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ABSTRACT

This work seeks to advance quantitative methods for biomolecular design, especially for predicting biomolecular
interactions, via a focused series of community blind prediction challenges. Physical methods for predicting binding
free energies, or “free energy methods”, are poised to dramatically reshape early stage drug discovery, and
are already finding applications in pharmaceutical lead optimization. However, performance is unreliable, the
domain of applicability is limited, and failures in pharmaceutical applications are often hard to understand and
fix. On the other hand, these methods can now typically predict a variety of simple physical properties such as
solvation free energies or relative solubilities, though there is still clear room for improvement in accuracy. In
recent years, competitions and crowdsourcing have proven an effective model for driving innovations in diverse
fields. In our field, blind prediction challenges have played a key role in driving innovations in prediction of physical
properties and binding, especially in the form of the SAMPL series of challenges. Here, we will continue and
extend SAMPL prediction challenges to include new physical properties, more complicated host-guest binding
data, and application to biomolecular systems. Carefully selected systems and novel experimental data will provide
challenges of gradually increasing complexity spanning between systems which are now tractable to those which
are marginally out of reach of today’s methods but still slightly simpler than those covered by the Drug Design
Data Resource (D3R) series of challenges on existing pharmaceutical data. We will work with D3R to run blind
challenges on the data we generate and to ensure it is designed to maximally benefit the field.

In Aim 1, we will collect new measurements on partitioning, distribution, and protonation of drug-like compounds,
in collaboration with partners in the pharmaceutical industry. In Aim 2, we leverage our expertise in host-guest
binding to generate new data on host-guest binding in cucubiturils and deep cavity cavitands. And in Aim 3, we
use high-throughput robotic experiments to generate new protein-ligand binding data of biological relevance. Aim
4 focuses on using this data in the SAMPL series of challenges, applying proven crowdsourcing-based techniques
to drive the development of new methods and new understanding of the strengths and weaknesses of existing
techniques. We will also run reference calculations with the latest techniques.

This work will ensure the continued success of SAMPL challenges which have already driven considerable
innovation in the field and been the focus of 100 different publications (each typically cited 5-50 times) since
their inception around 2007, and will play a key role in driving the next several generations of improvements in
computational techniques for molecular design. The research proposed here will lead to significant improvements
in the predictive power of physical models for drug discovery, molecular design and the prediction of physical
properties.



SPECIFIC AIMS

While computational techniques are widely used in pharmaceutical drug discovery, current generation technologies
(such as docking) are unsuitable for true molecular design. Specifically, these techniques fail to to predict small
molecule binding affinities to target and antitarget biomolecules with sufficient accuracy for many applications.
While virtual screening techniques can improve enrichment, they lack the accuracy to guide molecular design. A
new generation of physical techniques, alchemical free energy calculations, are poised to fill this void by providing
quantitative, predictive tools useful in multiple stages of the drug discovery pipeline.

Recent success of alchemical methods in predicting accurate affinities has sparked considerable enthusiasm, but
the domain of applicability of these techniques is currently highly limited; broad application and routine use will
require further evaluation, refinement, and development. There is a vast gulf between targets within the domain of
applicability and those which are outside it, frustrating progress. Bridging this gulf will require focused study of
carefully selected systems of intermediate complexity. Without such a bridge, these techniques may encounter the
same problems faced by docking and related techniques: routine failure without clear insights into why, and years
to decades spent making small methodological modifications without dramatic improvements in predictive power.

We propose a carefully designed, crowdsourcing-based model to drive innovation to bridge this gap. Specifically, we
will collect targeted experimental datasets that highlight and focus the community on specific modeling difficulties,
fielding blind prediction Challenges to spur new, crowdsourced methodology innovation from the community. This
model has been proven to drive progress in a given area, both inside the computational biology community [1–6],
and for even more visible projects like Netflix [7] and the XPrizes [8–10]. Here, we design an extension of the
Statistical Assessment of Modeling of Proteins and Ligand (SAMPL) series Challenges, which allow a wide
variety of different approaches to compete on equal footing on the same data, fostering rapid innovation, quick
recognition of the best new technologies, and dissemination of these to the community. The data we generate
will allow several Challenges of differing difficulty, between systems tractable with current methodologies and
the pharmaceutically-relevant drug targets featured in the NIH-funded D3R effort [11]. Central to this proposal
is collecting targeted data and running blind Challenges to drive progress, but the data itself will have an even
longer-term impact on the community. Our Aims are:

Aim 1. Collect new physical property datasets to assess accuracy and spur improvements in force fields
and modeling of protonation states and tautomers.
We will develop new solution-phase datasets for druglike small molecules. These data can test critical aspects of
small molecule modeling (including accounting for interactions and treatment of protonation/tautomeric state) and
improve our ability to predict physical properties relevant to drug discovery in new regions of chemical space. We
will initially focus on aqueous/nonpolar distribution coefficients and pKa measurements, advancing to solubilities
and membrane permeabilities, while using these data to drive improvements in the modeling of ligand interactions.

Aim 2. Measure affinities of drug-like compounds in supramolecular hosts to challenge quantitative mod-
els of binding in systems not plagued by major receptor sampling issues.
We will measure new host-guest binding free energies (using cucurbiturils and deep-cavity cavitands as hosts) to
field binding Challenges with varying complexity between physical property prediction and protein-ligand binding.
Host guest systems are some of the simplest cases of molecular recognition, and thus these binding data will
drive improvements in modeling of simple binding systems with techniques of relevance to drug discovery.

Aim 3. Develop model protein-ligand systems that isolate specific modeling challenges of drug targets.
We will identify suitable biological protein-ligand model systems that isolate individual modeling challenges (selected
to push the limits of physical techniques) and develop these for blind Challenges based on new protein-ligand
affinity measurements. While the initial year will feature fragment binding to human serum albumin, subsequent
Challenge systems will be selected using a novel informatics platform to focus on timely modeling issues.

Aim 4. Crowdsource innovation via community blind Challenges to advance biomolecular design.
The data collected in Aims 1–3 will drive annual SAMPL Challenges, allowing the field to test the latest methods
and force fields to assess progress, compare them against one another head-to-head, and perform sensitivity
analysis to learn how much different factors (protonation state, tautomer selection, solvent model, force field,
sampling method, etc.) affect predictive power. Results will then feed back into improved treatment of these factors
for subsequent Challenges, driving cycles of application, learning, and advancement – an approach proven to
work in a variety of previous crowdsourcing approaches to science, as well as in prior iterations of SAMPL itself.

Overall, these SAMPL Challenges provide a catalyst to drive the next several generations of computational
methodology innovation, development, and assessment for pharmaceutical drug discovery.



SIGNIFICANCE
Physical modeling is poised to transform drug discovery and chemical biology by enabling true molecular
design. While modeling is used extensively in drug discovery, it mainly assists in idea generation and filtering
large libraries of compounds for screening. Instead, we envision using computational techniques extensively to
guide design. Consider a medicinal chemist in the not-too-distant future who has just received potency data for
newly-synthesized inhibitors against a desired biomolecular target. Before leaving work, she generates ideas
for perhaps 100 new compounds for synthesis, setting her computer to work overnight. By morning, the idea
compounds have been prioritized based on reliable predictions of their affinity for the desired target, selectivity
against antitargets, solubility, and membrane permeability. Looking through the top few compounds, she selects
some for synthesis. If synthesizing and testing each compound takes several days, this workflow could compress
roughly a year’s work into a few days.

