
Knowledge and Information Systems (2021) 63:1577–1596
https://doi.org/10.1007/s10115-021-01565-5

REGULAR PAPER

Advancing synthesis of decision tree-basedmultiple classifier
systems: an approximate computing case study

Mario Barbareschi1 · Salvatore Barone1 · Nicola Mazzocca1

Received: 24 February 2020 / Revised: 15 March 2021 / Accepted: 22 March 2021 / Published online: 12 April 2021
© The Author(s) 2021

Abstract
So far, multiple classifier systems have been increasingly designed to take advantage of
hardware features, such as high parallelism and computational power. Indeed, compared
to software implementations, hardware accelerators guarantee higher throughput and lower
latency. Although the combination ofmultiple classifiers leads to high classification accuracy,
the required area overhead makes the design of a hardware accelerator unfeasible, hindering
the adoption of commercial configurable devices. For this reason, in this paper, we exploit
approximate computingdesignparadigm to tradehardware area overheadoff for classification
accuracy. In particular, starting from trained DT models and employing precision-scaling
technique, we explore approximate decision tree variants by means of multiple objective
optimization problem, demonstrating a significant performance improvement targeting field-
programmable gate array devices.

Keywords Approximate computing · Decision tree · Multiple classifier systems · FPGA ·
MOP · Genetic algorithm

1 Introduction

Nowadays, digital applications are experimenting an unprecedented growth of data to be
processed and, jointly, require high efficiency in terms of computational time, power con-
sumption, and so on. The inadequacy of classical computing system design approaches to
tackle with these requirements has been already identified as one of the main Big Data
challenges.

Scientific literature is mainly focusing on pattern recognition, machine learning and data
classification systems since, from one side, Big Data domain gives the possibility to access

B Salvatore Barone
Salvatore.Barone@unina.it

Mario Barbareschi
Mario.Barbareschi@unina.it

Nicola Mazzocca
Nicola.Mazzocca@unina.it

1 Department of Electrical Engineering and Information Technology , University of Naples Federico II,
Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01565-5&domain=pdf
http://orcid.org/0000-0003-2007-3744


1578 M. Barbareschi et al.

to heterogeneous and huge datasets, allowing for new applications, from the other side,
researches investigate about technological innovations and new methodologies to overcome
performance issues, in terms of both model accuracy and timing (computing throughput and
latency). As for the former, accuracy plays a fundamental role since even a small percentage
of classification inaccuracy affects a very great amount of processing data samples and, for
this reason, new learning algorithms are being proposed, such as classifier systems based on
the combination of multiple models [1–3].

As for the latter, Van Essen et al. [4] investigated the possibility of using FPGA technology
to accelerate random forest-based classifiers, proving that this technology performs signif-
icantly better than multi-core processors or GP-GPUs; thus, a considerable effort has been
made to exploit hardware accelerators for getting better performance compared to software
implementations.

For instance, this is the case of hardware acceleration of decision trees (DTs) classification
systems based on the field-programmable gate array devices (FPGAs) [5–9].

Hardware design of multiple classification systems (MCSs) enables to take both advan-
tages, clearly high accuracy and better computational performance, as already demonstrated
by authors of [10]. There aremany applications that can benefit from the performance of hard-
ware accelerators for classification. An example is the data stream mining applications [11]
in which, unlike traditional data mining applications where the data are static and can be
repeatedly read many times, constraints such as bounded memory, single-pass, real-time
response have to be satisfied. There are also many Fog Computing applications that make
use of machine learning models to the peripheral nodes of the network. In [12], for example,
a fog computing topology for delivering real-time embedded machine learning features is
proposed.

However, hardware design of MCSs hides some design issues, mainly related to the
highly area required by logic circuits that implement the whole classifier. Indeed, while a
single classification system can be someway adapted to fit onto a feasible hardware device,
MCS would require to adapt not only a set of single models, but additionally the combiner
needed to merge classification outcomes into the proper classification result.

In order to deal with this issue, in this paper we propose a hardware synthesis methodology
that exploits approximate computing (AxC) design paradigm: by renouncing some classi-
fication accuracy, AxC is able to reduce hardware overhead with respect to full-accurate
system.

