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Protecting and promoting public health is the mission of the U.S. Food and Drug

Administration (FDA). FDA’s Center for Devices and Radiological Health (CDRH), which

regulates medical devices marketed in the U.S., envisions itself as the world’s leader

in medical device innovation and regulatory science–the development of new methods,

standards, and approaches to assess the safety, efficacy, quality, and performance of

medical devices. Traditionally, bench testing, animal studies, and clinical trials have been

the main sources of evidence for getting medical devices on the market in the U.S. In

recent years, however, computational modeling has become an increasingly powerful

tool for evaluating medical devices, complementing bench, animal and clinical methods.

Moreover, computational modeling methods are increasingly being used within software

platforms, serving as clinical decision support tools, and are being embedded in medical

devices. Because of its reach and huge potential, computational modeling has been

identified as a priority by CDRH, and indeed by FDA’s leadership. Therefore, the Office

of Science and Engineering Laboratories (OSEL)—the research arm of CDRH—has

committed significant resources to transforming computational modeling from a valuable

scientific tool to a valuable regulatory tool, and developing mechanisms to rely more

on digital evidence in place of other evidence. This article introduces the role of

computational modeling for medical devices, describes OSEL’s ongoing research, and

overviews how evidence from computational modeling (i.e., digital evidence) has been

used in regulatory submissions by industry to CDRH in recent years. It concludes by

discussing the potential future role for computational modeling and digital evidence in

medical devices.
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INTRODUCTION

The mission of the U. S. Food and Drug Administration (FDA)
is to protect and promote public health, and it does so by
ensuring the safety, effectiveness and security of FDA-regulated
products1 These products include, but are not limited to, medical
devices, drugs for humans and animals, and biological products
such as vaccines and the blood supply, each of which are
managed by separate Centers within the Agency. The FDA
accomplishes its mission by performing pre-market clearance,
approval and post-market monitoring of the performance and
safety of products, enforcing, and ensuring compliance to
manufacturing processes and quality control, and conducting
regulatory science research. The latter, although less well-known
in the scientific community, is fundamental to support science-
based regulatory decision-making by FDA. Regulatory science
encompasses the development of new methods, standards,
and approaches to assess the safety, efficacy, quality, and
performance of FDA-regulated products and products under
development. Each Center in the FDA is committed to
advancing these efforts, which have accelerated the product
development pathway and regulatory review cycle so that new,
innovative products can be made available to the American
public.

The FDA faces many challenges (1), such as new and
evolving public health threats; rapid scientific breakthroughs
and emerging technologies resulting in novel products that
may raise unique testing and safety issues; globalization of
public health, science, manufacturing and supply chains; and
providing timely, accurate and useful consumer information
in an age of information overload. To enable the Agency to
meet today’s public health needs and to be fully prepared
for the challenges and opportunities of tomorrow, FDA
leadership developed a strategic plan identifying nine target
areas, stating that investment in these areas is essential
to mission success2 Of those nine, four priority areas
identified an important role for computational modeling3,
see Table 1. These priorities also have relevant aspects
related to medical devices4. regulated by the Center for
Devices and Radiological Health (CDRH)5, as mentioned
by the FDA Commissioner in a blog posted in July
20176.

CDRH’s mission goes beyond protecting and public
health; with a vision to be the world’s leader in medical
device innovation, they provide consumers, patients,

1https://www.fda.gov
2http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/
3Computational modeling is the process of representing a real-world system
by means of a computer and then running the simulation by implementing a
numerical scheme.
4The FDA definition of medical devices excludes drugs, which achieve their effects
through chemical action within or on the body. The vast majority of medical
device manufacturers are classified by the U.S. Department of Commerce in five
industries: x-ray and electromedical equipment, surgical and medical instruments,
surgical appliances and supplies, dental equipment, and ophthalmic goods (2)
5https://www.fda.gov/AboutFDA/CentersOffices/
OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm274152.htm
6https://blogs.fda.gov/FDAvoice/index.php, post July 7, 2017.