While not yet a reality, significant strides have been made toward accurate binding affinities [113–121], solubili-
ties [122–124], selectivity and drug resistance [121, 125], and membrane permeability [126, 127]. A considerable
amount of science and engineering still remains to be done to make this vision a reality, but the question now
seems more one of when rather than whether it is achieved.

Widespread availability of inexpensive graphics processing units (GPUs) provides a 100-fold increase in price-to-
performance ratio over CPUs, while advances in automation [128] and sampling protocols have helped simulation-
based techniques reach the point where they now begin to be genuinely useful in guiding drug discovery for a
limited domain of applicability [116–120, 129, 130]. Specifically, in some situations, free energy calculations appear
to be capable of achieving RMS errors of 1–2 kcal/mol with current force fields, even in prospective applications,
sufficient to drastically reduce the number of molecules that must be synthesized and assayed [117, 121, 131]. As
a consequence, pharmaceutical companies have rapidly adopted these methods in active discovery projects [116].

Despite progress, current modeling methods suffer from severe limitations hindering their widespread
use in molecular design. For example, even “small” protein conformational changes not gracefully handled
by current methodologies can yield errors up to 5 kcal/mol in calculated binding free energies [132], force field
limitations still pose major challenges [133], and the inability to treat important chemical effects like protonation and
tautomer equilibria drastically limits the domain of applicability. For many pharmaceutically relevant systems,
the most important sources of error—and modeling challenges—are not yet clear. [116]

These hurdles frustrate progress in the field. Method developers focus on addressing some specific challenges, but
new methods are tested on disparate datasets making it difficult to gauge progress and identify valuable
methods when they are developed. And applications projects tend not to take advantage of the latest methods—
in part because their utility is not yet clear. As a result, valuable methods can languish relatively unused in the
literature for many years without impacting applications in drug discovery.

We propose an iterated Challenge-based approach to drive methodological innovation via crowdsourcing.
A series of community blind prediction Challenges will test and push the limits of predictive techniques, providing
a bridge between challenging but tractable problems and pharmacologically relevant but currently intractable
problems. Our Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) Challenges take advantage
of proven crowdsourcing-based approaches to science (discussed below), allowing head-to-head comparisons
of existing methods and fostering development of new methods. Regular, progressive Challenges provide an
environment for rapid innovation from “unconventional innovators” [109] from diverse fields who form collaborative
teams, applying and integrating distinct approaches [106].

Meaningful Challenges require new targeted data collection. A key focus of this proposal is on generating
new data to test methods in prospective Challenges in an unbiased way. New data provides additional value over
retrospective tests on literature data: First, we are able to ensure high data quality and ensure we can collect
additional data for the same systems as needed. Additionally, retrospective tests do not test predictive power—they
easily fall victim to significance hacking or inadvertent overfitting [134]. Retrospective work also may utilize prior
knowledge, even if unintentionally. For example, if a ligand binding mode is already known crystallographically, a
researcher may use that binding mode in retrospective tests, whereas prospective or design work requires first
selecting among candidate binding modes, introducing substantial uncertainty unaccounted for in the retrospective
statistics [113, 135, 136]. While discovery projects provide one opportunity for prospective tests, they are not
adequate—partly because often, the predicted compounds are in fact never tested [118] or the experimental data
necessary to assess prediction quality (binding affinities or crystallography, for example) is absent.

Tractable Challenges inspire rapid progress, while Challenges that are too difficult accomplish little [106].



We require high quality Challenges carefully designed specifically to maximize community learning by pushing
the limits of current technology. While the Drug Design Data Resource (D3R [112]) also fields blind Challenges,
these rely on contributed experimental protein-ligand datasets from now-defunct pharmaceutical discovery pro-
grams [112]. D3R Challenges provide a necessary benchmark for real-world performance, but provide only modest
new insight to drive improvement because a multitude of issues are be responsible for poor performance [137].

Methodology improvement is most rapid when complex goals are achieved via tractable intermediate
milestones which can be independently assessed using high quality data [106]. Thus, we focus on using
Challenges to drive and evaluate solutions to specific component problems that make it difficult to predict
biomolecular interactions. The Challenge format allows the entire community to learn from both failure and
success. Much as unit testing is indispensable for identifying software bugs when complex integration tests fail,
Challenges like SAMPL are valuable in pinpointing modeling errors, especially when projects like D3R highlight
overall performance problems. Hence, SAMPL Challenges focus on predicting properties that isolate likely sources
of error, such as physical properties of small molecules (hydration free energies, aqueous tautomer ratios, partition
or distribution coefficients between aqueous and nonpolar phases) or binding in systems of reduced complexity
(such as host-guest complexation, or binding of fragments to trypsin and HIV integrase).
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Figure 1. SAMPL historical participation [138].
Historical participation in SAMPL host-guest + sol-
vation/distribution Challenges has climbed rapidly,
and we expect this trend to continue. The number
of participating groups is shown in blue, and the
number of submissions in green. The inset shows
the diversity of methods employed for the SAMPL4
hydration Challenge, which is typical for SAMPL.
While SAMPL5 had fewer participants, this was be-
cause SAMPL4 included an HIV integrase binding
prediction Challenge, whereas D3R handled such
data after SAMPL4. Despite this shift, the number
of submissions in SAMPL5 was the highest yet.

The SAMPL series of Challenges has already proven it can drive
dramatic improvements in modeling methodologies. SAMPL,
born out of frustration with the lack of venues for comparing predictive
accuracy on a level playing field, was initiated by Anthony Nicholls
of OpenEye software in 2007/2008 [139], and has run Challenges
approximately every two years since then [138, 140–146]. Gover-
nance transitioned to an unfunded academic collaboration among
the PI and co-Investigators during SAMPL3 in 2012; this collabora-
tion ran SAMPL4 (2014), SAMPL5 (2016), currently SAMPL6 (2017-
2018). The PI of this proposal (Mobley) was a primary organizer of
SAMPL4-6 (2014–present). SAMPL has demonstrated its utility as
a valuable community resource, resulting in ∼100 publications
typically cited 5–50 times or more each [1–100]. SAMPL datasets
are so valuable to the community that they foster retrospective tests
long after the Challenges end (e.g. [147–150]).

Until now, SAMPL has relied on donated data and time, making it
impossible to design Challenges specifically to improve modeling as
we propose here. Despite these limitations, our recent survey reveals
that SAMPL has already had a significant effect on the field; past
participants are overwhelmingly enthusiastic about SAMPL and the
plans we propose here [111]. One of our most frequent requests is
for modestly larger datasets, which we propose here. Our proposed
Challenges bridge the gap between calculations of simple physical
properties that isolate force field inaccuracies from slow conformational
sampling inherent to protein-ligand systems—such as hydration free energies, which can already be calculated
fairly accurately [138]—and the D3R Grand Challenges on protein-ligand binding, which are a major source of
community consternation [112, 151–153]. Unless this gap is bridged, there is a very real possibility that modeling
will continue to fall far short of expectations in pharmaceutical systems for reasons which remain unclear [116].

Our major goal is to rapidly advance predictive modeling to enable it to guide biomolecular design; ex-
tending the SAMPL Challenges will accomplish this. This work will play a vital role in enhancing the work being
done on existing data by D3R, helping prepare methods for application to D3R’s pharmaceutical Challenges.

