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There is a growing attention toward personalized medicine. This is led by a fundamental

shift from the ‘one size fits all’ paradigm for treatment of patients with conditions or

predisposition to diseases, to one that embraces novel approaches, such as tailored

target therapies, to achieve the best possible outcomes. Driven by these, several

national and international genome projects have been initiated to reap the benefits of

personalized medicine. Exome and targeted sequencing provide a balance between

cost and benefit, in contrast to whole genome sequencing (WGS). Whole exome

sequencing (WES) targets approximately 3% of the whole genome, which is the

basis for protein-coding genes. Nonetheless, it has the characteristics of big data

in large deployment. Herein, the application of WES and its relevance in advancing

personalized medicine is reviewed. WES is mapped to Big Data “10 Vs” and the resulting

challenges discussed. Application of existing biological databases and bioinformatics

tools to address the bottleneck in data processing and analysis are presented, including

the need for new generation big data analytics for the multi-omics challenges of

personalized medicine. This includes the incorporation of artificial intelligence (AI) in the

clinical utility landscape of genomic information, and future consideration to create a

new frontier toward advancing the field of personalized medicine.
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INTRODUCTION

Advances in next generation sequencing (NGS) technologies have resulted in an unprecedented
proliferation and deluge of genomic sequence data. Harnessing the information encoded in a
person’s genome is far-reaching and has been instrumental in assessing the substantial portion of
person-to-person variability in response to diagnosis, treatment, and prevention strategies (Seripa
et al., 2010). This is done by comparing an individual’s genomic information to the DNA sequence
of another “reference,” leading to a variability map of the population when done at a broader
scale. The notion of individual variability dates back to Garrod, who in 1902 coined the term
“chemical individuality” (Garrod, 1996). The definition has since become more precise; however,
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the “reference” still remains vague because of the heterogeneity
that exists in the population genome (Huang et al., 2015;
Lim et al., 2015; Spratt et al., 2016; Caswell-Jin et al., 2018).
These genetic variations stand to impact significantly on the
risk and survival outcome of a patient’s health (Dawood et al.,
2008; Jemal et al., 2011; Eheman et al., 2012). This factor also
points toward the potential challenges for advancing personalized
medicine – in the hope of incorporating patient genetics
within the management and treatment modalities toward better
clinical outcomes.

The conventional approach of using candidate genes alone is
not sufficient to explain the differences in disease risks that occur
between ethnic groups, let alone individuals. The revolution of
genotyping technologies has allowed focus on a specific region
of the genome, thus enabling deeper coverage of the variants.
This approach was successful in identifying prostate cancer risk
loci (8q24 and 17q21) in men of African descent (Haiman et al.,
2007, 2011; Yeager et al., 2007), which helped explicate the
50% increased risks of getting prostate cancer in these men
(Amundadottir et al., 2006). In contrast to genotyping, the advent
of the targeted sequencing approach has enabled the focus on
specific regions of interest within the genome. This includes
targeted amplicon sequencing and whole exome sequencing
(WES). Going broader, the whole genome sequencing (WGS)
approach provides the most comprehensive analyses of the entire
genome; that is ∼3 billion bases for a single “representative”
haploid copy, in the case of a human. Notably, the complete set
of protein-coding regions, the exome only constitutes ∼3.09%
(over 90 million nucleotides) of the latest release of the human
reference genome, GRCh38 (Guo et al., 2017). Compared to
WGS, targeted sequencing is a more cost-effective method and
delivers a higher coverage, allowing for detection of rare variants.
Coverage (breadth) for WES is referred to as capture of coding
sequence targets (genes and their flanking regions) and in most
cases include 22,000 genes. Coverage (depth) refers to the number
of sequences for a locus based on independent reads. For clinical
purposes, a target depth of 100× from Illumina machines is
considered sufficient.

The lowest cost estimate for running a single WES test has
fallen to £382 ($555) per exome, which is ∼3.5 factor lower
compared to the lowest cost estimate for WGS using HiSeq
X (in Germany), £1,312 ($1,906) (Schwarze et al., 2018). This
is in stark contrast to the cost per genome of ∼$100 million,
back in 2001 after the completion of the first Human Genome
Project (National Human Genome Research Institute, 2016). The
significant price reduction has taken the democratization of the
sequencing to an entire new plateau.

Whole exome sequencing is attractive for clinical application
mainly because it covers actionable areas of the genome to
determine the variations in the exon regions and identify causal
variants of a disease or disease-causing mutations (Gorski et al.,
2016; LaHaye et al., 2016; Gambin et al., 2017; Gupta et al., 2017;
Hixson et al., 2017; Mueller et al., 2018; Weigelt et al., 2018).
There has been a tremendous boost in the generation of
WES data at the population scale. The WES has proven its
successful application in discovering of the gene associated with
the Miller Syndrome, Mendelian phenotypes (Chong et al.,

2015) and complex disorder (O’Roak et al., 2012; Jeste and
Geschwind, 2014). Since 2011, WES has been routinely offered
as a diagnostic tool in clinical genetics laboratories (Pierson et al.,
2011; Yang et al., 2013). WES has since been incorporated into
the 1000 Genome Project (Genomes Project et al., 2012), the
NHLBI “Grand Opportunity” Exome Sequencing Project (GO-
ESP) (Tennessen et al., 2012) and the efforts by the Exome
Aggregation Consortium (ExAC) (Lek et al., 2016) to catalog
population variants and to identify diseases associated with
rare variants. These efforts bring us closer to the development
of personalized medicine, by matching specific treatments to
the genetic makeup of specific patients for maximum benefit.
Recent breakthroughs heralding the new era for personalized
medicine include approvals by the United States Food and Drug
Administration (FDA) for monoclonal antibody pembrolizumab,
targeting tumors expressing PD-L1 (Khoja et al., 2015) and
olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor for
ovarian cancer patients who carry mutations in BRCA1/2 genes
(Rezende, 2014). More recently, the FDA approved larotrectinib
(Vitrakvi), the first targeted therapeutic based on the tumor
biomarker, instead of tumor origin in the body (Honey, 2018).
The market size of personalized medicine is expected to reach
USD 87.7 billion by the year 2023 (Newswire, 2016), while the
digital genome market is expected to be worth over 45 billion by
2024 (Global Market Insights, 2017).

