., 2001; de Meijer

et al., 2003; Benderoth et al., 2006; Schnee et al., 2006; Burow

et al., 2009). For example, a tandem duplication generated two

genes in glucosinolate metabolism, AOP2 and AOP3, that

evolved different biochemical reactions using the same sub-

strate (Kliebenstein et al., 2001a).AOP2maintained the ancestral

function of converting a methylsulfinyl moiety to an alkenyl, while

AOP3 derived the ability to convert the methylsulfinyl to a

hydroxyalkyl. Showing that QTL controlling metabolic diversity

in secondary metabolites result directly from neofunctionaliza-

tion suggests that gene duplication may facilitate plant evolution

of new responses to a complex and changing environment,

partly through increasing metabolic diversity (Ober, 2005). This

agrees with recent work showing that duplicated genes are over-

represented in responses to biotic and abiotic stress (Hanada

et al., 2008; Kliebenstein, 2008).

Subfunctionalization and Expression Diversity

Duplicate genes may also subfunctionalize, developing expres-

sion patterns that differ spatially or temporally from ancestral

expression patterns. A hallmark of subfunctionalization in met-

abolic QTL analysis is detection of tissue-specific QTL for an

enzymatic activity, which is likely to have resulted from differen-

tial expression patterns between members of an encoding gene

family (Sergeeva et al., 2004). These analyses can be extended to

identify the genes controlling the biochemical reaction in specific

tissues (Sergeeva et al., 2006). However, more detailed meta-

bolic QTL experiments are beginning to show that gene dupli-

cates diverging by tissue expression pattern may represent only

the simplest scenario, while subfunctionalization can generate

complex expression patterns that integrate development, on-

togeny, and environment such that duplicated genes may show

highly conditional effects (Wentzell et al., 2008; Wentzell and

Kliebenstein, 2008; Burow et al., 2009). In one example, themain

metabolic QTL controlling secondary metabolite-mediated in-

sect resistance within Arabidopsis, ESP and ESM1, result from

two successive whole-genome duplications generating four

highly similar genomic regions (Wentzell et al., 2008). Further

endoreduplication and gene loss accompanied by promoter

divergence has generated QTL conditional on tissue, ontogeny,

and environmental influences (Lambrix et al., 2001; Zhang et al.,

2006; Wentzell and Kliebenstein, 2008; Burow et al., 2009). Gene

duplication, followed by sequence changes that altered expres-

sion patterns of duplicated genes, has apparently given the plant

more precise control over its metabolic defenses. As such,

subfunctionalization may be more prevalent in biotic stress

responses. Given that the above observations pertain to precise

regulatory variation among diverse genotypes, this highly inte-

grated regulation would be difficult to study using single gene

mutants from a single reference genotype but is readily acces-

sible in natural populations. The frequency of these higher-order

interactions remains to be determined.

Genetic Subfunctionalization

In addition to obtaining new functions or novel partitioning of

function, metabolic QTL studies suggest that duplicate genes

can obtain independent loss-of- or decrease-in-function poly-

morphisms, essentially a genetic subfunctionalization where

genes have different levels of function in different genotypes.

The simplest form of this genetic subfunctionalization is exem-

plified by the recent cloning of two enzymatic QTL that combine

to form a lethal epistatic interaction (Bikard et al., 2009). In this

example, a gene encoding a key enzyme for His biosynthesis,

HPA, was duplicated within Arabidopsis and then divergent

accessions independently lost one or the other copy of the gene.

F2 progeny generated from crosses of these divergent acces-

sions showed segregation patterns where one-sixteenth of the

progeny lacked both copies of the HPA gene and were thus

nonviable (Bikard et al., 2009). A secondary metabolism family

of flavin-monooxygenases shows hallmarks of genetic subfunc-

tionalization (Li et al., 2008). However, it is still unknown how

Figure 1. Homoeologous QTL.