INNOVATION
This work proposes a five-year plan for fielding SAMPL Challenges as an innovation engine for molecular design.
Specifically, collaborative scientific competitions or Challenges are a proven model for inducing innovation [105,
106, 109], applying crowdsourcing to finding and identifying robust new methodologies [106]. The proposed series
of SAMPL Challenges brings crowdsourcing to bear on molecular interactions in a way which focuses on solving
specific, incremental problems that impair our ability to accurately and robustly predict these interactions. Thus,
while the proposed work is indeed innovative (as we argue below), the most important innovation comes from
participants in SAMPL Challenges, as is the case in all crowdsourcing approaches to innovation [106, 109].

Reliance on others for innovation is a strength of this model. It is not always obvious where the most important
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Figure 2. Timeline for SAMPL activities. Activities covered by this grant include data collection and SAMPL Challenges on our three
major components (physical properties, host-guest binding, and protein-ligand binding), with each Challenge cycle color-coded separately.
Data collection within each Aim is shown by a colored bar indicating what is measured and curated. Data collection/curation is followed by
a submission window for that Challenge component, then all results and analysis are returned to participants and posted on the SAMPL
website; this also will nucleate more detailed long-term discussion on the relevant Slack channel. At this point, we will also release the data
to the public as a high quality benchmark. Each component will then wrap up with a virtual meeting focused on lessons learned and areas
which need further exploration; these will be recorded and posted on our website to assist in rapid dissemination of new insights. Virtual
meetings precede the submission window for the next SAMPL Challenge, giving the opportunity to incorporate lessons learned for the next
Challenge. Submission windows and virtual meetings are staggered across categories so that participants can be involved in all three major
areas without multiple simultaneous deadlines. In-person meetings are co-hosted with D3R and will occur every two years, supplemented
by effort-wide virtual meetings in between. Special issues of JCAMD, where participants report lessons learned, will have deadlines shortly
after the virtual meeting on the protein-ligand Challenge for that year, and a 4-5 month timeline (based on historical experience) from the
submission deadline until the special issue appears (with the first papers appearing online substantially sooner). Rapid dissemination is
critical for rapid progress, so we encourage the use of preprints and informal reports to supplement the special issue.

innovations may come from, but Challenges draw together teams of diverse entrants, including unconventional
innovators who may apply unorthodox, risky, or radical technologies [106, 109]; progress comes both from the
usual suspects and unexpected sources. It is not necessary to decide in advance who is best positioned to solve
key problems [106]—the Challenge itself drives innovation and allows it to be recognized, regardless of source.

Crowdsourcing models for innovation have an ample track record, with the XPrize driving major headlines [108–
110], and the Netflix Prize also familiar to many [107]. While there are other Challenges in the area of biomolecular
modeling, such as D3R [112], the pKa cooperative [154], CAPRI [155] and CASP [101], no other blind Challenge
focuses specifically on datasets collected specifically to drive quantitative protein-ligand modeling.

SAMPL is designed in the spirit of the wildly successful biomedical DREAM Challenge [104–106] which had more
than 800 recent participants. As recommended by the DREAM Challenge organizers [106], SAMPL focuses on
high-quality data, decomposing complex problems into tractable but difficult component problems in order to benefit
from crowdsourcing, and drawing together diverse teams and methods to allow various solutions to be evaluated.

Our recent survey indicates SAMPL has already been important in advancing protein-ligand modeling [111];
attached testimonials highlight some specific ways SAMPL has advanced science. Several historical examples
further serve to highlight how SAMPL can foster innovation (see also Figure 3 and our SAMPL bibliography). While
the first SAMPL Challenges focusing on hydration free energies saw heterogeneous performance, they highlighted
pitfalls of existing methods and force fields which led to marked improvements in PB models [140, 156, 157],
identified some limitations of fixed-charge force fields [158, 159] that spurred their repair [158–160], and helped
motivate alternate implicit or hybrid solvent models [161–163]. Shifts in protonation state and tautomer proved
particularly important in SAMPL5’s log D Challenge [145, 164], as they will in binding. Host-guest binding Chal-



lenges [165] have highlighted the importance of salt effects [146, 165, 166] and in some cases revealed severe
force field limitations [167, 168], pointing the way forward for improving predictive models [165, 169].

A B

Figure 3. Lessons learned from SAMPL5 log D predictions.
Predictions of log D values for SAMPL5 provided a number of
key lessons. (A) Methods which treated multiple protonation and
tautomeric states in their predictions performed dramatically better
than those which did not; here, red dots move to x symbols when
these effects are treated, improving accuracy in every case [170].
(B) Re-parameterization of a force field to more accurately re-
produce pure solvent dielectric constants resulted in dramatically
better predictions (top) than the original force field (bottom) [160].

This proposal focuses on the development of SAMPL
Challenges tailored to progressively advance computa-
tional methods for binding (Aim 4), gathering the requisite
experimental data to drive these Challenges (Aims 1-3).
While the primary innovation will result from our Chal-
lenges, we also innovate on several other fronts. Aim
3 develops a new informatics platform to facilitate the rapid
identification and study of useful protein-ligand systems
that are both experimentally tractable for high-throughput
biophysical measurement and focus on specific challenges
of interest; an innovative, automated wetlab helps produce
our high quality data. Additionally, students in our computa-
tional groups perform reference calculations to benchmark
current state-of-the-art techniques. This provides student
training, but also drives innovation by (1) Benchmarking
advanced community method entries against our refer-
ence “current best practices” calculations; (2) Facilitating
learning by allowing others to compare against our refer-
ence results to determine how methodology differences
impact results; and (3) Focusing the field on key issues by
analyzing sensitivity to conditions such as ionic strength, protonation states or tautomers.

APPROACH
A series of data-driven Challenges will spur systematic advances in modeling for biomolecular design.
We collect targeted experimental datasets focused on specific problems spanning a range of complexity (Aims
1–3), and use these to field SAMPL Challenges driving innovation (Aim 4). Data collection brings together multiple
laboratories and industrial collaborators, including both theorists and experimentalists: graduate students from
the Mobley and Chodera laboratories are paired with well-equipped experimental groups in industry to collect
physical property data (Aim 1); Gibb and Isaacs, leading experimentalists in supramolecular chemistry, work with
theorist Mobley to perform host-guest affinity measurements (Aim 2); and the Chodera lab applies new automated
approaches to identify suitable protein-ligand systems and measure binding (Aim 3).

Aim 1: Collect new physical property datasets to assess accuracy and spur improvements in force fields
and modeling of protonation states and tautomers.

Simple physical properties such as solvation, phase partitioning, and protonation equilibria can be calculated
precisely (but not necessarily accurately) with physical methods, allowing quantitative comparison between
calculations and experiment and revealing and isolating deficiencies in our models. These properties allow us to
directly probe force field accuracy and chemical effects like protonation and tautomer handling in the absence of
slow conformational changes and other effects which complicate assessment in protein-ligand systems.

