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Abstract: Mitochondrial metagenomics (MMG) using Illumina sequencers for mixed-species samples
provides a promising tool for evolutionary and ecological studies using mitogenomes. However,
the traditional assembly procedure is still computationally intensive and expensive. Here, a novel
MMG pipeline was applied to different DNA extractions, one per species, and their sequence as a
mixed sample for rapid mitogenome assembly is presented. Our method integrated a faster and
more accurate read mapper for filtering non-mitochondrial reads. A seed-and-extend assembler for
species-specific mitogenomes that detects ‘noisy species/sequences’ was also assessed. The MMG
pipeline for each dataset was completed in a few hours on desktop PCs, maintaining high accuracy
and completeness (COI divergence >10%), except for some very closely related taxa. Particularly
for closely related species, the exclusion of ‘noisy reads’ (including chimera of non-targeted species)
improved the target assembly. In addition, we observed that short barcodes used as references had
almost identical detection power compared with mitogenomes but required greater sequencing depth.
We tested our MMG pipeline on two real and one simulated dataset to validate its high efficiency in
mixed-species sample mitogenome assembly.

Keywords: biodiversity; genome assembly; illumina sequencing; mitogenomes

1. Introduction

Understanding biodiversity, i.e., the variety and variability of life forms on Earth, has
been recognized as a fundamental topic in evolutionary and ecological biology. Individual-
based DNA techniques using Sanger sequencing can speed up species identification as
complementary diagnoses for morphological taxonomy [1,2]. These studies usually analyze
sequence divergence by amplifying nuclear and organellar gene regions, such as the
standard Cytochrome C Oxidase Subunit I (COI) barcode for animals [1]. The successor
metabarcoding can assess biodiversity from environmental DNA and bulk/mixed-species
samples by amplicon next-generation sequencing (NGS) [3]. All of the above DNA-based
approaches require PCR amplification and often suffer from some shortcomings, such as
amplification difficulty across a broad taxonomic range [4], high requirements for samples
(e.g., need fresh samples), and the experiment being complicated and time-consuming [5].
The recently emerged mitochondrial metagenomics (MMG) [6,7] can further unify the
ecological and evolutionary understanding of biodiversity [8,9]. MMG has been applied in
systematics and community phylogenetics by assembling high-copy mitochondrial contigs
from low-coverage shotgun sequencing of specimen mixture [6,10–14].
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Despite the great potential for evolutionary and ecological studies, MMG has not been
considered perfect in the efficiency of mitogenome assembly using published pipelines.
These assembly procedures are usually time-consuming and labor-intensive [8]: filter non-
mitochondrial reads by BLAST [15] searches against a mitogenome database, assemble
putative mitochondrial reads using multiple assemblers, annotate preliminary contigs, and
combine overlapping contigs to generate longer consensus sequences [6,7]. DNA searches
with BLASTn are not suitable for aligning very divergent sequences [16,17]. In contrast,
Burrows Wheeler transformation (BWT)-based short read mappers, e.g., BWA [18], often
have higher sensitivity in several orders of magnitude in less time [19], although they
are also less efficient in coping with high sequence divergence. Compared to BWT-based
mappers, hash-based ones, e.g., NextGenMap [20] and NOVOPlasty [21], can handle highly
polymorphic reads and genomes in a shorter running time. Unfortunately, the disk and
memory usage for hash-based assembly in NOVOPlasty can be substantial in a regular
PC (i.e., PC with less than 16 G memory). Therefore, read mappers completely have the
potential ability to replace BLAST for the read filtering with higher accuracy in much
less time.

MMG assembly usually uses tools initially designed for whole-genome data rather
than AT-rich mitogenome, e.g., IDBA-UD [22], Celera Assembler [23], SOAPdenovo [24],
SOAPdenovo-Trans [25], and Newbler [26]. To maximize sequence contiguity, subsequent
contig consensus requires additional tools and manual checks, such as Minimus [27], TG-
ICL [28], and Geneious [29]. Two major categories of mitogenome-specific assemblers
exist: (1) seed-free assembly software, such as MitoZ [30] and MEANGS [31], which can
directly assemble mitogenomes from raw data without seed/bait sequences; (2) seed-
based assembly software, such as MITObim [32] and NOVOPlasty, which can directly
assemble mitogenomes with the user-provided seed/bait sequences for single-species sam-
ples. The MitoZ assembly is accurate; however, it is very time- and computing-resources-
consuming [30]. The MEANGS is a seed-free de novo assembly software that applies
tree-search to extend contigs from self-discovery seeds and assembles the mitogenome
from NGS data [31]. Nonetheless, MitoZ and MEANGS were not suitable to extract the
mitochondrial genome from mixed-species samples. The earlier version (v1.6) of MITObim
provided a trial proofreading algorithm for metagenomic data. It was only tested in sam-
ples with a few (<6) species [32,33] but failed in more complex samples of typical MMG
pools (unpublished data). Many rounds of iterations in MITObim are very time-consuming
and hinder its further applications in metagenomic data. NOVOPlasty is faster and more
accurate than other software, allowing for seeds from the same species or genus, even
different genera, and families. A relaxed seed design is a benefit for single-species samples
but becomes a shortcoming for complex samples.