Two hypothetical QTL results are shown for the same phenotype in the

leaf and root. Peak locations represent the approximate genetic posi-

tions of the loci, with small letters labeling the three loci. The bar at the

bottom shows the position of the three corresponding genomic regions

arising via a triplication of a single original genomic fragment.
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frequently genetic subfunctionalization may occur within larger

gene families, especially given that geneduplicates showelevated

levels of transcript abundance polymorphism (Kliebenstein,

2008).

Application

Understanding the complex contributions of gene duplication to

plant metabolism may benefit efforts to clone individual meta-

bolic QTL and provide precise markers for marker-assisted

selection. Essentially, identification and cloning of a QTL for a

given trait in a single tissue, condition, or genotype implicates

homoeologous members of the same gene family that colocalize

with the other QTL as candidate genes for control of the trait in

other tissues or conditions (Figure 1). For an example, take a

species where a gene has been triplicated via a whole-genome

duplication and an ensuing segmental duplication of only one of

the resulting copies (Figure 1). If a researcher identified the

molecular basis of QTLa that controls a phenotype in the shoot

and root, the homoeologous duplicates of this gene might be

considered strong candidates for control of root-specificQTL. As

such, cloning one QTLwould potentially accelerate identification

of the further subfunctionalized duplicate genes with minimal

investment of new resources. More broadly, whole-genome

assessments of duplication patterns (Vision et al., 2000) could

be analyzed in concert with genomic positions of QTL for a given

trait to identify relationships betweenQTL incidence and genome

duplication events.

METABOLIC QTL ANDMOLECULARMECHANISMS

UNDERLYING GENETIC EPISTASIS

Epistasis is loosely defined as an interaction between alleles at

two or more genes, and there is long-standing debate about the

presence and relevance of epistasis in genetic studies (Fisher,

1930;Wright, 1931; Carlborg andHaley, 2004; Hill et al., 2008). In

functional molecular studies, epistasis generally implies a regu-

latory or physical interaction between the genes and their pro-

ducts, specified here as functional epistasis (Phillips, 2008). By

contrast, epistasis in genetic studies indicates that the link

between allelic variation and phenotypic variation at one locus

is dependent upon the allelic state at another locus or loci,

specified here as genetic epistasis. In a quantitative genetics

study, epistasis appears as a statistical interaction between loci

that does not allow for immediate divination of the molecular

causes.

One area where epistatic interactions between naturally var-

iable loci is of key importance is the study of genome incompat-

ability in Arabidopsis, Mimulus spp, and other plants (Fishman

and Willis, 2001; Bomblies et al., 2007; Sweigart et al., 2007;

McDaniel et al., 2008). These are often loosely classified as

Dobzhansky-Muller incompatibility loci whereby the two genes

have diverged in function such that when reintroduced they

cause a hybrid incompatibility that may be associated with

speciation events (Dobzhansky, 1937; Muller, 1942). Further-

more, there is significant interest in the analysis of hybrid necro-

ses, incompatibility combinations that alter plant defense

mechanisms (Bomblies et al., 2007; Alcazar et al., 2009). Ge-

nomic incompatibilities are not phenotypically limited but can

result from any multilocus combination of alleles that generates

negative effects on diverse phenotypes, such as chloroplast

development, disease resistance, and pollen viability (Fishman

and Willis, 2001; Bomblies et al., 2007; Sweigart et al., 2007;

McDaniel et al., 2008). Similar arguments have been made to

explain the positive impacts of genomemixing upon heterosis or

hybrid vigor (Birchler et al., 2003). However, current data are

insufficient to connect observations of genetic epistasis with

molecular mechanisms consistent with solely a functional epis-

tasis explanation.

It is in the arena of explaining the basis of genetic epistasis that

the analysis ofmetabolic QTLdisplays its power to address basic

genetic questions while remaining useful in applied settings such

as crop breeding. Metabolic QTL analyses are beginning to

identify three broad classes of molecular mechanism underlying

genetic epistases in natural populations: functional epistasis,

gene family epistasis, and diffuse epistasis. The following sec-

tions define these three postulated forms of epistasis and pro-

vide examples identified via metabolic QTL studies.