Herein, we review the application of WES genomic
information in clinical practice. The review covers the big
data characteristics of WES, discussing existing biological
databases and bioinformatics tools to deal with the big data,
including new generation artificial intelligence (AI) platforms.
Concluding with the clinical utility landscape of genomic
information, and future consideration to creating a new frontier
toward advancing the field of personalized medicine.

FROM GENETIC MEDICINE TO
GENOMIC MEDICINE, PAVING THE WAY
FOR PERSONALIZED MEDICINE

The extent of genomic information utilization inmedical practice
is strongly linked to the advances in genomic technologies
and sciences. The relatively small scope of clinical utility
and the slow early uptake can be attributed to the lack
of clinical evidence supporting the use of medical genomics
in multifactorial diseases. Thus, the early focus on variants
with high or near certain genotype–phenotype correlation
probability (high penetrance) (Lobo, 2006). It soon became
obvious that sequencing data alone is not sufficient to explain
the genotype–phenotype correlation for multifactorial diseases,
because they are characterized by a complex etiology, with
variable genetic and environmental contributions. The genetic
risk of developing multifactorial conditions is brought about
by small and discrete alterations at the genomic/genic levels
at multiple loci. Furthermore, these DNA changes exhibit
low-to-medium penetrance power that is highly influenced
by external factors related to the environment and lifestyle
(Centre for Genetics Education, 2015; Abdullah Said et al., 2018).
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Knowing the sequence data was simply not enough to
understand the etiological and pathogenic processes in complex
diseases – the genomic data had a low predictive power
and penetrance.

The sequencing of the human genome was more of a
technological achievement rather than scientific. Knowing the
exact position of all nucleic acids within the DNA molecule
(99.9%) did not automaticallymeanwe understand the functional
implications of the sequence (Galas, 2001). To this end,
several new initiatives were created to uncover the biological
message behind the linear combination of the four nucleotides.
One year before the full human genome was published, the
HapMap project was launched to document the variations in
the genome (Eichler et al., 2007). In 2005, the first GWAS was
conducted to annotate medically documented genetic variants
(Ikegawa, 2012). Soon, hundreds of studies were underway
rapidly generating a clinical context for genomic data. The scope
of GWAS was wide-ranging, but for most cases, focused on
the risk factors and metabolic pathways related to multifactorial
diseases. The GWAS contribution was crucial in uncovering
strong polygenic-phenotype associations. Based on the GWAS
discoveries, it was possible to identify essential metabolic
pathways in many traits and medical conditions, paving the
way for the first predictive and prognostic genetic test related
to multifactorial diseases, and drug metabolism and response
(pharmacogenetics).

In parallel, fast progress was made in researching for somatic
variants from cancer cells. Neoplasms can be defined as acquired
genetic diseases (∼70% of all cancers), where the etiological
genetic component is brought about by environmental factors
(Malhotra et al., 2014). The cancerous transformation of cells is
closely linked to genetic alterations in specific genes, e.g., proto-
oncogenes, tumor suppressor genes, and DNA repair genes. It is
possible to characterize the histological type of cancer cells based
on the patterns of somatic mutations. This knowledge has been
successfully explored to develop a range of cancer genetic tests:

• Predictive (e.g., testing BRCA1/2 genes for the genetic
risk of developing Hereditary Breast and Ovarian Cancer)
(McCartan and Chatterjee, 2018)

• Prognostic (metastatic potential and conventional
treatment response) (Maman and Witz, 2018)

• Targeted treatments (small molecule therapeutics
targeting specific gene mutations, e.g., imatinib for
c-KIT gene mutation in Chronic Myeloid Leukemia and
Gastrointestinal Stromal Tumors) (Druker et al., 2006;
Grandori and Kemp, 2018)

Cancer genomics is a well-established field of medical practice
and research. It is supported by strong clinical evidence and
knowledge through many high-profile projects and initiatives
such as:

• COSMIC (Catalogue of Somatic Mutations in Cancer)
(Forbes et al., 2017)

• TCGA (The Cancer Genome Atlas) (Weinstein et al., 2013)
• ICGC (International Cancer Genome Consortium) (Zhang

et al., 2011)

However, it took another 10 years, after the first GWAS was
published, for research activities to elucidate the mechanisms
underlying the genotype–phenotype association in multifactorial
diseases. Since the environment is an essential modifier of the
genetic effect, the inclusion of environmental and genetic factors
as well as their combined effect on the downstream biological
process in the assessment process is necessary to increase the
predictive power of genetic alterations. In this approach, genes
rather than single variants are assessed for their functional effect.
It is a departure from the main GWAS assessment methodology,
where the statistical association between the genetic variant
and phenotype is measured without often accounting for the
underlying biological process. It was a new concept that needed
to be tested. In order to validate the clinical utility of functional
genomic analysis, two sets of tools were required: (i) data from
every layer of the molecular network involved in the translation
of genetic effect to observed phenotype, and (ii) powerful
computational tools capable of processing large volumes of data
and making associations. It was to this end that numerous
projects were launched, either to generate the data or to provide
integrated bioinformatics tools for the clinical, functional analysis
of the data.

