
ECP-U-RPT-2020-0001

Advancing Scientific Productivity through Better Scientific Software:

Developer Productivity and Software Sustainability Report

IDEAS-ECP Team and Collaborators

January 28, 2020

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

ECP-U-RPT-2020-0001

Advancing Scientific Productivity through Better Scientific Software:
Developer Productivity and Software Sustainability Report

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

January 28, 2020

Exascale Computing Project (ECP) iii ECP-U-RPT-2020-0001

Members of the IDEAS-ECP Project, 2017–2019

Michael A. Heroux (SNL)
Lois Curfman McInnes (ANL)
David E. Bernholdt (ORNL)

Anshu Dubey (ANL)
Elsa Gonsiorowski (LLNL)

Osni Marques (LBNL)
J. David Moulton (LANL)

Boyana Norris (University of Oregon)
Elaine M. Raybourn (SNL)

Satish Balay (ANL)1

Ross Bartlett (SNL)
Lisa Childers (ANL)1

Todd Gamblin (LLNL)1

Patricia Grubel (LANL)
Rinku Gupta (ANL)

Rebecca Hartman-Baker (LBNL)
Judy Hill (ORNL)

Stephen Hudson (ANL)1

Christoph Junghans (LANL)1

Alicia Klinvex (SNL)1

Reed Milewicz (SNL)
Mark C. Miller (LLNL)
Hai Ah Nam (LANL)
Jared O’Neal (ANL)1

Katherine Riley (ANL)
Ben Sims (LANL)

Jean Shuler (LLNL)
Barry Smith (ANL)1

Louis Vernon (LANL)1

Greg Watson (ORNL)
Jim Willenbring (SNL)

Paul Wolfenbarger (SNL)

in collaboration with the ECP Community

1indicates IDEAS-ECP project alumni at the time of this publication, January 2020

Exascale Computing Project (ECP) iv ECP-U-RPT-2020-0001

REVISION LOG

Version Creation Date Description

1.0 January 28, 2020 Advancing Scientific Productivity through Better

Scientific Software: Developer Productivity and

Software Sustainability Report

Exascale Computing Project (ECP) v ECP-U-RPT-2020-0001

EXECUTIVE SUMMARY

The Exascale Computing Project (ECP) provides a unique opportunity to advance computational science
and engineering (CSE) through an accelerated growth phase in extreme-scale computing. Central to the
project is the development of next-generation applications and software technologies that can exploit emerg-
ing architectures for optimal performance and provide high-fidelity, multiphysics, multiscale capabilities.
However, disruptive changes in computer architectures and the complexities of tackling new frontiers in
extreme-scale modeling, simulation, and analysis present daunting challenges to the productivity of soft-
ware developers and the sustainability of software artifacts. Members of the CSE community—especially
at extreme scales but more broadly at all scales of computing—face an urgent need to improve developer

productivity, positively impacting product quality, development time, and staffing resources, and software

sustainability, reducing the cost of maintaining, sustaining, and evolving software capabilities.

This report summarizes technical and cultural challenges in scientific software productivity and sustain-
ability. We introduce work by the IDEAS project within ECP (called IDEAS-ECP, https://ideas-productivity.

org) to foster and advance software productivity and sustainability for extreme-scale CSE, including part-
nerships with complementary groups. IDEAS goals are to qualitatively change the culture of extreme-scale
computational science and to provide a foundation (through software productivity methodologies and an
extreme-scale software ecosystem) that enables transformative and reliable next-generation predictive sci-
ence and decision support. Work spans four synergistic strategies: (1) curating methodologies to improve
software practices of individuals and teams, (2) incrementally and iteratively upgrading software practices,
(3) establishing software communities, and (4) engaging in community outreach. Because these issues are
relevant throughout all scales of scientific computing, we aim for broad readership—and we hope that these
experiences and resources may be useful in other contexts, as individuals and teams work within their own
projects, institutions, and communities to advance software practices and overall productivity.

Members of the IDEAS-ECP project serve as catalysts to address the challenges facing ECP teams by fo-
cusing on improving how teams conduct software efforts. A central activity is productivity and sustainabil-

ity improvement planning (PSIP)—a lightweight, iterative workflow where teams identify their most urgent
software bottlenecks and work to overcome them. We explain how teams are more productively tackling sci-
ence goals through PSIP advances in areas such as software builds, testing, refactoring, and onboarding. As
the ECP community works toward an extreme-scale scientific software ecosystem composed of high-quality,
reusable software components and libraries, we are advancing methodologies to support Software Develop-
ment Kits and to improve transparency and reproducibility of computational results. The report discusses
IDEAS outreach in the high-performance computing (HPC) community: (a) establishing the Better Scientific

Software (BSSw) website (https://bssw.io) as a hub for sharing information on practices to improve software
productivity and sustainability; (b) launching the BSSw Fellowship Program to give recognition and funding
to leaders and advocates of high-quality scientific software; (c) producing a webinar series on Best Prac-

tices for HPC Software Developers; (d) providing tutorials on topics such as software testing, verification,
and refactoring; (e) organizing events to foster discussion of issues in scientific software development; and
(f) working toward a scientific software community culture that invests in and benefits from an explicit focus
on developer productivity and software sustainability, adapting and adopting best practices from the broader
software community and establishing our own contributions to these pursuits.

These synergistic strategies and achievements provide a strong foundation for forthcoming work to ad-
vance the quality of extreme-scale CSE as needed to achieve ECP goals and to enable transformative and
reliable next-generation predictive science, engineering, and decision support. Work thus far is the first phase
of much longer-range vision. Members of the IDEAS-ECP project are collaborating with complementary
international groups to nurture communities of practice and work toward long-term changes in the culture,
funding, and reward structure of CSE—with a goal of increasing overall scientific productivity, while en-
abling software to fully realize its role as a cornerstone of long-term collaboration and scientific progress.

Exascale Computing Project (ECP) vi ECP-U-RPT-2020-0001

https://ideas-productivity.org
https://ideas-productivity.org
https://bssw.io

TABLE OF CONTENTS

EXECUTIVE SUMMARY vi

1 Introduction 1

2 Context for Advances in Software Productivity and Sustainability 3

2.1 Challenges . 3
2.2 Growing a community of practice . 4
2.3 Characterizing the development and use of software for scientific research 5

3 Key Synergistic Strategies and Impact 5

3.1 Prerequisite: Determining crosscutting urgent needs . 7
3.2 Curating methodologies to improve software practices of individuals and teams 8
3.3 Incrementally and iteratively upgrading software practices 9
3.4 Establishing software communities . 11
3.5 Engaging in community outreach . 12

3.5.1 Community-driven resources: BSSw.io website . 12
3.5.2 Recognition: BSSw Fellowship Program . 14
3.5.3 Webinar series: Best Practices for HPC Software Developers 15
3.5.4 Tutorials on better scientific software . 17
3.5.5 Technical meetings on HPC software development topics 18
3.5.6 Working toward culture change . 19

4 Conclusion 21

A References 22

B IDEAS Projects 25

B.1 IDEAS-ECP team . 25
B.2 IDEAS-Watersheds: Advancing a software ecosystem for watershed modeling 26

C Advances by Science Teams through Productivity and Sustainability Improvement Planning 27

C.1 Advances in building and testing: A case study with EXAALT 28
C.2 Advances in code refactoring: A case study with ExaStar 29
C.3 Advances in onboarding: A case study with Exascale MPI 30

D Outreach Details 32

D.1 HPC Best Practices Webinar Series . 32
D.2 Blog articles published on BSSw.io . 33

vii

1. INTRODUCTION

Unprecedented complexity and continual change. Researchers in computational science and engineer-
ing (CSE) face unprecedented disruptive changes in extreme-scale computer architectures. The transition to
hosted accelerated architectures, specifically nodes with multicore CPU and multiple GPUs, requires devel-
oping new algorithmic approaches, porting code to new compiling and runtime environments, and realizing
massive concurrency that is possible only by overcoming large latency bottlenecks. Furthermore, these new
CPU/GPU platforms represent only the beginning of the system heterogeneity expected in the future.

At the same time, opportunities for next-generation simulation, analysis, and design present enormous
challenges. Teams are working toward predictive science and engineering through multiphysics, multiscale
simulations and analytics and are addressing requirements for greater scientific reproducibility. Moreover,
recent community reports have expressed the imperative to firmly embrace the fundamental role of open-
source CSE software as a valuable research product and cornerstone of collaboration—and thus to increase
direct investment in the software itself, not just as a byproduct of other research [3, 9, 14, 16, 17, 19, 20, 35].
This situation brings with it an opportunity to fundamentally change how scientific software is designed,
developed, and sustained.

IDEAS overview and history. Members of the IDEAS project (Interoperable Design of Extreme-scale Ap-
plication Software, https://www.ideas-productivity.org) are partnering with the CSE and high-performance
computing (HPC) communities to improve developer productivity (positively impacting software quality,
development time, and staffing resources) and software sustainability (reducing the cost of sustaining and
evolving software over its intended lifetime)—thereby helping improve scientific productivity while ensur-
ing continued scientific success. We are defining and taking steps toward new scientific software ecosystems
that emphasize the use and development of high-quality tools, the adaptation and adoption of modern soft-
ware engineering methodologies, and the development and use of high-quality software components in the
composition of next-generation applications.

The IDEAS project began in 2014, sponsored by the U.S. Department of Energy Office of Science
as a partnership between the Offices of Advanced Scientific Computing Research (ASCR) and Biologi-
cal and Environmental Research (BER), to address challenges in software productivity and sustainability,
with an emphasis on terrestrial ecosystem modeling; we now refer to this original phase of the project
as IDEAS-Classic. The project expanded in 2017 in the DOE’s Exascale Computing Project (ECP, https:

//www.exascaleproject.org), which requires intensive development of applications and software technolo-
gies while anticipating and adapting to continuous advances in computing architectures. This ECP-funded
effort, which we call IDEAS-ECP, addresses the specific needs of ECP application and software efforts,
focusing on the challenges of software development for emerging extreme-scale architectures and ensuring
that investment in the exascale software ecosystem is as productive and sustainable as possible. In spring
2019, the BER-funded IDEAS-Watersheds project grew out of the original IDEAS project, with emphasis
on accelerating watershed science through a community-driven software ecosystem. Throughout this report,
we use the term IDEAS to refer to the overarching IDEAS initiatives, and we use the terms IDEAS-Classic,
IDEAS-ECP, and IDEAS-Watersheds when a funding source or team distinction is needed.

Advancing scientific productivity through better scientific software. Scientific productivity is one of the
top ten exascale research challenges [30], and software productivity (the effort, time, and cost for software
development, maintenance, and support) is one critical aspect of scientific productivity [17]. A significant
challenge is the need for high-quality, high-performance, reusable, sustainable scientific software, so that we
can more effectively collaborate across teams on work toward predictive science. Thus, although general and
actionable metrics have proven difficult to define, an overarching focus on productivity and sustainability
is essential to making clear decisions as we face not only highly disruptive architectural changes but also
demands for greater interaction across distinct teams and reliability of results.

Exascale Computing Project (ECP) 1 ECP-U-RPT-2020-0001

https://www.ideas-productivity.org
https://www.exascaleproject.org
https://www.exascaleproject.org

At the same time, there is general awareness that the broader CSE community has similar urgent needs,
even if it does not have the mandate to prepare for exascale computing platforms or the same resources to ad-
dress these challenges. The Computational Science & Engineering Software Sustainability and Productivity
Challenges workshop was sponsored by the U.S. Networking and Information Technology Research and De-
velopment program [29] on behalf of DOE, DOD, NSF, NIST, NASA, and U.S. industrial organizations. This
workshop and its subsequent report [14] highlight the significant challenges that all CSE software projects
face. The IDEAS-ECP project has substantial overlap with the concerns of these U.S. federal and industry
organizations; and our efforts build upon relationships and collaborations that the IDEAS-ECP team has
already established with this broader community, including an NSF-funded conceptualization project for a
U.S. Research Software Sustainability Institute [43]. We are also partnering with international organizations
that are addressing challenges in software quality and sustainability [18], including Software Carpentry [39]
and the U.K. Software Sustainability Institute [40]. As discussed in Section 2.2, this work contributes to
exciting advances in research software communities.

Better Scientific Software: community, website, fellowships. While the IDEAS-ECP project focuses ex-
plicitly on software issues for extreme-scale science, we are serving and partnering with the broader CSE
community (computing at all scales) through a key initiative: establishing the Better Scientific Software

(BSSw) website (https://bssw.io) as a central hub for sharing information on practices, techniques, experi-
ences, and tools to improve developer productivity and software sustainability. Also, the BSSw Fellowship

Program gives recognition and funding to leaders and advocates of high-quality scientific software. The
long-term vision for BSSw is to serve as an international community-driven and community-managed re-
source, with content and editorial processes provided by volunteers, initially nucleated by the IDEAS team
but over time expanding to much broader participation.

Document structure and target audience. The remainder of this document explains more about the
drivers of this work, the approach and achievements of the IDEAS project, and their relationships to comple-
mentary international efforts. Section 2.1 explains technical and cultural challenges of scientific software,
while Section 2.2 introduces a variety of international groups that are fostering “communities of practice”
to advance the culture of scientific and research computing with explicit emphasis on high-quality software.
Section 2.3 characterizes the development and use of research software for science, emphasizing unique
needs relative to mainstream environments in industry and business. Section 3 explains the IDEAS approach,
outcomes, and impact of advancing software productivity and sustainability through four synergistic strate-
gies that complement and reinforce one another: (1) curating methodologies to improve software practices
of individuals and teams, (2) incrementally and iteratively upgrading software practices, (3) establishing
software communities, and (4) engaging in community outreach. Section 4 provides concluding comments.
Appendices provide more details about the IDEAS family of projects (Appendix B), advances in scientific
productivity through improving software practices (Appendix C), and outreach activities (Appendix D).

Our target readers are all those who care about the quality and integrity of scientific discoveries based
on simulation and analysis. While the difficulties of extreme-scale computing and large, multidisciplinary
research projects intensify software challenges, many issues are relevant across all computing scales and
project sizes, given universal increases in complexity and change in scientific computing coupled with
the need to ensure the trustworthiness of computational results. Each member of the scientific software
community—from students and early-career professionals through mid-career and senior staff, stakeholders,
members of funding agencies, and other leaders—can play important roles in addressing these technical and
social challenges in scientific software by catalyzing change in our own projects, institutions, and commu-
nities to improve how we conduct our software efforts. While various reports consider diverse perspectives
and opportunities [3,9,14,16,17,19,20,35] for work toward long-term changes in the culture, funding, and
reward structure of CSE, this discussion focuses on the point of view of individuals working within their
own spheres of influence to promote advances in software practices.

Exascale Computing Project (ECP) 2 ECP-U-RPT-2020-0001

https://bssw.io

2. CONTEXT FOR ADVANCES IN SOFTWARE PRODUCTIVITY AND

SUSTAINABILITY

Before considering strategies for advances in scientific software productivity and sustainability, we must
first consider the context for this work. Section 2.1 summarizes technical and cultural challenges in scientific
software productivity and sustainability, while Section 2.2 discusses community groups that are working to
increase emphasis on high-quality software in scientific and research computing. Section 2.3 characterizes
the development and use of software for scientific research.

2.1 Challenges

CSE software efforts face both technical and cultural challenges [9, 14, 17, 35],2 a situation that is particu-
larly true for ECP software efforts. The transition of applications to exploit massive on-node concurrency,
the requirement to couple physics and scales, along with analytics and learning, and the continued disrup-
tion in the underlying hardware, system software, and programming environments together create the most
challenging environment for developing CSE applications in at least two decades.

