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In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging–Alzheimer’s 
Association have contributed criteria for the diagnosis of Alzheimer’s disease (AD) that better define clinical 
phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This 
Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances 
to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, 
requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological 
biomarker consistent with the presence of Alzheimer’s pathology. We propose that downstream topographical 
biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the 
measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria 
for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

Introduction
In 2007, the International Working Group (IWG) for New 
Research Criteria for the Diagnosis of Alzheimer’s Disease 
(AD) provided a new conceptual framework that proposes 
to anchor the diagnosis of AD on the presence of 
biomarkers.1 A goal of these diagnostic criteria, and of the 
subsequent National Institute on Aging–Alzheimer’s 
Association (NIA–AA) criteria,2 has been to expand 
coverage of the full range of disease stages, from the 
asymptomatic through the most severe stages of dementia. 
Potentially, their most important practical application is to 
allow earlier intervention in the prodromal stages of the 
disease and to facilitate research studies into secondary 
prevention of AD in the preclinical states. As we learn 
more through the research application of these criteria, 
common ground is being found for the eventual 
development of a universal set of criteria that truly 
captures the essence of AD.

In parallel, research into biomarkers has helped to 
clarify the potential value of each marker in the diagnosis 
of AD. Data highlight the value of cued recall measures 
for the assessment of episodic memory impairment; the 
relevance of atrophy of the hippocampus and related 
structures has been revisited; the value, relation with 
pathology, and significance of CSF biomarkers are better 
known; and interpretation of data from amyloid PET 
imaging has improved, its correlation with pathology 
clarified, and new ligands have been introduced. The 
objectives of the proposed revision are to clarify, in the 
context of this consensus framework, how the criteria 
can be applied, maintaining the principle of a high 
specificity. Our aims are as follows: (1) to present a new 
diagnostic algorithm for typical AD; (2) to advance the 
diagnostic criteria for atypical AD; (3) to refine the 
diagnostic criteria for mixed AD; (4) to elaborate the 
criteria for the diagnosis of the preclinical states of AD; 

and (5) to differentiate the biomarkers of AD diagnosis 
from those of AD progression.

Conceptual advances of the new criteria
AD has traditionally been defined as a type of dementia, a 
notion brought into existence with the publication of 
criteria from the National Institute of Neurological and 
Communicative Disorders and Stroke–Alzheimer’s 
Disease and Related Disorders Association (NINCDS–
ADRDA) in 1984.3 Two major tenets of these criteria were 
as follows: (1) the clinical diagnosis of AD could only be 
designated as “probable” while the patient was alive and 
could not be made definitively until Alzheimer’s pathology 
had been confirmed post mortem; and (2) the clinical 
diagnosis of AD could be assigned only when the disease 
had advanced to the point of causing significant functional 
disability and met the threshold criterion of dementia. 
The absence at that time of clinical criteria for the other 
dementias and the lack of biomarkers resulted in a low 
specificity in differentiation of AD from other dementias.4

In 2007, the IWG for New Research Criteria for the 
Diagnosis of AD provided a new conceptual framework 

that moved AD from a clinicopathological to a 
clinicobiological entity.5 These 2007 IWG criteria 
proposed that AD could be recognised in vivo and 
independently of dementia, in the presence of two 
requisite features. The first was a core clinical phenotypic 
criterion that required evidence of a specific episodic 
memory profile characterised by a low free recall that is 
not normalised by cueing.5 This memory profile differs 
from that observed in patients with non-AD disorders, 
such as frontotemporal dementias, progressive 
supranuclear palsy, Huntington’s disease, major 
depression, or even normal ageing, in which the frontal-
related retrieval deficit is normalised by the cueing 
procedure.6–9 This pattern was secondarily shown to 
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correlate significantly with hippocampal volume and, 
more precisely, with the CA1 field in three-dimensional 
hippocampal surface-based shape analysis.10 It was 
included as a core criterion because no other cognitive 
changes in “typical AD”, whether at a prodromal 
(predementia) or dementia stage, are as specific to the 
disease. The second criterion was the presence of 
biomarker evidence consistent with and supportive of 
AD on: (1) structural MRI; (2) molecular neuroimaging 
with PET (F-2-fluoro-2-deoxy-D-glucose PET [FDG PET] 
or C-labelled Pittsburgh compound B PET [PiB PET]); 
or (3) CSF analysis of amyloid β (Aβ) or tau protein (total 
tau [T-tau] and phosphorylated tau [P-tau]) concentrations. 
The most innovative aspect of the 2007 criteria was the 
first introduction of biomarkers into the core diagnostic 
framework. This change enabled AD diagnosis to be 
extended into the prodromal stage, where the disease can 
be diagnosed with supportive biomarkers. The 
ambiguous nature of any categorical boundary between 
prodromal AD and AD dementia argues in favour of a 
unified and dimensional diagnostic approach that uses 
the same criteria for diagnosis irrespective of the severity 
of cognitive and functional deficits. The recognition of 
prodromal AD was an important advance over the 
broader and more heterogeneous state of mild cognitive 
impairment (MCI). Furthermore, the IWG diagnostic 
criteria served to disconnect the clinicobiological 
diagnosis of AD from the diagnostic requirement of 
having dementia and functional disability that impairs 
everyday life. The framework offered a single set of 
criteria that were applicable at all clinical stages of disease 
across the entire disease continuum. Their main 
limitations were the focus on only typical AD with 
amnestic presentations and the absence of ordering or 
weighting of the supportive biomarkers.

The first important refinements to the 2007 criteria 
were made by the IWG in 2010.11 A lexicon was proposed 
that clearly drew a distinction between the clinical disease 
(AD) and disease pathology (Alzheimer’s pathology)—
which is defined by specific neuronal lesions observed 
post mortem, including senile plaques and neurofibrillary 
tangles associated with neuronal loss, synaptic loss, and 
frequently with cerebral amyloid angiopathy—because 
this pathological process might not have been 
symptomatic during life. In turn, this distinction 
broadened the spectrum of the disease to include its 
preclinical states, in which Alzheimer’s pathology exists 
without clinical symptoms. Two states were proposed for 
preclinical AD: “asymptomatic at-risk state for AD” and 
“presymptomatic AD”. The former group includes 
individuals with biomarkers of Alzheimer’s pathology 
but without clinical symptoms or signs. These individuals 
are classified as being asymptomatic at risk of AD 
because the percentage of individuals with positive 
biomarkers who will progress to symptomatic clinical 
conditions is not yet established, and because it is 
recognised that significant Alzheimer’s pathology can 

exist at post mortem in individuals who were not judged 
to be symptomatic in their lifetime.12–15 The designation 
of presymptomatic AD was proposed for the few 
individuals who carry an autosomal dominant monogenic 
AD mutation with virtually full penetrance, in view of the 
inevitability that they will develop clinically manifest AD. 
The 2010 lexicon also proposed working definitions of 
“atypical AD” and “mixed AD”. Biomarkers were further 
categorised as “pathophysiological” if they were direct in- 
vivo indicators of brain amyloidosis and tauopathy, 
including amyloid tracer PET scans and CSF 
concentrations of Aβ1–42, T-tau, and P-tau. On the 
assumption that Alzheimer’s pathology leads to 
metabolic changes or neuronal loss in connected regions, 
biomarkers were considered to be “topographical” if they 
identified downstream brain changes indicative of the 
regional distribution of Alzheimer’s pathology, including 
medial temporal lobe atrophy on MRI or reduced glucose 
metabolism in temporoparietal regions on FDG PET. No 
changes were made to the diagnostic algorithm itself 
(clinical core plus supportive biomarker evidence), except 
for the specification of atypical forms of AD, which 
described the less frequent but well defined clinical 
phenotypic variants of non-amnestic focal cortical 
syndromes, including logopenic aphasia, posterior 
cortical atrophy, and frontal variant AD.