BIG DATA CHARACTERISTICS OF
WHOLE EXOME SEQUENCING

In 2025, genomics is expected to surpass the three biggest
players in big data domains: Twitter, Astronomy, and YouTube
(Stephens et al., 2015). Stephen’s team had mapped the key
technologies that are needed to support big data genomics, in
terms of data acquisition, storage, distribution and analysis. Data
in genomics had also beenmapped to the five Vs, characteristic of
big data (He et al., 2017): volume, velocity, variety, veracity, and
value. Below, we present the mapping of WES to not just the five,
but the expanded 10 Vs of big data (Firican, 2017):

(i) Volume – WES data size, which can vary by coverage

and number of samples. For the same sample at about
100× coverage, WES will generate ∼5–6 GB of data.
Although this is substantially lesser than ∼90 GB for
WGS (AllSeq, 2018) at the same coverage, the data size
can grow substantially for a large number of subjects.
Variant calling on exome sequence data in ExAC v0.3.1
from 60,706 individuals spanned 540 GB (Karczewski et al.,
2017). Nowadays, many research studies involving tens of
thousands of samples use WES for cost effectiveness, but it
is clear that data generation is not the main issue, instead
the bottleneck lies in data processing and analysis.

(ii) Velocity – speed at which WES data per sample is

generated and accumulated. For example, a sequencing
facility in 2013, equipped with 50 or so Illumina HiSeq
2000s and 2500s sequenced four exomes for every whole
genome and had a capacity of some 2,000 exomes per
week (Perkel, 2013). By 2018, the latest Illumina NovaSeq
6000 System is able to sequence a human genome (30×,
>120 GB) at a pace of every 55 min, and an exome

Frontiers in Genetics | www.frontiersin.org 3 February 2019 | Volume 10 | Article 49

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Suwinski et al. Exome Big-Data Analytics in Medicine

(100×, ∼8 GB) every ∼5 min (Illumina, 2018). This
empowers users to high-throughput sequence up to 48
human genomes or close to 500 exomes per run in less
than 45 h.

(iii) Variety – the different attributes of WES data. One
aspect of this can be in terms of the five Ws and
one H: what (WES), who (gender/age/ethnicity), why
(diseased versus healthy), where (organ/tissue/cell), when
(day/month/year), and how (accuracy/coverage)? For
example, a 100× (how?) WES dataset (what?) can be
generated from a centenarian (who?) with tumor (why?)
in the neck and bladder (where?) that is in the late
stage (when?).

(iv) Veracity – confidence or trustability inWES data.Various
sources of errors and confounding factors can affect the
confidence or trustability of the sequencing data. For
example, because of mismapped shortreads, mosaicism,
and sequencing errors, variant callers can end up predicting
close to sevenfold more than the ∼3 million variants
in an individual human genotype (Robasky et al., 2014).
It is challenging to differentiate small mutations from
random errors generated during sequencing (Hofmann
et al., 2017). Additionally, a major shortcoming of WES
is the uneven coverage of sequence reads over the exome
targets, contributing to many low coverage regions, which
affect the downstream analysis, and thus, hinder accurate
variant calling (Wang Q. et al., 2017). For example, some
regions are still poorly captured (coverage as low as 10×)
in a sample with a high average read depth (>75×),
which can cause potentially out-turn in missed variant
calls (Hoischen et al., 2014).

(v) Variability – inconsistencies and multitude of

dimensions in WES data. Inconsistencies can include
anomalies and outliers, which can be picked up using
analytical methods; it can also include inconsistent speed
at which data is loaded into the repository. A patient could
have a totally or partially rearranged genome as seen in
those with autism in one extreme of anomaly (Tabet et al.,
2015). Multiple data dimensions can result from disparate
data types and sources.

(vi) Validity – WES data accuracy and readiness for

analysis. In 2017, the accuracy of various variants calling
pipelines was investigated for exome sequencing by the
PrecisionFDA Hidden Treasures – Warm Up challenge, a
contest run by the FDA to promote more accurate genetic
screening (PrecisionFDA, 2017). Edico DRAGEN received
the highest overall score and Saphetor was the second.
Besides a choice in computational pipeline, sequencing
artifact can also affect the search for reliable results in
the exome sequencing data, particularly in identifying the
properties that distinguish false positive variants from true
variants. To overcome this, a trio design strategy (father,
mother and child) had been used to filter out (removing
sequencing artifacts) and retain true mutations (Patel
et al., 2014). As for readiness from raw data to analysis,
for example, DeepVariant, using Google Cloud, can take
∼70 min (time estimate does not include mapping) for

a whole genome at 30× coverage, and ∼25 min for an
exome (DeepVariant, 2016).

(vii) Vulnerability – WES data security and data breach.

Human genomic data has the potential to reveal sensitive
information and is potentially re-identifiable, as such
privacy and security are often at risk. Several studies
have reported vulnerability of the human genomic data,
which enables re-identification of patients from an
‘anonymous database’ (Homer et al., 2008; Gymrek et al.,
2013; Harmanci and Gerstein, 2016). Shringarpure and
Bustamante (2015) demonstrated that an individual can
be re-identified by repeatedly querying the genome data
sets via an open-access Beacon for alleles associated
with an individual’s genome. Moreover, there are also
concerns surrounding the policy and practice of returning
genome sequences back to research participants (Wright
et al., 2017), whereby substantial resources are required to
ensure the safety return of that whole data to individual
participants (Kaye et al., 2014).

(viii) Volatility – how long before the WES data is considered

obsolete or irrelevant. Currently, the driving factor behind
WES is the favorable cost, when compared to WGS. WGS
is more powerful than WES for the detection of potential
disease-causing mutation within WES regions, especially
in those regions due to single nucleotide variants (SNVs)
(Belkadi et al., 2015). Additionally, WGS is also more
comprehensive than WES, and thus more useful when the
disease causing variant is not in the exome, as in the case of
limb malformation due to mutation in the limb enhancer
of sonic hedgehog gene (SHH) (Visel et al., 2009). Thus, in
the future, when the cost for WGS reduces to the point of
being equivalent or lower than the current cost of WES,
then the relevance of WES data becomes questionable.
Thus, one may consider that the attractiveness of WES
for clinical use is of a limited shelf-life, subject to WGS
becoming affordable to the masses. It is estimated that by
2020 or later, the cost for WGS may be as low as USD
100 (Herper, 2017).