System architectural changes. Massive on-node concurrency is required in order to achieve exascale
performance levels. We will have node counts on the order of 105 and clock speeds at 109. Both of these
values are expected to remain constant or grow only modestly over the next few years. The substantial
performance growth curves are on the compute node. To succeed with exascale, we will need to realize
concurrency levels of order 104. While some of this performance can be achieved by populating nodes
with multiple MPI ranks, much of the performance must come from vectorization (or, more generally, single
instruction, multiple thread execution on GPUs) and lightweight tasking. Given the current state of our codes,
addressing these requirements will be highly disruptive, displacing a huge proportion of executable code by
the time work is complete. Communitywide, the cost of this transformation depends greatly on how quickly
and effectively know-how and best practices emerge and then are disseminated across the community, in
turn fostering greater programmer productivity and software sustainability.

New science frontiers, expanding aggregate teams. The dramatic increase in computing capability en-
abled by exascale systems opens new opportunities for work toward predictive science—coupling physics
and scales, coupling simulations and data analytics, and incorporating outer-loop optimization, uncertainty
quantification, and learning. As scientific applications increase in sophistication, no single person or team
possesses the expertise and resources to address all aspects of a simulation. Interdisciplinary collaboration
using software developed by distinct groups becomes essential, requiring coupling of code bases that were
independently developed and necessitating increased coordination across teams [20].

The value of better software methodologies increases dramatically in these settings. It is the nature of
software projects that the poor practices of one subteam will have a disproportionate negative impact on the
whole project. For example, frequent regressions in one component impact the efforts of all components in
the project. Similarly, incompatible practices and poor communication across subteams impact all aspects
of a project. Improved software methodologies, tools, and communication, as well as compatible practices,
are essential as we bring codes and teams together into composite efforts.

Thus, we face an urgent need to improve software productivity and sustainability in order to fully support
the quality and integrity of computational research results, while promoting collaboration via software. A
presentation in December 2018 by Paul Messina, founding director of ECP during 2016–2017, to the advi-
sory committee of ASCR strongly supported this need for improving software practices. Messina stated:

2 The Computational Science and Engineering Software Sustainability and Productivity (CSESSP) Challenges Workshop report [14] states
that “CSE software as an enterprise has yet to emerge as a creative discipline in its own right. Both model and hardware complexity are growing
simultaneously, and they both make the other more difficult to manage. The time is upon us to address the growing challenge of software productivity,
quality, and sustainability that imperils the whole endeavor of computation-enabled science and engineering.”

Exascale Computing Project (ECP) 3 ECP-U-RPT-2020-0001

A significant challenge going forward for ASCR (and all of international computational science)
centers on more explicit emphasis on high-quality, high-performance, reusable, sustainable soft-
ware itself, in order to encapsulate research advances in math, computer science and applications
and enable next-generation advances toward predictive science.... Increased efforts should be
supported to change the culture of computational science to fully acknowledge the important
role that software plays as a foundation for CSE collaboration and scientific discovery. [26]

2.2 Growing a community of practice

Responding to these challenges, various grass-roots community groups have arisen in recent years to nur-
ture “communities of practice” [45] in their respective spheres of influence, where like-minded people share
information and experiences on effective approaches for creating, sustaining, and collaborating via scientific
research software. These groups articulate key issues and needs to stakeholders, agencies, and the broader
research community to effect changes in policies, funding, and reward structure, while advancing under-
standing of the importance of high-quality software to effective collaboration and the integrity of computa-
tional research. Groups such as CIG (https://geodynamics.org, geosciences) and MolSSI (https://molssi.org,
molecular sciences) focus on the needs of a particular application area, while the following organizations
address broader concerns [18, 25]:

The Software Sustainability Institute (SSI). https://www.software.ac.uk. Cultivating better and more sus-
tainable research software to enable world-class research for the U.K. research community and collaborators.

Conceptualization of a U.S. Research Software Sustainability Institute (URSSI). http://urssi.us. Mak-
ing the case for and planning a possible institute to improve science and engineering research by supporting
the development and sustainability of research software in the U.S.

Apache Software Foundation (ASF). https://apache.org: Fostering the growth of open source software
communities and providing technical infrastructure and support mechanisms needed by these communities.

Software Carpentry. https://software-carpentry.org. Teaching foundational coding skills to researchers,
empowering them to develop research software, automate research tasks and workflows, and perform repro-
ducible science.

Working Towards Sustainable Software for Science: Practice and Experiences (WSSSPE). http://

wssspe.researchcomputing.org.uk: Promoting sustainable research software by addressing challenges re-
lated to the full lifecycle of research software through shared learning and community action.

NumFOCUS. https://numfocus.org: Promoting open code for better science, with emphasis on sustainable
high-level programming languages, open code development, and reproducible scientific research.

rOpenSci. https://ropensci.org: Enabling open and reproducible research by creating technical and social
infrastructure and advocating for a culture of data sharing and reusable software.

Research Software Alliance (ReSA). http://www.researchsoft.org: Bringing research software communi-
ties together to collaborate on the advancement of research software.

Research Software Engineering (RSE) movement. https://us-rse.org, https://rse.ac.uk: Advancing com-
munity, advocacy, and resources for those who regularly use expertise in programming to advance research.

The IDEAS project and collaborators are growing a community of practice to make software productivity
and sustainability first-class concepts in (extreme-scale) scientific computing. Work focuses on disseminat-
ing best practices for scientific research software and establishing software ecosystems, while highlighting
the critical roles of high-quality scientific software and the people who design and develop it.

Exascale Computing Project (ECP) 4 ECP-U-RPT-2020-0001

https://geodynamics.org
https://molssi.org
https://www.software.ac.uk
http://urssi.us
https://apache.org
https://software-carpentry.org
http://wssspe.researchcomputing.org.uk
http://wssspe.researchcomputing.org.uk
https://numfocus.org
https://ropensci.org
http://www.researchsoft.org
https://us-rse.org
https://rse.ac.uk

2.3 Characterizing the development and use of software for scientific research

While the CSE and HPC software communities clearly need a specific focus on developer productivity
and software sustainability, the broader software community has created important new platforms, tools,
and methodologies that are reducing impediments. Software platforms such as GitHub.com, Atlassian, and
Docker have dramatically reduced barriers to collaborative software development. Agile methodologies such
as Scrum and Kanban provide lightweight structured processes that help software teams deliver valuable
functionality to their users and clients (including themselves), while still managing risk and adapting to
changing requirements and dependencies.

To address the technical and social challenges in CSE software, however, we must consider the unique
needs and environments of the scientific research community. While we have much to learn from the main-
stream software engineering community (more than we may at first realize), our needs and environments
are in combination sufficiently unique so as to require fundamental research and strategies specifically for
scientific software.

Extensive education and experience needed to develop scientific software. One of the strongest differ-
ences is the amount of education and experience a scientific software developer needs in a problem domain.
A master’s degree or Ph.D. plus several years of experience is a common minimum. In contrast, developers
in business systems software can start making meaningful contributions much sooner in their careers. An-
other difference is that the results from a scientific simulation can dramatically change the requirements for
the next version of the software. In fact, it is the nature of scientific discovery that software requirements
emerge regularly and frequently, such that long-term detailed plans are always subject to change.

Unique knowledge and skills of team members. Even when we can use mainstream approaches, rules
of thumb commonly used in industry may not be appropriate for scientific computing. Many agile method-
ologies rely on the implicit assumption that a software team has several developers who could be assigned
a given project task, making dynamic assignment straightforward. This assumption is typically not true for
scientific software, where most tasks require a specialized scientific background that at most one or two
team members possess. This fact makes planning much more challenging and forces significant adaptation
of mainstream approaches.

Historically, we have seen that rigid application of mainstream software engineering approaches applied to
scientific computing projects leads to strong negative outcomes. Without significant science-specific adap-
tations and new approaches developed within the scientific community, we run the risk that introducing
more formal approaches to improve software productivity will actually reduce it. This circumstance is why
research in software productivity and sustainability specifically for science, and in particular extreme-scale
scientific computing, is so important [11].

3. KEY SYNERGISTIC STRATEGIES AND IMPACT

The Exascale Computing Project’s aggressive goals require intensive development activities for both scien-
tific applications and the supporting software tools and technologies. Developers must adapt to and anticipate
new computer architectures and scale their codes to levels not previously possible, often also requiring new
algorithms and approaches within the software.

The role of IDEAS within the ECP is to help ease the challenges of software development in this environ-
ment and to help the development teams ensure that DOE investment in the exascale software ecosystem is
as productive and sustainable as possible. The IDEAS-ECP project brings together experts throughout the
DOE community (see Appendix B.1) who have both experience in producing widely used scientific software
products and passion for work on software productivity and sustainability issues. To address the challenges
introduced in Section 2.1 in the context of extreme-scale science, we are partnering throughout all ECP

Exascale Computing Project (ECP) 5 ECP-U-RPT-2020-0001

thrust areas: Application Development (science application projects and co-design centers), Software Tech-
nologies (projects that build reusable packages and tools for the ECP software ecosystem), and Hardware
and Integration (including collaboration with DOE computing facilities and ECP training).

Figure 1: Approach for improving software produc-

tivity and sustainability.

Critical to our approach is first respecting the requirements
of teams to make progress on scientific and software goals
and then helping them identify and deploy improved practices
toward their goals. This strategy is especially important for
ECP, which has an ambitious schedule, where teams must both
deliver capabilities and improve software practices simultane-
ously. To assure providing true value to teams, we must care-
fully understand their requirements, including requirements
for programmer productivity and software sustainability, and
then facilitate improvements that deliver measurable positive
impact soon after adoption (Figure 1). This approach promotes
continuous technology refreshment [27], so that teams can im-
prove software practices to reduce technical debt while ensur-
ing continued scientific success.

Synergistic strategies to improve scientific software pro-

ductivity and sustainability. We work in four complemen-
tary and interconnected areas, as shown in Figure 2. Advances
in each area reinforce and extend the impact of the others.

• Curating methodologies to improve software practices of individuals and teams: Providing infor-
mation to improve software practices and processes—for better planning, development, performance,
reliability, collaboration, and skills. A workflow for best practices content development (Section 3.2)
promotes community collaboration and ensures that information is tailored to address the needs of
high-performance CSE.

• Incrementally and iteratively upgrading software practices: Providing a lightweight iterative work-
flow known as Productivity and Sustainability Improvement Planning (PSIP), where teams identify their
most urgent software bottlenecks and work to overcome them (Section 3.3). Through improvements in
software practices such as building, testing, refactoring, and onboarding (Appendix C), PSIP is helping
teams to mitigate technical risk and advance overall scientific productivity.

Goal: Improve developer productivity and software
sustainability while ensuring continued scientific success.

Customize and curate
methodologies
● Target scientific software

productivity and sustainability

● Use workflow for best practices
content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events

● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

Figure 2: Community collaboration throughout four complementary areas improves scientific software

productivity and sustainability, as a key aspect of advancing overall scientific productivity.

Exascale Computing Project (ECP) 6 ECP-U-RPT-2020-0001

• Establishing software communities: Partnering with software teams to foster the growth of topical
software communities (Section 3.4), whose members are working together to advance the quality, us-
ability an interoperability of related software technologies. Key strategies are determining community

software policies and creating topical Software Development Kits (SDKs), which enable applications
teams to more easily use complementary software products in combination.

• Engaging in community outreach: Encouraging emphasis on high-quality scientific software and shar-
ing information about approaches to improve software productivity and sustainability (Section 3.5). For
example, the Better Scientific Software site (https://bssw.io, Section 3.5.1) is a central hub for shar-
ing information on practices, processes, tools, and experiences, while the BSSw Fellowship Program

(Section 3.5.2) provides recognition and funding for leaders and advocates of high-quality scientific
software. Additional outreach initiatives include producing the webinar series Best Practices for HPC

Software Developers (Section 3.5.3), as well as organizing tutorials and other events (Sections 3.5.4–
3.5.5) that provide training and nurture communities of practice that are working toward culture change
in the broader scientific software community (Section 3.5.6).

Mitigating technical risks by building a firmer foundation for reproducible, sustainable science. We
are guiding ECP teams to focus on practice improvements that not only help them work more effectively
but also enable others to use and contribute to their software, thereby catalyzing collaboration and integra-
tion. For example, as discussed in Appendix C, we are assisting ECP teams to introduce process improve-
ments such as expanded testing and more effective distributed revision control. This work helps to mitigate
technical risk as ECP teams continually advance software capabilities—incorporating new algorithms, data
structures, science functionality, and cross-team collaboration—in order to achieve science and performance
goals on emerging extreme-scale architectures.

The IDEAS-ECP project is a focal point for resources that all teams can leverage. We work closely with
any team that needs direct engagement, and we identify and disseminate to others better practices that
we observe with one team, increasing the rate of improvement for all teams. Collaborations already are
beginning to demonstrate that software productivity and sustainability improvements are possible. Our focus
on best practices in scientific software, as well as development and use of software ecosystems to generate
trusted computational results, enables scientists to engage effectively in their areas of expertise. At the same
time, because many teams outside of ECP face similar challenges in next-generation CSE software and
because project participants pursue ongoing work with diverse science groups, our approach also serves the
broader HPC community.

3.1 Prerequisite: Determining crosscutting urgent needs

Interviews
and PSIPs

User
Stories

Develop
materials

Outreach
and

dissemination

Feedback
and

refinement

Process for interviews, synthesis, outreach

ECP Application, Co-Design, and Software Teams:

CANDLE, ExaGraph, Exascale MPI, ExaStar,
EXAALT, E3SM-MMF, MARBL, NWChemEx,
QMCPack, SPARC, UnifyCR, WDMApp

Figure 3: Interviews and surveys help convey the needs of

science teams.

A prerequisite for this work is understanding current soft-
ware practices, productivity challenges, and preferred ap-
proaches for collaboration and then identifying crosscut-
ting, high-priority needs for training and outreach (see
Figure 3). We employ a blend of community surveys for
broad input and team interviews, which enable deeper
conversations.

Team interviews. An interview protocol (approved by
the Central DOE Institutional Review Board) and inter-
view questions are available to the community in the
PSIP Tools repository. The interviews not only provide
insights on high-priority needs, but also are the first stage of engagement with teams that may result in
implementing the PSIP process (see Section 3.3).

Exascale Computing Project (ECP) 7 ECP-U-RPT-2020-0001

https://bssw.io
https://bssw.io/psip

Figure 4: An urgent priority is helping ag-

gregate teams collaborate more effectively

through software, which encapsulates ex-

pertise across disciplines.

Insights into high-priority needs of CSE teams. Team interviews
and surveys of the ECP community have revealed the common circum-
stance of projects being aggregate teams (see Figure 4), composed of
multiple successful previously existing teams, where software is a pri-
mary vehicle of collaboration. Consequently, a priority is developing
training and outreach materials on practices and tools that help foster
more productive and sustainable collaboration (through software) for
aggregate science teams [28, 33]. Additional topics of strong need in-
clude the following:

• Testing/verification of scientific software
• Team onboarding and team member transitions
• Intermediate and advanced Git (especially for aggregate teams)
• Code reviews for identifying defects
• Agile team management
• Agile workflows for scientific software
• Use of (interoperable) scientific libraries

We are addressing these topics in training and outreach (see Sections 3.5). The initial target teams are directly
contributing to the development of first-of-a-kind learning material for scientific computation projects, with
concrete use cases, motivation, feedback, and refinement of methodologies.

3.2 Curating methodologies to improve software practices of individuals and teams

Distilling collective experience in scientific software best practices. The multifaceted approach intro-
duced in Figure 2 focuses on developing, customizing, curating, and deploying best practices as the funda-
mental way to improve software sustainability and programmer productivity for extreme-scale science. This
work requires distilling the collective understanding of team and community members with many years of
valuable experience in designing and producing high-quality, reusable HPC scientific software.