This study aims to improve the MMG assembly efficiency by integrating faster, more
accurate, and low-consumption bioinformatic tools. The short read mapper of NextGenMap
is used to filter non-mitochondrial reads. The mitogenome-specific assembler NOVOPlasty
was used for mitogenome assembly by restricting its seed compatibility. We tested the
pipeline on both real and simulated raw sequencing datasets, covering both distantly and
closely related species.

2. Materials and Methods
2.1. Data Generation

We tested the MMG assembly pipeline on two real and one simulated sequencing
datasets that have reference mitogenome sequences (COI barcode also included) for each
species. Dataset DS_A (SRA174290, 150 PE) included 49 divergent animal species (see in
Supplementary Materials Table S1 and Figure S1a) [7]. Dataset DS_B [34] represented an
extremely closely related-bee-species case: 48 individual raw sequencing data (100 PE)
were combined into a mixture (Table S2); COI p-distance among species varied from 0.036
to 0.289 (mean 0.207) (Figure S1b). To better evaluate the performance of our pipeline in
the presence of closely related species, we generated a dataset DS_C including 10 mosquito
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species, for which the interspecific p-distance was 0.015–0.166 (mean 0.109) (Figure S1c);
the mitochondrial coverage was set as 200x to guarantee a sufficient amount with the
ratio of mitochondrial to nuclear reads as 1% for each species (Table S3). The simulation
of raw sequencing reads was generated using ART [35] with a read length of 150 bp, an
insert fragment size of 300 bp (standard deviation of 30 bp), and a sequencing error of
0.1% (art_illumina-ss HSXn-i GENOME.fasta-p-l 150-f 200-m 300-s 30-na-qs 30-qs2 30-o
SPECIES.mito.).

2.2. Mitogenome Assembly

The workflow of MMG mitogenome assembly is shown in Figure 1. All analyses were
executed in the CentOS 7 operating system on an AMD RYZEN 1700X CPU (8 cores/16
threads) and 32 G memory PC. Commands for merging all the forward or reverse reads, and
the script of MMG are available on GitHub (https://github.com/xtmtd/MMG, accessed
on 14 March 2022). Raw sequencing data were mapped to a mitogenome database using
NextGenMap v0.5.5 with an identity threshold of 0.3. The sequences of mitogenome
database were downloaded from NCBI Reference Sequence Database (RefSeq, 15 July,
2018): 1632 (117 Arachnida, eight Asteroidea, 11 Branchiopoda, six Danio, 1490 Insecta) for
DS_A, 16 (Apoidea) for DS_B, 3 (one Aedes, one Anopheles, one Culex) for DS_C. Candidate
paired mitochondrial reads, in which at least one of the paired ones can be mapped, were
extracted with SAMtools v1.7 [36]. Mitogenomes were assembled with a loop script that
included the NOVOPlasty v4.3.1 assembler while storing hash locally to speed up the
assembly for possible multiple runs. Each mitogenome assembly requires a seed or bait
sequence, a short mitochondrial fragment used for the initial assembly. In practice, seeds
can be generated using barcoding for each species or metabarcoding for multiplexed species
pool (DNA libraries with a unique identifier for each species). COI of 658 bp (standard
‘barcode’) and 313 bp (‘mini-barcode’, named mini-COI here) were selected as seeds and
extracted from the reference in this study. Assembled contig(s) of each species were aligned
to seeds of all species with VSEARCH v2.7.1 (–usearch_global –blast6out –maxaccepts
0 –maxrejects 0 –id 0.2) [37]; a contig of identity greater than 0.95 (i.e., highly matching seed
sequences, query cover 100%) was assigned to the species from NOVOPlasty outputs, and
then, mitogenomes were assembled.
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Figure 1. Workflow of the MMG assembly. Bioinformatic tools used in each step are marked as italic.