(ix) Visualization – how challenging it is to visualize WES

data. Visualization of sequence data is an important
tool for researchers and clinicians, especially those
without extensive IT skills. Exome data is currently
visualized through various popular browsers (Table 1) that
provide a gene- and transcript-centric display of variation
(Karczewski et al., 2017), with extensive functionality
for comparative analysis, as well aggregation of available
knowledge. However, plotting graphical representation
of NGS data in real-time comes with a cost: higher
computational requirements (computing power, memory,
and storage) and faster Internet. Additionally, many
of the genome Internet viewer use older annotation
databases than those installed locally, which might
be a significant restriction. For example, viewers only
accepting sequences aligned to GRCh37/hg19 assembly
(current version GRCh38), support dbSNP version 141
(current version is 151), and Ensembl VEP 85 (current
version 94). Increasing complexity of viewing data adds
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TABLE 1 | List of biological databases and bioinformatics tools relevant for

data-warehousing, alignment, processing or analysis of sequence reads.

Category Bioinformatics tools Reference

Read alignment BWA Li and Durbin, 2009

Bowtie Langmead, 2010

Annotation Annovar (Qiagen) Qiagen, 2018a

Variant Effect Predictor (Ensembl) McLaren et al., 2016

SNPsift and SNPeffect Cingolani et al., 2012

Variant Annotation Integrator

(UCSC)

Hinrichs et al., 2016

NCBI Variant Annotation Church et al., 2013

Sift4G Vaser et al., 2016

WGS annotator (runnable on the

Amazon Compute Cloud)

Liu et al., 2016a

Visualization NCBI Variant Viewer National Center for

Biotechnology

Information, 2018

UCSC Genome Browser Kent et al., 2002

ENSEMBL Genome Browser Stalker et al., 2004

ExAC browser Karczewski et al., 2017

Integrative Genomics Viewer (IGV) Thorvaldsdottir et al.,

2013

Personal Genome Browser (PGB) Juan et al., 2014

3D Genome Browser Wang et al., 2018b

Data-warehousing ClinVar (clinical significance) Landrum et al., 2014

dbSNP (NCBI main variant

annotation database)

Sherry et al., 2001

dbNSFP (variants damage

prediction using many in silico

algorithms)

Liu et al., 2011

COSMIC (Catalogue of Somatic

Mutations in Cancer)

Forbes et al., 2017

GWAS Catalog Welter et al., 2014

GWAS Central Beck et al., 2014

Cancer Atlas Liu et al., 2018

RefSeq Pruitt et al., 2005

PANTHER Thomas et al., 2003

TCGA (The Cancer Genome Atlas) Weinstein et al., 2013

ICGC (International Cancer

Genome Consortium

Zhang et al., 2011

Analytics Genome Analysis Toolkit (GATK) DePristo et al., 2011

MuTect Cibulskis et al., 2013

OTG-snpcaller Zhu et al., 2014

ASEQ Romanel et al., 2015

Halvade-RNA Decap et al., 2017

GT-WGS Wang et al., 2018a

EXCAVATOR2 D’Aurizio et al., 2016

KaryoScan Maxwell et al., 2017

AI-based analytics Exomiser Smedley et al., 2015

DeepVariant Knight, 2017

Deep Genomics Knight, 2017

Qiagen (Ingenuity Variant Analysis

and Ingenuity Pathway Analysis)

QIAGEN, 2018b

Golden Helix (VarSeq, VSCkinical) Golden Helix, 2017

Advaita (iVariant/iPatway/iBio

Guides)

ADVAITA, 2018

Lifemap Sciences TGexTM, 2018

additional needs for storage, as in the example of
the 3D Genome Browser requiring at least 10 GB
for compressed data (1T for uncompressed). Newer
genome viewers utilizing cloud computing technology
are gaining popularity as they provide good resource
optimization, satisfactory performance and affordability for
those requiring commercial license (e.g., DNAnexus).

(x) Value – usefulness of WES data. Genomic data has clearly
established its fundamental value, while exome data as a
focus on the coding sequences does have its contribution
in improving health outcomes. For example, WES provides
value to the medical system through better ability to give
patient-directed care, to anticipate future medical needs
and avoid unnecessary interventions. As a diagnosis to a
family, it diminishes the need for other testing; and allows
new gene discovery and re-analysis of old data with new
information (Mayo Clinic, 2017).

The 10 Vs, characteristic of big data are applicable to WES
(Figure 1), and thus, they naturally extend to WGS. The value
each sequencing approach brings would be useful at different
levels. The limitation of WES, however, relative to WGS is the
focus on the coding sequences. With the expected cost reduction
ofWGS, it remains to be seen ifWES remains useful for discovery
and statistical analysis. Nonetheless, targeted sequencing, both
WES and amplicon, are expected to remain relevant, similar to
genotyping, as a way to concentrate the research resources, akin
to “less is more.”

NEW GENERATION OF BIG DATA
ANALYTICS

NGS Technological Platforms and
Approaches
The completion of the human genome project marked the start of
an era of significant growth in genome sequencing technologies,
termed as “Next Generation Sequencing.” This resulted in various
NGS techniques, besidesWGS andWES, such as RNA-seq, Chip-
seq, and Bisulfite-seq and the accompanying development of
tools for data analysis (Table 2).

There are currently two major approaches in NGS technology,
whether performing WES or WGS. Short read sequencing
approach, such as by use of Illumina HiSeq X, provides a
reduced cost and higher accuracy data, which are geared
toward population level studies and clinical variant discovery,
whilst, long read approaches, such as by use of PacBio’s single
molecule real-time (SMRT) sequencing machines, are designed
more for de novo genome assembly applications or isoforms
discovery (Goodwin et al., 2016). Short read massive parallel
sequencing has emerged as a standard tool for clinical use
(Ardui et al., 2018). However, there are inherent limitations,
such as GC bias, difficulties mapping to repetitive elements,
trouble discriminating paralogous sequences, and difficulties
in phasing alleles. These obstacles can be addressed by long
read single molecule sequencers. Additionally, they offer higher
consensus accuracies and detection of epigenetic modifications.