Rationale: We will perform new solution-phase physical property measurements for drug-like molecules to
motivate improvements in force fields and handling of protonation states and tautomers. This builds on our work
on water-cyclohexane distribution coefficients (log D) for SAMPL5 (with Genentech), which revealed major issues
with handling of protonation states and tautomers [145] as well as serious force field limitations [160] (Figure 3).
Distribution coefficients give the equilibrium ratio of solute concentration between aqueous and nonpolar phases
at a given pH. Thus, because these mimic transfer free energies from aqueous to protein- or membrane-like
environments, they capture many of the same characteristics as binding but without the associated challenges of
receptor conformational sampling and specific ligand-receptor interactions. Many methods performed poorly in
predicting log D in SAMPL5, with even the best methods having accuracies less than would be expected based
on hydration free energies [145], yet failures were informative and the major sources of error were issues which
also plague ligand-receptor binding. In many respects, distribution coefficients are an ideal SAMPL Challenge, as
they are sufficiently difficult for clear failures to be frequent, with ample room for improvement, but not so difficult
that reasons for failure were generally unclear. Still, many methods consistently disagreed with experiment for
some compounds [145, 160, 164, 171], revealing the impact that targeted follow-up experiments (such as those
we will conduct here) can have on improving models. Thus, targeted Challenges on solution-phase properties
address some of the complexities of binding.



Previous physical property SAMPL Challenges have already driven significant progress, but a frequent request
is for modestly larger datasets and follow-up experiments to validate specific measurements [111]. This was
impossible with donated data, but here, we will expand the size and quality of Challenge datasets, allowing us
to expand to provide greater coverage of the full dynamic range. Follow-up experiments will become routine,
improving our ability to learn from failures. For example, SAMPL5’s lack of dynamic range meant that, when
calculated values often spanned a larger dynamic range than experiment, it was unclear if this was due to the
choice of compounds, experimental limitations, or force field deficiencies [145, 160, 164, 171].

Physical property datasets will be tailored for synergy with binding datasets. Specifically, ligands studied in
host-guest and protein-ligand binding Challenges will be prioritized for inclusion in solution-phase physical property
datasets; if physical property data is already public for these, analogs or fragments will be included. Thus, if a
binding free energy proves difficult to predict, participants can determine if its solution-phase properties (such as
protonation states or tautomers) were similarly difficult, thereby narrowing down the source of the error.

Below, we summarize plans for data collection for the SAMPL7-11 Challenges of Aim 4 (see also Figure 2). These
specific datasets were selected to help the field first resolve problems encountered in SAMPL5 and then progress
to accurate estimation of additional properties. Datasets will be larger than prior SAMPL Challenges—at least 96
compounds for good statistics—though when possible, a much larger amount of data will be collected.

SAMPL7: Cyclohexane/water and octanol/water distribution coefficients, given pKa. Building on the suc-
cess of distribution coefficients at motivating rapid modeling advances [145], we will measure cyclohexane-water
distribution coefficients at pH 7.4 for a new batch of commercially-available drug- and fragment-like molecules
overlapping with compounds studied in Aims 2 and 3. We will also measure octanol-water distribution coefficients
for the same compounds, given indications that their prediction may be computationally tractable [172, 173] despite
the heterogeneous structure of the wet octanol phase [174]. Because pKa prediction was difficult but critical for
SAMPL5, we will focus SAMPL7 on force fields and tautomers by measuring and providing pKa values, revisiting
pKa prediction in SAMPL8 and 9. A similar approach is currently being applied for SAMPL6 (data collection is in
process in collaboration with Merck), so plans here may be adjusted modestly depending on SAMPL6 outcomes.

SAMPL8 and SAMPL9: Distribution coefficients and pKa’s for drug-like molecules. Distribution coefficient
measurements conflate the challenging issues of protonation state and tautomer prediction, as well as transfer
into different environments. After allowing participants to predict distribution coefficients given pKa values for
SAMPL6-7, the SAMPL8-9 datasets will include distribution coefficients and pKa values, with participants asked to
predict both. The datasets will include pKa values and distribution coefficients for an extensive set of drug-like
molecules. SAMPL8 will focus on octanol-water and cyclohexane-water, and SAMPL9 will shift to alternate solvents
to ensure that models are capable of handling varied non-water phases. As in SAMPL7, we plan to focus partly on
molecules and fragments overlapping with compounds being studied in Aims 2–3.

SAMPL10-11: Solubility prediction and membrane permeability. With solubility predictions now becoming
tractable [122–124] (with Schrödinger also working on amorphous solubility), solubility measurements will be a
valuable test for SAMPL10, combining the solvation aspects of SAMPL1-8 with a new solid phase component. New
computational techniques are targeting membrane permeability [126, 127], and this is experimentally accessible
(see support letters from Pfizer and Merck), leading to our interest in permeability for SAMPL11. However, it is likely
that both solubility and permeability will still be extremely challenging – so we plan to also measure distribution
coefficients and pKa’s for the same compounds to help participants isolate potential points of failure.

Based on community feedback [111], we are also interested in subsequent SAMPL Challenges on hydration and
conformational free energies, and will seek suitable sources of reliable experimental data.

Experimental plan: Experimental data will be collected in collaboration with our pharma partners, roughly
following the model used for SAMPL5, where Chodera lab student Bas Rustenburg worked with Genentech and
adapted an existing workflow to measure cyclohexane-water log D [171]. A similar approach is currently being
employed with Merck for SAMPL6. Thus, Mobley and Chodera lab students will visit industry partners collecting
targeted datasets. This collaborative approach (see Letters of Collaboration from Genentech, Pfizer, GSK, and
Merck) gives us substantial access to equipment and high-throughput measurement workflows—such as the
Sirius T3 (which can measure partition/distribution coefficients, pKas, and solubilities for molecules with titratable
groups)—automation equipment, and compound libraries—for the purposes of rapidly collecting targeted datasets.
This approach works [171], and our partners see the value of this data and SAMPL to the community.

Overall, Aim 1 extends prior SAMPL Challenges via data focused on quantitative prediction of physical properties
relevant to accurately predicting biomolecular interactions, paving the way to applications in more complex systems.



Aim 2: Measure affinities of drug-like compounds in supramolecular hosts to challenge quantitative
models of binding in systems not plagued by major receptor sampling issues.

Figure 4. The best host-guest binding predic-
tions of SAMPL3 [175] and SAMPL5 [167]. Bind-
ing free energy predictions have shown clear im-
provements from SAMPL3 to SAMPL5 as the major
obstacles become understood and are treated bet-
ter by models, though a systematic offset remains
in the best SAMPL5 predictions (yellow). Dashed
lines denote errors of ±1.5 kcal/mol.

Moving beyond solution-phase physical properties, we want Challenge
data which introduces some of the additional complexity of binding in a
controlled manner. Aim 1 focuses on the behavior of small molecules in
different environments, in the absence of receptors and the associated
potential for slow sampling, strong specific interactions, and other chal-
lenges like salt effects. Binding in host-guest systems (Aim 2) retains
many of these same challenges and introduces strong specific interac-
tions and other issues like salt effects [165], while still avoiding many of
the issues with slow sampling (of protein conformational changes, ions,
and ligand binding modes) seen in biomolecular interactions. Thus,
binding in host-guest systems introduces new challenges rele-
vant to biomolecular interactions, but without the full complexity
of protein-ligand interactions, as recently reviewed [165].

Already, host-guest SAMPL Challenges have provided key tests for
modeling of binding interactions [165], resulting in new attention paid
to how co-solvents and ions modulate binding (resulting in errors of up
to 5 kcal/mol when these effects are neglected) and the importance of
adequately sampling water rearrangements [144, 146, 165, 176]. This
new attention has resulted in clear improvements (Figure 4), though
host-guest binding remains difficult to model accurately [177], in part
due to force field limitations (resulting in new force field work [169]).