In particular, starting from a trained DTmodel—encoded in the PredictiveModel Markup
Language (PMML) [13]—we manipulate it in order to produce hardware accelerators, and
then, we prove that DT-based MCSs can be successfully approximated by the precision-
scaling technique and exploration of approximate DTs variants can be suitably solved by
means of a heuristic multi-objective optimization problem (MOP) approach. Experimental
evidences, conducted over a significant dataset, highlight the efficacy of the approach by
exploring approximate DTs variants by means of a genetic algorithm (GA) and by synthe-
sizing hardware accelerator on a Xilinx Zynq 7020 FPGA device. Additionally, we compare
our experimental result against exhaustive branch and bound approach proposed in [14]
demonstrating a reduction in area occupancy of about 10%.

The remainder of the paper is structured as follows: Sect. 2 gives a brief overview about
AxC and scientific contribution about hardware implementation of DT-based MCSs, while
Sect. 3 gives details of the hardware architecture that realizes the DT-based MCS system.
In particular, the proposed approach for MCS hardware implementation is discussed, high-
lighting how the AxC design paradigm can be used to reduce the requirements of such an
implementation both in terms of silicon area and power consumption. Section 4 formalizes

123



Advancing synthesis of decision tree-based multiple... 1579

the approximate DT variants exploration problem as a MOP, and in Sect. 5, we report the
experimental result. Finally, Sect. 6 draws the conclusion.

2 Scientific background

The scientific literature demonstrated that imprecise calculations can be selectively exploited
to enhance computing system performance, defining the AxC paradigm [15]. Indeed, due to
redundancy of inner calculations, some applications are characterize by an inherent resiliency
to errors. Basically, relaxing functional requirements of a computing system, AxC enables
to trade output accuracy off for performance, such as calculation speed, throughput and, for
integrated circuits (ICs), occupied area.

Since a naive approximation approach, such as uniform approximation, is unlikely to be
efficient, different AxC techniques have been proposed [16]. Some examples are precision-
scaling, loop perforation [17], memoization [18], functional approximation, and so forth. In
particular, precision-scaling for input data and intermediate operands has been proposed to
improve efficiency for floating-point computation in many scientific applications [19–23].

Leveraging the full potential of AxC, however, requires addressing several challenges.
First of all, output quality monitoring (i.e., introduced error) must be carefully taken into
account: it is mandatory to ensure that application requirements are met [24]; hence, quality
metrics must be properly selected for error assessment. The selection of appropriate metrics
to be used for the error estimation is not a trivial task, as they are application-dependent
and workload-dependent [16]. Moreover, the measurement of the error is typically done by
running the whole approximate application, or by simulations, which may require significant
effort. A different approach, based on a-priori estimation using Bayesian inference, has been
proposed by Traiola et al. [25,26].

Selecting a particular approximate configuration of a given application, generated
by a given technique, is a major challenge. AxC techniques, in facts, may generate
different approximate versions of the same application. For instance, let us consider loop-
perforation [17]: the amount of skipped iterations—i.e., the approximate configuration of the
target application—must be properly configured in order to find a good trade-off between
introduced error and performance gains. In addition, among every realizable approximate
version, only those characterized by an error that falls below a user-defined error-threshold
must be taken in consideration.

2.1 Decision tree-based hardware classifiers

Classification systems are one of those applications that are characterized by inherent error
resiliency, as models are retrieved by means of iterative training algorithms exploiting large
datasets [24]. This is even true for multi-classification systems (MCSs), such as random
forest classifier, which is well-known machine learning technique in which an ensemble of
decision trees is used to assign a label (or classification) to an input sample [27].

Let us now briefly introduce how DTs are employed as classification system. DTs are
tree-like predictive models in which each internal node specifies a test on a given variable,
namely model feature, each branch a possible test outcome and each leaf gives information
about decision outcome, namely predicted class. Models in which target variables can take
a discrete set of values are called classification trees, while regression trees assign leaves to
a probability distribution.