The NIA–AA diagnostic criteria, published in 2011,2 
similarly advanced the NINCDS–ADRDA framework to 
cover the full staging of the disease: asymptomatic 
(preclinical AD),16 predementia (MCI due to AD),17 and 
dementia (due to AD).18 These criteria shared many 
features with the IWG criteria, including the integration 
of biomarkers in the diagnostic process and the 
recognition of an asymptomatic biomarker-positive 
stage. The NIA–AA criteria differ conceptually from the 
IWG criteria on several points. The NIA–AA proposed 
three different sets of diagnostic criteria, one for each 
disease stage. Although both the IWG and NIA–AA 
criteria recognise that the disease starts before the 
occurrence of clinical symptoms, the NIA–AA criteria 
support the diagnosis of AD in asymptomatic individuals 
with biomarker evidence of Aβ accumulation,16 whereas 
the IWG considers this to be only an at risk of disease 
state. At both the MCI17 and dementia stages,18 the 
NIA–AA diagnostic framework provides different levels 
of probabilistic likelihood (high, intermediate, or 
unlikely) that the syndrome is due to AD based on 
biomarker information. The NIA–AA criteria have the 
advantage of being applicable when no supportive 
biomarkers are available, albeit at the expense of 
diagnostic specificity. The IWG criteria are less complex 
in their semiology, have the advantage of consistency, 
and are more readily applicable in clinical trials and in 
clinical diagnosis when biomarkers are available.

Validation of both the IWG and NIA–AA diagnostic 
criteria is fundamental to progress in the field. Preliminary 
studies (both retrospective and prospective) done mostly 
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with patients referred to memory clinics indicate moderate 
sensitivity and high specificity for the IWG criteria, with a 
good diagnostic accuracy (from 93% to 100% compared 
with the NINCDS–ADRDA clinical criteria and, for one 
study, with the neuropathological Consortium to Establish 
a Registry for Alzheimer’s disease [CERAD] criteria) when 
several biomarkers are combined.19–23 The emphasis and 
progress on biomarkers builds on an increasingly robust 
scientific foundation as data emerge about biomarker 
performance (reliability, reproducibility, validity) and 
operationalisation (cutoff scores, sensitivity and specificity 
for AD).24 The most challenging questions for both the 
IWG and NIA–AA frameworks focus on the multitude of 
proposed biomarkers, their inter-relationships particularly 
with regard to producing additive value, and their putative 
weight in the diagnosis. A temporal order has been 
proposed in the NIA–AA research criteria for preclinical 
AD, in which amyloid biomarker changes precede 
neuronal injury in the progression to symptomatic stages.2 
This ordering is not settled, although it has received some 
support from the cross-sectional baseline data of 
genetically identified early-onset familial AD cases with 
various presenilin and amyloid precursor protein 
mutations.25–27

In this Position Paper, the IWG presents evidence to 
support a refinement of its diagnostic algorithm based 
on the weighting of biomarkers, which is achieved by 
reconsidering the biomarker categories and their role as 
markers of Alzheimer’s pathology.

Methods
The IWG recognised the limitations of the initial criteria 
and the need to take advantage of rapid progress in the 
field, and considered that the criteria for the diagnosis of 
AD might be improved in the light of a more 
comprehensive body of evidence than was available at 
their initial formulation in 2007. For this update, an 
extensive review of the literature was undertaken by BD 
and LCdS with key search themes (AD diagnosis, 
preclinical states, prodromal AD, atypical and mixed AD, 
CSF and neuroimaging, amyloid PET) in PubMed from 
2007 until January, 2013. On the basis of a review of 
selected papers (BD and LCdS), an early draft of the 
revised conceptual framework was developed (BD, HHF, 
CJ, PS, and JLC), which was then circulated to the IWG 
experts for their extensive feedback and electronic 
consultations within the group. The feedback resulted in 
a more advanced version of the diagnostic framework and 
the draft manuscript. It was then proposed to a broader 
group of experts (JLM, KB, DS, SCa, SE, M-OH, AN, GR, 
CR, BV, and LS) for their additional comments in specific 
areas. The final version was approved by all the authors.

A revised diagnostic algorithm for typical AD
New evidence on tests to identify AD memory disorders
Memory disorders that manifest as free recall deficits 
occur in many brain diseases other than AD.28–30 A 

specific episodic memory disorder has been reported in 
AD, which is the manifestation of a hippocampal 
dysfunction4 and can be identified by tests that include 
list learning. Of these, the free and cued selective 
reminding test (FCSRT) was specifically recommended 
in the 2007 criteria because of two major advantages: it 
controls for a successful encoding (achieved by cued 
recall) and it facilitates retrieval processing (with the 
same semantic cues).31 There is evidence to support the 
choice of the FCSRT as a valid clinical marker of typical 
AD. On one version of the test applied in patients 
referred to a specialised memory clinic, a low total 
recall performance, despite retrieval facilitation with 
cueing, had an excellent specificity for AD,32 whereas a 
low free recall had a specificity of 92% for identification 
of people with amnestic MCI who would progress to 
AD dementia.33 The FCSRT had better reported 
predictive validity than did the Wechsler Memory Scale 
(WMS) logical memory immediate recall test for 
identification of both individuals from a community-
based cohort with memory complaints who went on to 
develop incident AD dementia34 and patients referred to 
a memory clinic who fulfilled broad criteria for MCI 
and had a characteristic positive CSF profile for 
Alzheimer’s pathology.35 Furthermore, impaired FCSRT 
performance can be correlated with hippocampal 
atrophy,10 grey matter loss of the medial temporal lobe,23 
and the presence of Alzheimer’s pathology as shown by 
CSF changes,23,35–37 even at a prodromal stage.34 Different 
cutoff scores have been considered33 and are currently 
being deployed in several clinical trials in prodromal or 
early AD, including studies of γ-secretase inhibitors, 
BACE inhibitors, monoclonal antibodies, and medical 
foods. The challenge of prescribing cutoff points lies in 
the variations in the tests used and in the adjustments 
across populations for age and education. For research 
purposes—clinical trials, validation of new biomarkers, 
or follow-up of patient cohorts—the general approach 
is to recommend that cutoff points are selected within 
given target populations that have high specificity for 
an early AD diagnosis, potentially at the expense of 
lower sensitivity. Optimisation of the specificity of the 
memory screen might be a goal to minimise 
unnecessary additional testing.34 Simplified versions of 
the test based on cued recall can be used for bedside 
testing. These versions were reported to predict 
progression to AD dementia in patients with MCI with 
specificity around 90%.38–40