their caregivers, and providers with understandable and
accessible science-based information about the products it
oversees, and facilitate innovation by advancing regulatory
science. Science-based regulatory decisions are made with
evidence collected from four different models: animal,
bench, computational7, and human (i.e., clinical trials),
see Figure 1A. While each model has its advantages and
limitations for evaluating different aspects of medical device
performance (3), computational modeling is a promising one for
supporting the future of medical devices and healthcare. FDA’s
Office of Science and Engineering Laboratories (OSEL)
has committed significant resources for transforming
computational modeling from a valuable scientific tool
to a valuable regulatory tool because of its potential for
significant cost-savings in evaluating medical devices, simulating
performance under scenarios that may not be possible with
human use or that could more effectively be evaluated with
simulation.

OSEL has a unique role in medical device regulation
serving as the research arm for CDRH. OSEL’s expertise
spans a variety of scientific, engineering, and mathematical
disciplines8, with a diverse group of 130 full time scientists and
engineers (supported by numerous post-doctoral fellows and
interns) that provide expert support internally to the regulatory
teams and externally to industry, clinical and the scientific
communities. They conduct cutting-edge research, ensure
readiness for emerging and innovative medical technologies,
develop evaluation strategies and testing standards, create
accessible and understandable public health information, deliver
timely decisions for products across their life cycle, and
readily share data and engage with stakeholders to advance
regulatory science. The growing area of computational modeling
is fully supported by OSEL and CDRH through research and
development of methods and tools, serving as expert consultants
by reviewing and assessing computational modeling submitted
by medical device companies, i.e., sponsors, in regulatory
submissions, and publicly sharing computational modeling
that supports regulatory decision-making. Moreover, OSEL
houses a high-performance computing center which supports
scientific computing needs for CDRH and other Centers across
FDA9

Because OSEL scientists have different roles to support
CDRH, we designed and conducted a 35-question survey
to better understand computational modeling in research
and regulatory domains, including goals and objectives on
the use of computational modeling in research, reliance
of evidence from computational modeling and simulation
(i.e., digital evidence) in regulatory submissions, and
opportunities for the future with computational modeling and
simulation. Thirty-six OSEL scientists with direct involvement
in computational modeling projects and initiatives were

7Evidence from algorithms, and computer-based modeling and simulation will be
referred to as digital evidence.
8https://www.fda.gov/AboutFDA/CentersOffices/
OfficeofMedicalProductsandTobacco/CDRH/CDRHOffices/ucm115989.htm
9https://scl-wiki-01.fda.gov/wiki/index.php/Main_Page

Frontiers in Medicine | www.frontiersin.org 2 September 2018 | Volume 5 | Article 241

https://www.fda.gov
http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm274152.htm
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHReports/ucm274152.htm
https://blogs.fda.gov/FDAvoice/index.php
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHOffices/ucm115989.htm
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHOffices/ucm115989.htm
https://scl-wiki-01.fda.gov/wiki/index.php/Main_Page
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Morrison et al. Computational Modeling of Medical Devices at FDA

TABLE 1 | In 2011, FDA identified an important role for computational modeling in its strategic priorities.

The four strategic areas with a specific call for

computational modeling

Relevance to medical devices Proposed computational modeling methods

and approaches

1. Modernize Toxicology to Enhance Safety Improving medical device safety; analyzing medical

device performance

• (Q)SARa models to predict the risk to human due

to exposure to molecules

2. Stimulate Innovation in Clinical Evaluations and

Personalized Medicine to Improve Product

Development and Patient Outcomes

Improving health of pediatric and other special

populations; identifying new sources of evidence for

clinical evaluation

• Computer models of cells, organs, and systems

to better predict product safety and efficacy

3. Ensure FDA Readiness to Evaluate Innovative

Emerging Technologies

Advancing innovation and evaluating new and

emerging technologies

• Virtual physiological patients for testing medical

products

4. Harness Diverse Data through Information

Sciences to Improve Health Outcomes

Developing novel ways to use clinical data in

evaluating medical devices

• Clinical trial simulations that reveal interactions

between therapeutic effects, patient

characteristics, and disease variables

• Knowledge building tools: data mining, machine

and deep learning, visualization, knowledge

bases, high throughput methods

• Mechanism for sharing and reuse of data,

models, and algorithms.