123



1580 M. Barbareschi et al.

Algorithms for constructing DTs usually work top-down, by choosing a variable at each
step that best splits the set of samples of a training set [28]. One of the most adopted training
algorithm for DTs is C4.5 proposed in [29]. It constructs, by means of an inductive approach,
classification models from training databases, following a top-down and divide-and-conquer
paradigm. At each step of training algorithm, the dataset is split, based on conditions defined
upon a chosen feature. The feature selection involves an entropy test that establishes which
feature inducts the best partitioning onto dataset. The construction recursively continues
until a leaf is reached. As for testing, DT prediction algorithm performs a recursion too, as
explained lately in Sect. 4.

So far, scientific literature has posed a huge effort for researching new design method-
ologies in order to improve both rate and accuracy of classification systems. Indeed, as for
the former, new classification architectures have been proposed, mainly based on custom
hardware acceleration.

The authors of [5,6] proposed an automatic methodology to generate hardware imple-
mentation of DT-based classifiers. The proposed methodology consists of three phases: (i)
structuring the data coming from different sources into a single schema; (ii) using the schema
to model a predictor by exploiting the C4.5 algorithm [29]; (iii) automatically converting the
DT model to VHDL hardware accelerator. They demonstrated that the approach performs
dramatically better than a pure software solution, guaranteeing a significant high classification
throughput implementing the DT prediction onto an FPGA. As for the latter, novel training
techniques, such as multi-classification systems, have been devised to deal with accuracy.
Van Essen et al. [4] quantified the performance, power, and cost of DT-based MCS, trained
by means of random forest algorithm, implemented over CPUs, GP-GPUs and FPGAs. The
FPGA implementation outperforms the other two solutions, accordingly to results of [5], both
in terms of classification rate and power dissipation, measured in classifications per second
per watt consumed.

Authors of [7,8,10] proposed a novel approach for an efficient hardware implementation of
MCSs: parallel classification entities—for instance, DTs—execute classification in parallel,
and then, an hardware combiner organizes outputs from different DT classifiers in order to
make the final decision. DT nodes work in parallel and each one is implemented as a binary
comparator: once it receives the feature value, it returns a Boolean value that, in turn, is fed
to a Boolean network in order to compute which leaf of the tree has been reached.

2.2 Approximate classifiers

The adoption of hardware DT MCSs is actually hindered by scalability issue, as reported
in [4], and AxC techniques are mainly devoted to other classification systems.

A technique to improve energy efficiency ofmachine-learning classifier has been proposed
by Venkataramani et al. [30]. Having noticed that, typically, only a part of the data of a given
dataset really needs the full computational power of a classifier, they dynamically configure
the classifier making it more or less accurate, according to the difficulty in classifying the
inputs. During the training phase, instead of building one complex decision model, a cascade,
or series ofmodelswith progressively increasing complexity is constructed.During the testing
phase, the number of decision models applied to a given input varies depending on the
difficulty of the considered input instance. Inputs are processed by classifiers in a sequential
way, starting from the less accurate classifier. In order to estimate the difficulty of a certain
input, a confidence level for each classification is computed. If the estimated confidence falls
above a certain threshold, the classification process is terminated; otherwise, a more accurate

123



Advancing synthesis of decision tree-based multiple... 1581

classifier is used. The experimental results presented by them show a significant reduction
in energy consumption.

In Nepal et al. [31], the precision-scaling technique has been used to reduce the power
consumption of a perceptron classifier [32,33]. Starting from a behavioral description of the
classifier to be approximate, several different hardware configurations have been generated,
by making use of the Automated Behavioral Synthesis of Approximate Computing Systems
(ABACUS) tool. Then, the Pareto front, which consists of configurations providing optimal
trade-off between accuracy and gains, is computed by making use of an iterative stochastic
greedy algorithm. Authors claim a 33% reduction in energy consumption, with an accuracy
of 83%.

A very practical approach has been adopted by the authors of [34] and [35]. They replaced
multipliers and adders of a support vector machine (SVM) classifier [36] to introduce approx-
imation in it. In Van Leussen et al. [34], the exact Karnaughmultiplier needed by the classifier
has been replaced by an inaccurate Karnaugh multiplier (IKM) [37], which shows a uniform
error distribution over the entire range of input. The classifier has been, then, synthesized
on a 28nm CMOS technology, in order to estimate its energy requirements and accuracy.
Authors claim a saving of 14% for silicon area and a saving of 61% for power consumption,
while maintaining the same classification accuracy. In Zhou et al. [35] a new approximate
adder and a new approximate multiplier are proposed. In order to show the full potential of
the arithmetic units being proposed, both the exact adder and multiplier needed by an SVM
classifier are replaced by approximate versions of them. The resulting classifier synthesized
on a 90nm CMOS technology exhibited an area reduction of 18%, and simulations showed
energy consumption reduction of 32%, while keeping accuracy of 95%.