Other memory tests, particularly those based on list 
learning and delayed recall, can also be effective in 
identification of the amnestic syndrome of AD. These 
tests include different versions of the paired-associate 
learning and the Rey auditory verbal learning tasks.41–48 
Other promising neuropsychological tests to detect the 
amnestic impairments that are specific for early 
pathological involvement of the entorhinal-perirhinal 
cortex include the DMS48,49 a visual recognition test that 
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is correlated with an AD pattern in patients with MCI,50 
and the topographical memory test.51 The short-term 
memory binding test might also be a good marker for 
AD,52 given its high specificity in patients with familial 
AD and in asymptomatic carriers with PSEN1 autosomal 
dominant gene mutations.53 For all of these tests, 
evidence for their diagnostic utility for AD should be 
available before they can be recommended for use within 
the diagnostic algorithm.

In conclusion, the aggregate evidence continues to 
support the presence of an amnestic syndrome of the 
hippocampal type as the clinical core criterion for typical 
AD, which can be best identified with a list-learning 
memory test such as the FCSRT or other episodic 
memory tests with established high specificity for AD 
across the disease.

The evidence for refining the biomarker criteria
CSF biomarkers and amyloid PET have both shown the 
highest specificity when correlated with the underlying 
Alzheimer’s pathology in post-mortem studies. 
Conceptually, they are the most specific biomarkers to 
determine that an individual is within the AD continuum 
even several years before the clinical onset of disease.

CSF pathophysiological markers for AD include Aβ1–42, 
which inversely reflects the brain amyloid burden; T-tau, 
which directly reflects the intensity of neuronal 
degeneration; and P-tau, which is believed to be a direct 
marker of tangle pathology.54 Recent studies suggest that 
CSF markers of Aβ1–42 and tau correlate closely with post-
mortem Alzheimer’s pathology.55–60 In an autopsy cohort, 
low CSF Aβ1–42 concentrations had a sensitivity of 96·4% 
for AD detection55 and CSF markers significantly 
increased the diagnostic accuracy in clinically uncertain 
cases.61 Of CSF markers, P-tau181 concentrations were the 
most accurate to distinguish AD from non-AD 
dementias, even in autopsy-confirmed dementia 
patients.56, 62 A marked reduction in CSF Aβ1–42 and in the 
Aβ1–42/Aβ1–40 ratio has consistently been noted in patients 
at different stages of AD.54, 63 However, an isolated low 
Aβ1–42 is not sufficiently specific to diagnose AD, in view 
of similar findings in some patients with non-AD 
dementias (Lewy body disease or vascular dementia), 
given its presence long before onset of clinical AD, or 
given AD copathology in patients with Lewy body 
disease.64 Additionally, Aβ1–42 concentrations are 
particularly sensitive to preanalytical and analytical 
biases65 and make it difficult to achieve the requisite low 
coefficient of variation and quality control.66 Numerous 
studies have shown that a combination of these CSF 
biomarkers is required because it significantly improves 
their discriminative accuracy,67–72 but no consensus has 
been agreed yet as to which specific combination has the 
greatest utility in AD diagnosis.

The added value of the combinations of CSF markers 
has been tested in predictive studies of progression to 
AD dementia. Individuals with a high ratio of T-tau to 

Aβ1–42 or of P-tau181 to Aβ1–42 progress to symptomatic 
cognitive impairment (ie, CDR >0) more quickly than do 
the remainder of the cohort.67 This result was not 
observed for Aβ1–42 concentrations alone for the duration 
of the longitudinal studies (3–5 years) completed to date. 
The combination of T-tau, Aβ1–42, and P-tau is highly 
predictive of AD dementia,72–74 which has been confirmed 
in three large multicentre studies—namely, the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
study,62 the Development of Screening Guidelines and 
Criteria for Predementia Alzheimer’s Disease 
(DESCRIPA) study,75 and the Swedish Brain Power 
(SBP) project.76 A meta-analysis recently confirmed that 
the combination of CSF Aβ1–42 with either T-tau or P-tau 
has the highest predictive accuracy, whereas individual 
markers were also predictive but with lower accuracy 
(odds ratio [OR] 7·5–8·1).77 Studies of autosomal 
dominant mutation carriers, including the Dominantly 
Inherited Alzheimer’s Disease (DIAN) project, also 
show that high CSF T-tau and P-tau combined with a 
decrease in CSF Aβ1–42 and the ratio of Aβ1–42 to Aβ1–40 are 
present 10–15 years before the first symptoms of 
dementia.25,78,79 Thus, data so far indicate that the 
combination of Aβ1–42 with either T-tau or P-tau has the 
best specificity, but evidence is insufficient with regard 
to the predictive value and diagnostic accuracy 
(sensitivity, specificity, negative predictive value, and 
positive predictive value) of Aβ1–42 alone. Additionally, the 
combined analysis of the CSF biomarkers provides the 
best accuracy in the differential diagnosis between AD 
and other degenerative dementias,80–82 with a good 
concordance with post-mortem diagnosis.81,83 In 
particular, the ratio of T-tau to Aβ1–42 was the best 
biomarker to differentiate AD from frontotemporal lobar 
degeneration, and showed a specificity of 96·6% in a 
series of patients with diagnostic confirmation either by 
genetics or by post-mortem examination.80

In conclusion, Aβ1–42 and tau (T-tau or P-tau) should be 
used in combination, and the CSF AD signature, which 
combines low Aβ1–42 and high T-tau or P-tau concentrations, 
significantly increases the accuracy of AD diagnosis even 
at a prodromal stage.67,73,77,83,84 This combination reaches a 
sensitivity of 90–95% and a specificity of about 90% in 
AD.81,85 CSF biomarkers cannot be used as standalone 
tests, and should be interpreted in a larger clinical context 
with confounding factors taken into account. An 
important concern is the large variability in CSF measures 
between laboratories82 and across techniques,86 and the 
lack of agreement on cutoff thresholds.87 These variations 
have made direct comparison of study results difficult. 
Several programmes of standardisation, including the 
Alzheimer’s Association Quality Control programme for 
CSF biomarkers, initiatives within the Joint Program for 
Neurodegenerative Diseases, and the Global Biomarker 
Standardisation Consortium,88–90 and by industry, will 
minimise between-laboratory variations in the future and 
allow identification of uniform cutoff levels.
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PET imaging with amyloid tracers, including ¹¹C-PiB, 
florbetapir (AV-45),91 flutemetamol (¹⁸F-PiB derivative), 
florbetaben (AV-1), and AZD4694,92 provides important 
information about the extent of Aβ neuritic plaque burden 
in the brain. Amyloid PET is therefore considered as a 
surrogate marker of brain fibrillar amyloid pathology. Both 
quantitative and qualitative measures of amyloidopathy 
with PET ligands have correlated strongly with post-
mortem senile neuritic plaque pathology across PET 
ligands93–97 and shown good predictability for progression 
to AD dementia in heterogeneous groups of patients with 
MCI.98–101 Agreement between florbetapir amyloid PET 
images and post-mortem results reaches 96%.93

In conclusion, amyloid PET is a validated patho-
physiological marker for fibrillar amyloid, particularly 
neuritic plaques and amyloid angiopathy. In view of the 
good correlation with post-mortem diagnosis of AD, a 
positive amyloid PET can be considered, by extension, as 
a good marker of Alzheimer’s pathology.