Here, we design a series of SAMPL Challenges focused on two classes
of host-guest systems—cucurbiturils and analogs (SA 2.1) and Gibb’s deep-cavity cavitands (GDCCs, SA 2.2)—
both of which build on prior SAMPLs. These two sets of systems exhibit different complexities [165], with the hosts
of 2.1 bringing modest co-solvent and ion effects and some receptor sampling problems for the acyclic hosts, and
the GDCCs of 2.2 bringing profound ion and co-solvent effects as well as water sampling challenges. Methods
which perform well on one class may not perform well on the other [165] because of these distinct challenges. This
diversity and complexity is important for Challenges which seek to drive researchers to focus on all of the important
features rather than just a subset [106]. As the SAMPL community would like even more diversity in hosts and
guests [111], we will also seek to include additional host-guest systems via data donation (as in SAMPL1-5).

drug features
memantine adamantane; 1:1
saxagliptin adamantane; 1:1
premarin steroid
pancuronium steroid
varenicline 1:1 vs 1:2
valsartan pKa 4.37
omeprazole pKa 4.77
ranolazine pKa 7.17; epitopes
pradaxa pKa 3.87; epitopes
nilotinib epitopes; pKa 6.3
sensipar epitopes; folding
vyvance diamine; epitopes; folding
minocycline tetracyclin; amino aniline

Table 1. Selected drugs whose binding to
CB[n] hosts will be assayed for SAMPL7, 9,
and 11 Challenges (SA 2.1). These drugs
bind to the cucubituril-based host systems con-
sidered here, some at high affinity, so measur-
ing their affinities provides a way to test meth-
ods for predicting binding interactions absent
complexities present in protein-ligand systems.

SAMPL6 is currently in progress and includes components on GDCCs
and cucubiturils, so our plans in this section may be adjusted somewhat
depending on the outcomes of SAMPL6.

Subaim 2.1: Cucurbituril-based receptors: model binding systems

Cucurbituril derivatives for host-guest binding. Building on previous
success with cucurbit[n]uril (CB[n]) experiments for SAMPL [178–180],
we will conduct a series of new experiments on these receptors, with ex-
perimental work conducted by co-investigator Isaacs, an expert on these
systems who provided data for previous SAMPLs. CB[n] receptors are
particularly well suited to our goals because they exhibit: (1) strong bind-
ing affinities in water, comparable to protein-ligand affinities (routinely µM
to nM; occasionally pM to fM) [181–187], (2) high selectivities between
structurally related guests which translate into large ∆∆G values [188],
(3) low molecular weights (1–2 kDa) permitting high levels of theory to
be used, and (4) highly restricted conformational degrees of freedom,
reducing conformational sampling challenges often seen in protein-ligand
binding. For SAMPL7-11, we will resynthesize a series of CB[n]-type
receptors of increasing complexity, measure Ka values, and determine
host-guest stoichiometry and geometry toward pharmaceutically relevant guests (selected drugs) in order to strin-
gently test methods for predicting binding. Figure 5 shows the chemical structures of three hosts—Me4CB[8] [189],
glycoluril hexamer [190], and acyclic CB[n]-type receptors [191–196] which span a range in terms of level of
preorganization and formal charge.



SAMPL7-11 cucurbituril Challenges.

Figure 5. SAMPL7-11 host-guest Challenges will feature cucubituril hosts and analogs, including Me4CB[8], glycoluril hexamer,

and acyclic CB[n]-type receptors (SA 2.1). These receptors bind a variety of drug-like molecules, some with high affinity.

For SAMPL7, we will measure Ka and ∆H values, stoichiometry, and geometry for the interaction of Me4CB[8] (a
soluble CB[8] derivative) with 15 guests (selected top drugs, Table 1) by either direct or competition isothermal titra-
tion calorimetry (ITC), UV/Vis or fluorescence indicator displacement assay, or NMR competition experiments, as
previously [180–182, 197]. Our selection of Me4CB[8] binding to top drugs allows us to modulate the computational
complexity by: 1) changing host flexibility (e.g. Me4CB[8] can exhibit ellipsoidal deformation) [189], 2) allowing
the possibility of binary or ternary (e.g. 1:1 and/or 1:2 host:guest) complexes [198–200], 3) using drugs with
several potential binding epitopes or modes to induce sampling issues. Host:guest stoichiometry and geometry
(e.g., which binding epitope is complexed) will be addressed by ITC n values, Job plots monitored by UV/Vis or
NMR [201], and by 1H NMR complexation induced changes in chemical shifts [202]. All studies will be conducted
in phosphate buffered saline (pH 7.4 with physiological salt) which introduces its own complexities due to salt
competition for binding [165, 203]. SAMPL8 will revisit the same host, but use 15 different guests be selected
from commercial sources on the basis of reference calculations (on a larger set of guests) to ensure that they
cover substantial dynamic range and/or exhibit affinities that depend substantially on the force field or water model,
thus effectively testing our force fields and methods. For SAMPL9, we will focus on binding of the same 15 drugs
(Table 1), but to glycoluril hexamer. This host introduces the complication of increased conformational dynamics,
and influences the number and energy of solvating (and unusually coordinated) water molecules implicated in the
high binding constants for CB[n]-guest complexes [187, 204]. The selected drugs include several with pKa values
in the 3.8 to 7.4 range; given that CB[n]-type receptors (like biomolecular receptors) can induce pKa shifts in their
guests of up to 4 pKa units [205–207], this will test how well models can predict these effects. Additionally, it will
couple nicely with the focus on pKa values in Aim 1 – especially so given that Aim 1 compounds will include some
of the same chemical functionality. SAMPL10 will revisit glycouril hexamer with the same 15 guests from SAMPL7.
SAMPL11 will shift to acyclic CB[n]-type receptors (e.g. M1C3, M1C0, and M1PC0 that contain anionic solubilizing
groups attached via different linker lengths. As in SAMPL3 [175], these acyclic CB[n]-type receptors introduce
conformational complexity, and water interactions play a key role.

Subaim 2.2. Gibb deep cavity cavitands for host-guest studies

History of GDCC SAMPL Challenges. During SAMPL4 [208] and SAMPL5 [209] we focused on two specific
GDCC hosts: the octa-acid 1 (R = H) and another octa-acid variant with four methyl groups at the portal of the
binding pocket (1, R = Me). These studies used ITC to measure the thermodynamics of (1) host 1 (R = H) binding
a range of 9 carboxylate guests, and (2) the binding of 6 carboxylate and trimethylammonium guests to both hosts
(1, R = H and Me; Figure 6). In both cases 1H-NMR titration was also used to confirm ITC-derived free energies of
binding. Relative to cucubiturils, the GDCCs introduce new complexities because of their tight exit portal, modest
issues with host conformational sampling, slow water rearrangements, salt/buffer condition-dependence, and
protonation state complexities [146, 165]. Thus GDCC-oriented Challenges are particularly important since these
issues complicate protein-ligand interactions as well.

Novel deep cavity hosts probe the effects of binding site charge constellations. For future GDCC datasets,
we will expand on the range of hosts by including 2 and 3 in our ITC studies (Figure 6). Like cavitand 1, host 2 is an
octa-acid derivative. However, the four benzoate groups are relocated from the extreme exterior in the case of 1, to
the rim of the binding pocket in 2. This is expected to have a direct effect on the binding of charged guests as well as



an indirect effect on guest complexation via changes to the solvation of the empty host. Octa-trimethylammonuim
cavitand (“positand” 3) has the same overall architecture as host 1, but inverts the charges on the water solubilizing
exterior coat. While it is not yet clear if this switch in groups relatively remote from the pocket will directly affect
guest complexation, results from related systems suggest it can (unpublished).