FDA’s Center for Devices and Radiological Health also published a special report on regulatory science5 to align with these efforts. The table highlights the priority areas on the left, the

medical device relevance in the middle, and the proposed methods and approaches on the right.
aNote that (Q)SAR models are classification models that relate the structure of a chemical to its activity, i.e., quantitative structure activity relationship.

interviewed, their responses were transcribed in a database
and then shared with the scientists for fact checking. This
perspective will present the results from that survey and
highlight the different roles that computational modeling has
and can play in medical devices, and discuss the potential
future for digital evidence and simulation in medical
devices.

OVERVIEW OF COMPUTATIONAL
MODELING FOR MEDICAL DEVICES

Computational modeling can be used to simulate and better
understand medical devices in several ways, as depicted in
Figure 1B. Starting with the upper row, the simplest and
most common implementation of computational modeling for
medical devices is simply to simulate the device under a
variety of conditions that mimic some aspect of the clinical
or use environment to investigate some aspect of the device’s
performance. Computational modeling applications also include
simulating the anatomy or serving as computational human
phantoms for medical imaging systems or as a platform
for assessing implanted devices; simulating physiology, such
as electrophysiology during arrhythmias in the heart, or of
pancreatic function; simulating chemical toxicology (using
(Q)SAR models), which can support our ability to understand
whether or not compounds released from medical devices,
such as from dyes and coatings, are harmful; simulating
the additive manufacturing process to optimize a 3D-printed
product or simulating the substrate on which a 3D-printed
product will be manufactured. The applications in the upper
row of Figure 1B typically support design or evaluation of
a physical, medical device. Other applications, depicted in
the lower row, include computational algorithms embedded
in a medical device or serving as the medical device,

i.e., software as a medical device (4). An example of the
former is embedded control algorithms in glucose monitors,
which have the potential for advancing modern artificial
pancreas systems10 used in glucose regulation for patients
with diabetes (5). The models for the artificial pancreas
have been used to replace in vivo animal studies to initiate
clinical studies for these closed-loop devices (6). An example
of computational modeling as a medical device is the use
of personalized simulation to indicate whether a patient
is a candidate for a medical device or a pharmaceutical,
for example, to simulate an invasive clinical procedure or
dosage effect to predict an outcome before the therapy is
selected.

Computational modeling can also be used to simulate
treatment outcomes. Statistical models have long been used to
simulate clinical trial design and interpret results. An evolving
concept is that of “virtual patients,” and new statistical models
to augment clinical trial design with virtual patients to predict
treatment outcomes (7, 8). It is important to note that a
“virtual patient” is not necessarily a digitized patient; it is an
approach that allows previously collected evidence (such as
digital evidence or other historical clinical evidence typically
referred to as “external evidence”) to inform the collection of
new evidence from a clinical trial using Bayesian methodologies.
Thus, computational modeling can enable a pathway to expose
fewer patients to experimental therapies by relying on other
sources of evidence. It can offer an opportunity to address
questions that we cannot address clinically due to financial
or ethical considerations, and investigate aspects of device
performance in many more clinically-relevant cases (hundreds of

10https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/
HomeHealthandConsumer/ConsumerProducts/ArtificialPancreas/default.
htm
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FIGURE 1 | (A) CDRH’s science-based regulatory decisions about medical devices are made with evidence collected from four different models: animal, bench,

computational, and human (i.e., clinical trials). (B) Computational modeling has the potential to transform medical device design and evaluation in several ways. The

upper row consists of applications that typically support the design or evaluation of the physical device. The lower row represents other applications, such as those

embedded in a device or simulation as a medical device. Moreover, computational modeling can also simulate treatment outcomes or simulate the clinical trial for

imaging systems. Lastly, it can play a critical role in the development of data-driven models from real-world data. See the text for more details.