As with CSF, there are several issues with the methods 
of assessment and their interpretation. Visual inter-
pretations of ¹⁸F amyloid tracers require experienced 
raters. Tracer sensitivity for moderate amyloid burden is 
less established and varies according to the age of 
patients.102 The significance of the frequent cases of 
amyloid PET positivity in asymptomatic individuals 
requires further investigation,97,103,104 which also holds true 
for the rare cases of amyloid PET-negative individuals 
with AD autosomal dominant mutations105 or post-
mortem evidence of fibrillar amyloid.106,107

For the purposes of the proposed refinement of the 
IWG diagnostic criteria, it is important to compare the 
diagnostic accuracy of CSF markers (low Aβ and high 
T-tau or P-tau concentrations) to that of a positive 
fibrillar amyloid PET scan, given that they gauge 
somewhat different aspects of AD pathophysiology. CSF 
Aβ1–42 measures soluble forms of Aβ, and a low 
concentration suggests that significant parenchymal 
deposition has occurred, whereas amyloid imaging 
directly identifies fibrillar Aβ. CSF T-tau and CSF P-tau 
reflect neuronal degeneration and hyperphosphorylation 
of tau in the brain, respectively. Despite these 
distinctions, a recent study has shown equal ability of 
CSF and amyloid imaging markers to identify individuals 
at risk of incident cognitive impairment.108 Results from 
this study showed that individuals with increased ligand 
retention in amyloid imaging typically have decreased 
CSF Aβ and increased CSF tau concentrations, rather 
than Aβ alone. In the pathophysiological evolution of 
AD, substantial deposition of fibrillar amyloid is likely to 
co-occur with changes in both CSF Aβ1–42 and tau, at least 
at a time shortly before the onset of clinical symptoms. 
Despite reports of discrepancies,105 a high degree of 
correlation and agreement exists between CSF markers 
of Aβ1–42 and tau, and brain amyloid binding. Amyloid 
ligand retention on PET has consistently correlated 
inversely with CSF concentrations of Aβ1–42,109–111 even in 

cognitively healthy patients,112 which supports the 
concept of a physiological link between CSF Aβ1–42 
concentrations and brain amyloidosis. By contrast with 
the well documented correlation between brain amyloid 
retention and CSF Aβ1–42 concentrations, only a modest 
agreement was noted between amyloid PET and P-tau.113 
More recently, the ratios of tau(s) to Aβ1–42 outperformed 
each single biochemical analyte (including Aβ1–42) in 
distinguishing PiB-positive from PiB-negative indi-
viduals.87 The good agreement between CSF markers 
and PET amyloid imaging provides converging evidence 
for their validity.114

In conclusion, Alzheimer’s pathology can be suspected 
in vivo at any stage of the disease, including preclinical 
states, by a CSF signature of low Aβ1–42 and high T-tau or 
P-tau concentrations, or by evidence of significant PET 
amyloid retention (either by visual assessment in 
advanced cases or by assessment of global cortical 
threshold in intermediate or difficult cases).

Proposed revision for typical AD
A research diagnosis of typical AD can be made in the 
presence of an amnestic syndrome of the hippocampal 
type that can be associated with various cognitive or 
behavioural changes, and at least one of the following 
changes indicative of in-vivo Alzheimer’s pathology: a CSF 
profile consisting of decreased Aβ1–42 levels together with 
increased T-tau or P-tau concentrations, or an increased 
retention on amyloid tracer PET. The proposed diagnostic 
change for typical AD is to include only pathophysiological 
markers of Alzheimer’s pathology (panel 1).

A revised diagnostic algorithm for atypical AD
The case for refining the diagnostic algorithm
In an estimated 6–14% of cases,115–117 the presentation of 
AD varies from the typical amnestic form. Patients with 
an atypical clinical presentation probably account for 
most of the 11% of AD cases with an atypical pathological 
distribution at autopsy.118 Each of these atypical forms of 
AD presents with a relative preservation of memory plus 
a recognisable (or characteristic) phenotype that might be 
accompanied by topographical evidence of brain damage 
(regional atrophy or hypometabolism) in related regions. 
Atypical forms of AD generally occur with an earlier age 
at onset than does typical amnestic AD. It is now possible 
to propose more precise definitions for atypical AD 
presentations, including a posterior variant of AD, a 
logopenic variant of AD, and a frontal variant of AD.

The posterior variant of AD presents as a posterior 
cortical atrophy119 and generally results in several signs and 
symptoms that distinguish two subtypes:120 an 
occipitotemporal variant,115 with a predominant impairment 
in the visual identification of objects, symbols, words, or 
faces; and a more common biparietal variant,121 with 
predominant visuospatial dysfunction, as well as features 
of Gerstmann or Balint syndrome, limb apraxia, or neglect. 
The logopenic variant of AD, which presents as the 
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logopenic primary progressive aphasia, is defined by a 
progressive impairment in single-word retrieval and in 
repetition of sentences in the context of spared semantic, 
syntactic, and motor speech abilities.122 The frontal variant 
of AD presents as a behavioural variant of frontotemporal 
dementia, with progressive apathy or behavioural 
disinhibition and stereotyped behaviours, or with 
predominant executive dysfunction at testing.123–128

Although most cases of posterior cortical atrophy and 
logopenic primary progressive aphasia are linked to 
Alzheimer’s pathology,126,129 only a few patients who 
present with prominent frontal behavioural symptoms 
have Alzheimer’s pathology detected post mortem.126,128,130 
As for typical AD, the IWG emphasises the necessity of 
pathophysiological biomarkers to support a diagnosis of 
AD in these atypical cases (panel 2). The topographical 
biomarkers can help to characterise the clinical 
phenotype (regional cortical hypometabolism in FDG 
PET, circumscribed cortical atrophy on structural MRI), 
whereas a positive pathophysiological biomarker is 
required to link the phenotype to the underlying 
Alzheimer’s pathology.131–133 Although a positive 
pathophysiological biomarker supports the presence of 
Alzheimer’s pathology, it does not exclude the co-
occurrence of non-AD pathology, which might be a 
significant contributor to the atypical syndromes, 
particularly in the frontal variant,134 which is less 
predictive of pure underlying AD than the logopenic or 
posterior variants. By definition, these atypical syndromes 
can be diagnosed within their prodromal phase as well as 
into the dementia continuum along a spectrum of 
severity. Further work is needed to distil the specific 
clinical core related to Alzheimer’s pathology in each of 
these atypical presentations, with the aim of 
characterising the clinically atypical cores with the same 
conceptual foundation in cognitive theory and 
operationalisation in terms of test paradigms as has been 
done for the amnestic core in typical AD.