3 Hardware architecture of DT-basedMCS

In order to implement MCSs, our approach replicates the one proposed by authors of [10].
Multiple DTs are used simultaneously for greater classification accuracy. The outcomes of
all the DTs are evaluated by a majority voter: the final outcome will be the class predicted by
the majority of the DTs. Section 3.1 details the hardware implementation of the DT visiting
algorithm, while Sect. 3.2 discusses the concepts behind the hardware implementation of the
majority voter used to choose the winning class.

3.1 Implementing DTs on hardware

In order to speed up DTs visiting, in this paper we adopt a speculative approach, proposed by
authors of [6], that takes advantageof the inherent parallelismof the hardware.The speculative
approach consists in a DT flattening so that the visiting is performed over every possible path.
In particular, each DT node contains a condition that establishes if the visiting has to continue
on left sub-tree or on right sub-tree, until a leaf is reached. Instead, in the speculative approach,
predicates are performed concurrently, regardless of the position and depth at which nodes
are located: a Boolean decision variable, which indicates whether a condition is fulfilled, is
produced for each one of the evaluated predicates. In order to determine which leaf of the
DT is reached, i.e., which class the input belongs to, a Boolean function, called assertion,
is defined for each different class. Since a path that leads to a specific leaf is obtained by
computing the logic-AND between the Boolean decision variables along that path, and since
it is possible to compute the logicORbetween the conditions related to different paths leading

123



1582 M. Barbareschi et al.

Q1: f1 < 4

Q2: f2 < 10,9 Q3: f2 < 27,5

Q4: f1 < 17 Q5: f1 < 22

F

T

T

T T

T

F

F

F F

Fig. 1 An example of decision tree

to leaves belonging to the same class, assertions can be defined as a sum of products Boolean
functions. For the sake of clarity, let us consider the DT depicted in Fig. 1, which evaluates
two features in order to assess which one of three classes the inputs belong to. Starting from
the root node, descending the DT and visiting nodes from the left to the right, the Boolean
decision variables involved in the classification process are Q1, which is produced at the root
node, Q2 produced at the f2 < 10.9 node, and so on. Let us consider the α class: an input
vector belongs to it if f1 ≥ 4—Q1 is false—and f2 ≥ 10.9—Q2 is false—or f1 < 4—Q1 is
true—and f2 ≥ 27.5—Q3 is false—and f1 < 17—Q4 is true. In Eq. 1, we report Boolean
assertions for all the classes.

α = (Q1 ∧ Q2) ∨ (Q1 ∧ Q3 ∧ Q4)

β = (Q1 ∧ Q2) ∨ (Q1 ∧ Q3 ∧ Q5) ∨ (Q1 ∧ Q3 ∧ Q4)

γ = Q1 ∧ Q3 ∧ Q5 (1)

Predicates are evaluated using decision boxes (DBs), i.e., comparators, while the visiting
algorithm can be performed as a multi-output Boolean function. A comprehensive block
schema is depicted in Fig. 2.

As proposed by Amato et al. [5,6], the hardware circuit can be automatically synthesized
starting from the training dataset. The predictor model, coded in PMML [13], is obtained
from a labeled dataset by making use of the KNIME [38] tool. Then, in order to perform
FPGA synthesis, the model is translated in VHDL, using the PMML2VHDL tool [5,6]. This
tool generates a DT for each different predicate to be evaluated. Moreover, the tool makes
use of the Berkeley SIS tool to produce an optimized version of the assertion functions.

The scalability of this approach has been formally demonstrated in [8]. In particular, the
number of literals in each assertion is always less or equal to twice the size of the features set.

3.2 Hardware combiner for class selection

Outcomes of the assertion functions belonging to the same class but computed by different
DTs are arranged in an array of N elements, with N being the number of DTs. A majority
voter is used to state which class is the winner.