Figure 5: Workflow diagram describing best practices content development and

deployment. As a team, we identify topics that we believe will be of interest to

the high-performance CSE community and for which we have some expertise

or we can enlist the expertise of others. Once a topic is chosen, we iterate to

develop the content in a typically lively and stimulating exchange. As the content

solidifies, we produce “What Is” and “How To” documents, slides, and policy

lists that can be deployed in a variety of settings, including the BSSw.io site.

This experience, when combined with
knowledge obtained from the broader
software engineering community, has
provided a foundation for focused discus-
sion, distillation, and development of a
large and growing collection of resources
for CSE software teams, as shown by
the best practices content lifecycle model
in Figure 5. For example, some content
is produced as part of our “What Is”
and “How To” documents, which pro-
vide concise characterizations and best
practices for important topics in CSE
software projects (such as software con-
figuration, documentation, testing, revi-
sion control, and agile methodologies),
thus enabling teams to consider improve-
ments at a small but impactful scale.

Exascale Computing Project (ECP) 8 ECP-U-RPT-2020-0001

3.3 Incrementally and iteratively upgrading software practices

Scientific teams typically are funded to generate scientific results, not software. This is a competitive process,
and teams cannot usually expend much time or effort outside of writing the software features that support the
generation of new results. Therefore, any productivity or sustainability improvements must be incremental
and integrated into the primary feature development process.

PSIP: a lightweight workflow for iteratively and incrementally upgrading software practices. Produc-

tivity and sustainability improvement planning (PSIP) (see https://bssw.io/psip [15, 32]) enables CSE teams
to identify their most urgent software bottlenecks and work to overcome them, as a key aspect of increasing
overall scientific productivity. The objectives of the PSIP process are to capture and convey the practices,
processes, policies, and tools of a given software project. The PSIP workflow is intended to be lightweight
and fit within a project’s planning and development process. It is not meant to be an assessment or evalua-
tion tool. Instead PSIP captures the tacit, more subjective aspects of team collaboration, workflow planning,
and progress tracking. In the potential absence of planning and development processes, and as scientific
software teams scale to larger, more diverse aggregate teams, unforeseen disruptions or inefficiencies can of-
ten impede productivity and innovation [34]. PSIP is designed to bootstrap aggregate team capabilities into
best practices, introduce the application of appropriate resources, and encourage teams to adopt a culture of
process improvement.

1 Summarize Current

Project Practices

• Write brief practices

summary document.

• High level description, a

few pages.

2 Set Goals

• Identify practices ready

for improvement.

• Select those with near-

term payoff.

3 Construct Progress

Tracking Card (PTC)

• Construct from PTC

catalog.

• Select only a few items.

4 Record Current PTC Values

• Set baseline values for future

reference.

5 Create Plan For Increasing

PTC values

• Define practice improvement

steps.

• Be specific, track issues.

6 Execute Plan

• Increase PTC values by

improving selected

practices.

• Track issues progress.

7 Assess Progress

• Track PTC values.

• Adjust strategy if needed.

Productivity and Sustainability

Improvement Planning (PSIP)

Workflow

Figure 6: PSIP workflow.

PSIP workflow. As
shown in Figure 6, the
PSIP framework is an
iterative, incremental, re-
peatable, cyclic process
for improvement plan-
ning. The cyclic na-
ture of the PSIP pro-
cess enables software
development teams to
improve overall project
quality and achieve sci-
ence goals by encour-
aging frequent iteration
and reflection. Software
teams may work through
these steps on their own
or with the assistance
of a PSIP facilitator,
who may augment PSIP by bringing process experience and objectivity to the effort, coaching the team
on improving effectiveness and efficiency.

• Summarize current project practices: The first phase includes briefly documenting current project
practices. Recording the original state of the project is important both to provide a baseline for measur-
ing progress and to help identify areas that are ready for improvement.

• Set goals: Completing this step typically brings to light project practices that can benefit from a focused
improvement effort. Although any number of goals may be identified in this step, a limited set is selected
at any given time that can benefit the project and can be achieved within a predictable span of time (a
few weeks to a few months). Goals not chosen at this time may be tabled for future iterations.

• Construct a progress tracking card (PTC): A PTC is a brief document containing the target, or goal,
of the planning activity and a step-by-step list of activities or outcomes (range of 0–5 is suggested) that

Exascale Computing Project (ECP) 9 ECP-U-RPT-2020-0001

https://bssw.io/psip

incrementally lead to improvements in team effectiveness and efficiency. Each practice will have its
own PTC. Teams may select PTCs from a PTC catalog, define their own PTC, or modify PTCs found
in the catalog. The purpose of the PTC is to help teams set and achieve improvement goals. The PTC
is not a tool for external assessment or comparison with other projects. In fact, since PTCs are custom
designed for each project, comparisons are typically not possible.

• Record current PTC values: To establish baseline capabilities and track progress, teams record the
initial values for each PTC.

• Create a practice improvement plan: To increase the values in a PTC (corresponding to improvements
in software productivity and sustainability), teams develop a plan to reach a higher value for each PTC.

• Execute the plan: Team efforts are focused on improving the selected practices described in the PTC.
At first, teams may see a slowdown, as they work to start or improve a given practice. The slowdown
in most cases is proportional to the amount of change, but ideally teams should see steady progress
on a weekly basis after the initial phase and be able to complete execution of a particular practice
improvement within a few months.

• Assess progress: During execution, teams assess and determine the rate of progress. They adjust their
strategy for success if needed. If progress is delayed too long, teams usually start the next PSIP iteration.

• Repeat: The PSIP process is iterative. Continual process improvement is a valuable attribute for any
software project. The PSIP process may be used to guide improvement planning within software projects
and across aggregate projects.

During PSIP or at its conclusion, teams may elect to share their PTCs, best practices, and/or lessons
learned with the community in a variety of ways, including contributing blog posts on PSIP progress to
the BSSw website (Section 3.5.1) and modifying, curating, or creating tools such as new PSIP PTCs or
resources for inclusion in the PSIP catalog.3

PSIP outcomes. As demonstrated by ECP teams’ productivity advances using the PSIP process for improv-
ing software builds, testing, refactoring, and onboarding (Appendix C), PSIP helps to mitigate technical risk
as ECP teams continually advance software capabilities to achieve ECP science and performance goals.
PSIP provides a mechanism to set goals collaboratively, get team buy-in, and enable periodic status checks
to ensure that the goals and execution are aligned. PSIP is easy to learn, especially for scientists who cannot
dedicate time and resources to more formal or heavyweight approaches.

PSIP next steps. We are in the midst of growing the PTC catalog and conducting more research on the use
of PSIP with software teams. We note that PSIP does not address the issue of teams not being rewarded for
efforts to improve developer productivity and software sustainability; for PSIP to be broadly effective, the
CSE community must prioritize the value of these improvements, something that we observe is happening
slowly.

3See https://bssw.io/psip for further PSIP details, including the PTC catalog.

Exascale Computing Project (ECP) 10 ECP-U-RPT-2020-0001

https://bssw.io/psip

3.4 Establishing software communities

Figure 7: Simple xSDK example demon-

strating the combined use of several xSDK

numerical libraries, as needed for a variety

of multiphysics simulations that combine ap-

plication components developed by different

groups.

Needs for software ecosystems and increasing transparency of

computational results. The ECP software ecosystem will comprise
a wide array of tools, libraries, programming models, and performance
portability frameworks, all of which are expected to be used by scien-
tific applications. If application developers are to build simulations
using this software, it must be interoperable (see Figure 7). For the
interoperability to be sustainable, it must be tested regularly; and the
development teams will need to work together to define and support
common interfaces, as well as to use best practices in software en-
gineering to make codes more maintainable, extensible, and modular.
The software must also be portable and reliably deployed at leader-
ship computing facilities. Without effective software deployment in-
frastructure and processes, application scientists will not benefit from
the exascale software stack, and scientific productivity will be sacri-
ficed as scientists struggle to deploy and scale their codes on new
platforms. Moreover, to assure confidence in computational science
discoveries, teams must improve transparency and reproducibility of
computational results.

SDKs and community policies: unity in essentials, otherwise diversity. Self-organizing software com-

munities, including developers and users of related technologies, who deeply understand their own require-
ments and priorities, are well positioned to determine effective strategies for collaboration and coordination.
Our approach centers on (1) establishing community software policies to advance the quality, usability, and
interoperability of related software technologies, while supporting autonomy of diverse teams that naturally
have different drivers and constraints, and (2) creating Software Development Kits to facilitate the combined
use of independent software packages by application teams.

Figure 8: The initial breakdown of ECP software products into SDKs chosen in part because of

the effectiveness of the horizontal coupling of the xSDK.

A Software Development
Kit is a collection of
related software products
(packages), where coor-
dination across package
teams improves usability
and practices, while fos-
tering community growth
among teams that develop
similar and complemen-
tary capabilities. SDKs are
a key delivery vehicle
for ECP Software Tech-
nologies (see Figure 8),
where similar products are
grouped into an SDK to
promote collaboration and usability: programming models and runtimes core, tools and technologies, com-
pilers and support, math libraries (xSDK), visualization analysis and reduction, data management and I/O.

The SDK approach in ECP builds on experiences with the Extreme-scale Scientific Software Development
Kit (xSDK, https://xsdk.info), which started as part of the IDEAS-Classic project and later transitioned to
the Software Technologies element of ECP. The xSDK has successfully resolved a variety of difficulties in

Exascale Computing Project (ECP) 11 ECP-U-RPT-2020-0001

https://xsdk.info

package compatibility and combined a number of popular math libraries into a single release using Spack
(https://spack.io)—a flexible package manager that supports multiple versions, configurations, platforms,
and compilers. To help address challenges in interoperability and sustainability of software written by di-
verse groups at different institutions, the developers of xSDK packages have adopted a set of community
policies (see Figure 9), as explained in a BSSw blog post by Piotr Luszczek and Ulrike Meier Yang [22].

Figure 9: Sample of mandatory xSDK community policies, which

have provided a starting point for SDK policy discussions. The

complete list of 16 mandatory and 7 recommended xSDK package

policies is available via https:// xsdk.info/ policies.

The startup of the SDK project benefited greatly
from IDEAS experiences. Specifically, the horizon-
tal coupling approach for defining SDKs was cho-
sen in part and with greater confidence because of
its effectiveness in the xSDK. A horizontal rather
than vertical coupling means that the members of
an SDK share a similar function and purpose, for
example compiler frameworks, or, as in the case of
the xSDK, math libraries. The initial SDK community policy efforts started with the xSDK community
policies, and discussions about generalization of policies have benefited from xSDK experience. Likewise,
IDEAS experience has been critical in an SDK effort to better define sustainability and associated require-
ments in the context of the ECP software ecosystem. For example, see whitepapers and presentations at the
2019 Collegeville Workshop on Sustainable Scientific Software [10]. IDEAS experience also is contribut-
ing to planning by ECP and DOE computing facilities for continuous integration testing, where challenges
include the varied level of software engineering maturity among ECP software products, maintenance of
interoperability, and unknown resource allocations for future testing.

Methodologies to support SDKs and trusted computational results. Leveraging involvement in ECP
software ecosystem activities as well as experience in defining and deploying best practices in software
engineering for computational science, members of the IDEAS-ECP project are devising resources to help
teams prepare for and participate in SDKs and also to increase trust in computational results. We have
established two repositories [37, 41]; forthcoming work will focus on expanding methodologies materials
in these repositories and corresponding outreach to computational science teams. Examples of early impact
on the software packages SuperLU and Ginkgo, which are part of the xSDK, are discussed in BSSw blog
articles by Sherry Li [21] and Hartwig Anzt [2].

3.5 Engaging in community outreach

Central to the IDEAS project are multipronged outreach efforts [5] that help grow and mobilize a dynamic
community to improve software quality, productivity, and sustainability. Key initiatives are launching the
BSSw.io website (Section 3.5.1), initiating the BSSw Fellowship Program (Section 3.5.2), producing the
webinar series Best Practices for HPC Software Developers (Section 3.5.3), and teaching tutorials on strate-
gies for various aspects of better scientific software (Section 3.5.4). We also organize technical meetings on
HPC software development topics (Section 3.5.5), along with complementary efforts to encourage emphasis
on high-quality software in the broader community (Section 3.5.6). Our goal is to establish a “virtuous cy-
cle” in which widespread awareness of the importance of software quality and related issues within the HPC
computational science and engineering community, including the Exascale Computing Project, in turn pro-
motes sharing, discussion, and refinement of practices and resources for producing better scientific software
for the benefit of the ECP as well as the broader community.

3.5.1 Community-driven resources: BSSw.io website

The BSSw site (https://bssw.io) is a central hub for sharing information on practices, techniques, experi-
ences, and tools to improve developer productivity and software sustainability for CSE and related technical

Exascale Computing Project (ECP) 12 ECP-U-RPT-2020-0001

https://spack.io
https://xsdk.info/policies
https://bssw.io

Figure 11: Resources on BSSw.io span throughout a range of topics, including scientific software

planning, development, performance, reliability, collaboration, and skills.

computing areas. The site features curated content, experiences, and insights provided by the international
community, including researchers, practitioners, and stakeholders from national laboratories, academia, and
industry who are dedicated to curating, creating, and disseminating information that leads to improved CSE
software. Historically, opportunities for CSE software developers to exchange information and experiences
have been limited; BSSw provides a space to support this kind of sharing.

Figure 10: The BSSw site hosts a growing community-driven collection of

resources on software productivity and sustainability.

Community-driven resources for ad-

vancing software productivity and sus-

tainability. Launched in November 2017
as an IDEAS initiative, the BSSw plat-
form offers easy access to resources and
training materials provided by a growing
community of HPC and CSE contribu-
tors. BSSw content spans a range of top-
ics shown in Figure 11, including introduc-
tory What Is and How To information cov-
ering basic steps for improving software
productivity and sustainability. The site in-
cludes original articles, information about
events, and curated content—brief articles
that highlight existing materials (papers,
books, videos, web content, etc.), describ-
ing why the scientific software community
might find them of value.

Some resources on the topic of software testing are shown in Figure 12; a few other recent resources are
the following:

• Working Effectively with Legacy Code, Ross Bartlett (SNL)
• Unit Testing C++ with Catch, Mark Dewing (ANL)
• A Collection of Resources for Sustaining Open Source Software, Todd Gamblin (LLNL)
• Exploring Best Practices for Scientific Computing, Patricia Grubel (LANL)
• Python for HPC, Steve Hudson (ANL)
• An Introduction to Integrated Development Environments (IDEs) for Scientific Software Development, Greg Watson (ORNL)

Exascale Computing Project (ECP) 13 ECP-U-RPT-2020-0001

https://bssw.io/resources/authors
https://bssw.io/resources/authors
https://bssw.io/items/working-effectively-with-legacy-code
https://bssw.io/items/unit-testing-c-with-catch
https://bssw.io/items/a-collection-of-resources-for-sustaining-open-source-software
https://bssw.io/resources/exploring-best-practices-for-scientific-computing
https://bssw.io/items/python-for-hpc
https://bssw.io/items/an-introduction-to-integrated-development-environments-ides-for-scientific-software-development

BSSw collaborative content creation through GitHub. The BSSw site is the starting point for any new
user. A GitHub backend enables content development using a collaborative, open workflow. Content can also
be contributed with an easy-to-use Google form. Anyone with experience or expertise who can help other
scientific software teams is encouraged to contribute an article or pointer to relevant work (see https://bssw.io/

contribute). Our approach employs a custom Ruby-on-Rails content management system that automatically
imports, updates, and formats content from GitHub. The BSSw Editorial Board has established a workflow
for engaging content contributors and regularly updating resources to ensure that content remains fresh. We
are extending site functionality based on feedback from the community.