Functional Epistasis and Metabolite-Transcription

Factor Communication

The most familiar form of epistasis is functional epistasis, where

genes are connected within a biochemical or regulatory path-

way. Cloned metabolic QTL reveal numerous instances where

genetic epistasis is controlled by traditional functional epistasis.

For example, in the maize (Zea mays) flavone biosynthetic

pathway, multiple regulatory loci interact to determine the level

of this defensive compound (Byrne et al., 1996, 1998; McMullen

et al., 1998). In agreement, regulatory interactions that simulta-

neously and directly control transcriptional, enzymatic, and

metabolite levels for a specific metabolite or pathway have

been identified within Arabidopsis (Fu et al., 2009). These studies

demonstrate how standard regulatory or enzymatic interactions

can generate genetic epistasis through functional epistasis.

However, there are also numerous instances where a given

QTL does not control all three levels, suggesting that there are

complex and potentially different networks controlling these

three levels (Keurentjes et al., 2006, 2007, 2008).

One such potential complexity is that epistatic interactions are

not limited to functional networks involving simple linear path-

ways. The Arabidopsis glucosinolate biosynthetic pathway pre-

sents an advanced example of the link between genetic and

functional epistasis. Six QTL controlling glucosinolate accumu-

lation showgenetic epistasis (Kliebenstein et al., 2005;Kliebenstein,

2009) (Figure 2A). These six loci act together to control both the

type and relative level of glucosinolate accumulation, and the

underlying genes encode four enzymes and two transcription

factors (Kliebenstein et al., 2005; Sønderby et al., 2007; Hansen

et al., 2008; Kliebenstein, 2009) (Figure 2B). This work showed

that the two transcription factor loci,MYB28 andMYB29, directly

bind promoters to regulate transcript abundance of the four

enzyme-encoding genes,GS-OX,AOP2,GS-OH, andMAM1, as

well as other genes encoding glucosinolate biosynthetic en-

zymes (Gigolashvili et al., 2007, 2008; Hirai et al., 2007) (Figure

2B). Whereas most models of functional epistasis are sufficiently
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explained with transcription factors controlling enzymes, the

glucosinolate QTL analyses showed that enzyme-encoding QTL

altered transcript abundance for both the two MYB transcription

factors and the other biosynthetic genes, suggesting an effect of

these enzymes upon transcript levels (Kliebenstein et al., 2006;

Wentzell et al., 2007). Transgenic introduction of one of these

enzymes, AOP2, into a null background altered transcript levels

for the transcription factors as well as the biosynthetic pathway,

suggesting that one of the metabolic products of AOP2 can

modulate transcript levels of the MYB28 and MYB29 transcrip-

tion factors (Wentzell et al., 2007). Thus, this complex genetic

epistasis involves signaling loops whereby transcription factors

control expression of the biosynthetic pathway that in turn affect

transcript accumulation of the transcription factors (Sønderby

et al., 2007; Wentzell et al., 2007) (Figure 2). As such, the analysis

of metabolic QTL is providing a richer image of functional

epistasis than traditional linear relationship assumptions have

allowed.