thousands as compared to hundreds). Computational modeling
can facilitate the exploration of using a medical device in
populations that cannot be investigated clinically, such as
in patients with rare diseases or pediatric patients, without
harm. Computational modeling has also enabled the complete
“in silico” simulation of clinical trials for medical imaging
systems. By this we mean the implementation of different
computational models to simulate the entire clinical evaluation

of an imaging system, creating a “virtual clinical trial,” where
no patients are physically exposed to the imaging system–more
on this later. Lastly, knowledge-base tools can be harnessed
to develop data-driven models from big data sources, such as
real-world data, and employ deep learning methods to gain
relevant insights about medical device use and performance.
Computational modeling for medical devices has a broad
scope impacting many facets of the product lifecycle, and
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scientists from OSEL are leading or closely collaborating
with leaders in the field in each of the aforementioned
categories.

COMPUTATIONAL MODELING RESEARCH

The research conducted in OSEL is directly motivated by
regulatory needs, scientific questions arising from the review
of regulatory submissions and anticipating future direction
of industry needs through technology forecasting. Moreover,
the vision of CDRH is to ensure patients in the U.S. have
access to innovative medical devices first in the world, and
computational modeling is one tool to support faster more
efficient regulatory approvals without sacrificing patient safety
or the confidence in regulatory decisions. Some companies
have stated that the cost for clinical trials may soon outpace
revenue (9), and industry will therefore need other relevant and
reliable data sources for demonstrating safety and effectiveness
of medical devices; computational modeling is a practical and
viable method for gathering clinical information to augment
clinical trials (10). More details on this are provided in the closing
section.

There is a broad range of modeling disciplines that OSEL
scientists are using in their medical device-driven research,
including photon transport, fluid dynamics, heat transfer,
electromagnetism, solid mechanics, acoustics and optics, along
with anatomical, physiological, and mechanistic modeling. Other
include (Q)SAR models for assessing molecular carcinogenicity
(11), deep learning methods and artificial intelligence for
analyzing and synthesizing real-world data. Within this diverse
range, OSEL has been advancing different areas of computational
modeling for medical devices. The following examples provide
a glimpse of the many computational modeling applications in
OSEL.

Scientists have developed computational models of medical
devices for investigating a specific approach or consideration
about the medical device. It is important to emphasize
that the computational studies below are not of a specific
manufacturer’s device, but of generic devices where the
study results have broad impact in that device domain and
are translatable to other domains. These models include
implantable cardiovascular stents for assessing different methods
to calculate fatigue safety factor (12); heart valves implanted
with non-circular configurations (13) to assess the impact on
stresses and strains; inferior vena cava filters to demonstrate
a new method for computing embolus transport (14); hip
implants for evaluating the impact of the design on contact
mechanics (15); radiofrequency coils for MRI systems (16, 17)
to investigate the design parameters on the electromagnetic
field; surgical facemasks (18) for evaluating aerosol leakage of
different designs; blood pump (19) for assessing the ability
to predict hemolysis using computational fluid dynamics;
and electrical stimulation of implanted lead wires (20) to
investigate local heating. They have also developed new
methods for simulating photon transport of x-ray emitters (21)
and compressive sensing for imaging systems (22). Another

computational effort was the development of a complex
constitutive models for absorbable polymers used in medical
implants (23).

Computational models of anatomy or physiology include
improved drug delivery in the cornea with ultrasound energy
(24); physiological models of heart cells (25), renal circulation
(26), hemodynamic responses to blood volume perturbations
(27), left bundle branch block (28), gas dynamics in the retina
(29), coupled electrical and mechanical activity in the heart (30);
energy absorption in patients with deep-brain stimulators (31–
34), breast tissue expanders (35), in pregnant women and fetus
during MRI exams (36); subthalamic nucleus (37), the breast
(38), cancellous bone (39), the head (40) and whole body models
(41, 42).