The occurrence of a dementia in patients with Down’s 
syndrome can be classified as an atypical AD because the 
clinical phenotype associated with the occurrence of 
Alzheimer’s pathology is dominated by changes in 
behaviour, executive functions, and functional activities.135 
The premorbid intellectual disability creates a specific 
setting for the assessment of the cognitive impairment 
associated with Alzheimer’s pathology. Although 
episodic memory changes can be identified with testing 
procedures, the presenting functional and behavioural 
symptoms lead to their consideration as atypical AD.

Proposed revision for atypical AD
A diagnosis of atypical AD can be made in the presence 
of the following: a clinical phenotype that is consistent 
with one of the known atypical presentations (posterior 
variant, logopenic variant of primary progressive aphasia, 
frontal variant) and at least one of the changes indicating 
in-vivo Alzheimer’s pathology (panel 2).

A revised diagnostic algorithm for mixed AD
The case for refining the diagnostic algorithm
The IWG initially defined mixed AD as the co-occurrence 
of Alzheimer’s pathology with other pathologies that 
might contribute to the cognitive decline, such as normal 
pressure hydrocephalus, hippocampal sclerosis, and 
most often cerebrovascular disease or Lewy body disease.11 
Mixed AD has been reported to represent at least 50% of 
all AD cases at autopsy, with a particularly high prevalence 
in people older than 80 years.136,137 The recognition of 
mixed pathology in clinical diagnosis is challenging.138 
Our current proposal for mixed AD diagnosis is that there 
must be evidence of AD based on clinical phenotype, 
either typical or atypical, with concurrent in-vivo evidence 
of Alzheimer’s pathology. Additionally, clinical as well as 

Panel 1: IWG-2 criteria for typical AD (A plus B at any stage)

A Specific clinical phenotype
•  Presence of an early and significant episodic memory impairment (isolated or 

associated with other cognitive or behavioural changes that are suggestive of a mild 
cognitive impairment or of a dementia syndrome) that includes the following 
features:
• Gradual and progressive change in memory function reported by patient or 

informant over more than 6 months
• Objective evidence of an amnestic syndrome of the hippocampal type,* based on 

significantly impaired performance on an episodic memory test with established 
specificity for AD, such as cued recall with control of encoding test

B In-vivo evidence of Alzheimer’s pathology (one of the following)
• Decreased Aβ1–42 together with increased T-tau or P-tau in CSF
• Increased tracer retention on amyloid PET
• AD autosomal dominant mutation present (in PSEN1, PSEN2, or APP)

Exclusion criteria† for typical AD
History
• Sudden onset
• Early occurrence of the following symptoms: gait disturbances, seizures, major and 

prevalent behavioural changes

Clinical features
• Focal neurological features
• Early extrapyramidal signs
• Early hallucinations
• Cognitive fluctuations

Other medical conditions severe enough to account for memory and related symptoms
• Non-AD dementia
• Major depression
• Cerebrovascular disease
• Toxic, inflammatory, and metabolic disorders, all of which may require specific 

investigations
• MRI FLAIR or T2 signal changes in the medial temporal lobe that are consistent with 

infectious or vascular insults

AD=Alzheimer’s disease. *Hippocampal amnestic syndrome might be difficult to identify in the moderately severe to 
severe dementia stages of the disease, in which in-vivo evidence of Alzheimer’s pathology might be sufficient in the 
presence of a well characterised dementia syndrome. †Additional investigations, such as blood tests and brain MRI, 
are needed to exclude other causes of cognitive disorders or dementia, or concomitant pathologies (vascular lesions). 
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neuroimaging or biochemical evidence of a non-AD 
contributing disorder should be present. For example, in 
the case of Lewy body disease, additional clinical features 
of visual hallucinations, extrapyramidal signs, rapid eye 
movement (REM) sleep behaviour disorder, or cognitive 
fluctuations139 would be supported by a positive dopamine 
transporter imaging test.140

.
 For cerebrovascular disease, 

the clinical presentation would include a history of stroke, 
appropriate vascular risk factors or focal neurological 
findings (or both), which should be supported by 
neuroimaging evidence of cerebrovascular disease in the 
form of lacunar disease, evidence of cerebral amyloid 
angiopathy, large or small vessel territory infarctions, 
extensive leukoaraiosis, or small vessel disease (panel 3).

The clinical phenotype of mixed AD is uncertain. AD 
and non-AD dementias are not easily catalogued into 
distinct, non-overlapping clinical and neuropsychological 
profiles.141 A few autopsy-based studies on AD associated 
with Lewy body disease have shown episodic memory 
impairment similar to that noted in AD alone, with 
visuospatial deficits unusually severe for AD142 and with 
milder impairment in executive functioning than usually 
found in Lewy body disease.143 AD combined with 
cardiovascular disease might also present with a distinct 
profile of deficits, probably broader than that of AD 
alone.144,145 These and other mixed AD clinical presentations 
need to be carefully characterised, particularly at the 
prodromal stage.

Proposed revision for mixed AD
A diagnosis of mixed AD can be made in patients with 
typical or atypical clinical phenotypic features of AD and 
the presence of at least one biomarker of Alzheimer’s 
pathology. This evidence is needed to establish the AD 
contribution to the mixed disorder. The coexisting 
disorder within the mixed diagnosis is identified by 
additional evidence of specific clinical and biological 
features of the other disease, such as parkinsonism or 
cerebrovascular disease (panel 3).

Criteria for the preclinical states of AD
The case for new criteria for the diagnosis of preclinical 
states
The disappointing results of drugs targeting Aβ in recent 
clinical trials for patients with mild to moderately severe 
AD have engendered the belief that these therapies are 
being tested too late in the process of the disease and that 
earlier intervention is needed to ameliorate the course of 
AD.146,147 In turn, interest has intensified in defining the 
preclinical states of AD through research projects on the 
natural history and trajectory of the disease, to design 
secondary preventive clinical trials.148,149 Patho physiological 
biomarkers of disease, independent of disease stage, 
makes it possible to identify patients considered to be 
asymptomatic at risk for AD.12 In preclinical states, data 
for early CSF changes are needed because it may be 
possible that an isolated low Aβ1–42 concentration is 

Panel 3: IWG-2 criteria for mixed AD (A plus B)

A Clinical and biomarker evidence of AD (both are required)
• Amnestic syndrome of the hippocampal type or one of the clinical phenotypes of 

atypical AD
• Decreased Aβ1–42 together with increased T-tau or P-tau in CSF, or increased tracer 

retention on amyloid PET

B Clinical and biomarker evidence of mixed pathology
For cerebrovascular disease (both are required)
• Documented history of stroke, or focal neurological features, or both
• MRI evidence of one or more of the following: corresponding vascular lesions, small 

vessel disease, strategic lacunar infarcts, or cerebral haemorrhages

For Lewy body disease (both are required)
• One of the following: extrapyramidal signs, early hallucinations, or cognitive 

fluctuations
• Abnormal dopamine transporter PET scan

AD=Alzheimer’s disease.