Figure 6. Gibb deep cavity cavitands for the SAMPL7-11 datasets (SA 2.2). These hosts bind a variety of carboxylate and trimethy-
lammonium guests in a strongly salt-dependent manner, providing a stringent test of our ability to model salt-dependent binding.

SAMPL7-11 deep cavity cavitand datasets. Data for SAMPL7 will focus on how well the effect of host carboxy-
late substituent location can be predicted, and will involve hosts 1 and 2 with a set of at least five previously
uninvestigated guests. Guests will be selected from commercial sources on the basis of reference calculations in a
similar manner to SAMPL8 in Subaim 2.1, specifically picking guests which have broad dynamic range and, here,
have marked differences in affinities between hosts. SAMPL8 will provide a second iteration of this experiment
to test algorithmic improvements in predictive modeling following SAMPL7 by comparing hosts 1 and 3 with a
different set of guests. We anticipate that because of the relative remoteness of the charged groups in these two
hosts, the effects of switching charges will be subtler than the differences between 1 and 2. SAMPL9 will consider
the effect of common biologically-relevant counterions/salts on guest binding, comparing the effects of NaCl and
NaI on the complexation of at least five guests to 1. We have previously shown that iodide has a weak affinity for
the binding pocket of 1, while sodium ions have an affinity for the outer carboxylates [210], requiring modeling to
capture the differential affinities of these ions in addition to guest affinities to successfully model the observed
affinities. SAMPL10 will follow up on this by examining the effects of these same two salts on the complexation of at
least five guests to 3, again giving the modeling community time to incorporate algorithmic improvements following
SAMPL9. While we have not yet quantified salt affinities to host 3, we expect the iodide to have affinity for both the
pocket and the positively charged solubilizing groups. For SAMPL11 we will consider the effects of co-solvents on
the binding of five guests to 1 and 2 to probe the effect of co-solvent competition for the binding site, as well as
effects co-solvents may have on weakening the hydrophobic effect. Participants frequently request larger datasets,
so every effort will be made to include additional guests beyond the minimal number proposed if time allows or if
human time can be reduced (such as via automated calorimetry). Regardless, the total number of binding affinities
measured for the family is substantial, so the data will be of considerable value as a benchmark [165].

Aim 3: Develop model protein-ligand systems that isolate specific modeling challenges of drug targets.

To drive real improvement in quantitative modeling of protein-ligand interactions, we need to be able to revisit the
same systems again and again in order to gauge and drive progress—in much the same way as participants
in the Netflix Challenge had to genuinely improve their ability to predict user feedback to succeed [107]. While
D3R [112] evaluates the accuracy of current protein-ligand binding methods, performance in each Challenge
iteration varies widely depending on the nature of the donated pharmaceutical data and difficulty of the target. The
high complexities of D3R targets make it difficult to identify clear points of failure [112, 151–153]. For example, while
kinases are targets of great interest to drug discovery, blind Challenges involving kinase targets conflate issues
of slow protein conformational dynamics [211], protonation state effects of protein [212] and ligand [213, 214],
phosphorylation, charged ligands, and other challenges; failures on such targets are thus often unexplained.

Only by revisiting the same systems repeatedly will we benefit from the wisdom of the crowds in identifying
specific problems and validating solutions to these problems. Thus, here, we identify and develop model
protein-ligand systems to isolate specific accuracy-limiting effects in a series of SAMPL Challenges. By
developing model binding systems—biological protein-ligand systems comprised of single-domain proteins binding
to a simple ligand series free of complex phenomena—we can study systems of complexity intermediate between
completely artificial systems (like the valuable T4 lysozyme L99A model binding site [135, 165, 215]) and complex
pharmaceutical targets where multiple modeling challenges make it difficult to learn from failure (Figure 8A). This
allows Challenges focused on identifying and evaluating multiple solutions to selected accuracy-limiting effects
(such as how to deal with ligand and protein protonation-state issues [216], slow protein conformational dynamics,
etc.), with the ability to revisit the same systems repeatedly as needed to drive innovation.
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Figure 7. The SAMPL7/8 protein-ligand Challenge focuses on soluble drug fragment binding to human serum albumin (HSA)

(Aim 3). (A) SAMPL7 will study binding of a library of at least 96 small soluble druglike fragments to recombinant HSA, with an engineered
HSA mutant used for SAMPL8. (B) HSA has at least eight known binding sites, with two major well-characterized sites (green, Sudlow’s
Site I; purple, Site II) that bind a variety of drugs (figure from [217]). Two fluorescent probes—dansylamide and dansylglycine—bind with
∼µM affinity and high selectivity to Site I and Site II, respectively; both exhibit binding-enhanced fluorescence at 480 nm, and can be used
to site-specifically probe ligand affinities by competition. (C, D) Binding affinities of soluble molecules can be measured by isothermal
titration calorimetry (ITC); here, we show the (C) differential power and (D) integrated injection heats for the ITC titration of HSA by naproxen
sodium collected using the Chodera lab automation pipeline; (E) HSA tryptophan fluorescence quenching can also be used to measure
ligand binding affinity; here, HSA titration by diclofenac is shown, with the inset plot showing percent quenching at 346 nm [218, 219].
(F) Direct fluorescence binding assay of Dansylamide (fluorescent ligand) and HSA collected on the Chodera lab automation system. The
binding curve can be constructed based on binding-induced fluorescence emission at 480 nm.

Crowdsourced innovation enhances the potential of model systems for driving progress. For example, SAMPL3
focused on charged fragments binding to trypsin [220], and rapidly focused the field on the deficiencies of current
alchemical free energy methodologies in treating the binding of charged ligands. Within two years, multiple
laboratories developed solutions to this problem [221–223].

SAMPL7-11 model protein-ligand Challenges. We will introduce a new model protein-ligand system each
SAMPL (revisiting the prior SAMPL’s system if this becomes too difficult), with multiple Challenges on each system
(Figure 2) to allow iterative improvement and assessment. Our SAMPL7 data will focus on the binding of small
soluble drug fragments to one particular protein (below), with fragments also studied in Aim 1. However, maximizing
gains in this area requires adapting subsequent Challenges based on deficiencies identified by prior Challenges,
so our new informatics platform (below) will aid in system selection.

SAMPL7: Assessing predictive modeling of binding to multiple weak sites via measuring fragment bind-
ing to human serum albumin (HSA). HSA, the most abundant blood plasma protein, has a remarkable ability to
bind a variety of small molecule drugs in multiple binding sites (Figure 7B) [224]. Using HSA as a model receptor
isolates the challenge of multiple weak ligands binding to a stable rigid protein that is also pharmacologically
relevant because of its dramatic modulation of drug pharmacokinetics [217]. HSA has at least eight known binding
sites, with numerous crystal structures available for drugs binding to two predominant sites (Site I and II) [217].
Small soluble molecules resembling drug fragments are highly likely to bind to HSA (≥90% of such fragments, as
detected by SPR [225]), providing an experimentally-tractable diverse set of ligands spanning several orders of
magnitude in affinity [225]. As many current physical modeling methods assume a single well-defined binding site
with high affinity [226], this Challenge will allow the isolation of the effect of weak multiple binding from the majority
of other confounding factors in protein-ligand binding. HSA is relatively rigid, and computational methods already
show some promise in computing binding affinities to HSA [217, 227, 228], making this an optimal model system.