Frontiers in Genetics | www.frontiersin.org 5 February 2019 | Volume 10 | Article 49

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Suwinski et al. Exome Big-Data Analytics in Medicine

FIGURE 1 | The 10 Vs big data characteristics of whole exome sequencing.

TABLE 2 | Comparison of various NGS technique and primary analysis tools.

NGS techniques Study aim(s) Data size per sample Tool(s) used Reference

WGS De novo assembly ∼90 GB Velvet, SOAPdenovo Zerbino and Birney, 2008; Luo

et al., 2012

WES Protein-coding variant identification ∼5–6 GB Edico DRAGEN, GATK,

Samtools

Li et al., 2009; McKenna et al.,

2010; Edico Genome, 2018

RNA-seq Gene expression, novel isoform

discovery

∼3–4 GB DESeq, Cufflinks Anders and Huber, 2010; Trapnell

et al., 2012

ChIP-seq Protein–DNA interaction study, i.e.,

identification of histone marks and

transcription factor binding sites

∼1–2 GB QuEST, MACS Valouev et al., 2008; Liu, 2014

Bisulfite-seq DNA methylation sites identification ∼1–2 GB BS Seeker Chen et al., 2010

Nonetheless, their utility in the clinical setting has been limited
because of low throughput and high cost.

The WES data can be obtained using different technological
platforms. First generation sequencing, e.g., Sanger sequencing, is
based on chain termination and electrophoretic separation for the
detection of newly incorporated nucleotide. It is a slow and costly
process, but a highly accurate method. It is routinely used for
confirmation of genomic alteration discovered by other methods
(Sanger et al., 1977). To speed up the sequencing process, new
technology was developed that uses chemical reaction and optical
detection in a massive parallel process. These technologies are

often called the NGS or second generation sequencing and
include proprietary methods, such as sequencing by synthesis
(SOLEXA/Illumina), sequencing by ligation (SOLiD/Life
Technologies), pyrosequencing (454/Roche), and semiconductor
sequencing (Ion Torrent) (Buermans and den Dunnen, 2014;
Kchouk et al., 2017). Each of them has specific application
based on their advantages and weak points. Very often the use
of these technologies is determined by the length of the reads
length, the accuracy of base calling, and the cost per base-pair.
Third generation of sequencing technology is characterized by
departure from amplification via sequencing of just one DNA
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molecule (or one cell DNA) using physical properties of DNA.
Oxford Nanopore is one of the industry leading companies that
commercialized the technology, which uses electrical impedance
to detect the nucleotide passing through a membrane. Some
sources distinguish 4th generation of sequencing technology
for real-time single molecule sequencing (SMaRT). Although
they accuracy is still below the second generation sequencing
machines, they are the perfect tools for point-of-care (Laver et al.,
2015; Lee et al., 2016).

When performing WES, a key consideration factor is the
selection of the exome capture kit, more than the choice
of platform. Various commercials kits are available, such as
Agilent SureSelect XT, Agilent SureSelect QXT, NimbleGen
SeqCap EZ and Illumina Nextera Rapid Capture Exome. They
use biotinylated DNA or RNA baits, which are hybridized to
genomic fragment libraries. Yet they differ in target region
selection, bait length, bait density, molecule used for capture and
genomic fragmentation method. If the aim is to detect SNVs
and indels in untranslated regions (UTRs), then NimbleGen
platform stands-out, while both Agilent XT and Illumina
perform similarly for SNV and indel detection in coding
regions (Shigemizu et al., 2015).

NGS Data Analysis
Medical conditions that are genetically determined or have
a strong genetic component arise from a variety of DNA
alterations. These molecular events include SNV [referred to
as single nucleotide polymorphism (SNP)] if they occur to
some appreciable degree (>1%) in a population) and structural
DNA changes, such as copy number variation (CNV), short
insertions and deletions (indels), repetitions, large insertions and
deletions, translocations (can result in fusion genes), inversions,
aneuploidy, and ploidy (Ye et al., 2016).WES is primarily used for
the detection of SNV/SNPs and indels within the coding regions
of a genome.

Massive parallel sequencing of short reads through NGS
generate big data, which has to be aligned (mapped to a reference
genome or generate de novo genome sequence) for analysis.
When a reference genome is available, the first step in data
analysis is mapping the reads onto the reference genome (Shang
et al., 2014). The intention is to “stack” each reads on the reference
genome “floorplan.” If the template molecules are mRNA (thus,
known as RNA-seq), the “height” of each stack corresponds to the
abundance of mRNA for the specific genomic locus (Conesa et al.,
2016; Zhao et al., 2018), at the resolution of each nucleotide. In
the case where the template molecules are DNA (thus, known as
DNA-seq), the “height” of the stack corresponds to the multiple
of copy number and number of haploids. In this case, SNPs is
rendered as mismatches on the stack (Kumar et al., 2012). In an
event where a reference genome is not available, de novo assembly
or genome annotation can be used. De novo assembly is based on
the premise that each read may be overlapping and can be used to
generate a contig assembly (Cho et al., 2015; Deng et al., 2015; de
Sá et al., 2018), much like an assembly from shotgun sequencing
(Staden, 1979; Hung et al., 2013). Once a contig is rendered, it can
be used as a proxy to a reference genome. Genome annotation
(Nagasaki et al., 2013; Menon et al., 2016), on the other hand, is

direct analysis of the reads by two steps. In the first step, each
read is annotated using tools such as BLAST (Altschul et al.,
1990), functional annotations using tools such as InterProScan
(Jones et al., 2014), or pathways by sequence similarities to known
enzymes. This is sometimes known as read annotation. This is
followed by the second step during which reads are mapped
onto a scaffold; such as, a genome or a pathway map. When
mapped by BLAST to another genome; for example, BLAST of
Bacillus subtilis NGS data to Escherichia coli genome; then E. coli
genome can be used as a reference genome. As such, there are
commonalities between all these methods (mapping to reference
genome, de novo sequencing, and genome annotation) of data
analysis as the end result requires themapping of reads onto some
form of scaffolding substrate. When NGS data is functionally
annotated to known proteins or pathways, the set of proteins or
pathways will be used as a reference and transcript abundance or
SNP calls can be made.