Genetic Epistasis within Gene Families

In contrast with functional epistasis, genetic epistasis does not

inherently require a molecular functional interaction between

genes. The formation of a gene family with similar enzymatic

function, possibly via a series of duplication events, provides a

possible mechanism for the generation of genetic epistasis in the

absence of any functional interaction among loci. The simplest

model for this form of genetic epistasis is a two-gene systemwith

unlinked loss-of-function alleles, as in the above example of His

biosynthesis (see Genetic Subfunctionalization) (Bikard et al.,

2009). However, this form of genetic epistasis is not limited to

gene families with only two members. It has been predicted that

larger gene families whose members are all involved a single

biochemical reaction could generate genetic epistasis affecting

the relatedmetabolites (Keightley, 1989). This arises because the

amount of enzyme does not translate linearly into how much

precursor or product is available (Figure 3). Instead, enzyme/

metabolite relationships typically follow a curvilinear association

governed by Michaelis-Menten kinetics. In the example model,

an enzymatic activity is encoded by 10 genes, each containing a

natural knockout polymorphism that accounts for five units of

activity (Figure 3). This model generates a linear gradient of

enzymatic activity across the different QTL combinations, which,

following Michelis-Menten kinetics, translates into an epistatic

surface for metabolite accumulation (Figure 3). This epistatic

relationship is not obvious, as most of the single and multiple

gene combinations have apparently additive effects upon the

metabolite (Figure 3, see range from 40 to 100 enzymatic units).

As the number of knockouts increases, however, the organism

experiences the enzyme kinetics represented on the left-hand

side of the graph, and genetic epistasis can be detected among

the loci (Figure 3, see range from 0 to 40 enzymatic units). Thus,

theoretically it is possible for the existence of gene families to

cause genetic epistasis. This further predicts that epistasis may

not affect all trait levels (metabolite, transcript, and physiology)

equally (Figure 3, compare enzyme to metabolite).

Recent metabolic QTL studies have validated the existence of

this more complexmodel of gene family–based genetic epistasis

in natural populations. A key step of glucosinolate metabolism in

Arabidopsis is the oxidation of a methylthiol to a methylsulfinyl

glucosinolate (Kliebenstein et al., 2001c; Hansen et al., 2007).

This reaction is controlled by five different genes encoding

similar enzymatic activities that also exhibit natural variation in

transcript abundance (Kliebenstein et al., 2001c; Hansen et al.,

2007; Kliebenstein, 2008; Li et al., 2008). Interestingly, no epi-

static influence on transcript accumulation was detected for

these loci, although production of the methylsulfinyl product

exhibited epistatic interactions (Wentzell et al., 2007; Li et al.,

Figure 2. Functional Epistasis Underlying Complex Genetic Epistasis.

(A) The known genetic epistasis linking six cloned QTL controlling

glucosinolate accumulation within Arabidopsis is shown. The names of

the QTL are shown with lines indicating genetic epistatic interactions

identified within any of the existing natural Arabidopsis populations.

(B) The current model of functional epistasis underlying the above

genetic epistasis is shown. Small arrows show specific enzymes with

names showing those enzymes that are the mechanistic basis of specific

QTL in (A). Metabolic structures show the specific metabolites that

accumulate from these enzymes. The line arrows show the proposed link

between a glucosinolate metabolite and the control of transcription for

the MYB28/MYB29 transcription factors. The double question mark

shows that this is just one possible connection among many metabolite/

gene interactions. The circles represent theMYB28/MYB29 proteins with

line arrows showing the promoters with which these transcription factors

interact. These genes encode the enzymes shown by the arrows for the

metabolic pathway.
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2008) as expected from the model (Figure 3). Further evidence

that the existence of gene families can allow for genetic epista-

sis came from an analysis of expression QTL affecting all iden-

tified and predicted biochemical enzymes within Arabidopsis

(Kliebenstein, 2008). This study showed that duplicated genes

individually have an elevated level of transcript polymorphism

due to sequence polymorphisms at or near their physical posi-

tion. Thus, gene family members are more polymorphic than the

average gene and the polymorphisms between individual genes

can combine to generate a wide range of phenotypic diversity

within the gene family’s encoded function. Thus, gene families

arising from duplication may be maintained in a genome not only

through changes in function but also by the development of

complex genetic interactions among gene family members.