A part of OSEL’s mission is to improve CDRH’s ability
to evaluate medical devices and support the regulatory
approval of innovative medical devices more efficiently without
sacrificing safety. Therefore, some of the research efforts
involve demonstrating through examples that the output from
computational modeling is a viable source of regulatory-grade
evidence, i.e., sufficiently-credible digital evidence that can
support regulatory applications (43–45); developing frameworks
(46, 47) and metrics (48) for assessing the trustworthiness
of models, and studying workflows for creating reproducible
models11 (49), and identifying considerations for computational
patient models for autonomous medical devices (50).

Other computational tools to assess specific aspects of device
performance or safety that industry can employ include
a simulator for high-intensity focused ultrasound (HIFU)
beams and heating effects (51, 52), benchmarks models for
computational fluid dynamics (19), patient-specific workflows
for assessing clot trapping efficiency in IVC filters (53),
surrogate models for predicting device-specific and species-
specific hemolysis (Craven et al., under review), optical-thermal
light-tissue interactions for photoacoustic breast imaging (54),
and an online app for assessing the safety of color additives (55).

Additional efforts are pushing the state of the art of simulation
for medical devices, including fluid-structure-interaction of
deformable blood clots, computational human phantoms for
active implants (37), lesion insertion and image reconstruction
(56), computational patient models for closed-loop control
devices (27), whole-heart modeling for electrophysiology devices
(30), computational modeling for determining hemolysis levels
in patients supported by blood-circulating medical devices (57),
evaluating exposure risk from nickel leaching devices (58) and
risk assessment for framing policy and deciding on the stockpile
of personal protective equipment for wide-spread outbreaks or
virus epidemics (59).

Lastly, as previously mentioned, one team is developing
and validating a framework for streamlining the market entry
of imaging systems relying solely on simulation in place of
clinical trials. The VICTRE project (virtual imaging of clinical
trials for regulatory evaluation) approach involves simulating
the anatomical structure of the breast (with or without a
neoplastic lesion), the radiological transmission (i.e., imaging

11NIBIB. R01EB024573, https://simtk.org/projects/kneehub
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system) and reconstructed images, and the clinical reader studies.
By simulating each component of the clinical trial process, there
is the potential for minimizing the need for clinical trials and
thus the regulatory review of imaging systems (60). Note that the
VICTRE project uses statistical analysis tools that evaluate the
diagnostic performance of radiologists (virtual or human). An
important aspect of the statistical analyses is that they account
for radiologist variability and case variability. Such analyses
are not trivial and have been developed by OSEL scientists
(61–64) with validation based on sophisticated simulation tools
(65).

OSEL scientists share their models and data with the public to
facilitate the use and broader adoption of these computational
tools and approaches. For example, anatomical models of
the head (the MIDA model) and whole body models (the
Virtual Family) can be downloaded from the IT’IS Foundation’s
website12, 13 The experimental and computational data from an
FDA-led multi-laboratory study for fluid dynamics on generic
medical devices can be found here;14 the simulation and
statistical tools for the VICTRE project are here15 and here
(66, 67); the HIFU simulator here16 Other software applications
are being shared throughGithub17, such as the design of a generic
inferior vena cava filter18 and a risk assessment tool for assessing
color additives19

COMPUTATIONAL MODELING IN
REGULATORY SUBMISSIONS

The OSEL scientists also serve as expert consultants on
regulatory submissions. The review and decision about a
medical device regulatory application requires a team of experts
led by the regulatory offices in CDRH. OSEL scientists serve
as specialized, technical experts on the regulatory teams.
More than 2500 consulting reviews were completed by all
scientists in OSEL in 2017, and about 500 were completed
by the 36 scientists interviewed for this perspective. Of
the 500 consults performed by the scientists surveyed, 220
(44%) included computational modeling and digital evidence
in the submission. (Note that therefore 9% of all expert
consults performed by OSEL for the regulatory offices in
2017 involved computational modeling). Of these 220, the
submission-type breakdown is as follows: 36% were for
premarket 510(k) notifications (for moderate risk devices), 25%
for clinical trial applications, 24% for pre-submissions, 13%
for premarket approval applications (for high risk devices),
with only a handful for other submission types. With respect