The Broad Institute had developed a set of tools, the Genome
Analysis Toolkit or GATK (DePristo et al., 2011), for analysis
of reads with the ability to combine various tools within GATK
into a workflow for better documentation and reproducibility.
GATK can be accessed at https://software.broadinstitute.org/gatk
and various example workflows are also publicly available at
https://software.broadinstitute.org/gatk. As more tools are added
to do GATK, the possibility of workflows is virtually endless. For
example, do Valle et al. (2016) had combined GATK and MuTect
(Cibulskis et al., 2013), another tool by the Broad Institute and
had been included into GATK, for more accurate SNP calls.
Hence, it is foreseeable that combinations of existing tools may
yield better results than individual tools, which also demonstrates
the advantage of workflows. A volume of recent studies (Ahn
et al., 2016; Engelhardt et al., 2017; Kim et al., 2017; Coudray
et al., 2018; Han et al., 2018) had used GATK for mutation/SNP
analysis using WES data. For example, Artomov et al. (2017)
performed WES on more than 10,000 patients and analyzed
the data using GATK to identify rare variants in hereditary
melanoma. From this study, a mutational landscape of cutaneous
and ocular melanoma, and implicated Early B Cell Factor 3
(EBF3) as a potential cutaneous melanoma pre-deposition gene.
Table 1 provides a list of biological databases and bioinformatics
tools relevant for data-warehousing, alignment, processing or
analysis of sequence reads.

Since GATK and MuTect, several other tools had been
published, including a number that utilize GATK. For example,
OTG-snpcaller (Zhu et al., 2014) combined Ion Torrent’s
Mapping Alignment Program (TMAP) and GATK for SNP
calls. This had been used in WES analyses, leading to the
identification of a missense mutation in sodium voltage-gated
channel alpha subunit 8 (SCN8A) in a clinical presentation of
early infantile epileptic encephalopathy type 13 (Malcolmson
et al., 2016). ASEQ (Romanel et al., 2015) is designed to perform
gene-level allele-specific expression analysis from genomic and
transcriptomic NGS data to identify allele specific features,
and had been used to analyze chemotherapy-resistant urothelial
carcinoma for insight that can be used to develop new treatment
modalities (Faltas et al., 2016). Halvade-RNA (Decap et al., 2017)
re-implements GATK workflow to take advantage of parallel
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processing to reduce processing time and achieve 93.8% overlaps
in variant identification.

Besides SNP calls, tools for detecting structural variations are
also developed. For example, CNNdel (Wang J. et al., 2017)
uses convolutional neural network on the output from various
feature analysis tools to identify structural variations. GT-WGS
(Wang et al., 2018a) takes advantage of Amazon Web Services
to process NGS data and achieves 99.9% consistency with GATK
best practice in SNP and indel calls. CNVs and larger structural
changes still can be identified as long as they are limited to
exonic regions. This is possible through the application of
bioinformatic algorithms capable of accurately measuring read’s
depth and allelic imbalances in the aligned sequence (BAM file).
EXCAVATOR2 and KaryoScan are examples of such methods
with the former being able to detect CNVs and the latter
large chromosomal aberrations and changes to chromosome
numbers (D’Aurizio et al., 2016; Maxwell et al., 2017). WES is
not recommended to be used for translocations and repetitions
(e.g., tandem repeats), because of their tendency of having break-
points or extending beyond genic space (Belkadi et al., 2015).

New Generation Analytics for
Multi-Omics Big Data
Although data generation is not an issue with the advent of NGS
and there are bioinformatics tools and databases to handle the
resulting big data, the upcoming long read, single DNA molecule
sequencing, such as the Oxford Nanopore, can offset the volume
of data generation from the second generation NGS. However,
while the sequencing data can be decreased, the omics data
needed for personalized medicine presents higher complexity
and is more voluminous than second-generation sequencing
data, and would require continuous evolution or new generation
of bioinformatics tools and data-warehousing approaches. For
example, in April 2016, AstraZeneca announced an integrative
genomics initiative to transform drug discovery and development
by delivering novel insights into the biology of diseases,
identifying new drug targets, supporting patients’ selection for
clinical trials and matching patients to the therapies most likely
to benefit them, a.k.a personalized medicine (Gameiro, 2016).
The initiative included collaborations with Human Longevity,
The Wellcome Trust Sanger Institute, United Kingdom, and The
Institute for Molecular Medicine, Finland. In order to deliver
the bold initiative, AstraZeneca established an in-house Centre
for Genomics Research, which will sequence and analyze up
to two million genome sequences (WGS and WES), including
500,000 samples from their clinical trials by 2026. Working in
collaboration with DNAnexus (Business Wire, 2017), the use
of a secure cloud-based translational informatics platform was
adopted (Business Wire, 2017) to allow for warehousing and
analyses of unprecedented massive volume of raw sequencing
data rapidly and economically. This was aimed at enabling the
processing of samples from thousands of patients per week and
the sharing of data easily and safely with collaborators around the
world. The platform also provides a secure environment where
genetic data can be combined with de-identified clinical data,
paving the way for novel scientific insights.

THE CLINICAL UTILITY LANDSCAPE OF
GENOMIC INFORMATION

Pharmacogenetics
Personalized medicine, as the tailoring of clinical interventions,
is mostly pharmacological, based on a person’s ability to respond
favorably; for pharmacological agents this entails metabolic
capability to process them. The CYP450 family of enzymes
are responsible for phase one of xenobiotics metabolism, and
their activity can be altered by genetic variants located in their
respective genes. Identifying such genetic variants can help
in predicting drugs’ pharmacokinetics and pharmacodynamics,
which can then assist clinicians in selection of interventions that
will achieve desirable therapeutic effect without toxicity (Evans
and Relling, 2004; Feero et al., 2008; Whirl-Carrillo et al., 2012;
Carr et al., 2014). For drugs with a narrow therapeutic range, such
as blood-thinning agents, a small functional activity change can
result in either a too low or a too high physiological effect that can
lead to health complications. Adverse drug reactions (ADRs) are
reported to be one of the major causes of morbidity and mortality
that can easily be avoided. In the United States, 3% of registered
drugs carry FDA recommendation for genetic tests (FDA, 2018).