Network Architecture and Diffuse Epistasis

A final form of epistasis is diffuse epistasis, and its existence is

supported by the image of metabolic QTL provided bymetabolic

profiling (Whitlock et al., 1995). Diffuse epistasis arises from the

control of many biological processes by networks containing

complex interactions and multiple crosstalking signals. These

highly connected biological networks create more robust links

between input and output, protecting biological systems from

fluctuations (Barkai and Leibler, 1997; Freeman, 2000; Yi et al.,

2000; Dorogovtsev and Mendes, 2002; Spirin and Mirny, 2003;

Boccaletti et al., 2006). Although these fluctuations are often

considered to be random biological noise, they could also

represent genetic variation that is dampened by the network

(Figure 4). Networks are largely resistant to the effects of single or

a few alterations, but they become increasingly likely to fail with

the introduction ofmultiple unlinked defects of small tomoderate

effect (Albert et al., 2000; Albert and Barabasi, 2002; Agoston

et al., 2005; Csermely et al., 2005). Where network structure is

known, these failures are to someextent predictable, as shown in

Figure 4 for three unlinked genetic mutations that completely

disrupt the input-output connection. The corresponding three

genetic loci, although not identifying any direct functional epi-

static link, would identify a diffuse interaction when viewed in

combination. QTL mapping populations contain genotypes that

represent a random assortment of hundreds to thousands of

Figure 3. Gene Family Epistasis.

Michaelis-Menten kinetics controlling the relationship between gene-family polymorphisms and genetic epistasis is shown. The line with diamonds

represents the impact of stacking 10 QTL each with two alleles adding a 5 unit (in Km terms) effect upon the accumulation of the enzyme, thus providing

a range from 0 units of activity to 100. Michaelis-Menten equations were then used to approximate the amount of product (squares) and substrate

(triangles) that would likely accumulate within the plant under this simple model.

Figure 4. Power Network and Diffuse Epistasis.

A simplified network diagram showing the multiple independent paths

linking any given input to any related output is shown. The circles can be

considered either a gene or the protein encoded by the gene. Lines

indicate a mechanistic connection such that information or metabolic

flux can pass from one node to another.

(A) The fully functional network with all associated redundancy.

(B) The effects of introducing three polymorphisms (black circles) to the

system and the unexpected disruption of the link between input and

output.
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independent genetic defects present within the parents and thus

serve as an excellent tool to test for multilocus diffuse epistasis

(Clark et al., 2007).

One impact of diffuse epistasis on plant metabolism is that the

metabolic network is vulnerable to combinations of independent

mutations. Loss of metabolic network function would then affect

other phenotypes, such as growth. This link between metabolite

QTL and growth has been observed in several Arabidopsis

populations (Keurentjes et al., 2006; Meyer et al., 2007; Lisec

et al., 2008; Fu et al., 2009). However, despite predictions that

diffuse epistasis occurs in these systems, no significant epistasis

was observed in some of these studies (Meyer et al., 2007; Lisec

et al., 2008). A potential explanation of this lack of detectable

epistatic effects is that diffuse epistasis involves combinations of

polymorphisms that would cause extreme phenotypic values,

which frequently are treated as statistical outliers and thus

eliminated prior to analysis (Lisec et al., 2008). In another

experiment querying metabolic QTL, diffuse epistasis appeared

to control the tricarboxylic acid cycle (Rowe et al., 2008). Com-

bined polymorphism in at least three loci caused a fourfold to

eightfold increase in tricarboxylic acid metabolites as well as

stunted plant growth. Only a single specific combination of

alleles at the three loci showed a dramatic effect, consistent with

expectations for diffuse epistasis (Rowe et al., 2008). Identifying

the underlying genetic bases of this observed multilocus effect

on metabolism will further test this concept.