12The MIDA Model: https://www.itis.ethz.ch/virtual-population/regional-
human-models/mida-model/,
13The Virtual Family: https://www.itis.ethz.ch/virtual-population/virtual-
population/overview/
14https://nciphub.org/wiki/FDA_CFD
15https://github.com/didsr/victre
16https://www.mathworks.com/matlabcentral/fileexchange/30886-high-
intensity-focused-ultrasound-simulator.
17https://github.com/didsr
18https://github.com/kenaycock/Generic-IVC-Filter
19https://dsaylor.github.io/CHRIS/

to medical areas, the largest number of consults in 2017
were for neurological devices, followed by cardiovascular
and orthopedic devices, imaging systems, and surgical
devices.

The survey results indicated that the primary use of
computational modeling in regulatory submissions was
to identify the appropriate bench testing configurations,
such as worst-case or clinically challenging conditions, for
cardiovascular, orthopedic, and surgical implants. The second
most common use of computational modeling was to provide
evidence supporting the safety assessment of patients with and
without implanted devices when exposed to the radiofrequency
(RF) fields of an MR system. A noteworthy example of the latter
is the recent clearance20 of the first 7 Tesla MRI system (Siemens
Magnetom)21, where the Virtual Family (41) and the MIDA head
model (40) were used to predict aspects of safety and effectiveness
of the new system. Examples of the former include RF safety
evaluation for patients with implanted electrically passive
(e.g., joint replacement, stents) or electrically active devices
(e.g., neurostimulators, pacemakers, cochlear implants). Other
modeling examples include therapeutic ultrasound systems
where simulation results of the ultrasound energy delivered to
in vivo locations have been used in regulatory submissions as
justification for system parameters, or the recent clearance of
Compressed Sensing GRASP-VIBE R© to support high-resolution
dynamic abdominal imaging under free-breathing. From the
510(k) summary22, “A comparison of the functionality was
performed between the new feature and the device feature
by detailed simulations with a numerical [computational]
phantom”.

In general, computational modeling can be part of a regulatory
submission in two ways. The first is when simulation results serve
as supporting (digital) evidence in a marketing application for
a medical device. The second is when simulation is a medical
device, such as for clinical decision support; this is “software as
a medical device.” Virtually all consults regarding computational
modeling were of the former; the latter, with just a handful of
submissions, is a new growth area for CDRH, especially with the
release of the FDA guidance that describes the clinical evaluation
for these software application, and the new program area on
Digital Health Technologies23 Two examples of software as a
medical device that have received FDA clearance used patient-
specific computational models generated from CT imaging
data to non-invasively predict clinically-relevant quantities for
treatment selection. Heartflow R© generates a personalized 3D
model of the patient’s coronary arteries and simulates blood
flow to predict fractional flow reserve24 The CardioInsight R©
Mapping System generates a personalized model of the patient’s
heart and torso, then simulates the electrical activity on the

20510(k) Summary: https://www.accessdata.fda.gov/cdrh_docs/pdf17/K170840.
pdf
21https://usa.healthcare.siemens.com/news/magnetomterrafdaclearance.html
22510(k) Summary: https://www.accessdata.fda.gov/cdrh_docs/pdf17/K173617.
pdf
23https://www.fda.gov/medicaldevices/digitalhealth/
24https://www.accessdata.fda.gov/cdrh_docs/pdf15/K152733.pdf
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heart surface from body surface potential recordings25 For more
information on these and other patient-specific cardiovascular
models see (68).

As indicated by the relatively large number of pre-submissions
(approximately five dozen) that contain computational
modeling, many sponsors are using this mechanism to discuss
with FDA how their computational approaches will be used in
different regulatory pathways. The pre-submission26 process
enables interaction between companies and FDA to discuss
issues (e.g., outstanding regulatory deficiencies) or present new
technology or regulatory approaches. Pre-submissions might
include details describing how computational modeling might
support device performance, augment clinical trials, or be a part
of a software as a medical device, but might also include the
introduction of innovative devices for informational purposes
or for strategic regulatory planning. The mechanism for early
interaction is called the Information Meeting, found on page 22
of the guidance.