Panel 2: IWG-2 criteria for atypical AD (A plus B at any stage)

A Specific clinical phenotype (one of the following)
• Posterior variant of AD (including)

• An occipitotemporal variant defined by the presence of an early, predominant, and 
progressive impairment of visuoperceptive functions or of visual identification of 
objects, symbols, words, or faces

• A biparietal variant defined by the presence of early, predominant, and progressive 
difficulty with visuospatial function, features of Gerstmann syndrome, of Balint 
syndrome, limb apraxia, or neglect

• Logopenic variant of AD defined by the presence of an early, predominant, and 
progressive impairment of single word retrieval and in repetition of sentences, in the 
context of spared semantic, syntactic, and motor speech abilities

• Frontal variant of AD defined by the presence of early, predominant, and progressive 
behavioural changes including association of primary apathy or behavioural 
disinhibition, or predominant executive dysfunction on cognitive testing

• Down’s syndrome variant of AD defined by the occurrence of a dementia characterised 
by early behavioural changes and executive dysfunction in people with Down’s 
syndrome

B In-vivo evidence of Alzheimer’s pathology (one of the following)
• Decreased Aβ1–42 together with increased T-tau or P-tau in CSF
• Increased tracer retention on amyloid PET
• Alzheimer’s disease autosomal dominant mutation present (in PSEN1, PSEN2, or APP)

Exclusion criteria* for atypical AD
History
• Sudden onset
• Early and prevalent episodic memory disorders

Other medical conditions severe enough to account for related symptoms
• Major depression
• Cerebrovascular disease
• Toxic, inflammatory, or metabolic disorders

AD=Alzheimer’s disease. *Additional investigations, such as blood tests and brain MRI, are needed to exclude other 
causes of cognitive disorders or dementia, or concomitant pathologies (vascular lesions).
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sufficient to identify asymptomatic at-risk patients at this 
time.36 Cognitively normal patients with isolated low 
concentrations of Aβ present significant changes in both 
cortical thickness and fMRI,36,150 which suggests that at the 
start of the preclinical state, amyloid might be the only 
positive marker, as proposed by Jack and colleagues.99 By 
contrast, the identification of relatively common genetic 
risk variants such as CLU, CR1, and PICALM151,152 is of 
limited interest in the determination of risk of the 
preclinical state of AD in the general population. Even the 
APOE ε4 allele, associated with AD risk, is neither 
necessary nor sufficient for development of the disease.153

Although a long insidious preclinical state of the 
disease can precede the onset of clinical symptoms by 
many years, the risk factors and timing for development 
of clinically expressed AD from the asymptomatic at-risk 
state are not characterised sufficiently well to move 
beyond this diagnostic designation. To be asymptomatic 
at risk, individuals should not have clinical evidence of 
prodromal AD. The existence of any cognitive changes or 
complaints does not necessarily signify progression to 
clinical AD because these could be non-specific changes. 
There is an emerging trend to consider that AD can be 
identified clinically in the case of subtle cognitive 
changes.17 Isolated subjective memory complaints and 
the recent concept of subjective cognitive decline154 could 
be predictors of subsequent cognitive decline and 
progression to dementia155 and might be associated with 
brain amyloid deposition on amyloid PET.156,157 However, 
subjective memory complaints are only a risk factor for 
AD, because they might result from many other causes 
frequently encountered in the ageing population, 
including attention difficulties, depressed mood, sleep 
disorders, and drug side-effects. According to the refined 
IWG criteria proposed here, the diagnosis of AD requires 
the identification of one of the specific clinical phenotypes 
of the disease. A similar approach is advocated for 
presymptomatic AD, with progression to clinical AD 
certified only by the presence of objective clinical 
symptoms characteristic of the disease (panel 1).

Proposed revision for preclinical states
Research criteria for preclinical states of AD require: the 
absence of clinical symptoms of AD (typical or atypical 
phenotypes); and the presence of at least one biomarker 
of Alzheimer’s pathology for the identification of 
asymptomatic at-risk state, or the presence of a proven 
AD autosomal dominant mutation on chromosomes 1, 14, 
or 21 for the diagnosis of presymptomatic state (panel 4).

Differentiation of biomarkers of AD diagnosis 
from biomarkers of AD progression
Refining the use of pathophysiological and 
topographical biomarkers
Alzheimer’s pathology consists of brain amyloid 
deposition and neurofibrillary tangles, generally associated 
with synaptic loss and vascular amyloid deposits. Where 

they develop, these lesions induce functional deficits and 
neuronal death. Variations in the hierarchy and 
relationships between Aβ load, cerebral hypometabolism, 
and atrophy have been reported.158 However, these changes 
account for regional hypometabolism, atrophy of specific 
structures, and cognitive disorders in relation to the 
location of the neuronal lesions. Downstream 
topographical markers, particularly hippocampal atrophy 
assessed by MRI, cortical hypometabolism measured by 
FDG PET, and the subsequent cognitive and behavioural 
changes lack patho logical specificity for AD, but they 
might be particularly valuable for detection and 
quantification of disease progression. These changes 
might be good markers to monitor time to disease 
milestones—eg, dementia onset—or for determination of 
disease stages.25,99

Among all MRI-related biomarkers—including 
structural MRI with assessment of atrophy of critical brain 
regions (parahippocampal gyrus, hippocampus, amygdala, 
posterior association cortex, and subcortical nuclei 
including the cholinergic basal forebrain), assessment of 
cortical thickness,159 and with use of support vector 
machine-based classifier;160 functional MRI161,162 with studies 
of activation or functional connectivity; and proton 
magnetic resonance spectroscopy for the N-acetylaspartate 
(NAA)/creatine ratio in specific areas (posterior cingulate 
gyri)163–165—it is now established that medial temporal 
atrophy is the best MRI marker at a prodromal stage of 
further progression to AD dementia, and hippocampal 
atrophy is the most robust.166 However, hippocampal 
volume is reduced in several conditions, including old age, 
and several neurotoxic situations including diabetes, sleep 
apnoea, bipolar disorder, and other conditions or dementia 

Panel 4: IWG-2 criteria for the preclinical states of AD

IWG-2 criteria for asymptomatic at risk for AD (A plus B)
A Absence of specific clinical phenotype (both are required)