Figure 12: Selected BSSw resources on software testing.

BSSw blog. The BSSw site features a
growing collection of original blog articles,
addressing topics such as science teams’
experiences with productivity-related soft-
ware issues and strategies for collaborative
computational science. Blog posts thus far
are listed in Table 3, Appendix D.

BSSw community landing pages. BSSw
encompasses a rich variety of communities
who are working to advance the methods
and practices of CSE software. BSSw com-
munity landing pages provide custom start-
ing points for using the site and promote
shared understanding of scientific software
issues. Curators of a community landing
page can customize content to serve the
needs of community members. BSSw com-
munities include a growing set of science-
focused areas as well as crosscutting areas
(scientific libraries, software engineering,
supercomputing facilities and their users,
and exascale computing).

BSSw future directions. By providing a
venue to share information and experiences
on software issues, BSSw is raising awareness of the importance of good software practices to scientific
productivity and enabling readers to discover potential connections to their own needs and workflows. Future
plans center on establishing broader community leadership and growth in order to help CSE researchers
(regardless of nationality and funding sources) to increase software productivity, quality, and sustainability
while changing CSE culture to fully support software’s essential role.

3.5.2 Recognition: BSSw Fellowship Program

Growing a community of leaders in scientific software productivity and sustainability. Addressing the
scientific software challenges introduced in Section 2.1 requires broad community collaboration to change
the culture of computational science, increasing emphasis on software itself and the people who create it.

The BSSw Fellowship Program (https://bssw.io/fellowship) gives recognition and funding to leaders and
advocates of high-quality scientific software. The main goal is to foster and promote practices, processes,
and tools to improve developer productivity and software sustainability of scientific codes. BSSw Fellows
are selected annually based on an application process that includes the proposal of a funded activity that pro-

Exascale Computing Project (ECP) 14 ECP-U-RPT-2020-0001

https://bssw.io/contribute
https://bssw.io/contribute
https://bssw.io/pages/about
https://bssw.io/items/authors/
https://bssw.io/blog_posts
https://bssw.io/pages/communities-overview
https://bssw.io/pages/communities-overview
https://bssw.io/fellowship

motes better scientific software. We encourage diverse applicants at all career stages, ranging from students
through early-career, mid-career, and senior professionals. Applicants must be affiliated with a U.S.-based
institution that is able to receive funding from DOE.

2019 BSSw Fellows. Each member of the 2019 class, pictured in Figure 13, received an award of $25,000
for an activity that promotes better scientific software. Modes of outreach include webinars, tutorials, work-
shops, online training materials, and blog articles. For example, presentations in the HPC Best Practices
Webinar Series (Section 3.5.3) include Discovering and Addressing Social Challenges in the Evolution of

Scientific Software Projects (R. Gassmoeller, Sept. 2019) and Tools and Techniques for Floating-Point Anal-

ysis (I. Laguna, Oct. 2019). More information on projects and perspectives of BSSw Fellows (classes 2018,
2019, 2020) is available via https://bssw.io/pages/meet-our-fellows, including pointers to resources for on-
line learning, such as slides and recordings of tutorials.

Figure 13: The BSSw fellows program fosters and promotes practices, processes, and

tools to improve developer productivity and software sustainability of scientific codes.

DOE community engagement.

The BSSw Fellowship Program
provides a mechanism to engage
members of the broader CSE
community and connect them
with the DOE community—
tapping their interest and expe-
rience in issues related to soft-
ware productivity and sustain-
ability. BSSw Fellows and Hon-
orable Mentions are given the
opportunity to attend the ECP
Annual Meeting and to visit
DOE laboratories to present
their work, enable additional
collaborations, and generally ex-
pose them to the DOE environ-
ment and work.

Future directions for the BSSw

Fellowship Program. We are
growing a community of BSSw
Fellowship alumni who serve
as leaders, mentors, and consul-
tants to increase the visibility of
those involved in scientific software production and sustainability in the pursuit of scientific discovery. The
long-term vision for the BSSw organization is to serve as an international community-driven and community-
managed resource for scientific software improvement, with content and processes provided by volunteers.
Future plans center on working toward broad community leadership, growth, and diversification of the BSSw
organization and BSSw Fellowship program—that is, expanding collaboration with complementary groups,
stakeholders, sponsors, and individual contributors.

3.5.3 Webinar series: Best Practices for HPC Software Developers

Webinars are, by now, a well-established approach to reaching a broader community with seminar-like con-
tent. The so-called “HPC Best Practices” (HPC-BP) webinar series, launched in 2016, provides a venue for
many topics in the development of software for high-performance scientific computing from practitioners
mostly outside of the IDEAS project.

Exascale Computing Project (ECP) 15 ECP-U-RPT-2020-0001

https://www.exascaleproject.org/event/scssp
https://www.exascaleproject.org/event/scssp
https://www.exascaleproject.org/event/fpanalysis
https://www.exascaleproject.org/event/fpanalysis
https://bssw.io/pages/meet-our-fellows

The webinar series was initially developed in conjunction with the three ASCR computing facilities
(ALCF, NERSC, and OLCF), as a response to a growing need among the facility’s users for a better un-
derstanding and use of software engineering best practices. The first seven webinars were presented in the
summer of 2016 (roughly every two weeks), alternating software best practices and other HPC topics. In the
summer of 2017, the series was restarted, in collaboration with the ECP Training program, with a monthly
cadence and more emphasis on topics related to productive and sustainable HPC software.

Figure 14: Sample of webinars in the HPC Best Practices series.

Webinar series strategy and

successes. We have drawn
on our experience and en-
gagement in the HPC soft-
ware development community
to identify and prioritize top-
ics for webinars. At the same
time, we look to our col-
leagues who are working to
raise the visibility of and im-
prove software development
practices to present a wide va-
riety of topics that we believe
are relevant to the developers
of HPC scientific software. A
total of 35 webinars have been
presented in the period 2016–
2019 as detailed in Table 1 in
Appendix D .

The reception for the webinar series has been overwhelmingly positive. A total of 2181 people have
participated in the 28 webinars organized to date by the IDEAS-ECP project (2017–2019), which is an
average of 78 participants at each webinar. Registrations consistently run about twice the number of those
who participate, and ECP members constitute roughly 30% of registrations. (For further details, see Table 2
in Appendix D.) Our list of webinar registrants and participants for the entire series comprises more than
1900 unique email addresses, which is used to announce upcoming HPC-BP webinars as well as other
IDEAS-organized events. The webinars are also announced to ECP members, DOE computing facility users,
and other venues.

The methodology we use for delivering the webinars is described in the HowTo short paper [24], presented
in the Fifth SC Workshop on Best Practices for HPC Training and Education at SC18. Based on our experi-
ence, we have created a repository [23] with information and documents related to a process for delivering
webinars, including a generic checklist that can be adapted to different types of organizations.

Webinar sessions, recordings, slides, and curated Q&As are archived after each webinar event at https:

//ideas-productivity.org/events/hpc-best-practices-webinars. This lasting repository of content on software
development practices is useful for those who could not attend the live presentation.

Impact through DOE computing facilities partnership. The level of interest in the HPC-BP webinar
series, as measured by the numbers of registrants and attendees, greatly exceeds the typical experience
of ASCR facilities with HPC-oriented training. The response demonstrates that many software developers
recognize that they need more than just HPC skills to be productive. This interest in the HPC-BP webinar
series also demonstrates that there is a receptive audience for information to be provided through high-
quality webinars. A unique feature of HPC-BP is that its agenda is dynamic and implemented in concert
with ASCR’s computer facilities, the webinars Python in HPC and Jupyter and HPC being examples. For

Exascale Computing Project (ECP) 16 ECP-U-RPT-2020-0001

https://ideas-productivity.org/events/hpc-best-practices-webinars
https://ideas-productivity.org/events/hpc-best-practices-webinars

future topics, we will continue paying close attention to the community, for example, through interactions
at events and through an annual survey conducted by the ECP training component.

3.5.4 Tutorials on better scientific software

Figure 15: Four IDEAS team members presented a

well-attended and highly rated tutorial at SC19.

Strategy for training on topics in software productivity.

Tutorials are an important opportunity for the IDEAS team
to present what we have identified as important considera-
tions and practices in scientific software development, typi-
cally based on “best practices” identified in the broader soft-
ware engineering community, tailored and adapted based on
the experiences of team members others in the HPC CSE soft-
ware community. We have designed these tutorials to target
learners at primarily beginner and intermediate levels of ex-
perience, and we cover a range of topics including software
design and refactoring, testing, and reproducibility, as well as
development and management practices from both individual
and team perspectives. During our tutorials, we encourage in-
teractions with the audience that bring their own experiences
and questions into the discussion.

Broad impact through both in-person attendance and online self-study. Since 2016, initially under
the IDEAS-Classic project and then IDEAS-ECP, we have given more than a dozen tutorials in a vari-
ety of venues, including ECP events (the ECP Annual meetings, and the Argonne Training Program for
Extreme-Scale Computing) and major conferences (Supercomputing, ISC, SIAM Computational Science
and Engineering). Most of these venues involve either invitations from the organizers or a competitive peer
review-based selection process, where repeated offerings are indicative of the value of these tutorials to
the participants and organizers. Tutorials vary in attendance but are typically in the range of a few tens of
participants to many tens of participants. Collectively, we conservatively estimate that more than 500 par-
ticipants have been directly impacted through these tutorials, including many early-career researchers and
members of ECP teams. We make a practice of making the slides from each tutorial presentation available
in an archival location (usually FigShare.com); for example, see SC19 tutorial slides [6]. Additionally, in
some venues, the organizers have recorded the presentations and made the videos available. Through such
archives, the tutorials content can also be reviewed later by the participants and used for self-study by others.

Future directions for expanding our reach and our content. Since its inception, our tutorial material has
undergone continual evolution, with at least minor changes to nearly every module from one presentation
to the next. There have also been more significant changes, introducing new modules and substantially
rethinking our presentation of some topics. We expect such advances to continue, as the tutorial reflects our
evolving understanding of key elements that lead to better scientific software, and how to explain it to others.
We also plan to broaden our selection of topics, based on participant feedback and experiences with our
ECP and other colleagues through both formal (e.g., PSIP activities) and casual interactions. Additionally,
we plan to explore approaches that will allow live, interactive tutorials to scale to even larger audiences. For
example, we are working toward multi-site offerings in which instructors at different locations share lecture
responsibilities via videoconferencing and locally support students in hands-on exercises.

Exascale Computing Project (ECP) 17 ECP-U-RPT-2020-0001

3.5.5 Technical meetings on HPC software development topics

Figure 16: Thematic poster group at SIAM

CSE19, archived on Figshare.

Promoting the discussion of software development practices and

experiences. A key reason that software development practices pro-
moting productivity and sustainability are not more widely known and
used is that, historically, there have been few opportunities and lit-
tle encouragement for people to share experiences. The CSE commu-
nity is mostly organized around the sharing of new scientific advances,
as well as methodological and algorithmic improvements. Much less
common is discussion of how the software that gave rise to the ad-
vancements has been created and sustained.

Consequently, along with tutorials and our webinar series, IDEAS
also includes a strong focus on providing venues at technical meetings
to encourage the discussion of software on par with the other aspects
of our work. A growing number of scientific meetings “crowd source”
portions of their content, allowing meeting participants to propose and
organize sessions of various kinds. In some cases, such proposals are
peer reviewed and can be competitive. We typically organize such
sessions together with like-minded community members and invite a
broad selection of speakers. We advertise these events widely within
our community, and create archives to capture the events for future ref-
erence. In some cases, the meeting organizers featured these sessions,
recording them and making them available available online after the
event. We also sometimes organize standalone workshops, which offer
the opportunity for more in-depth interactions, often over an extended period of time.

Recent events. The most prevalent events we have organized have been "minisymposia", which are the-
matic sessions within a larger conference. SIAM meetings, such as Parallel Processing (PP) and Computa-
tional Science and Engineering (CSE), as well as the PASC conferences in Switzerland offer this format.
Since 2015, we have co-organized a total of 9 minisymposia at six different meetings. SIAM meetings
have also begun offering opportunities for thematic poster sessions, and we have organized two at recent
SIAM-CSE meetings, attracting 28 posters for each.

Standalone workshops have been less common, because of the significantly larger effort to organize, and
the challenges of getting participants to commit to “extra” time and travel in their busy schedules. However,
the recent 2019 Collegeville Workshop on Sustainable Scientific Software [10] provided an opportunity
for forty participants to gather for two full days of discussions on sustainability of scientific software. In
addition to these types of events, we have taken advantage of opportunities to organize less formal sessions,
such as Birds of a Feather (BoF) at Supercomputing and ISC conferences (6 events since 2015) and breakout
sessions on various topics at ECP Annual Meetings (8 events 2018–2020).

Next steps in raising the profile of software topics. These events (e.g., [4]) have played a significant
role in promoting the discussion of software development practices in the CSE community, not only rais-
ing the profile of this topic in the minds of both participants and observers (i.e., those seeing the events in
the meeting program, or listings of contributions on participant CVs), but also, very practically, facilitating
the exchange of information that is a critical component of the virtuous cycle toward which we are work-
ing. We have received universally positive feedback on these events from speakers and audience members,
who appreciate the opportunity to discuss their software-related experiences on par with their scientific and
methodological work. Given the effectiveness and popularity of these events, we plan to continue and, where
possible, expand them. IDEAS is not the only group thinking along these lines, and we have taken numerous
opportunities to engage with others domestically and internationally to expand the reach of these activities.

Exascale Computing Project (ECP) 18 ECP-U-RPT-2020-0001

https://doi.org/10.6084/m9.figshare.c.4410767

3.5.6 Working toward culture change

Various community groups (see Section 2.2) are addressing the urgent challenges of scientific software (see
Section 2.1) by promoting changes in the culture of scientific computing. This section discusses initiatives in
transparency and reproducibility that are increasing the integrity of computational results, actions by funding
agencies that are promoting attention to high-quality scientific software, and changes in career paths and
institutional structure that support the development of high-quality software. In addition, we articulate the
urgent need for explicit funding for work on software productivity and sustainability.

Transparency and reproducibility initiatives. Scientists generally seek to produce trusted scientific re-
sults. At the same time, scientific research is competitive, and the level of assurance a scientific team can
obtain when producing results is at least partly a function of the practices in its research community. If
one team seek to improve the quality of their results, they will typically require more effort, investment in
new skills, and some reduction in their output rate. At present, there is concern in the scientific community
about transparency and reproducibility of scientific results. While much of the high-profile focus has been
on social sciences [7], the computational science community is not immune. One recent case, discussed
in the article “The war over supercooled water” [38], the condensed matter research community did not
require transparency or reproducibility in how results were obtain. Two research teams obtained very differ-
ent results for the behavior of pure water at low temperature and the differences were resolved years later
only when one team finally obtained the software environment used by the other. This example and others
illustrate that improving trustworthiness requires elevating community expectations for transparency and
reproducibility. One compelling approach is to introduce transparency and reproducibility initiatives as part
of the research publication process.

Numerous journal and conference publications have developed reproducibility incentives and require-
ments for publications. Examples include the Association for Computing Machinery (ACM) Transactions on
Mathematical Software reproducible computational results initiative [12] and the Supercomputing Confer-
ence series reproducibility initiative [36]. In both cases, authors are given badges as rewards for improving
the transparency and reproducibility of their results [1]. Over the past four years of the Supercomputing
Conference (SC16–19), expectations for making computational artifacts available have gone from being op-
tional to being mandatory for best paper consideration to being mandatory for all accepted papers. This kind
of gradual increase in rigor has enabled the SC community to adapt their workflows over the span of several
years.