In this section, we have presented some success stories of
computational modeling being used to support medical device
regulatory review. However, there remain hurdles for broader
adoption of computational modeling. FDA is using its leadership
role to help overcome some of these hurdles; one in particular
is on communication. The regulatory review process is typically
dominated by the review of tens (sometime hundreds) of test
reports. CDRH reviewers do not conduct or run simulations for
specific regulatory submissions, and consequently rely on the
details of a report to understand what was accomplished. Detailed
and comprehensive reporting of computational modeling can
thus substantively improve the acceptance of digital evidence
submitted to CDRH. In 2016, FDA published a guidance
document (69) on the details that should be provided to CDRH
if computational modeling is used in a regulatory application.
The scope of this guidance document, however, does not address
the adequacy of the evidence, and therefore adherence to the
guidance may not always result in a sufficiently credible digital
evidence to support the device safety and/or effectiveness claims.
Reasons for this failure include the lack of appropriate scope
of use for the computational model or that the verification and
validation (V&V) results provided do not support using the
model for the specified use. Industry has communicated to FDA
that what remains unclear is the V&V evidentiary bar and lack of
standards for computational modeling studies. Therefore, FDA
has been working closely with the ASME V&V40 Standards
Subcommittee on a new standard (44) that will be published in
Summer 2018. It presents a risk-informed credibility assessment
framework that will help decision-makers determine the V&V
evidence needed to support using a computational model for a
specific context of use. Other device-specific modeling standards
are being developed through ASTM and IEEE. Moreover,
FDA actively engages with stakeholders about computational
modeling efforts by hosting yearly workshops and conferences

25https://www.accessdata.fda.gov/cdrh_docs/pdf16/k162440.pdf
26FDA Final Guidance, Software as aMedical Device (SAMD): Clinical Evaluation.
(2017). Available from: https://www.fda.gov/downloads/medicaldevices/
deviceregulationandguidance/guidancedocuments/ucm311176.pdf

with co-sponsors such as the NIH & NSF27 and the Biomedical
Engineering Society (70), recorded webinars28, 29, 30 and training
seminars (71) on these documents. The use of simulation and
digital evidence is rapidly evolving so FDA hopes industry will
connect early and often through the pre-submission process to
discuss potential opportunities for their computational modeling
approaches.

FUTURE OF COMPUTATIONAL MODELING
IN MEDICAL DEVICES

The rapid advance of technology has drastically changed
the power and availability of computational modeling tools.
Increased storage capacity via the cloud, the acceleration of
the graphics processing unit (GPU), parallelization, multicore
machines, and high performance computing have transformed
and facilitated the building of higher fidelity models and models
with more complexity through multiscale and multiphysics
applications, and improved the resolution and capability for
enhanced visualization.With this increased capability and power,
evidence from computational modeling has the potential to
replace traditional, more burdensome data collection from other
models. Notable are the simulations of radiofrequency energy
absorption that have replaced confirmatory clinical trials for
the MR safety assessment of implants previously discussed
(10). Wanting to find more opportunities to minimize the
burden of animal and human studies, CDRH will continue to
promote the use of computational modeling in medical device
development, applications and regulatory submissions and is
committed to ensuring the appropriate research, methodologies
and expertise is available to make such advances. For example,
the FDA has been exploring the use of computational modeling
as a possible way to facilitate better reprocessing for reusable
medical devices31 Computational fluid dynamicsmodels have the
capability to isolate high risk regions in new device designs and
can provide appropriate cleaning protocols to eliminate the risk
of infection in reusable devices (72).

Another demonstrative example of FDA’s commitment to
facilitating innovation in medical devices is the collaboration
between CDRH and industry through the Medical Device
Innovation Consortium (MDIC) using the mechanism of a
“mock submission” to demonstrate the regulatory process and
evidence collection that could be submitted to FDA when using a
new framework to augment clinical trials with virtual patients32.