Recombinant HSA will be expressed in E. coli and purified via refolding from inclusion bodies [229], then defatted
at low pH [230] to ensure the resulting protein is free of the glycosylation and bound fatty acids found in plasma-
isolated HSA [230]. Recombinant expression will allow mutant forms of HSA (engineered via single-primer
mutagenesis) to be fielded for SAMPL8 (Figure 7). We will obtain a diverse library of at least 96 soluble drug-
fragment-like molecules in pre-plated format as dry compound, and use our automated ITC pipeline (Figure 7C,D)
to characterize overall binding affinities to HSA. The same ligands pre-plated in DMSO format will be used to
conduct a separate set of fluorescence titration assays (monitoring tryptophan fluorescence quenching, Figure 7D)



and competition assays with site-specific fluorescent probes (Figure 7B) to resolve site-specific affinities to Sites I
and II. We will field several levels of Challenges, including Challenges focused on affinities to Sites I and II, as well
as Challenges focused on predicting overall affinity and stoichiometry.

SAMPL8-11: Rapid development of new tailored model systems using a novel informatics platform. We
are developing a novel informatics platform, TargetExplorer, to identify protein targets that can be rapidly developed
into tractable model systems focusing on individual challenges (Figure 8). This tool filters all known protein targets
with structural data available in the PDB, first selecting for experimental tractability, then annotating experimentally
tractable targets to determine which targets possess (or are likely to be free of) specific challenges for physical
modeling. This will allow us to select systems isolating specific modeling challenges.

experimental+

tractability+

criteria+

isolated+

challenge+

filters+

•  Multiple protein crystal structures!

•  Known bacterial expression!

•  Availability of multiple purchasable 

known ligands!

•  Tractable experimental affinity 

measurements!

•  Ligand protonation state and 
tautomer effects!

•  Protein protonation state effects!

•  Protein conformational change 
upon binding!

•  Presence of PTMs affecting affinity!

•  Coordinated metals!

•  Ordered waters!

Figure 8. Mining model protein-ligand systems to focus on
individual modeling challenges via a structural and chemical in-
formatics platform (Aim 3). We are developing a structural and
chemical informatics system called TargetExplorer [https://github.
com/choderalab/targetexplorer] that applies successive filters to
all potential protein-ligand systems for which structural data is avail-
able. Suitable model systems should meet all experimental tractability
criteria (green box) and possess only a few challenging properties,
ideally only one (blue box). Tractability of experimental affinity mea-
surements includes properties like known ligands with potentially
fluorescent scaffolds (for fluorescence competition assays), highly
soluble ligands (for ITC), or ligands above a minimal mass (for SPR
or MST). Additional filters annotate experimentally tractable systems
with their potential computational challenges, including charged lig-
ands or potential ligand protonation state or tautomer effects [231]
(deduced from predicted aqueous protonation/tautomer energies);
potential protein protonation state effects (deduced from MCCE2
calculations [232]); protein conformational changes (deduced from
variation in protein conformation or the presence of unresolved loops
in protein-ligand crystal structures); the presence of post-translational
modifications that may affect affinity (deduced from Uniprot anno-
tations); coordinated metals (identified in crystal structures); and
ordered waters (present in multiple crystal structures).

The Chodera lab has developed an automated wetlab
to facilitate the development of such systems using bac-
terial expression (see Equipment and Facilities). Poten-
tial targets matching desired challenge criteria will be
screened for bacterial expression using high-throughput
cloning, transformation, and expression testing, with pu-
rity and yield assessed by capillary electrophoresis on
a Caliper GXII. Targets will be screened for stability
in various buffers using Thermofluor thermal shift as-
says [233]. Ligands identified via TargetExplorer as
spanning a wide dynamic range of binding affinities will
be purchased as dry powder stocks and prepared for
assay by highly accurate gravimetric solution prepara-
tion techniques using a Quantos automated balance.
Our lab has access to a wide variety of biophysical
techniques for measuring protein-ligand binding affini-
ties, including fluorescence (if fluorescent probe ligands
are available), absorption (e.g. Soret band shifts), auto-
mated isothermal titration calorimetry (provided ligands
are sufficiently soluble), surface plasmon resonance,
microscale thermophoresis (MST), luminescence, and
alphascreen; all except MST are fully automated.

We take a twofold approach to developing Challenge
datasets: First, we will purchase and assay small
molecules similar to known ligands, presuming that
these molecules are likely to have measurable affinities.
Second, using single-primer quick-change mutagene-
sis, we will introduce site-directed mutants to modulate
the binding affinities of known ligands. This can be
performed and screened for expression in 96-well for-
mat. Thus, datasets will consist of a matrix of protein
mutants and ligands, providing opportunity to deeply
explore the effects of interest.

Aim 4: Crowdsource innovation via community
blind Challenges to advance biomolecular design.

The heart of our work lies here – driving innovation via
community blind SAMPL Challenges centered around
the datasets of Aims 1—3 (Figure 2). This approach utilizes crowdsourcing (see Innovation, above) to advance
science. Our Challenges test the state of the art, provoke new methodological and force field innovations, allow
comparative evaluation of methods so that advances are quickly recognized and spread, and drive downstream
improvements. Our SAMPL Challenges are progressive, building on one another so that for success in later
Challenges, participants must build on lessons learned from prior Challenges. Each iteration will likely yield its
own incremental benefits (e.g.. as in Figure 3) for molecular design, in addition to contributing to progress towards
accurate prediction of biomolecular interactions.

SAMPL blind Challenges. Yearly SAMPL Challenges following our timeline (Figure 2) serve to advance the state-
of-the-art. As is critical for such Challenges [106], we will advertise aggressively via press releases, commentaries
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in relevant journals, CCL, e-mail, and Twitter. As experimental data for each component becomes available and
is curated, input files and Challenge details will be made available at least six months prior to the Challenge
deadline; data not yet available at that time will be held for a subsequent Challenge (with the exception of three
months for year 1 due to startup timescales). Advertising will feature our full timeline (which will also be available
at https://drugdesigndata.org/about/sampl along with details of plans) allowing planning of participation.
Challenge datasets will now also be larger than prior SAMPLs, as frequently requested [111].

As in prior SAMPLs, submissions will be handled by a web upload service on the SAMPL website which validates
submissions to ensure that they meet format standards for automated processing and analysis. Analysis will
be conducted by our automated Python framework, and results returned automatically online. All participant
submissions and methodology descriptions will (as before) be made available publicly on the website, along with
participant information (except for participants who specifically request to remain anonymous prior to submission).
Aggregate statistics and historical performance will also be made available on our website, along with a record
linking publications to historical submissions.

As the project progresses, we will push to transition towards submission of methods rather than of predictions.
Specifically, as automated workflow engines such as OpenEye’s Orion, AutoDesk’s MDT, and others begin to
be adopted on a larger scale, we will push participants to submit their methods in a standardized package,
and automatically apply their submitted method to the Challenge data via cloud computing resources. This
is already done in some Challenge platforms [106] but will be new to SAMPL, resolving one major hurdle for
participation. Participants, while enthusiastic about SAMPL and how it benefits science, often note the burden of
participating [111]; submission of methods rather than results will solve this problem, allowing participation with
minimal investment of human time. This will also allow for easy archival of methods and a focus on testing workflows
rather than human expertise. We will work with the NSF-funded Molecular Sciences Software Sustainability Institute
(MolSSI) to identify best practices in this respect. One hurdle will be obtaining computer time, but we will seek
donations of time from cloud computing vendors, support from pharma, and adapt our workflows so we can run on
NSF supercomputing resources where we will seek grants. In the worst case we would ask participants submitting
methods for a modest budget to run their methods, but having this level of automation results in substantial savings
in human time which can itself result in monetary savings. This migration will also facilitate post-Challenge follow-up
and method comparison, by allowing us to archive reproducible methods. Technology already allows this sort of
archival and reproducibility, such as via Docker [234] containers with the participants’ executable programs [106].