Assembled contig(s) from different NOVOPlasty procedures may be identical for
closely related species due to the relaxed seed compatibility. With the species-specific
seed sequence (COI here), NOVOPlasty may assemble mitochondrial contigs belonging
to other species present in the same sample. This means that the presence of ‘noisy reads’
of non-targeted ‘noisy species’ in the raw sequencing data obstructs the target assembly.
The exclusion of these ‘noisy reads’ would alleviate this difficulty. These ‘noisy species’
were identified when the assembled contigs matched the seeds of non-targeted species
revealed by VSEARCH results. Noisy reads were filtered against ‘noisy mitochondrial

https://github.com/xtmtd/MMG
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contigs’ assembled in the previous assembly round using NextGenMap, SAMtools with an
identity value of 0.99. The resulting reads were used to assemble mitogenomes again for
the species that failed in the previous assembly round. Then, the steps of the above noise
detection-filtering-assembly procedure were repeated (usually one–two rounds) until no
more noisy reads were discovered. Specific mitogenome reference sequences were drawn
from Tang et al. [7,34] or NCBI public ones. Due to the great assembly difficulty in dataset
DS_B, a second seed of 497-bp ND5 was used for assembly, and species with contigs shorter
than 5000 bp were re-assembled in the filtering rounds.

Assembled contigs could be heterospecific contigs (chimera), although their partial
regions well matched the seeds. We examined the chimera as follows: contigs were divided
into multiple 200 bp fragments, and a VSEARCH search against all assembled mitogenomes
was performed for each fragment. A contig having best matches (identity ≥ 97%) with
two or more reference genomes was treated as a chimera. Those ‘noisy’ parts within the
chimera were filtered and newer assemblies were generated following the above noise-
filtering steps.

The final assembly was finished until no noisy regions including chimeras were de-
tected. The assembly quality was measured relative to the reference using genome coverage
(percentage of the reference genome) and accuracy (percentage of correctly assembled nu-
cleotides for aligned regions). Only one round of filtering noisy reads was performed
for most species. For the closely related species, two rounds of filtering noisy reads were
needed. The complete process of mitochondrial genome assembly was executed following
the custom script.

Three preconditions were used to assemble mitogenomes using the MMG pipeline: (a)
having seeds in advance; (b) knowing that species inside the sample are not too similar,
as to avoid cross assembly; and (c) ensuring that the DNA of each species is mixed in the
right quantity.

3. Results

A total of 45.8, 130.8, and 3.1 Gbp of raw PE reads were generated for datasets
DS_A, DS_B, and DS_C, respectively. After the removal of non-mitochondrial reads,
6.88%, 5.12%, and 1.32% of raw reads were filtered out for the subsequent assembly.
Detailed assembly results and statistics can be found in Tables S1–S3. Each NOVOPlasty
assembly was finished in less than ten minutes depending on the amount of input candidate
mitochondrial reads. In the initial assembly, the use of longer COI as seed sequences
generated more noisy assembled reads than shorter mini-COI seeds for DS_A (3 vs. 0) and
DS_C (4 vs. 2). Thus, COI was not selected as seeds in DS_B due to the great number of
closely related species. For the dataset DS_B, the assembly of six species failed to produce
any sequences in the first round of assembly with mini-COI seeds, and three assemblies
generated chimera although correct seed sequences were included in a chimera (Table S2).
Chimeras of 14,974 bp assembled from two species of DS_C are highly similar to both
reference sequences (Anopheles gambiae and A. merus), which had a 0.015 p-distance for
COI. After one or two rounds of filtering noisy reads, all target assemblies were correctly
recovered except for two species in DS_C.

The mitogenome assembly lengths were 14,361.2 ± 3,182.7 (3876–17,633) bp, 8510.2 ± 5241.2
(630–17,211) bp, and 15,582.4 ± 445.5 (15,377–16,673) bp for DS_A, DS_B, and DS_C, re-
spectively, corresponding to the genome coverage (%) relative to the references 95.1 ± 20.1,
58.2 ± 34.2, and 100 ± 0.1 (Figure 2). Ten and seven mitogenomes of DS_A and DS_B,
respectively, were slightly longer than the reference. For the dataset DS_B, assembly with
ND5 seeds produced contigs (1044–7857 bp) not overlapping with mini-COI results for
ten species (Table S2). The mitogenome accuracy for aligned regions was 99.9% ± 0.6%,
99.7% ± 0.4%, 99.6% ± 0.7% for DS_A, DS_B, and DS_C, respectively. Twenty-one mi-
togenome sequences in DS_A were circularized while 20 were in the reference.
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4. Discussion

Our novel MMG pipeline greatly accelerated the assembly by efficient improvements
in removing non-mitochondrial reads, particularly in simplifying the workflow and reduc-
ing running time (the run times were within 12 h, 20 h, and 8 h for datasets DS_A, DS_B,
and DS_C, respectively). Assembly contiguity and accuracy can be comparable with the
references (Figure 2) for both distantly and closely related taxa. Detection and removal of
noisy reads, including chimera, further guarantee the correctness of target sequences.