Reproducibility expectations raise the value of improved developer productivity and software sustainabil-
ity. Any reproducibility process will require software and data versioning, opening up code and data to
people beyond a particular research team, and similar transparency changes, creating incentives to invest
in productivity and sustainability. Improved developer productivity and software sustainability are critical
enablers of effective and efficient transparency and reproducibility.

Career paths and institutional structure. An important cultural advance is the expansion of career paths
in which researchers focus explicitly on high-quality scientific software, along with expansion of correspond-
ing community and organizational structures. For example, research software engineers [42, 44] combine
an intimate understanding of research with experience in software engineering, while research software sci-

entists study and improve the development and use of research software [11]. Such people are employed
worldwide by institutions that develop scientific software, typically integrated within traditional organiza-
tional structures and also in newly established groups that focus on research software, such as the Research
Software Engineering Group in the Computer Science and Mathematics Division of Oak Ridge National
Laboratory and the Software Engineering & Research Group in the Center for Computing Research at San-
dia National Laboratories.

Exascale Computing Project (ECP) 19 ECP-U-RPT-2020-0001

Influence of funding agencies. Funding agencies value the impact of software products whose develop-
ment they sponsor. As scientific software ecosystems mature, the number of software products that are used
in research increases (see, e.g, [18]), while the complexity of the ecosystems into which new software is
introduced also grows. Funding agencies can provide natural incentives for elevating software quality by
explicitly requesting software quality plans in funding opportunity announcements and by incorporating
quality assessment in funded project review cycles. These incentives will naturally lead to an increase inter-
est in improving developer productivity and software sustainability and result in benefits from productivity
and sustainability investments.

We have seen some activity from funding agencies in this area. For example, in the funding opportu-
nity announcement SC_FOA_0001724, the DOE Office of Science Subsurface Biogeochemical Research
office requested a Software Productivity and Sustainability Plan as part of all proposals. The DOE Exascale
Computing Project represents an even larger and more comprehensive expectation on software quality. ECP
emphasizes software planning, development, and delivery with a level of rigor that is much higher than
historical levels. Project funding is tied to successful delivery of capable and sustainable software.

Long-term basic
research investment:

Research Software

Science

Urgent need: Explicit funding for

software productivity and

sustainability

Community
outreach

Incorporation of
basic research into

reusable software
and best practices

Figure 17: Long-term investment in research software science

(i.e., research on scientific software productivity and sustainability)

is essential in order to determine best practices that can then be

readily incorporated into software products and disseminated to

the broader community. New insights about urgent needs then feed

back to inform high-priority areas of new research. Improving the

quality of software developed by scientific teams will also require

investment in new skills and infrastructure by the teams themselves.

Funding agencies, publishers, and other stakeholders will play a

key role in spurring team innovations.

Urgent need for explicit funding for software

productivity and sustainability. Scientific soft-
ware, which supports scientific research in much the
same way that a light source or telescope does, re-
quires a substantial investment of human and capi-
tal resources, as well as basic research on software
productivity and sustainability so that the resulting
software products are fully up to the task of predic-
tive simulations and decision support. As discussed
in Section 2.3, efforts to improve scientific soft-
ware must be more than just straightforward adop-
tion of mainstream approaches. The needs and envi-
ronments of the scientific software community are
in combination sufficiently unique so as to require
fundamental research specifically for scientific soft-
ware.

To create high-quality scientific applications, li-
braries, and tools (generally, but especially in sup-
port of DOE’s missions in high-performance com-
putational science), we advocate a three-pronged ap-
proach illustrated in Figure 17.

• Long-term investment in research software sci-

ence, that is, basic research in the science of
research software [11]: A persistent focus on
exploring, adapting, and adopting new productivity enhancements is essential for continued innovation
in meeting the challenges of high-performance computational science.

• Incorporation of basic research into reusable software and best practices.

– Development of interoperable scientific software ecosystems: Careful design and implementation
of a complementary system of scientific software components can provide tremendous value, en-
abling rapid application development via component composition, performance portability, and ac-
cess to the latest algorithms and software tools. Effective ecosystems will require well-conceived
software architectures and interfaces—demanding advanced design skills from lead developers,

Exascale Computing Project (ECP) 20 ECP-U-RPT-2020-0001

which will come from nurturing software expertise in key staff.
– Collaboration with science application teams: Effective teaming with application partners will re-

quire techniques for assessing and analyzing requirements, definition and tracking of relevant met-
rics, and strategies for engaging application developers to incorporate productivity improvements
that are sustainable.

• Community outreach: Broad deployment of new ideas, tools and techniques will require careful pack-
aging of all productivity improvement capabilities, and deployment in collaboration with leadership
computing facilities to the HPC science community.

All three elements are critical and feed into one another. In particular, without funding for basic research on
scientific software productivity and sustainability, the pipeline of new improvements will stagnate, thereby
weakening the resulting research software and the scientific investigations it supports.

Improving the quality of software developed by scientific teams will also require investment in new skills
and infrastructure by the teams themselves. We believe that uniformly raising expectations on these teams
will be important. Funding agencies, publishers, and other stakeholders play an essential role in elevating
quality expectations. Expecting funded projects to produce higher quality, more sustainable software and
increasing expectations for reproducible published results are two means to spur innovation without inher-
ently creating a disadvantage for any particular team. All teams are faced with the same challenges to adapt
their team skills, processes, practices, and tools to meet the increased demand for quality software and thus
to realize the resulting improvements in trustworthy results [13].

4. CONCLUSION

The IDEAS-ECP project is partnering with the ECP and broader computational science community to in-
crease software productivity and sustainability, as a key aspect of improving overall scientific productivity
while tackling new challenges in simulation and analysis on extreme-scale computing platforms. Our com-
munity is on the frontier of discovering, synthesizing, and adopting new approaches to improving scientific
discovery; we are succeeding, step by step, by transforming our own efforts and working toward long-term
changes in the culture of high-performance scientific computing. This document, Advancing Scientific Pro-

ductivity through Better Scientific Software: Developer Productivity and Software Sustainability Report, and
subsequent versions will provide a periodic summary of advances, plans, and challenges as the Exascale
Computing Project proceeds.

ACKNOWLEDGMENTS

This work was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

We gratefully acknowledge the vision and support of Thomas Ndousse-Fetter (ASCR), Paul Bayer (BER),
and David Lesmes (BER), who served during 2014–2017 as program managers of the IDEAS-Classic
project.

Exascale Computing Project (ECP) 21 ECP-U-RPT-2020-0001

A. REFERENCES

[1] ACM PUBLICATIONS BOARD, Artifact review and badging. Association for Computing Machinery,
April 2018, https://www.acm.org/publications/policies/artifact-review-badging.

[2] H. ANZT, The art of writing scientific software in an academic environment. BSSw blog article,
February 11, 2019, https://bssw.io/blog_posts/the-art-of-writing-scientific-software-in-an-academic-environment.

[3] M. R. BENIOFF AND E. D. LAZOWSKI, PITAC CO-CHAIRS, Computational science: Ensuring

America’s competitiveness: President’s Information Technology Advisory Committee. https://www.nitrd.

gov/pitac/reports/20050609_computational/computational.pdf, 2005.

[4] D. BERNHOLDT, A. DUBEY, C. JONES, D. S. KATZ, L. C. MCINNES, AND J. WILLENBRING,
Talking about software development at CSE19. BSSw blog article, May 29, 2019, https://bssw.io/blog_

posts/talking-about-software-development-at-siam-cse19.

[5] D. E. BERNHOLDT, Think locally, act globally: Outreach for better scientific software. BSSw blog
article, July 18, 2018, https://bssw.io/blog_posts/think-locally-act-globally-outreach-for-better-scientific-software.

[6] D. E. BERNHOLDT, A. DUBEY, M. HEROUX, AND J. O’NEAL, SC19 Tutorial: Better Scientific

Software. https://doi.org/10.6084/m9.figshare.10114880, 2019.

[7] B. CAREY, Many psychology findings not as strong as claimed, study says. New York Times, August
27, 2015, https://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.

html.

[8] A. DUBEY AND J. O’NEAL, FLASH5 Refactoring and PSIP. BSSw blog article, August 27, 2019,
https://bssw.io/blog_posts/flash5-refactoring-and-psip.

[9] W. GROPP, R. HARRISON, ET AL., Future directions for NSF advanced computing infrastructure to

support U.S. science and engineering in 2017-2020. National Academies Press, 2016. http://www.nap.

edu/catalog/21886/.

[10] M. HEROUX, E. BAVIER, D. BERNHOLDT, R. GUPTA, J. HEMSTAD, D. KATZ, S. KNEPPER,
E. RAYBOURN, AND J. WILLENBRING (ORGANIZERS), 2019 Collegeville Workshop on Sustainable

Scientific Software. https://collegeville.github.io/CW3S19.

[11] M. A. HEROUX, Research software science: A scientific approach to understanding and improving

how we develop and use software for research. BSSw blog article, September 25, 2019, https://bssw.io/blog_

posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research.

[12] M. A. HEROUX, Editorial: ACM TOMS replicated computational results initiative, ACM Trans. Math.
Softw., 41 (2015).

[13] , Trust Me. QED., SIAM News, 52 (2019). https://sinews.siam.org/Details-Page/trust-me-qed.

[14] M. A. HEROUX, G. ALLEN, ET AL., Computational Science and Engineering Software Sustainability

and Productivity (CSESSP) Challenges Workshop Report, September 2016. available via https://www.

nitrd.gov/PUBS/CSESSPWorkshopReport.pdf.

[15] M. A. HEROUX, E. GONSIOROWSKI, R. GUPTA, R. MILEWICZ, J. D. MOULTON, G. R. WAT-
SON, J. WILLENBRING, R. J. ZAMORA, AND E. M. RAYBOURN, Lightweight software process im-

provement using Productivity and Sustainability Improvement Planning (PSIP), 2019. 2019 Interna-
tional Workshop on Software Engineering for HPC-Enabled Research, held in conjunction with SC19,
https://www.osti.gov/biblio/1574620.

Exascale Computing Project (ECP) 22 ECP-U-RPT-2020-0001

https://www.acm.org/publications/policies/artifact-review-badging
https://bssw.io/blog_posts/the-art-of-writing-scientific-software-in-an-academic-environment
https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
https://bssw.io/blog_posts/talking-about-software-development-at-siam-cse19
https://bssw.io/blog_posts/talking-about-software-development-at-siam-cse19
https://bssw.io/blog_posts/think-locally-act-globally-outreach-for-better-scientific-software
https://doi.org/10.6084/m9.figshare.10114880
https://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html
https://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html
https://bssw.io/blog_posts/flash5-refactoring-and-psip
http://www.nap.edu/catalog/21886/
http://www.nap.edu/catalog/21886/
https://collegeville.github.io/CW3S19
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://sinews.siam.org/Details-Page/trust-me-qed
https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf
https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf
https://www.osti.gov/biblio/1574620

[16] S. HETTRICK, Research software sustainabilty. Report on a Knowledge Exchange Workshop, 2016.
http://repository.jisc.ac.uk/6332/1/Research_Software_Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf.

[17] H. JOHANSEN, L. C. MCINNES, D. BERNHOLDT, J. CARVER, M. HEROUX, R. HORNUNG,
P. JONES, B. LUCAS, A. SIEGEL, AND T. NDOUSSE-FETTER, Software productivity for extreme-

scale science, 2014. Report on DOE Workshop, January 13-14, 2014, https://science.osti.gov/-/media/

ascr/pdf/research/cs/Exascale-Workshop/SoftwareProductivityWorkshopReport2014.pdf.

[18] D. S. KATZ, L. C. MCINNES, D. E. BERNHOLDT, A. C. MAYES, N. P. CHUE HONG, J. DUCK-
LES, S. GESING, M. A. HEROUX, S. HETTRICK, R. C. JIMENEZ, M. PIERCE, B. WEAVER,
AND N. WILKINS-DIEHR, Community organizations: Changing the culture in which research soft-

ware is developed and sustained, special issue of IEEE Computing in Science and Engineering
(CiSE) on Accelerating Scientific Discovery with Reusable Software, 21 (2019), pp. 8–24. https:

//dx.doi.org/10.1109/MCSE.2018.2883051.

[19] D. KEYES, V. TAYLOR, ET AL., National Science Foundation Advisory Committee on CyberInfras-

tructure, Task Force on Software for Science and Engineering, final report, 2011. http://www.nsf.gov/

cise/aci/taskforces/TaskForceReport_Software.pdf.

[20] D. E. KEYES, L. C. MCINNES, C. WOODWARD, W. GROPP, E. MYRA, M. PERNICE, J. BELL,
J. BROWN, A. CLO, J. CONNORS, E. CONSTANTINESCU, D. ESTEP, K. EVANS, C. FARHAT,
A. HAKIM, G. HAMMOND, G. HANSEN, J. HILL, T. ISAAC, X. JIAO, K. JORDAN, D. KAUSHIK,
E. KAXIRAS, A. KONIGES, K. LEE, A. LOTT, Q. LU, J. MAGERLEIN, R. MAXWELL, M. MC-
COURT, M. MEHL, R. PAWLOWSKI, A. P. RANDLES, D. REYNOLDS, B. RIVIÈRE, U. RÜDE,
T. SCHEIBE, J. SHADID, B. SHEEHAN, M. SHEPHARD, A. SIEGEL, B. SMITH, X. TANG, C. WIL-
SON, AND B. WOHLMUTH, Multiphysics simulations: Challenges and opportunities, International
Journal of High Performance Computing Applications, 27 (2013), pp. 4–83. Special issue, see
https://dx.doi.org/10.1177/1094342012468181.

[21] S. LI, SuperLU: How advances in software practices are increasing sustainabil-

ity and collaboration. BSSw blog article, April 30, 2018, https://bssw.io/blog_posts/

superlu-how-advances-in-software-practices-are-increasing-sustainability-and-collaboration.

[22] P. LUSZCZEK AND U. M. YANG, Building community through software policies. BSSw blog article,
August 12, 2019, https://bssw.io/blog_posts/building-community-through-software-policies.

[23] O. MARQUES, Producing a webinar series, 2019. Process for delivering webinars: https://bssw.io/

items/producing-a-webinar-series.

[24] O. A. MARQUES, D. E. BERNHOLDT, E. M. RAYBOURN, A. D. BARKER, AND R. J. HARTMAN-
BAKER, The HPC Best Practices Webinar Series. https://figshare.com/s/01feff6c31d391886a90, 2018.
Fifth SC Workshop on Best Practices for HPC Training and Education (BPHTE18), SC18.

[25] L. C. MCINNES, D. S. KATZ, AND S. LATHROP, Computational research software: Challenges and

community organizations working for culture change. SIAM News, December 2019, https://sinews.siam.

org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change.

[26] P. MESSINA, Update on ASCAC subcommittee documenting ASCR impacts. Presentation at Advanced
Scientific Computing Advisory Committee Meeting, December 2018, https://science.osti.gov/-/media/

ascr/ascac/pdf/meetings/201812/Subcommittee_on_ASCR_Impacts_ASCAC_201812.pdf.

[27] M. C. MILLER AND H. AUTEN, Continuous technology refreshment: An introduction using recent

tech refresh experiences on VisIt. BSSw blog article, April 12, 2019, https://bssw.io/blog_posts/

continuous-technology-refreshment-an-introduction-using-recent-tech-refresh-experiences-on-visit.