Network collapse is most fully explored within the context of

power distribution grids, specifically focused on the relation of

grid architecture to the frequency of defects that will lead to

network collapse (Dobson et al., 2005, 2007; Nedic et al., 2006;

Ren and Dobson, 2008). While power distribution grids obviously

differ fromplantmetabolic networks, similarities include the need

to balance energy generationwith energy use and storage. It may

thus be possible to apply power grid distribution theory to our

understanding of how complex genetic interactions can gener-

ate the plant phenotypic equivalent of network collapse. Power

grid distribution theory suggests that the frequency of cata-

strophic system failures increases with the number of combined

defects, with the practical implication that large mapping pop-

ulations are required to query the potential for these effects

(Dobson et al., 2005, 2007; Nedic et al., 2006; Ren and Dobson,

2008). Smaller populations do not allow sufficient sampling of

genotypic combinations at more than three loci, causing ascer-

tainment bias in small populations. For instance, in the example

in Figure 4, the combination of alleles leading to a network

collapse would only be identified in one out of 64 F2 progeny,

assuming that this network collapse was not lethal. As such,

much larger populations are necessary to study the prevalence

and biological impacts of diffuse epistasis.

CONCLUSIONS AND FUTURE PERSPECTIVES

Recent application of broad-spectrummetabolite profiling to the

study of natural variation and quantitative genetics has provided

unique insights into the basic underpinnings of plant genetics.

These insights may inform numerous fields of research, ranging

from gene evolution and network biology to the application of

quantitative genetics in crop breeding. As this new information is

Application

It has been difficult to incorporate the effects of epistasis into

breeding programs due to the increased population sizes re-

quired for statistical detection of epistases and the necessity of

simultaneously breeding for multiple loci to enhance phenotypes

controlled by multilocus interactions. However, recent advances

in genomics and genotyping provide the ability to rapidly geno-

type massive populations, providing the potential to efficiently

incorporate epistasis into breedingdesigns. Functional epistases

will be relatively easy to apply to crop improvement once the

genes involved in a pathway and their functional interactions are

known.

Gene family and diffuse epistasis may be of less immediate

practical value andmay indeed present an unexpected barrier to

some breeding regimes. In the example of gene-family epistasis,

to increase the amount of the hypothetical substrate within the

crop, a relatively straightforward approach would incorporate

loss-of-function mutations at all 10 loci to block the reaction

(Figure 4). While this might increase the content of the desired

metabolite, it may also cause deleterious consequences if the

downstream products have other roles in the plant. As such,

gene family and diffuse epistasis raise the potential that the blind

stacking of numerous QTL alleles associated with increased

accumulation of a given metabolite, without regard for the

molecular bases of the QTL and its genetic interactions, could

lead to unexpected and possibly unpredictable deleterious con-

sequences. This may occur even if the positive alleles come from

different pathways (Figure 4).

Both gene family epistasis and diffuse epistasis represent a

breakdown in the relationship between phenotypic consequence

and the level of explained phenotypic variance within the pop-

ulation (Keightley, 1989). In this analysis, it was noted that there is

not an inherent relationship between the amount of population

variance explained by a QTL and the QTL’s effect upon the

phenotype. This relationship between phenotypic consequence

and explained phenotypic variance rapidly breaks down with

increases in the involved number of loci or the number of alleles

per locus (Keightley, 1989). As such, although it is possible to

alter phenotypes dramatically by stacking genes that participate

in diffuse and gene-family epistases, large populations are

required to first identify these complex higher-order genetic

interactions. Additionally, the presence of more than two alleles

at any locus in a population will necessitate even more dramatic

increases in population size. In the example shown in Figure 4, it

would likely take a population of at least 256 F2 progeny to

identify just four extreme phenotype individuals; exponential

increases in population size could be necessary to provide the

statistical support necessary to confidently pursue these results.

Most QTL discovery populations are not massive enough for

rigorous analysis of the tails of any phenotypic distribution,

where genotypes revealing both gene family and diffuse epis-

tasis would reside. Additionally, there is the chance that these

genotypes will show a lethal interaction and may only be

identifiable by multilocus segregation distortion (Bikard et al.,

2009).
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at present largely limited to two plant species, the expansion of

these techniques into other species will test the generality of

these observations and reveal the malleability of genetic archi-

tecture across phylogenetic distance. Given the intimate link

between plant metabolism and physiology, it is likely that the

combination of biochemistry and genetics will be as powerful in

the future of quantitative genomics as it has proven to be for

genetics in the past century.
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