• Absence of amnestic syndrome of the hippocampal 
type

• Absence of any clinical phenotype of atypical AD
B In-vivo evidence of Alzheimer’s pathology (one of the 

following)
• Decreased Aβ1–42 together with increased T-tau or P-tau in 

CSF
• Increased retention on fibrillar amyloid PET

IWG-2 criteria for presymptomatic AD (A plus B)
A Absence of specific clinical phenotype (both are required)

• Absence of amnestic syndrome of the hippocampal 
type

• Absence of any clinical phenotype of atypical AD
B Proven AD autosomal dominant mutation in PSEN1, 

PSEN2, or APP, or other proven genes (including Down’s 
syndrome trisomy 21)

AD=Alzheimer’s disease.
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(hippocampal sclerosis, Lewy-related pathology, 
argyrophilic grain disease, and frontotemporal 
dementia).167–169 Additionally, some pathological studies 
have documented the existence of hippocampal sparing in 
AD, often associated with early age-of-onset and non-
amnestic clinical presentations, in which cortical 
degeneration is predominant while the medial temporal 
lobes are relatively spared.118,170,171 The association of all these 
non-AD disorders decreases the diagnostic utility of 
volumetric measures of medial temporal lobe structures 
for individual diagnostic purposes. However, the reliability 
of volumetric measures obtained from repeated MRI scans 
is high,172 which allows the study of the rate of atrophy over 
time as a reliable modality to measure disease progression. 
For example, hippocampal loss occurs at a rate that is 
approximately two to four times faster in patients with AD 
than in age-matched healthy controls.173,174

Among topographical markers, FDG PET has been 
shown to have good sensitivity in detection of early brain 
dysfunction in AD175–177 and to follow disease evolution over 
time,178–181 including in AD mutation carriers.182,183 FDG 
uptake is believed to be a sensitive marker of synaptic 
dysfunction,184,185 and understandably the topography of 
hypometabolism accurately maps on clinical symptoms. 
Patients with AD with predominant memory impairment 
show the classic default mode network pattern 
(temporoparietal association areas including the precuneus 
and posterior cingulate cortex), whereas in patients with 
AD with focal neuropsychological deficits (language, 
praxis, or visuospatial dysfunction) hypometabolism 
affects the pertinent neocortical area.186,187 A study of the 
accuracy to predict progression from MCI to dementia in 
102 patients reported values of 95% sensitivity and 79% 
specificity,188 and a meta-analysis noted a positive likelihood 
ratio of 7·5 (0·4–14·7) and a negative likelihood ratio of 
0·50 (0·14–0·86).24 Changes have also been noted in 
asymptomatic patients at risk for AD.189–191 FDG uptake is 

reduced, predominantly in temporoparietal association 
areas including the precuneus and posterior cingulate 
cortex, and these changes are closely related to cognitive 
impairment as demonstrated in cross- sectional and 
longitudinal studies.186

Therefore, functional tracers such as FDG PET, in 
addition to their ability to differentiate AD from other 
neurodegenerative dementias,192–194 can help to show the 
extent to which Alzheimer’s pathology affects brain 
function, particularly in individuals with high cognitive 
reserve.195–197

Proposed revision
We propose that pathophysiological biomarkers of 
Alzheimer’s pathology and downstream topographical 
markers of AD should be reconceptualised, whereby 
biomarkers of Alzheimer’s pathology are restricted to 
those indicating the specific presence of tau pathology 
(CSF or PET tau) and amyloid pathology (CSF or PET 
amyloid) (panel 5). These biomarkers have the necessary 
specificity for a diagnosis of AD at any point on the 
disease continuum. Downstream topographical markers 
of brain regional structural and metabolic changes have 
insufficient pathological specificity and are therefore 
now removed from the IWG diagnostic algorithm. These 
markers can be used to measure disease progression.

Discussion
In this paper, we refine the IWG research diagnostic 
criteria for AD to provide a more simplified algorithm 
based on specific AD clinical phenotypes with in-vivo 
evidence of Alzheimer’s pathology through either a 
molecular AD signature in CSF or positive amyloid 
imaging (figure). This simplified diagnostic algorithm 
reinforces our understanding of AD as a clinicobiological 
entity and allows the application of a single set of 
diagnostic criteria at any stage of the disease. We broaden 
the clinical core criteria to include the challenging 
phenotypic characterisations of atypical and mixed AD. 
The proposed refinements will place great demands on 
the clinical core diagnosis, for which the clinician now 
needs to identify a range of potential AD phenotypes, 
including mixed AD phenotypes and focal non-amnestic 
disease presentations.

We reconsider the biomarker support required for 
these diagnoses by anchoring all diagnostic criteria to the 
requirement of in-vivo evidence of AD pathophysiology, 
defined as increased brain amyloid retention on PET 
imaging (and perhaps of tau ligand on tau imaging PET 
in the near future), or as decreased Aβ1–42 together with 
increased T-tau or P-tau in CSF. Low CSF Aβ1–42 
concentrations alone are not specific enough for an AD 
diagnosis. These refinements are based on evidence 
supporting the high specificity of CSF biomarkers and 
PET amyloid imaging for AD. An important change in 
the current criteria is that topographical markers of AD 
are now recommended for the assessment of disease 

Panel 5: Definition of AD biomarkers

Diagnostic marker
• Pathophysiological marker
• Reflects in-vivo pathology
• Is present at all stages of the disease
• Observable even in the asymptomatic state
• Might not be correlated with clinical severity
• Indicated for inclusion in protocols of clinical trials

Progression marker
• Topographical or downstream marker
• Poor disease specificity
• Indicates clinical severity (staging marker)
• Might not be present in early stages
• Quantifies time to disease milestones
• Indicated for disease progression

AD=Alzheimer’s disease.
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stage and progression rather than as diagnostic markers. 
The classification in the NINCDS–ADRDA criteria of 
“clinically probable” AD could be discarded now that we 
are able to identify Alzheimer’s pathology in vivo. 
Additionally, we now integrate the presence of an 
autosomal dominant genetic mutation for AD as a 
diagnostic marker of the disease.

Within the proposed refinements of the IWG diagnostic 
criteria, we address the problem of the diversity of AD 
biomarkers and their potential weighting in the 
diagnostic algorithm. The IWG previously identified 
pathophysiological and topographical markers but 
attributed equal utility to both in the diagnosis of AD. 
The NIA–AA distinguishes between markers of Aβ 
deposition and neuronal injury, and assigns each type an 
equal role in diagnosis. We advance this categorisation 
through a redefinition of purpose or role of the 
biomarkers. We view pathophysiological markers as 
indicators of Alzheimer’s pathology in the brain, rather 
than as markers linked to disease stages. That is, they 
describe the presence of disease pathology at any stage. 
These markers of Alzheimer’s pathology are largely 
static, at least in the symptomatic stage of the disease, 
whereas topographical markers that are linked to the 
evolution of disease have greater dynamic range and 
changes over time. These proposed refinements simplify 
the diagnostic approach by designating a single in-vivo 
pathophysiological signature of AD, measured either in 
CSF or by use of amyloid PET.