Exascale Computing Project (ECP) 23 ECP-U-RPT-2020-0001

http://repository.jisc.ac.uk/6332/1/Research_Software_Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf
https://science.osti.gov/-/media/ascr/pdf/research/cs/Exascale-Workshop/SoftwareProductivityWorkshopReport2014.pdf
https://science.osti.gov/-/media/ascr/pdf/research/cs/Exascale-Workshop/SoftwareProductivityWorkshopReport2014.pdf
https://dx.doi.org/10.1109/MCSE.2018.2883051
https://dx.doi.org/10.1109/MCSE.2018.2883051
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Software.pdf
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Software.pdf
https://dx.doi.org/10.1177/1094342012468181
https://bssw.io/blog_posts/superlu-how-advances-in-software-practices-are-increasing-sustainability-and-collaboration
https://bssw.io/blog_posts/superlu-how-advances-in-software-practices-are-increasing-sustainability-and-collaboration
https://bssw.io/blog_posts/building-community-through-software-policies
https://bssw.io/items/producing-a-webinar-series
https://bssw.io/items/producing-a-webinar-series
https://figshare.com/s/01feff6c31d391886a90
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201812/Subcommittee_on_ASCR_Impacts_ASCAC_201812.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201812/Subcommittee_on_ASCR_Impacts_ASCAC_201812.pdf
https://bssw.io/blog_posts/continuous-technology-refreshment-an-introduction-using-recent-tech-refresh-experiences-on-visit
https://bssw.io/blog_posts/continuous-technology-refreshment-an-introduction-using-recent-tech-refresh-experiences-on-visit

[28] D. MOULTON AND E. M. RAYBOURN, Enhancing productivity and innovation in ECP with a team of

teams approach, 2018. Breakout session at the 2018 ECP Annual Meeting, https://doi.org/10.6084/m9.

figshare.6151097.

[29] The Networking and Information Technology Research and Development (NITRD) Program. https:

//www.nitrd.gov.

[30] OFFICE OF SCIENCE, U.S. DEPARTMENT OF ENERGY, The Top Ten Exascale Research Challenges,
2014. https://dx.doi.org/10.2172/1222713.

[31] J. O’NEAL, K. WEIDE, AND A. DUBEY, Experience report: refactoring the mesh interface in FLASH,

a multiphysics software, in 2018 IEEE 14th International Conference on e-Science, 2018.

[32] Productivity and Sustainability Improvement Planning (PSIP), 2020. https://bssw.io/psip.

[33] E. M. RAYBOURN AND D. MOULTON, Scaling small teams to a team of teams:

Shared consciousness. BSSw blog article, April 17, 2018, https://bssw.io/blog_posts/

scaling-small-teams-to-a-team-of-teams-shared-consciousness.

[34] E. M. RAYBOURN, J. D. MOULTON, AND A. HUNGERFORD, Scaling productivity and innovation on

the path to exascale with a "team of teams" approach, 2019. in: F. F.-H. Nah and K. Siau (Eds.): HCI
in Business, Government and Organizations. Information Systems and Analytics. HCII 2019. Lecture
Notes in Computer Science, vol 11589, https://doi.org/10.1007/978-3-030-22338-0_33.

[35] U. RÜEDE, K. WILLCOX, L. MCINNES, AND H. D. STERCK, Research and education in compu-

tational science and engineering, SIAM Review, 60 (2018), pp. 707–754. https://dx.doi.org/10.1137/

16M1096840.

[36] SC19 REPRODUCIBILITY COMMITTEE, Reproducibility initiative. SC19, https://sc19.supercomputing.org/

submit/reproducibility-initiative/.

[37] SDK-Tools repository, 2020. https://github.com/betterscientificsoftware/SDK-Tools.

[38] A. G. SMART, The war over supercooled water: How a hidden coding error fueled a seven-year

dispute between two of condensed matter’s top theorists. Physics Today, August 22, 2018, https://

physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/.

[39] Software Carpentry, 2020. http://software-carpentry.org.

[40] Software Sustainability Institute, 2020. https://www.software.ac.uk.

[41] Trust-Tools repository, 2020. https://github.com/betterscientificsoftware/Trust-Tools.

[42] UK Research Software Engineering Association, 2020. https://rse.ac.uk.

[43] United States Research Software Sustainability Institute, 2020. http://urssi.us.

[44] US Research Software Engineering Association, 2020. https://us-rse.org.

[45] E. WENGER, Communities of Practice: Learning, Meaning, and Identity, Cambridge University Press,
1998. ISBN 978-0-521-66363-2.

[46] R. ZAMORA, Adopting continuous integration for long timescale materials sim-

ulation. BSSw blog article, September 25, 2018, https://bssw.io/blog_posts/

adopting-continuous-integration-for-long-timescale-materials-simulation.

Exascale Computing Project (ECP) 24 ECP-U-RPT-2020-0001

https://doi.org/10.6084/m9.figshare.6151097
https://doi.org/10.6084/m9.figshare.6151097
https://www.nitrd.gov
https://www.nitrd.gov
https://dx.doi.org/10.2172/1222713
https://bssw.io/psip
https://bssw.io/blog_posts/scaling-small-teams-to-a-team-of-teams-shared-consciousness
https://bssw.io/blog_posts/scaling-small-teams-to-a-team-of-teams-shared-consciousness
https://doi.org/10.1007/978-3-030-22338-0_33
https://dx.doi.org/10.1137/16M1096840
https://dx.doi.org/10.1137/16M1096840
https://sc19.supercomputing.org/submit/reproducibility-initiative/
https://sc19.supercomputing.org/submit/reproducibility-initiative/
https://github.com/betterscientificsoftware/SDK-Tools
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/
http://software-carpentry.org
https://www.software.ac.uk
https://github.com/betterscientificsoftware/Trust-Tools
https://rse.ac.uk
http://urssi.us
https://us-rse.org
https://bssw.io/blog_posts/adopting-continuous-integration-for-long-timescale-materials-simulation
https://bssw.io/blog_posts/adopting-continuous-integration-for-long-timescale-materials-simulation

B. IDEAS PROJECTS

B.1 IDEAS-ECP team

Figure 18: Members of the IDEAS-ECP team, January 2020; see https:

// ideas-productivity.org/ ideas-ecp/ team. Also, alumni of the project have

contributed to work discussed in this report: Satish Balay, Lisa Childers,

Todd Gamblin, Steve Hudson, Christoph Junghans, Alicia Klinvex, Jared

O’Neal, Barry Smith, and Louis Vernon.

The IDEAS-ECP project brings together ex-
perts throughout the DOE community who
have both experience in producing widely
used scientific software products and pas-
sion for work on software productivity and
sustainability issues in collaboration with
the ECP and broader computational sci-
ence communities. Moreover, team mem-
bers have the depth and breadth of expertise
needed to communicate effectively with do-
main scientists, so that collectively we are
working to understand the software capabil-
ities and needs of ECP teams, to consider
opportunities for improvement, and to pur-
sue targeted work toward better practices.

Mike Heroux (SNL) and Lois Curfman
McInnes (ANL) co-lead the IDEAS-ECP
project, extending their effective partnership
in co-leading the IDEAS-Classic project.
Co-PIs David Bernholdt (ORNL), Anshu
Dubey (ANL), Elsa Gonsiorowski (LLNL),
Osni Marques (LBNL), David Moulton
(LANL), Boyana Norris (University of Ore-
gon), and Elaine Raybourn (SNL) serve as
institutional leads, with responsibility for
coordinating institutional contributions to
the project. The project includes leaders at
computing facilities relevant for ECP: Re-
becca Hartman-Baker (NERSC), Judy Hill
(OLCF), Hai Ah Nam (LANL), Katherine
Riley (ALCF), and Jean Shuler (LLNL). As
liaisons between IDEAS-ECP and comput-
ing facilities, they help identify opportuni-
ties for and facilitate partnerships between
facilities staff and the IDEAS-ECP team on
topics of mutual interest.

David Bernholdt leads all outreach efforts
for the project; Anshu Dubey leads strategic partnership with URSSI [43]. Rinku Gupta (ANL) is editor
in chief of the Better Scientific Software (BSSw) website; Hai Ah Nam is coordinator of the BSSw Fel-
lowship Program; Osni Marques coordinates the HPC Best Practices webinar series; Elaine Raybourn leads
work on Productivity and Sustainability Improvement Planning; Jean Shuler (LLNL) coordinates our part-
nership with Software Carpentry; and Jim Willenbring (SNL) leads work on methodologies for Software
Development Kits. All project members work synergistically in the development of methodologies materi-
als, partnering with ECP teams on adoption of software best practices, and outreach.

Exascale Computing Project (ECP) 25 ECP-U-RPT-2020-0001

https://ideas-productivity.org/ideas-ecp/team
https://ideas-productivity.org/ideas-ecp/team

B.2 IDEAS-Watersheds: Advancing a software ecosystem for watershed modeling

Simulations of watershed systems. Water resources that are critically important for energy production,
human use, agriculture, and ecosystem health are under increasing pressure from growing demand, land-use
change, and Earth system change. Those stresses on the water supply are transmitted largely through water-
sheds. Through its Science Focus Area (SFA) projects, the DOE’s Subsurface and Biogeochemical Research
(SBR) program is tightly integrating observations, experiments, and modeling to advance a systems-level
understanding of how watersheds function and to translate that understanding into advanced science-based
models of watershed systems.

Figure 19: IDEAS-Watersheds comprises six research activities. This schematic shows the

relationship of these activities with the three SBR cornerstones. The Shared Infrastructure

activity works on common needs with shared solutions and moves capability across the scales

associated with each cornerstone.

Science-driven advances in

software practices. Signifi-
cant progress was made dur-
ing the first phase of the
project (IDEAS-Classic), in
which watershed use cases
balanced advances in soft-
ware engineering and sci-
entifically driven modeling.
To broaden SFA impact, the
IDEAS-Watersheds project,4

established in spring 2019,
builds on these successes to
improve watershed modeling
capacity through an agile ap-
proach to creating a sustain-
able, reliable, parallel soft-
ware ecosystem with interop-
erable components. The project’s structure addresses many challenges in software development with dis-
tributed interdisciplinary teams. Organized around six research activities (see Figure 19) that develop use
cases to drive advances in the software ecosystem, the project integrates improvements in software practices
for aggregate teams with the model and algorithmic development needed to address scientific challenges.
The project is exploring a co-funding model in order to create a team of early-career researchers who will
be trained in modern software engineering, while acting as liaisons who contribute to shared deliverables.

Software ecosystem as a model for collaboration. Foundational advances begun during the IDEAS-
Classic project, such as completing the open-source release of all major codes in this ecosystem, and broad
adoption of agile methodologies have led the community to embrace the software ecosystem (see Figure 20)
as an effective collaboration model. Furthermore, the team initiated a pilot study of the important role of a
code maintainer to increase both the sustainability of the code and the health of the community it supports.
The team reinstated a software engineer as the code maintainer of ParFlow, and he took on the difficult
challenge of repairing the neglected tests; migrating multiple, largely disconnected branches from distant
research groups; and implementing a git workflow with pull requests and code review. Despite initial skep-
ticism of the team, a transformation of the community as well as the code resulted, with increases in both
software and scientific productivity.

Changes in project structure to promote multidisciplinary collaboration and training. The successes
in watershed modeling in the IDEAS-Classic project, along with many technical and cultural challenges, led
to the development of the expanded and restructured IDEAS-Watersheds project. First, the project expanded
to include all six of the SBR SFAs and uses a human-centered design approach to develop balanced and

4https://ideas-productivity.org/ideas-watersheds

Exascale Computing Project (ECP) 26 ECP-U-RPT-2020-0001

https://ideas-productivity.org/ideas-watersheds

impactful use cases. In addition, several team members felt their time was too fractured during the first
phase and that early-career staff needed more training and integration. The IDEAS-Watersheds project thus
developed a co-funding model that creates a team of fully funded early-career staff, dubbed the Integrated
Computational and Domain Sciences Team. The project casts its relationship with the SFAs as a partnership,
with joint funding of early-career staff to avoid time fragmentation while promoting their key role as liaisons.
This approach also provides an ideal venue for training in software engineering and best practices, as well
as modeling and numerical methods.

Figure 20: IDEAS-Watersheds software ecosystem: The project is advancing a sci-

entific software ecosystem comprising BER application codes that can increasingly

share components (blue disks) either directly or through common interface libraries

(orange boxes). Less mature components and those using simplified representations

are shown in gray. The xSDK currently includes numerical libraries, the Alquimia

biogeochemistry interface library, and PFLOTRAN (subsurface processes, biogeo-

chemistry engine). The land model interface library is targeted for development and

later inclusion [figure courtesy of PNNL].

Increasing transparency and col-

laboration. The impact of the IDEAS
synergistic family of projects on the
watershed modeling community has
been profound. The community is em-
bracing the software ecosystem con-
cept and the collaboration model that
goes with it. Overall, a significant
increase in the transparency of the
SFA projects has occurred, along with
an increasing willingness to collabo-
rate and share capability development
across the SFA projects through the
software ecosystem.

The project will continue to adopt
new and improved practices emerg-
ing from the IDEAS-ECP project and
the broader community. For example,
the team explored the use of PSIP in
its early stages of development but
had trouble engaging teams with the
process. Now that the PSIP process
has matured, the project members are excited about using it to further improve software development prac-
tices, as well as to improve the efficiency with which the team completes some capability development. In
addition, the project members are excited about training a cohort of early-career scientists (postdocs and
staff) not only to appreciate the critical need for best practices in software engineering and design, but also
to be able to apply these best practices in interdisciplinary aggregate teams.

C. ADVANCES BY SCIENCE TEAMS THROUGH PRODUCTIVITY AND

SUSTAINABILITY IMPROVEMENT PLANNING

As introduced in Section 3.3, the PSIP process provides a lightweight workflow for iteratively and incremen-
tally improving software practices. This section presents three case studies where application and software
teams have advanced practices using the PSIP process, leading to improvements in overall effectiveness:
building and testing (EXAALT, Appendix C.1), code refactoring (ExaStar, Appendix C.2), and onboarding
(Exascale MPI, Appendix C.3)

Exascale Computing Project (ECP) 27 ECP-U-RPT-2020-0001

C.1 Advances in building and testing: A case study with EXAALT

Figure 21: Illustration of the EXAALT framework.

The three main software components (LAMMPS,

LATTE, and ParSplice) are represented as colored

circles, while other libraries are represented as grey

circles. Lines (graph edges) depict dependencies be-

tween the various software components.

Combining software components for materials modeling.

The Exascale Atomistics for Accuracy, Length and Time (EX-
AALT) project5 in ECP is developing a materials modeling
framework that leverages extreme-scale parallelism to produce
accelerated molecular dynamics simulations for fusion and fis-
sion energy materials challenges. The official team comprises
approximately 10 researchers at Los Alamos National Labora-
tory and Sandia National Laboratories working on four subpro-
jects. While two of these subprojects are driven by a handful
of people, the others are larger open source efforts with many
external contributors. The EXAALT team members were keen
to partner with the IDEAS-ECP team because they recognized
the potential to improve their software engineering practices,
particularly in the area of continuous integration (CI) testing.
Since the project integrates several distinct software packages
(see Figure 21), each with its own list of dependencies, the team frequently struggled with build regressions
in the early days of development.

Identifying most urgent needs for improving software practices: builds and testing. After a few in-
formal discussions with IDEAS-ECP members, the team agreed on the need to (1) improve their end-
to-end build system, (2) implement a CI pipeline to automatically detect build regressions, and (3) add
unit/regression testing to the CI pipeline. Although the team had not committed to an explicit project-
management process at the early stages of the collaboration, the steps taken during these discussions corre-
spond to the first two steps of the PSIP cycle shown in Figure 22. In order to prioritize their efforts, it was
critical to clarify the current project practices and specify both near- and long-term goals.