Cancer Therapeutics
Besides predicting the response to common drugs, genetic
information is also used in matching targeted cancer therapeutics
(Johannessen and Boehm, 2017). While pharmacogenetics
for common drugs detects germline variants, cancer
pharmacogenetics is for selecting small molecule inhibitors
and analyzing somatic variants from tumor cells. As cancer
is predominantly a genetic disease, tumor DNA analysis is
routinely deployed for molecular characterization of the cancer
cells, as well as treatment prognostics and monitoring. Obtaining
tumor samples for genetic analysis can be a challenge if the
growth is small or inaccessible. In recent years, liquid biopsy
has been successfully applied to obtain a tumor circulating free
DNA. It is now possible to use liquid biopsy for early cancer
detection, prognostics, and treatment selection and monitoring.
Unfortunately, the cost of cancer genetic tests and targeted
treatments are still very high, making them inaccessible in less
developed countries.

Reproductive Health
Reproductive health is another area that has benefited fromWGS
and WES. Shallow WGS (3X) is performed for preimplantation
assessment of embryos. It is also used for gender selection.
Non-Invasive Prenatal Test (NIPT) is a combination of liquid
biopsy and WGS for the detection of trisomies or other large
chromosomal rearrangements in the fetus cells. It is possible to
replace WGS with a higher coverage WES for both tests, which
could make the tests more affordable (Pray, 2008).

Multifactorial Diseases
The clinical utility of genomic information for multifactorial
diseases still lacks enough predictive power and strong scientific
evidence. However, the advances in bioinformatics technologies,
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allowing multi-omics analysis, is showing promising results.
There are already reports about polygenic risk score for complex
medical conditions attaining similar predictive power as genetic
risk assessment for monogenic diseases (Khera et al., 2018).

THE RISE OF ARTIFICIAL INTELLIGENCE

AI-Driven Genomics
High costs and limitations in terms of technologies have
remained the main barriers for the greater omics-based
implementation of personalized medicine. AI-driven machines,
are being deployed to cut costs, especially in overcoming
the enormous volume of collected patient data. For instance,
Congenica’s Sapientia uses the Exomiser tool to accelerate the
annotation and prioritization of variants from whole-exome
sequencing in the diagnosis of rare diseases (Smedley et al., 2015).
Sapientia empowers clinical decision-making by organizing the
data into an easily comprehensible fashion, which helps to cut
diagnosis times down from 5 years to 5 days (Congenica, 2018).
AI-driven machines are even predicted to perform better than
humans, from driving a truck (as autonomous vehicles) by 2027,
writing a bestselling book by 2049, to performing a surgery by
2053 (Grace et al., 2018).

Meanwhile, tech giants, such as Google and its competitors
are furiously adding machine-learning features to their cloud
platforms in an effort to attract people to tap into the latest AI
techniques (Knight, 2017). For instance, Deep Genomics uses
deep learning to tease out genetic causes of diseases and potential
drug therapies, and Wuxi’s Nextcode, which invested heavily in
machine learning methods, are among the companies behind
such efforts.

The Google Brain team, a group that focuses on developing
an AI application and Verily, another Alphabet subsidiary that
focuses on life sciences, released a tool known as DeepVariant that
uses the latest AI techniques to construct a more accurate picture
of a person’s genome from their sequencing data (Knight, 2017).
It automatically identifies insertion, deletion and single-base-
pair mutation in sequencing data. Millions of high-throughput
reads and genomes from the Genome in a Bottle (BIAB) project,
No Author (2015), were collected to feed the data to the
deep-learning system and the parameters of the model was
painstakingly tweaked until it learned to interpret the sequences
data with a high level of accuracy (Knight, 2017). In 2016,
DeepVariant won the first place in the PrecisionFDA Truth
Challenge, in the best SNP performance category, and thus
highly accurate. DeepVariant is also extensively fast, robust, cost
efficient, flexible, easy to use, and where you need it by using
Google Cloud Platform (DeepVariant, 2016).

Omics Analytics Powered by AI
Technologies
AI can improve statistical computation, but it needs more data
to do the guess-work (Lopes et al., 2012; Topol, 2014; Carter
and He, 2016; Camacho et al., 2018). Although the size of
NGS data is significantly dropping, thanks to the introduction
of single-molecule sequencing (Oxford Nanopore) (Rabbani

et al., 2014; Halvaei et al., 2018), the downstream AI analysis
requires exponential volumes of longitudinal data for making the
genotype–phenotype connection as accurate as possible. While
the quest for more robust causal algorithms is underway, a
number of bioinformatics tools have been developed aiming to
link sequence variants with biological metadata and phenotype.
These new generation tools provide in silico assessment of omics
data, derived from WGS or WES, and analytical capacity (often
deploying AI) for variants prioritization/phenotype scoring
(Shihab et al., 2013; Liu et al., 2016b). This approach has
already proven to generate sufficient predictive power that can
be compared to the prediction of Mendelian diseases (Khera
et al., 2018). The next step entails the translation of scientific
findings into easily understood medical standards, similarly to
how pathology test results are reported, and there are already
available templates developed for reporting WES findings.

Still, it might take a decade before the new technologies
will enter mainstream medicine. The main reason for the slow
adoption of genomic information, besides regulatory barriers,
is the clinicians’ readiness and acceptance of incorporating the
NGS findings into their routine case management (Metcalfe et al.,
2009; Vassy et al., 2015a). Having clinician-friendly reporting
will definitely speed-up the uptake process (Vassy et al., 2015b;
Manolio, 2017).