The proposed revisions still rely on the two fundamental 
tenets that underlined the initial IWG criteria. The first is 
that they characterise a disease (AD) and not a syndrome 
(MCI or dementia). The combination of a specific 
cognitive profile, consistent with typical or atypical AD, 
and a positive pathophysiological marker moves the 
patient from an undetermined status of MCI to that of 
prodromal AD. The concept of MCI remains useful for 
cases that are negative for pathophysiological biomarkers. 
The second tenet is to maintain the principle of high 
specificity, at least for criteria that apply for research 
purposes including clinical trials. The 2007 IWG criteria 
were successfully implemented in current phase 2 clinical 
trials for prodromal AD and they were qualified for use in 
AD clinical trials by the European Medicines Agency 
(EMA).198 Identification of patients with typical AD is 
thought to be more accurate and more reliable based on 
the refined algorithm. Once the well defined and 
operationalised core amnestic criterion is met, 
confirmation from a single positive patho physiological 
marker is sufficient for inclusion purposes (except in rare 
cases of AD in which memory and MRI changes precede 
amyloid positivity).199 To date, we have integrated evidence-
based, clinically established, atypical forms of AD. In the 
future, new potential atypical presentations of AD might 
be considered and incorporated into our model. Research 
on patients with atypical or mixed AD will also benefit 
from the refined algorithm with reference to biomarkers 

of amyloid pathology. This diagnostic framework should 
promote more systematic studies of these disorders.

Although the revised algorithm is meant to apply to all 
stages of the disease, it should be implemented with 
caution for some conditions, such as for patients with 
AD at moderately severe or severe stages for whom 
intellectual deterioration has progressed to a point at 
which memory testing is no longer possible. In such 
circumstances, positive markers of Alzheimer’s 
pathology should be considered as sufficient for 
inclusion in research on the basis of a history consistent 
with AD and after exclusion of a mixed disease with 
appropriate investigations. Disagreement between 
pathophysiological markers needs to be considered, and 
longitudinal observations should help to solve this issue 
in the future. There might also be age-related limitations. 
In older patients (>85 years), the clinical expression of 
AD and neuroimaging changes might be less salient.200 
The phenotypic expression of AD is relatively mild in the 
oldest-old (>85 years) with a frequently indolent 
course.201–203 The diagnostic performance of CSF 
biomarkers and of structural MRI-based regional brain 
atrophy decreases with age,204 as does the association 
between neuritic plaques and dementia.205 This decrease 
in performance might affect the ability to distinguish 
AD from normal ageing in this group,206 for which high 
fibrillar amyloid is also very often detected. Furthermore, 
these patients have an increased risk of other systemic 
comorbidities136 and general health problems including 
inflammatory conditions, anaemia, cancer, frailty, 
comedications, and other factors, which undoubtedly 
can interfere with the occurrence, expression, and 
progression of AD symptoms207 and might render the 
proposed algorithm less accurate. One refinement for a 
research perspective might be to separate younger 
patients, for which AD is rather pure with fewer or no 
comorbidities, high diagnostic accuracy, and reliability, 
from the oldest-old patients with a higher risk of 
comorbidities and a more complex underlying pathology. 
Research into individuals with identified risk of AD will 
continue to present challenges despite our efforts to 

Figure: AD is defined as a clinicobiological entity
A simplified algorithm is proposed: in any condition and at any stage of the disease, the diagnosis of AD relies on 
the presence of a pathophysiological marker. AD=Alzheimer’s disease.

Clinical phenotypes
Typical
• Amnestic syndrome of the hippocampal type
Atypical
• Posterior cortical atrophy
• Logopenic variant
• Frontal variant

Preclinical states
Asymptomatic at risk
• No AD phenotype (typical or atypical) 
Presymptomatic (autosomal dominant mutation) 
• No AD phenotype (typical or atypical)

Required pathophysiological marker 
• CSF (low amyloid β1–42 and high T-tau or P-tau)
or
• Amyloid PET (high retention of amyloid tracer)
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better define the preclinical states of AD. Important 
clinical issues exist in distinguishing between normal 
ageing, subtle early AD symptoms, and non-AD 
symptoms, and careful assessment will be needed to 
establish whether cognitive changes constitute an early 
expression of AD. Isolated low CSF levels of Aβ1–42 might 
be present long before the appearance of the disease, 
and further evidence will tell us whether it might be 
sufficient to define asymptomatic at-risk patients.

In our view, the proposed criteria, which are designed for 
the accurate diagnosis of AD for rigorous research 
purposes, might in the future be used for clinical diagnosis 
in practice, at least for young-onset AD or atypical 
presentations in which biomarkers might increase 
diagnostic accuracy. Expert centres with adequate 
resources could use the algorithm proposed here and 
assess its performance to move the field forward and to 
determine utility within clinical practice. Important work 
has already been done in application of the 2007 IWG 
criteria in outpatient clinics, with excellent specificity and 
acceptable sensitivity.20–23 There is no a priori reason against 
a general move of the proposed criteria from research into 
clinical settings, at least in specific cases, although several 
caveats need to be considered. Not all centres have PET 
scanning equipment and expertise, and some participants 
might not readily accept a lumbar puncture for CSF assays. 
Further studies are needed to clarify conflicting results that 
can occur between the different CSF markers, and between 
CSF markers and amyloid PET. The lack of financial 
support for these costly investigations may limit the 
practicality of the IWG-2 criteria for general clinical use. 
Studies to determine the cost-effectiveness of diagnosis 
might also be required. Pathophysiological markers allow 
the identification of Alzheimer’s pathology, including 
amyloidopathy or tauopathy, but do not preclude the 
presence of other non-AD conditions. MRI and other 
investigations are still necessary for the identification of 
comorbid or non-AD conditions and will continue to be 
part of the diagnostic approach. Cultural acceptance 
should also be taken into account. Although the use of 
CSF biomarkers is advancing well in European countries, 
this is not the case in many Asian208 and Latin American 
countries,209 and to some extent even in North America. An 
important issue in transitioning of the proposed algorithm 
to general clinical settings is the rendering of a diagnosis 
of AD at the prodromal stage, in an era for which effective 
disease-modifying treatments are not yet available. The 
potential benefits of such a diagnosis should be weighed 
against any potential psychological and emotional 
effects.210,211 Alternatively, a misdiagnosis of AD has strong 
ethical implications, which emphasise the value of high 
diagnostic accuracy. The choice of a highly specific clinical 
criterion decreases the risk of a false-positive diagnosis 
anchored on biomarker results.

In conclusion, we propose a number of refinements to 
the 2007 IWG diagnostic algorithm and 2010 lexicon for 
the research diagnosis of AD. The current refinements 

have been made possible because rapid progress in the 
field in the past 4 years has improved our characterisation 
of clinical phenotypes and the expression of disease 
captured by in-vivo biomarkers of Alzheimer’s pathology. 
We foresee that progress will continue to be rapid and we 
anticipate that studies of the very early stages of disease 
will represent a paradigm shift that will result in more 
successful therapeutic developments.
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