Figure 22: Summarized versions of PSIP project tracking cards used for the EXAALT-IDEAS collabo-

ration. The specific scores in the figure correspond to the state of the project. Note that some details

about dependencies and timeline are excluded from the PSIP cards for clarity.

Making progress in incremental steps. For the initial stage of the implementation of an automated end-to-
end build system, the PSIP process was used only implicitly for project planning and execution. For the two
remaining goals, however, PSIP was followed explicitly using the project tracking cards (PTCs) shown in
Figure 22 (in summarized form). During steps 3-4 of the PSIP cycle, these PTCs were both fully annotated
but reflected a “score” of zero. For step 5 of the PSIP cycle, each PTC step was resolved in both Jira and
GitLab as distinct stories and issues, respectively. The actual implementation of these Jira/GitLab issues

5 https://exascaleproject.org/research-group/chemistry-and-materials

Exascale Computing Project (ECP) 28 ECP-U-RPT-2020-0001

https://exascaleproject.org/research-group/chemistry-and-materials

corresponded to step 6 of the PSIP cycle, and the assessment of the completed work was the final step. A
BSSw blog article by Richard Zamora discusses more details about this work [46].

Next steps. The completion of these cards does not mean that the EXAALT team members are finished
improving their CI and/or testing infrastructure. Like most aspects of software engineering, PSIP is an
iterative process, and the initial plan may need to change if unexpected roadblocks emerge. Whether or not
a progress tracking card can be followed to completion, documenting, revising, and repeating the process
make sense when a natural finishing point is reached. The PTC used in this effort (see Figure 22) is available
in the PSIP PTC catalog.

C.2 Advances in code refactoring: A case study with ExaStar

Figure 23: Simulation of a core-

collapse supernova using the

FLASH application.

Refactoring to prepare for heterogeneous computer architectures.

FLASH—a large and complex multiphysics, multiscale code for simulating
plasma physics and astrophysics (see Figure 23)—has been in public release
since 2000 and has undergone two major revisions to build an extensible and
flexible infrastructural framework with the goal of achieving robustness and
longevity. The onset of platform heterogeneity requires another major refactor-
ing because several components of the infrastructure are inadequate to meet
the challenges posed by these platforms. The code restructuring, begun two
years ago, is being carried out under the ECP’s AMReX Co-design Center,6

with the intent of enabling exascale simulations to be done under the ExaStar
application project,7 which models stellar explosions.

The primary objective of the refactoring is to modify the interfaces of the so-
called Grid code unit so that (1) looping over domain sections (blocks) can be
done using smart iterators and (2) an alternative adaptive mesh refinement library, AMReX, can be used with
the code. The smart iterators enable out-of-order execution of blocks, and therefore asynchronization, so that
a block can be handed to an operator as soon as its dependencies are met. AMReX was adopted because
it supports hierarchical parallelism and asynchronous operations, which the old adaptive mesh refinement
(AMR) library, Paramesh, does not. Details of this refactoring effort are described in [31].

Using the PSIP process to advance practices in testing, verification, and revision control. The PSIP
process aligns well with that of FLASH: take stock of where the project is, and make changes in small,
well-planned, and manageable steps. Using PSIP retroactively mapped the approach for improving two
development processes to improve productivity and the quality of the work.

The first improvement addressed the need to grow the test suite and improve techniques for documenting
how the test suite evolves in response to changes in the software. This work was retroactively represented
by a PTC for verification coverage and test-suite management, shown in the left-hand side of Figure 24. The
work was linked to the effort to refactor the mesh management component of FLASH to work with AMReX,
so that perceived barriers could be addressed.

The refactoring strategy relied on two team members carrying out simultaneous, incremental refactoring
efforts with similar goals. One person added in AMReX from the bottom up, while the other person un-
dertook a top-down refactoring. In the latter approach, the data structures for storing solution data were
constructed with AMReX; but the original library, Paramesh, was used to drive the mesh refinement. The
first task in the PTC indicated that the FLASH test suite had enough tests in place to verify the top-down
modifications through simulation-level regression testing but was inadequate for the bottom-up part. Test-
driven development was therefore used to design and implement integration-level regression testing, where

6https://exascaleproject.org/research-group/co-design-centers
7https://exascaleproject.org/research-group/earth-and-space-science

Exascale Computing Project (ECP) 29 ECP-U-RPT-2020-0001

https://exascaleproject.org/research-group/co-design-centers
https://exascaleproject.org/research-group/earth-and-space-science

Figure 24: Summarized versions of PSIP project tracking cards used for the ExaStar project.

each new test covered a single aspect of the internal AMR functionality.

In addition to these changes to the test suite, the team improved the documentation of the setup of each ex-
ecution environment used to run the test suite, including maintaining a history of which third-party libraries
were installed, when, and why, and adding a procedure for documenting how a baseline was verified both
when created and when updated.

The second improvement related to designing and evolving a test-driven git workflow in order to improve
collaboration when team members integrate work developed in parallel through a revision control system.
Rather than adopt a full-featured and possibly excessive workflow, the team started simple and added ca-
pabilities as needed. This incremental process is shown in the right-hand side of Figure 24. A BSSw blog
article by Anshu Dubey and Jared O’Neal provides further information [8].

Toward further improvements in software practices. To date, the code in the git repository is a small
subset of the production version of FLASH. Although this relatively simple workflow has worked well so
far, the team members have identified an area where they would like improvement and can explicitly apply
PSIP, namely, to smoke test changes made to the software in the repository with a continuous integration
test server such as Travis CI. (Smoke testing is preliminary testing to reveal simple failures.) As more code
components from the production version are transitioned to git and more users and contributors switch to
the git version, the team will be faced with many more challenges and the need for process improvements.
While the FLASH development philosophy has always mirrored PSIP, the formalization brought by PSIP
makes the philosophy explicit to new team members and external contributors. The team foresees many
instances of PSIP being used before the new version of FLASH is ready for production.

C.3 Advances in onboarding: A case study with Exascale MPI

Challenges in technical onboarding training for new project members. The Exascale MPI (Message
Passing Interface) project8 in ECP is developing a production-ready, portable, high-performance MPI im-
plementation (MPICH) that scales to the largest supercomputers in the world. One challenge for the project,
based at Argonne National Laboratory, is a continuous influx of new contributors, who are expected to al-
ready have technical expertise with MPI or learn these skills on the fly as needed by the job. While the team
does provide mentoring to new members, limited resources require that newcomers be fairly independent
and proactive when it comes to learning the basic technical aspects of MPI.

8https://exascaleproject.org/research-group/programming-models-runtimes

Exascale Computing Project (ECP) 30 ECP-U-RPT-2020-0001

https://exascaleproject.org/research-group/programming-models-runtimes

Using the PSIP process to define a strategy for creating onboarding materials. The Exascale MPI team
worked with an IDEAS-ECP facilitator to implement the PSIP process. Through the documentation of cur-
rent practices in the project, the need to improve the project’s onboarding was identified. The Exascale MPI
team and the facilitator agreed to work on a PSIP cycle focused on improving the training for contributors,
by creating a single destination training resource for new team members to use during the onboarding phase.
Four key aspects of a satisfactory solution were identified:

1. A central “repository” for all training material, relevant to the Exascale MPI team
2. Visually interesting, easy navigation across all topics
3. Easy administration and ability to update the “repository” sustainably
4. Open collaboration to allow external contributors to contribute new technical topics and resources

Target: Implement a technical onboarding process to facilitate

integration of new team members

0 Initial Status: No training process in place.

1
Understand MPICH current onboarding training practices and

define training categories

2
Review and gather resources for training in at least two

categories

3 Design website and integrate content for two categories

4
Solicit feedback, improve content, design processes for

external contributions and updating of website

Score (0-4) = 3

✓

✓

✓

PSIP Process: Onboarding

Figure 25: Summarized version of PSIP project tracking card used

for the MPICH project.

With the overall goal and desired outcome de-
fined, the Exascale MPI team worked with the
facilitator to create a timeline and PTC, shown
in Figure 25. Each step in the PTC represents
an important advance to move toward the desired
goal. Yet, PTC cards are live entities, which may
change depending on unexpected progress or bot-
tlenecks.

Following the project’s self-defined PSIP steps

to create onboarding resources. Once the PTC
was created, the team focused on the execution
aspect of the PTC. The PSIP process aims to en-
gage a full team through the execution of PTC
steps. Each step is approachable yet builds toward
a larger goal. Throughout the PSIP process, the
Exascale MPI team, with help from the facilitator,
continually evaluated progress on the path to building a resource for improving onboarding and training.

For improving the training process, the team identified what categories of topics needed to be covered
in the onboarding training. For each category, the team worked on and solicited resources (based on the
potential expertise level of new onboarding members), reviewed the material for accuracy and applicability,
and worked on the design to integrate them into the training website. The Exascale MPI team, with help
from the facilitator, explored the viability of using cloud repository services (e.g., Google Drive). In the end,
the team decided to design a custom stand-alone website to serve as a training portal, based on project needs
and input from the team members. The training-base portal is a continual work in progress and can be a
resource for the broader HPC community. At this stage, the Exascale MPI team is testing the training portal
with new hires and soliciting feedback. The next step is to determine a plan to improve the training portal,
which will focus on adding new content categories and establishing processes to sustain the content and its
validity.

Broader applicability of onboarding resources. With the PSIP process, the Exascale MPI team learned
that a PSIP topic developed for a particular team may sometimes be generalizable enough to be relevant
and important to several teams in an organization or across multiple organizations. The topic of technical
onboarding training for new hires may sometimes be team specific; however, most teams working in the
HPC field need to train people in the common practices of the community. Thus, a PTC created for one
team can be used by many other teams as a starting point. Moreover, the resulting output can end up being
immensely useful across many other teams as well. The PTC used in this effort (see Figure 25) is available
in the PSIP PTC catalog.

Exascale Computing Project (ECP) 31 ECP-U-RPT-2020-0001

D. OUTREACH DETAILS

As discussed in Section 3.5, multipronged outreach efforts are critical aspects of IDEAS training and com-
munity engagement. This appendix provides details about webinars in the series Best Practices for HPC

Software Developers (see Section 3.5.3) and BSSw.io blog posts (see Section 3.5.1).

D.1 HPC Best Practices Webinar Series

A major training initiative is the HPC Best Practices Webinar Series, a collaboration with IDEAS-ECP and
the three ASCR computing facilities (ALCF, NERSC, and OLCF). Table 1 lists webinar topics, including
hyperlinks to slides, recordings, and Q&A materials, while Table 2 provides information about registrations
and attendees.

Table 1: Webinars of series Best Practices for HPC Software Developers (May 2016 – December
2019). The sessions during 2016 were offered under the IDEAS-Classic project.

Date Title, Presenter(s), and Affiliation

2019-12-11 Building Community through xSDK Software Policies, Ulrike Meier Yang (LLNL) and Piotr Luszczek
(Univ of Tennessee)

2019-10-16 Tools and Techniques for Floating-Point Analysis, Ignacio Laguna (LLNL)
2019-09-11 Discovering and Addressing Social Challenges in the Evolution of Scientific Software Projects, Rene

Gassmoeller (UC Davis)
2019-08-14 Software Management Plans in Research Projects, Shoaib Ahmed Sufi (Software Sustainability Institute)
2019-07-17 When 100 Flops/Watt was a Giant Leap: The Apollo Guidance Computer Hardware, Software and

Application in Moon Missions, Mark Miller (LLNL)
2019-06-12 Modern C++ for High-Performance Computing, Andrew Lumsdaine (PNNL & Univ of Washington)
2019-05-08 So You Want to be Agile? Strategies for Introducing Agility into Your Scientific Software Project, Mike

Heroux (SNL)
2019-04-10 Testing Fortran Software with pFUnit, Thomas Clune (NASA Goddard)
2019-03-13 Parallel I/O with HDF5 - Overview, Tuning and New Features, Quincey Koziol (NERSC)
2019-02-13 Containers in HPC, Shane Canon (NERSC)
2019-01-23 Quantitatively Assessing Performance Portability with Roofline, John Pennycook (Intel), Charlene Yang

and Jack Deslippe (NERSC)
2018-12-05 Introduction to Software Licensing, David Bernholdt (ORNL)
2018-10-17 Open Source Best Practices: From Continuous Integration to Static Linters, Daniel Smith and Ben

Pritchard (Molecular Sciences Software Institute)
2018-09-19 Modern CMake, Bill Hoffman (Kitware)
2018-08-21 Software Sustainability: Lessons Learned from Different Disciplines, Neil Chue Hong (Software Sustain-

ability Institute)
2018-07-18 How Open Source Software Supports the Largest Computers on the Planet, Ian Lee (LLNL)
2018-06-13 Popper: Creating Reproducible Computational and Data Science Experimentation Pipelines, Ivo Jimenez

(UCSC)
2018-05-09 On-demand Learning for Better Scientific Software: How to Use Resources and Technology to Optimize

your Productivity, Elaine Raybourn (SNL)
2018-04-18 Software Citation Today and Tomorrow, Daniel Katz (NCSA and UIUC)
2018-03-28 Scientific Software Development with Eclipse, Greg Watson (ORNL)
2018-02-28 Jupyter and HPC: Current State and Future Roadmap, Matthias Bussonnier (UC Berkeley), Suhas

Somnath (ORNL) and Shereyas Cholia (NERSC)
2018-01-17 Bringing Best Practices to a Long-Lived Production Code, Charles Ferenbaugh (LANL)
2017-12-06 Better Scientific Software (https://bssw.io): So your code will see the future, Mike Heroux (SNL) and

Lois Curfman McInnes (ANL)
2017-11-01 Managing Defects in HPC Software Development, Tom Evans (ORNL)
2017-09-13 Barely Sufficient Project Management: A few techniques for improving your scientific software develop-

ment efforts, Mike Heroux (SNL)
2017-08-16 Using the Roofline Model and Intel Advisor, Sam Williams and Tuomas Koskela (LBNL)
2017-07-12 Intermediate Git, Roscoe Bartlett (SNL)
2017-06-07 Python in HPC, Rollin Thomas (NERSC), William Scullin (ALCF) and Matt Belhorn (OLCF)

Continued on next page

Exascale Computing Project (ECP) 32 ECP-U-RPT-2020-0001

https://www.exascaleproject.org/event/software-policies
https://www.exascaleproject.org/event/fpanalysis
https://www.exascaleproject.org/event/scssp
https://www.exascaleproject.org/event/smp-rp
https://www.exascaleproject.org/event/apollolanding50th
https://www.exascaleproject.org/event/apollolanding50th
https://www.exascaleproject.org/event/cpp4HPC
https://www.exascaleproject.org/event/agile
https://www.exascaleproject.org/event/pfUnit
https://www.exascaleproject.org/event/HDF5
https://www.exascaleproject.org/event/contHPC
https://www.exascaleproject.org/event/perfport
https://www.exascaleproject.org/event/licensing
https://www.exascaleproject.org/event/ci2sl
https://exascaleproject.org/event/cmake
https://exascaleproject.org/event/softwaresustainability
https://exascaleproject.org/event/oss
https://exascaleproject.org/event/popper
https://exascaleproject.org/event/on-demand
https://exascaleproject.org/event/on-demand
https://exascaleproject.org/event/software_citation
https://exascaleproject.org/event/eclipse
https://exascaleproject.org/event/jupyter
https://exascaleproject.org/event/bp4long-lived_codes
https://exascaleproject.org/event/bssw
https://exascaleproject.org/event/managing-defects-hpc-software-development
https://exascaleproject.org/event/barely-sufficient-project-management
https://exascaleproject.org/event/barely-sufficient-project-management
https://exascaleproject.org/event/using-the-roofline-model
https://exascaleproject.org/event/intermediate-git
https://exascaleproject.org/event/python-in-hpc-2

Table 1 – Continued from previous page

Date Title, Presenter(s), and Affiliation

2016-08-09 Basic Performance Analysis and Optimization - An Ant Farm Approach, Jack Deslippe (NERSC)
2016-07-28 An Introduction to High-Performance Parallel I/O, Feiyi Wang (OLCF)
2016-07-14 How the HPC Environment is Different from the Desktop (and Why), Katherine Riley (ALCF)
2016-06-15 Testing and Documenting your Code, Alicia Klinvex (SNL)
2016-06-02 Distributed Version Control and Continuous Integration Testing, Jeff Johnson (LBNL)
2016-05-18 Developing, Configuring, Building, and Deploying HPC Software, Barry Smith (ANL)
2016-05-04 What All Codes Should Do: Overview of Best Practices in HPC Software Development, Anshu Dubey

(ANL)

Table 2: Registrations and attendees in webinars of the series Best Practices for HPC Software

Developers (June 2017 – December 2019). Many additional people view archived slides, recordings,
and curated Q&A’s.