Seed or bait sequences for each species are prerequisites for assembly using NOVO-
Plasty. Seeds can be generated from standard barcoding or metabarcoding, with the latter
pooling multiple amplification products to further reduce the cost [3]. In addition, the
313 bp mini-COI, which is the most frequently used marker in metabarcoding [38], out-
performs the standard 658 bp-COI when serving as seeds for assembly, resulting in fewer
incorrect assemblies (Tables S1 and S3). A single seed can produce nearly complete mi-
togenomes when sequencing coverage is enough [8], as exemplified in both DS_A and
DS_C. Additional seeds (ND5 in DS_B, which was acquired from the same genome) may
help to generate more contigs for one species [7], particularly when mitochondrial coverage
is limited (often less than 50x) and sequencing read length is short (e.g., 100 PE in DS_B).

Although the seed-and-extend algorithm in NOVOPlasty greatly reduces the chimera for
mixed-species samples, it is possible to fail for very closely related species (Tables S2 and S3).
Chimera detection and removal in our pipeline eliminated most errors but still failed in
two mosquito species with 1.5% COI divergence (Table S3). According to our tests, we
recommend that the accuracy and completeness of COI divergence >10% are necessary (see
the details in Appendix A).

Our assessments of simulated datasets (Appendix A) indicate that species, even at
the very low sequencing coverage (0.1x), can be assembled mitogenomes in bulk samples.
Short barcodes as the reference have similar detection powers but require at least an order
of magnitude greater in sequencing depth (much higher cost) than whole mitogenomes.
Rapid decreases in sequencing costs, e.g., library preparation of CNY 20 plus CNY 4/Gbp
per sample on the BGI or NovaSeq 6000 platforms (price from BerryGenomics, China,
1 March, 2022), allows MMG to be applied in a wider scope for ecological and evolutionary
studies [8,9] (e.g., the origin and phylodiversity of insects [39,40], relative species abundance
estimation [39]).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d14050317/s1, Figure S1: The COI p-distance among species
and phylogenetic relationships of datasets DS_A (a), DS_B (b), and DS_C (c); Table S1: Species
information, mitogenome reference sequences, and assembly results for dataset DS_A. The yellow
cells represent the chimeras, and the species name of the same sequence are written in brackets;
Table S2: Species information, mitogenome reference sequences, and assembly results for dataset

https://www.mdpi.com/article/10.3390/d14050317/s1
https://www.mdpi.com/article/10.3390/d14050317/s1
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DS_B. The yellow cells represent the chimeras, and the species name and the length of the same
sequence are written in brackets. The grey cells represent the fail to assemble; Table S3: Species
information, mitogenome and genome reference sequences, and assembly results for dataset DS_C.
The yellow cells represent the chimeras, and the species name of the same sequence are written
in the brackets; Table S4: Assessment of the accuracy of MMG seed-based approach at varying
mitochondrial coverages against mitogenome, COI, and mini-COI references, respectively.
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Appendix A

To test the accuracy of read-based approach (species detection rate), we simulated
seven 10-mosquito-species datasets of sequencing data with the mitochondrial coverage
respectively at 0.1, 1, 10, 50, 200, 500, 1000× and the ratio of mitochondrial to nuclear reads
as 1% for each species using ART. Species abundance was detected against mitogenome
(AT-rich regions excluded), barcode (658 bp-COI) and mini-barcode (313 bp-COI) refer-
ences using a custom loop script, which employed HS-BLASTN v.0.0.5 [41] and BLAST+
v2.7.1 [42] as aligner and identity of 0.99. Required minimum sequencing amount for
a MMG bulk sample was assessed assuming 100 species, average 1% ratio of mitochon-
drial/genomic DNA, and mitochondrial coverage of 0.1x in the sample.

Species detection was tested on datasets only including closely-related species (Figure
S1c). Read numbers were accurately estimated (Pearson R2=0.97, p < 0.001), using R
package (version 4.1.2; https://www.r-project.org/, accessed on 14 March 2022), against
mitogenome reference at 0.1–1000× sequencing coverage except for Anopheles gambiae
and A. merus (p-distance of 0.015) (Figure A1a, Table S4). Species detection failed at the
coverage of 0.1× against COI reference (Figure A1b) and 0.1× and 1× against mini-COI
reference (Figure A1c), but estimated read numbers with other coverages were highly
correlated with the number of simulated mitochondrial reads. The required minimum
sequencing amount per MMG bulk sample was 15,000 bp*(0.1x)/1%*(100 species) = 15 Mbp,
i.e., sequencing amount of 1 Gbp per bulk sample is usually sufficient to detect species
richness and abundance. It is helping us to better understand and practice the minimum
sequencing coverage when mix the samples by species detection, and saving experiment
costs or computing resources maximally.

https://github.com/xtmtd/MMG
https://www.r-project.org/
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