27https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-gen/
documents/document/ucm364603.pdf
28ORS Webinar: FDA - Modeling and Simulation Initiatives at CDRH on Vimeo
(2017): https://vimeo.com/194712010,
29ORS Webinar: FDA - Assessing the Predictive Capability of Computational
Modeling for Medical Device Submissions on Vimeo (2017): https://vimeo.com/
221479130,
30Xtalks Webinar (2018) FDA Perspectives on Computer Simulations in the
Evaluation of Medical Devices, https://xtalks.com/webinars/fda-perspectives-on-
computer-simulations-in-the-evaluation-of-medical-devices/
31https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
ReprocessingofReusableMedicalDevices/ucm252952.htm
32Virtual Patient Website, http://mdic.org/computer-modeling/virtual-patients/
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The mock submission approach has been a successful means to
gather input from industry and FDA about new and innovative
approaches for medical device evaluation (73). The MDIC,
a non-profit in the U.S., was established to advance medical
device regulatory science for patient benefit. The “Clinical Trials
Informed by Bench and Simulation” working group included
members from industry and FDA; their main objective was to
establish and implement a framework, called the virtual patient
discount model (VPDM), for incorporating virtual patients
from simulation with real patient data from a clinical study
through statistical simulations. Due to its novelty, the members
of the working group formed a “sponsor team,” with members
from industry and FDA, and prepared the mock submission
proposing to initiate a clinical trial with a reduced number of
actual patients by harnessing virtual patients; the goal was to
present and evaluate the VPDM. The VPDM (74) harnesses
Bayesian methods in conjunction with FDA guidance (75) on
the use of Bayesian statistics in medical device clinical trials.
The mock submission highlighted two key themes. First, early
communication between the sponsor and regulatory teams is
important to identify areas for detailed discussion, education, or
that raise issues of concern, particularly due to the intersection
of clinical statistics and engineering simulation. Second, model
credibility, suitability, and context of use should be integral to
the model development work, as they will heavily influence the
success of the approach. All mock submission documents and
FDA’s formal response are publicly available on theMDICwebsite
for the Virtual Patient Project.

The aforementioned VICTRE project for imaging systems also
exemplifies other advances FDA is considering for augmenting
clinical trials. The power of this approach lies in the ability to
replace expensive and lengthy clinical trials for new imaging
systems with completely in silico trials. The physics for these
systems are well-known and all aspects of the evaluation cycle
can be simulated with sufficient confidence to replace each step
with simulation. Themain objective of this approach is to achieve
the same regulatory conclusion with the virtual clinical trial
as with a large 600-patient clinical trial (76). The success of
this approach relies on statistical models, deep learning and
artificial intelligence (AI); these advanced analysis and statistical
methods, which are comparable with mechanistic, predictive
engineering tools, have the potential to dramatically transform
medical devices (77). In fact, CDRH just permitted the marketing
of the first medical device with AI33.

33https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm604357.
htm

The device uses deep learning algorithms (78) to analyze
images of the eye taken with a retinal camera for detecting
diabetic retinopathy.

In other industries, computational modeling has long been
recognized as a crucial scientific tool for getting innovative
products into the hands of consumers34 (79) and facilitating
design excellence through product lifecycle management (PLM).
“PLM is a business solution which aims to streamline the flow of
information about the product and related processes throughout
the product’s lifecycle such that the right information in the
right context at the right time can be made available (80)”. If
the medical device industry were to embrace PLM, they could
more fully harness the power of simulation in each phase of the
product’s lifecycle and utilize AI tools to implement knowledge
gained from real-world data to enhance their understanding
of performance, support continuous improvement, and inform
new designs and therapies. FDA also believes that computational
modeling is poised to become a critical tool for accelerating
regulatory decision-making. Continued adoption will be essential
for advancing FDA’s mission, improving our ability to evaluate
medical devices more efficiently, reducing regulatory burden
for sponsors, and accelerating the introduction of innovative
technologies to the U.S. market for the benefit of patients.
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