Registrations ECP-Affiliated Attendees
Registrations

Minimum 69 22 26
Average 148 46 78
Maximum 245 71 182
Std. deviation 47 14 36
Total 4154 1281 2181

D.2 Blog articles published on BSSw.io

As introduced in Section 3.5.1, the BSSw site (https://bssw.io) is a central hub for sharing information
on practices, techniques, experiences, and tools to improve developer productivity and software. The site
features a growing collection of original blog articles, addressing topics such as science teams’ experiences
with productivity-related software issues and strategies for collaborative computational science. Blog posts
thus far are listed in Table 3.

Table 3: Blog articles published on the BSSw site (from launch in 2017 through January 2020).
Date Title, Author(s), and Affiliation

2020-01-15 US Research Software Engineer (US-RSE) Association, Ian Cosden (Princeton Univ), Chris Hill (MIT),
Sandra Gesing (Univ of Notre Dame), and Charles Ferenbaugh (LANL)

2020-01-02 Better Scientific Software: 2019 Highlights, Rinku Gupta (ANL)
2019-12-13 Introducing the 2020 BSSw Fellows, Hai Ah Nam (LANL)
2019-12-05 Hello CSE World, Heather M. Switzer (College of William and Mary), Elsa Gonsiorowski (LLNL), and

Mark C. Miller (LLNL)
2019-11-25 Give Thanks!, Angela Herring (LANL)
2019-11-14 Software Sustainability in the Molecular Sciences, Theresa L. Windus (Iowa State Univ and Ames Lab)

and T. Daniel Crawford (Virginia Tech)
2019-10-31 Bloodsuckers, Banshees and Brains: A Bestiary of Scary Software Projects and How to Banish Them,

Neil Chue Hong (Software Sustainability Institute) and Benjamin Cowan (Tech-X Corporation)
2019-10-15 Accepting High-Quality Software Contributions as Scientific Publications, Hartwig Anzt (Karlsruhe

Institute of Technology)
2019-09-25 Research Software Science: A Scientific Approach to Understanding and Improving How We Develop

and Use Software for Research, Michael A. Heroux (SNL)
2019-09-18 Data-driven Software Sustainability, Daniel S. Katz (UIUC)
2019-09-12 Making Open Source Research Software Visible: A Path to Better Sustainability?, Neil Chue Hong

(Software Sustainability Institute)
2019-09-04 Applications Open for 2020 BSSw Fellowship Program. Q&A Webinar on Sept 20, 2019, Hai Ah Nam

(LANL)
2019-08-27 FLASH5 Refactoring and PSIP, Anshu Dubey and Jared O’Neal (ANL)

Continued on next page

Exascale Computing Project (ECP) 33 ECP-U-RPT-2020-0001

https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar007-160809-deslippe-antfarm.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar006-2016_HPC_IO_Intro.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar005-supercomputers.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar004-testing-klinvex.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar003-HPC-Session3.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar002-MakeConfigureIDE.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2018/03/webinar001-160504-dubey-overview.pdf
https://bssw.io
https://bssw.io/blog_posts
https://bssw.io/blog_posts/us-research-software-engineer-us-rse-association
https://bssw.io/blog_posts/better-scientific-software-2019-highlights
https://bssw.io/blog_posts/introducing-the-2020-bssw-fellows
https://bssw.io/blog_posts/hello-cse-world
https://bssw.io/blog_posts/give-thanks
https://bssw.io/blog_posts/software-sustainability-in-the-molecular-sciences
https://bssw.io/blog_posts/bloodsuckers-banshees-and-brains-a-bestiary-of-scary-software-projects-and-how-to-banish-them
https://bssw.io/blog_posts/accepting-high-quality-software-contributions-as-scientific-publications
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/data-driven-software-sustainability
https://bssw.io/blog_posts/making-open-source-research-software-visible-a-path-to-better-sustainability
https://bssw.io/blog_posts/applications-open-for-2020-bssw-fellowship-program-q-a-webinar-on-sept-20-2019
https://bssw.io/blog_posts/flash5-refactoring-and-psip

Table 3 – Continued from previous page

Date Title, Author(s), and Affiliation

2019-08-12 Building Community through Software Policies, Piotr Luszczek (Univ of Tennessee) and Ulrike Yang
(LLNL)

2019-07-29 When NOT to Write Automated Tests, Roscoe A. Bartlett (SNL)
2019-07-15 Celebrating Apollo’s 50th Anniversary: Users’ Stories from Space, Mark C. Miller (LLNL)
2019-06-27 Leading a Scientific Software Project: It’s All Personal, Wolfgang Bangerth (Colorado State University)
2019-06-17 Celebrating Apollo’s 50th Anniversary: The Oldest Code on GitHub, Mark C. Miller (LLNL)
2019-05-29 Talking about Software Development at SIAM CSE19, David E. Bernholdt (ORNL), Anshu Dubey

(ANL), Michael A. Heroux (SNL), Catherine Jones (Science and Technology Facilities Council), Daniel
S. Katz (UIUC), Lois Curfman McInnes (ANL), and James Willenbring (SNL)

2019-05-15 Celebrating Apollo’s 50th Anniversary: When 100 FLOPS/Watt Was a Giant Leap, Mark C. Miller
(LLNL)

2019-04-26 Streamlining Software Development through Continuous Integration, Glenn Hammond (SNL)
2019-04-12 Continuous Technology Refreshment: An Introduction Using Recent Tech Refresh Experiences on VisIt,

Mark C. Miller and Holly Auten (LLNL)
2019-03-28 2018 BSSw Fellows Tackle Scientific Productivity Challenges, Hai Ah Nam (LANL)
2019-03-19 Accelerating Scientific Discovery with Reusable Software: Special issue of IEEE CiSE, Scott Lathrop

(NCSA)
2019-02-25 Software As Craft, Paul Wolfenbarger (SNL)
2019-02-21 The Art of Writing Scientific Software in an Academic Environment, Hartwig Anzt (Karlsruhe Institute

of Technology)
2019-01-29 Preparing the Next Generation of Supercomputer Users, Marta García Martínez (ANL)
2019-01-04 Better Scientific Software: 2018 Highlights, Lois Curfman McInnes (ANL)
2018-12-11 Introducing the 2019 BSSw Fellows, David E. Bernholdt (ORNL), Michael A. Heroux (SNL), and Lois

Curfman McInnes (ANL)
2018-11-28 Porting Codes to New Architectures, Bronson Messer (ORNL)
2018-11-08 SC18: Does That Stand for “Software Conference”?, David E. Bernholdt (ORNL)
2018-10-26 Building Connections and Community within an Institution, Gregory Watson (ORNL) and Elsa Gon-

siorowski (LLNL)
2018-09-25 Adopting Continuous Integration for Long-Timescale Materials Simulation, Richard Zamora (ANL)
2018-09-10 Applications Open for 2019 BSSw Fellowship Program. Q&A Webinar on Sept 21, 2018, David E.

Bernholdt (ORNL), Michael A. Heroux (SNL), and Lois Curfman McInnes (ANL)
2018-08-30 Do Social Media and Science Mix? Twitter Use in a Large Research Project, Tim Scheibe (PNNL)
2018-08-15 Software Verification, Anshu Dubey (ANL)
2018-07-30 URSSI: Conceptualizing a US Research Software Sustainability Institute, Daniel S. Katz (UIUC), Jeff

Carver (Univ of Alabama), Sandra Gesing (Univ of Notre Dame), Karthik Ram (Berkeley Institute for
Data Science), and Nic Weber (Univ of Washington)

2018-07-17 Think Locally, Act Globally: Outreach for Better Scientific Software, David E. Bernholdt (ORNL)
2018-06-28 Building Trusted Scientific Software, Michael A. Heroux (SNL)
2018-06-14 Research Software Engineer: A New Career Track?, Chris Richardson (Univ of Cambridge)
2018-05-31 On Demand Learning for Better Scientific Software: How to Use Resources & Technology to Optimize

Your Productivity, Elaine Raybourn (SNL)
2018-05-17 Keeping Your Vision Fit for Years of Software Development, Mark C. Miller (LLNL)
2018-04-30 SuperLU: How Advances in Software Practices are Increasing Sustainability and Collaboration, Sherry

Li (LBNL)
2018-04-17 Scaling Small Teams to a Team of Teams: Shared Consciousness, Elaine Raybourn (SNL) and David

Moulton (LANL)
2018-03-26 Can You Teach an Old Code New Tricks?, Charles Ferenbaugh (LANL)
2018-03-13 BSSw Fellowship Activity: Promoting Software Citation, Daniel S. Katz (UIUC)
2018-02-26 Call for Papers: Accelerating Scientific Discovery with Reusable Software, Scott Lathrop (NCSA)
2018-02-05 Introducing the 2018 BSSw Fellows, David E. Bernholdt (ORNL), Michael A. Heroux (SNL), and Lois

Curfman McInnes (ANL)
2018-02-02 Better Science through Software Testing, Tom Evans (ORNL)
2017-12-13 New FAQ List for BSSw Fellowship Program. Applications Due by Jan 5, 2018, Michael A. Heroux

(SNL) and Lois Curfman McInnes (ANL)
2017-12-01 Applications Open for New BSSw Fellowship Program. Q&A Webinar on Dec 12, 2017, Michael A.

Heroux (SNL) and Lois Curfman McInnes (ANL)
2017-11-13 BSSw Site Launch at SC17. Contribute to Better Scientific Software!, David E. Bernholdt (ORNL),

Michael A. Heroux (SNL), and Lois Curfman McInnes (ANL)

Exascale Computing Project (ECP) 34 ECP-U-RPT-2020-0001

https://bssw.io/blog_posts/building-community-through-software-policies
https://bssw.io/blog_posts/when-not-to-write-automated-tests
https://bssw.io/blog_posts/celebrating-apollo-s-50th-anniversary-users-stories-from-space
https://bssw.io/blog_posts/leading-a-scientific-software-project-it-s-all-personal
https://bssw.io/blog_posts/celebrating-apollo-s-50th-anniversary-the-oldest-code-on-github
https://bssw.io/blog_posts/talking-about-software-development-at-siam-cse19
https://bssw.io/blog_posts/celebrating-apollo-s-50th-anniversary-when-100-flops-watt-was-a-giant-leap
https://bssw.io/blog_posts/streamlining-software-development-through-continuous-integration
https://bssw.io/blog_posts/continuous-technology-refreshment-an-introduction-using-recent-tech-refresh-experiences-on-visit
https://bssw.io/blog_posts/2018-bssw-fellows-tackle-scientific-productivity-challenges
https://bssw.io/blog_posts/accelerating-scientific-discovery-with-reusable-software-special-issue-of-ieee-cise
https://bssw.io/blog_posts/software-as-craft
https://bssw.io/blog_posts/the-art-of-writing-scientific-software-in-an-academic-environment
https://bssw.io/blog_posts/preparing-the-next-generation-of-supercomputer-users
https://bssw.io/blog_posts/better-scientific-software-2018-highlights
https://bssw.io/blog_posts/introducing-the-2019-bssw-fellows
https://bssw.io/blog_posts/porting-codes-to-new-architectures
https://bssw.io/blog_posts/sc18-does-that-stand-for-software-conference
https://bssw.io/blog_posts/building-connections-and-community-within-an-institution
https://bssw.io/blog_posts/adopting-continuous-integration-for-long-timescale-materials-simulation
https://bssw.io/blog_posts/applications-open-for-2019-bssw-fellowship-program-q-a-webinar-on-sept-21-2018
https://bssw.io/blog_posts/do-social-media-and-science-mix-twitter-use-in-a-large-research-project
https://bssw.io/blog_posts/software-verification
https://bssw.io/blog_posts/urssi-conceptualizing-a-us-research-software-sustainability-institute
https://bssw.io/blog_posts/think-locally-act-globally-outreach-for-better-scientific-software
https://bssw.io/blog_posts/building-trusted-scientific-software
https://bssw.io/blog_posts/research-software-engineer-a-new-career-track
https://bssw.io/blog_posts/on-demand-learning-for-better-scientific-software-how-to-use-resources-technology-to-optimize-your-productivity
https://bssw.io/blog_posts/on-demand-learning-for-better-scientific-software-how-to-use-resources-technology-to-optimize-your-productivity
https://bssw.io/blog_posts/keeping-your-vision-fit-for-years-of-software-development
https://bssw.io/blog_posts/superlu-how-advances-in-software-practices-are-increasing-sustainability-and-collaboration
https://bssw.io/blog_posts/scaling-small-teams-to-a-team-of-teams-shared-consciousness
https://bssw.io/blog_posts/can-you-teach-an-old-code-new-tricks
https://bssw.io/blog_posts/bssw-fellowship-activity-promoting-software-citation
https://bssw.io/blog_posts/call-for-papers-accelerating-scientific-discovery-with-reusable-software
https://bssw.io/blog_posts/introducing-the-2018-bssw-fellows
https://bssw.io/blog_posts/better-science-through-software-testing
https://bssw.io/blog_posts/new-faq-list-for-bssw-fellowship-program-applications-due-by-jan-5-2018
https://bssw.io/blog_posts/applications-open-for-new-bssw-fellowship-program-q-a-webinar-on-dec-12-2017
https://bssw.io/blog_posts/bssw-site-launch-at-sc17-contribute-to-better-scientific-software

	EXECUTIVE SUMMARY
	Introduction
	Context for Advances in Software Productivity and Sustainability
	Challenges
	Growing a community of practice
	Characterizing the development and use of software for scientific research

	Key Synergistic Strategies and Impact
	Prerequisite: Determining crosscutting urgent needs
	Curating methodologies to improve software practices of individuals and teams
	Incrementally and iteratively upgrading software practices
	Establishing software communities
	Engaging in community outreach
	Community-driven resources: BSSw.io website
	Recognition: BSSw Fellowship Program
	Webinar series: Best Practices for HPC Software Developers
	Tutorials on better scientific software
	Technical meetings on HPC software development topics
	Working toward culture change

	Conclusion
	References
	IDEAS Projects
	IDEAS-ECP team
	IDEAS-Watersheds: Advancing a software ecosystem for watershed modeling

	Advances by Science Teams through Productivity and Sustainability Improvement Planning
	Advances in building and testing: A case study with EXAALT
	Advances in code refactoring: A case study with ExaStar
	Advances in onboarding: A case study with Exascale MPI

	Outreach Details
	HPC Best Practices Webinar Series
	Blog articles published on BSSw.io