123



Advancing synthesis of decision tree-based multiple... 1583

f1<4 f2<10,9 f2<27.5 f1<17 f1<22

Fig. 2 Hardware implementation of a decision tree

Let di, j be the preference expressed by the i − th DT for the j − th class, i.e., di, j is a
Boolean variable being equal to 1 i.f.f. the classifier input has been recognized by the i − th
DT to belong to the j − th class; the following matrix can be defined:

D =

⎡
⎢⎢⎢⎣

d0,0 d0,1 · · · d0,M−1

d1,0 d1,1 · · · d1,M−1
...

...
. . .

...

dN−1,0 dN−1,1 · · · dN−1,M−1

⎤
⎥⎥⎥⎦ (2)

We define p j = ∑N−1
i=0 di , j, 0 ≤ j < M . Since each DT expresses just one preference

(i.e.,
∑M−1

j=0 di, j = 1 0 ≤ i < N ), it follows that the class w is the most voted i.f.f. pw >

p j , ∀ j �= w, while we get a draw condition i.f.f. ∃{i, j} s.t. pi = p j = max0≤k<M {pk}.
Rather than using binary adders to state which class gets the highest score, the majority

voter sorts each column of the matrix D using a parallel sorting algorithm, pretty much like
bubble-sort, by shifting all the high bits at the beginning of each column. This process is
performed by exploiting a Boolean circuit called the sorting network, which depth is equal
to n.

Let us consider a two bits array: Table 1 reports the truth table of a two bits sorting
network. It is easy to recognize that y0 = x0 ∨ x1 and y1 = x0 ∧ x1. Conversely, defining
n-bits sorting network is cumbersome. However, such a network can be built using multiple
two-bit sorting networks arranged in a n-stages pipeline, with even stages consisting in N/2
two-bit sorters—each of which compares array elements starting from even positions—and
odd stages consisting in N/2 − 1 two-bit sorters—each of which compares array elements
starting from odd positions [10]. The sorting networks need at least N/2 clock cycles to
provide sorted arrays. An example of such a network is provided in Fig. 3.

123



1584 M. Barbareschi et al.

Table 1 Truth table of a one-bit
sorting network

x1 x0 y1 y0

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

0

0

1

1

0

1

1

1

0

0

Fig. 3 Four-bit sorting network

Sorting Network Sorting Network Sorting Network

Sorting Network

Reject

Fig. 4 Detailed block schema of the rejection module

Once the votes are sorted, the score each class has received needs to be verified. Let us
define a threshold indicator as follows:

τi, j =
{
1 i ≤ p j

0 i > p j
, 2 ≤ i ≤ N/2 (3)

Hence, to detect the most voted class we need to find the τi, j = 1 with the highest i : in case it
is unique, we get a voted class, otherwise we got a draw. Exploiting the same sorting network
used before, we can easily detect these two conditions.

Figure 4 shows an example of such a module for a three-class classifier.

123



Advancing synthesis of decision tree-based multiple... 1585

4 Towards approximate DTs

The speculative hardware implementation of DT-based classifiers discussed in the previous
section offers several opportunities for approximation.

Assertion functions, for instance, are good candidates but they typically involve only a
few literals, so area savings may be negligible. Conversely, acting on comparators can lead
to significant gains.

Concerning the approximate computing techniques, precision-scaling can be used to
reduce the amount of bits required for representing model features: neglecting least sig-
nificant bits of model features, while keeping the weight of the retained bits unaltered, leads
to a reduction in the size of circuits due to the removal of parts of the logic needed by
comparisons.

The impact of approximation on the classification accuracy can be assessed only through
simulations and, in addition, among all the approximate configurations of a given classifier,
only those providing a certain accuracy level can be taken into account for further consider-
ations. Moreover, those configurations should be evaluated in terms of silicon area, in order
to state which of them provides the best trade-off between performance and gains. This is
a typical instance of a multi-objective optimization problem (MOP), because accuracy and
area savings are conflicting objectives.

Although a full discussion on MOPs falls beyond the purpose of this paper, a brief intro-
duction is reported in the following section.

4.1 Multi-objective optimization formalization

Multi-objective optimization (MO) is an area of operational research (OR) which concerns
about mathematical optimization problems involving more than one objective function to be
simultaneously optimized.