In recent years, some companies have made inroads into
NGS clinical reporting using omics analytics powered by AI
technologies. In the industry sector of integrated WGS/WES
clinical reporting, there are at least four commercial entities that
offer clinician-friendly analytics and reporting:

• Qiagen (Ingenuity Variant Analysis and Ingenuity Pathway
Analysis) (QIAGEN, 2018b)

• Golden Helix (VarSeq, VSCkinical) (Golden Helix, 2017)
• Advaita (iVariant/iPatway/iBio Guides) (ADVAITA, 2018)
• Lifemap Sciences (TGexTM, 2018)

All four solutions are available through a Web-based interface
and offer clinical prioritization (using as input Variant Calling
File – VCF) that deploys some aspect of AI. Qiagen applications
(Annovar is part of the suite) are the clear leaders, as traditionally
most genomic laboratory companies use their offerings (Krämer
et al., 2014). In terms of innovation, the sheer depth of knowledge
and the ease of generating clinical reports makes Lifemap
Sciences and its clinical exome analysis suite (TGex) the top
scorer (Ben-Ari Fuchs et al., 2016; Stelzer et al., 2016a,b). It
is by far the most clinician-friendly WES analysis pipeline and
reporting. It is also one of the most affordable on the market.
It compiles over 110 different biological databases, ranging from
gene ontology (GO) and biological pathways, through network
interdependencies, transcriptional expression, and ending at
phenotype essentialities. Because of its coverage of omics data
(width and depth), many bioinformatics analytical tools utilize
their resources including the companies mentioned above.

AI is most commonly deployed at two levels within clinical
bioinformatics: in silico gene damage scoring (mostly Markov
Hidden Model) (Liu et al., 2016b; McLaren et al., 2016; Feng,
2017) and prioritization and phenotype scoring, where various
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FIGURE 2 | The changing paradigms of personalized medicine. (A) Notable timelines in Genomics and Personalized Medicine, including the data storage size for the

four big data domains by 2025, with genomics either on par or the most demanding of the domains (Stephens et al., 2015). (B) The intersection of big data analytics

and WES for advancement of personalized medicine. The drawings are not to scale.
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text mining algorithms are adopted. Other than that, AI is still
a research tool until large longitudinal data, and more robust
informatics frameworks are available. It is worth mentioning that
one of the main strengths of AI in clinical practice is the area of
image recognition (Alyass et al., 2015; He et al., 2017; Lytras and
Papadopoulou, 2018). Many research studies are incorporating
AI image processing with pathology and clinical imaging to
improve diagnostic decision-making.

Artificial intelligence tools incorporating omics data are still a
nascent development; they are a valuable addition to the existing
bioinformatics application arsenal and a valuable connection
between medical molecular geneticists and frontline clinicians.

FUTURE CONSIDERATIONS

The advancement of personalizedmedicine inmanyways is being
driven by the intersection of big data analytics andWES. Figure 2
illustrates the changing paradigms of personalized medicine.
Notable timelines in Genomics and Personalized Medicine are
showcased, including the data storage size of the four big data
domains by 2025, with genomics either on par or the most
demanding of the domains (Stephens et al., 2015). However,
there are many barriers still for WES to have a wider use
in mainstream medical practice. The major challenges include
results reproducibility, reporting standards, and affordability.

Results Reproducibility
A recent study conducted by the American College of
Medical Genetics and Genomics (ACMG) showed significant
variability in results reproducibility between different genetic
laboratories. As a result, the Association together with
industry players have developed the standards for genetic
tests assessment. Although it is still voluntary, laboratories are
encouraged to validate their products against industry standards
(Amendola et al., 2016).

Reporting Standards
Standards for reporting results of genetic tests have also been
developed by ACMG; however, they only address pathogenic
variants detected in ACMG recommended 59 genes. TheHarvard
School of Medicine, in collaboration with Healthcare Partners,
designed a more comprehensive template for reporting results
related to genetic diseases, polygenic/multifactorial diseases, and
pharmacogenetics (Vassy et al., 2015b). It has to be noted that
the polygenic risk score is based on odds ratios reported in the
GWAS database (Table 1). Conditions with variants without
odds ratios or P-value score cannot be assessed. The main
objective of the reporting template was to present genomic tests

results in a clinician-friendly manner so that it can be even
used at all levels of health care services, including primary
care physicians (Metcalfe et al., 2009; Harvard Medical School,
2015; Manolio, 2017).

For omics based genomic analysis, no standard template exists
and each laboratory reports use their own standards. As the
goal of multi-omics prioritization is to detect variants, functional
effect on genes and possible genes’ phenotypic essentiality, the
practical way of reporting would be to focus on the Loss of
Function/Partial Loss of Function (LOF/PLOF) and phenotype
essentiality scoring.

Affordability
Generally, genetic tests are expensive (Topol, 2014; Kong et al.,
2015; Bomba et al., 2017; He et al., 2017). The tests can be divided
into two technological groups: genotyping and sequencing.
Genotyping tests are less costly (USD 100–400), but analyze
a limited number of variants, genes (regions). Since scientific
progress produces new information on a daily basis, genotyping
tests need to be repeated when current findings are included.
Sequencing, on the other hand, is much more expensive (>USD
400) but detects variants at any location within the queried
region. Also, the clinical utility of sequencing is higher, and
there is no need for repeated tests. The cost of WGS is still
prohibitive (>USD 1000) for routine application in medical
practice. It also produces a large amount of unusable data. Amore
practical approach is the sequencing of all coding and flanking
regions (WES), which covers between 3 and 6% of the genome,
and the cost for commercial use can be as low as USD 400
(Macrogen Korea, 2017). The affordability, actionable data, no
repeated tests required, and lower junk data makesWES a genetic
test of choice (Vissers et al., 2017). Unfortunately, the total
cost of WES clinical interpretation is still high (>USD 1000),
which makes it more of a premium service rather than first
line modality. The affordability of WGS and WES sequencing
tests can be dramatically increased provided health insurance
companies agree to reimburse the cost.
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