We will leverage SAMPL Challenges to identify modeling failures and identify potential solutions. The
learning process begins prior to each Challenge and continues afterwards. In advance, we provide guidance to
participants as to what known modeling issues we expect may be relevant. For a host-guest system, for example,
we might highlight known buffer/salt effects, protonation state challenges, and point out previous work on sampling
challenges, with pointers to the relevant experimental work and to modeling work from past SAMPL Challenges and
elsewhere [165]. This helps participants design their approach. Additionally, we will run reference calculations
using current best practices. This serves several purposes: It provides a test of the current methods and force
fields; it helps facilitate learning—we announce what calculations we plan to perform, make input files available in
a wide variety of formats [145, 146, 235], and others can repeat our calculations with with method or force field
variations to test protocol differences; it provides training to our students who are involved (as these reference
calculations provide them familiarity with the latest methods and make them instrumental in community learning);
and it allows sensitivity analysis, as by varying the conditions (protonation state, tautomer, etc., [145]) we can
see how much this impacts calculated values and thereby how important each factor is. Reference calculations
have, for example, helped us highlight the importance of a small amount of water in cyclohexane for accurately
calculating log D values, show how an incorrect tautomer could affect calculated values by many log units [145],
and discover that small force field modifications could significantly improve results on hydration free energies [138].

Dissemination of Challenge results. The most critical phase of each Challenge occurs after results are released.
Typically, some participants uncover specific problems or solutions which are missed by others, so dissemination
of these insights becomes critical to drive improvements. SAMPL workshops will occur after Challenges every
two years (years 1, 3, and 5), co-hosted with D3R Grand Challenge workshops (see support letter) During the off
years, discussion and dissemination of results will be via asynchronous means (below) and a “virtual workshop”
consisting of talks and interaction over Google Hangouts or YouTube Live. For all workshops, virtual or otherwise,
talks will be selected from abstracts written to describe what each participant learned from participating—allowing
us to prioritize presentations from those who have learned a great deal or done exceptionally well, rather than
those who are simply testing an existing method with no new insight gained. If the D3R effort is not renewed,
we will run SAMPL workshops independently, controlling costs via the model we use for our Workshops on Free
Energy Methods in Drug Design—specifically, most participants will pay their own way to the workshop, and we
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will seek pharmaceutical and software industry sponsorships to defray costs.

Rapid dissemination of results is critical so that new insights can be used in subsequent Challenges. We
will continue to publish special issues of the Journal of Computer Aided Molecular Design (JCAMD) collecting
publications related to each year’s SAMPL Challenges (see Letter of Support). As requested by participants [111],
we will also begin providing summaries of the key results and insights from each SAMPL that are suitable for
a broad, non-technical audience – either in JCAMD or as commentary in another suitable journal. To ensure
immediate availability of reports, we will strongly encourage prepublication sharing of results and analysis, including
both slides and posters from SAMPL meetings (via F1000 Research) and paper preprints (via bioRxiv).

Post-Challenge analysis also drives progress, and often occurs outside of formal workshops and meetings. While
this has happened in the past—for example, when participants using similar methods work together after the
SAMPL meeting to identify the origin of these discrepancies [146, 165, 176, 236, 237]—we hope to accelerate this
kind of collaboration. To facilitate rapid exchange of ideas and open communication between the community, we
will use collaboration software—such as Slack, which facilitates scientific communication for the NASA/JPL Mars
Rover teams and NSF antarctic scientific research teams—to build a community discussion platform, facilitating a
process of learning from one another more rapidly than normal publication channels. Given the overlap between
molecules/fragments used in Aim 1 and those studied in Aims 2–3, insights from one Challenge component will
have implications for predictions in the other components, making this rapid exchange key. The students supported
in this project will also play a role, working to understand the methods employed and bringing together researchers
using similar methods to try and understand performance differences, including by running follow-up calculations.

Each Challenge will have lasting effects. SAMPL datasets are collected primarily to drive Challenges, but both
the datasets and the lessons learned have lasting value. The lessons learned will have the most immediate
near-term impact and are critical for progress because each Challenge builds on prior iterations. However, the
datasets themselves are also key. In the past, due to the unfunded nature of SAMPL, we primarily emphasized
compilation of the datasets and conducting Challenges. However, SAMPL datasets achieved a life of their own
outside of SAMPL, becoming standard test sets [147, 148, 165, 238, 239]. This is one way SAMPL Challenges
achieve their lasting effect, so we will perform additional curation on datasets post-Challenge, with follow-up
experiments (as often requested by participants [111]) when needed, then release the data publicly as standard
benchmark sets [165]. We will make the data (including primary data, processed data, and our analysis of
Challenge submissions) available freely and publicly with permanent, citeable DOIs; ensure relevant data is
deposited in standard community repositories (e.g. BindingDB [240]); and guarantee data longevity via backup
hosting on library archival facilities (such as the UC’s DASH (https://dash.cdlib.org/)).

COLLABORATION MANAGEMENT PLAN
We have a strong previous history of successful collaboration, with Mobley and Chodera having co-authored
roughly a dozen publications and organized several workshops and other initiatives. Mobley, Isaacs, and Gibb have
also worked together to coordinate past SAMPL Challenges, and Mobley and Gibb a previous NSF workshop. PI
Mobley will oversee the project, with teams for the other aims (Aim 1: Mobley & Chodera; Aim 2.1: Isaacs; Aim 2.2:
Gibb; Aim 3: Chodera; Aim 4: Mobley & Chodera) involving the other co-investigators as needed. Meetings
will consist of a monthly Google Hangout and a yearly in-person planning meeting. Chodera and Mobley will
communicate more frequently due to the interlinked nature of their work. Publications are expected to be largely
dictated by the overall Timeline, with an experimental publication associated with each Challenge component being
prepared for distribution to participants along with their results. Conflict resolution is expected to be straightforward,
but if any serious difficulties arise, Michael Gilson (UCSD) will arbitrate given our close connections with D3R.

OUTLOOK
Physical methods have been slow to achieve their promise in binding prediction, in part because truly significant
innovations are so hard to recognize due to a lack of standard tests and benchmarks, and in part because of
an “applications first” approach which seems to plague our community where we rush to apply our methods to
problems of pharmaceutical relevance without ensuring they can tackle simpler, better-understood problems first.
Here, we extend the successful series of SAMPL blind Challenges to crowdsource innovation focused on a series
of key component problems centered around our major goal, quantitative prediction of biomolecular interactions.
Collection of high quality, focused datasets will spur method innovation, beginning with relatively simple physical
property prediction and progressing to challenging problems in biomolecular recognition via a series of carefully
designed intermediate steps. Building on SAMPL’s strong prior track record, the proposed series of tailored
Challenges will focus community innovation on critical problems we can resolve in the near term, resulting in
dramatic improvements in computational molecular design.

https://dash.cdlib.org/
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