MOhas awide applicationfield,which includes scientific, engineering, logistic or financial
applications in which a compromise between two or more conflicting objective needs to be
found.

Basically, MOP consists in a set

γ (·) = {γ1 (·) , . . . , γk (·)}
of k different objective functions, or fitness functions, to be minimized. Typically a set

ψ (·) = {ψ1 (·) , . . . , ψ j (·)}
of j constraint functions defines the set of feasible solutions X , called the solution space.

A vector x∗ ∈ X , which minimizes each fitness function and does not violate any constraint
function, is called a feasible solution. For non-trivial MOP, |X | > 1, where | · | expresses
the size of a set, i.e., the number of elements it contains. Considering two different solutions,
x, y ∈ X , the solution x is said to Pareto dominate y if and only if

γi (x) ≤ γi (y) ∀i ∈ [1, k]

and

∃ j ∈ [1, k] | γ j (x) < γ j (y)

If a solution is not dominated by any other solution belonging to the same space, it is
called a Pareto optimal solution. All Pareto optimal solutions are considered equally good.

123



1586 M. Barbareschi et al.

Knime

Dataset

PMML
DT Models

Approximate
Variant

Generation

Error and Reward
Estimation

Approximate
PMML DT Models

Approximate
PMML DT Models

(Pareto Front)

PMML2VHDL

ParadisEO

VHDL
Models

Xilinx Vivado
Synthesis Tool

Bitstream

Fig. 5 Experimental flow to get FPGA bitstream from the considered dataset

Since there are multiple Pareto optimal solutions, solving a MOP is not as straightfor-
ward as it is for single-objective optimization problem (SOP). Therefore, there are several
methods to solve a MOP. Many methods convert a MOP in multiple different SOP. This
kind of approach is known as scalarization. Generally speaking, there are two different main
categories of space exploration algorithms: exact and heuristic. Exact methods, such as lin-
ear optimization or branch&bound, search for a global optimum value, therefore it may be
not suitable to be used in applications with a large solutions space search. On the other
hand, heuristic methods aim at producing a representative set of Pareto optimal solutions,
searching in a subset of the whole solution space. Evolutionary algorithms (EAs), such as
Non-dominated Sorting Genetic Algorithm-II (NSGA-II), are popular approaches to gen-
erate Pareto optimal solutions to a MOP. Their use in MOP solving has been extensively
researched and their efficiency demonstrated [39–41]. Authors of [42] reported a complete
state of the art about (EA). The main advantage they offer when applied to solve MOPs is
that they generate sets of candidate solutions, allowing computation of an approximation of
the entire Pareto front. On the other hand, there is no upper bound to the computational time
required to find such representative set of the Pareto front.

4.2 Approximate hardware implementation of DTs

In order to state the amount of error introduced by the approximation, all the combinations of
precision-scaledmodel features have to be considered. Figure 5 sketches a detailed schematic
of the proposed flow. Starting from dataset, we exploit KNIME [38] to obtain trained DT
models. They are described in PMML, an XML-based predictive model interchange format.
Since the KNIME tool makes use of the IEEE 754 double precision floating-point repre-
sentation for features and thresholds, the size of the solution space is 52|F |, where 52 is the
number of bits for the representation of the mantissa and |F | is the size of the features set F .
Therefore, an exhaustive exploration of the solution space may be unfeasible.

To overcome this issue, the evaluation of configurations is performed using an NSGA-II
algorithm. An implementation of such algorithm is provided by the ParadisEO frame-
work [43]. In order to suitably configure theMOP problem,we take into account two different
fitness functions: (i) the amount of neglected bits and (ii) the accuracy of the model. Indeed,
the fewer bit to compare, the better hardware accelerator overhead, even though the resulting

123



Advancing synthesis of decision tree-based multiple... 1587

0 500 1000 1500 2000 2500 3000 3500

Number of retained bits

9000

9200

9400

9600

9800

10000

10200

10400

10600
A

re
a 

re
qu

ire
m

en
ts

 (L
U

Ts
)

Fig. 6 Area requirements (LUTs) at increasing degree of approximation

accuracy of approximate model has to turn acceptable for the application. Each approximate
configuration of the model is, in the NSGA-II terminology, a chromosome having as many
genes as comparisons. The value of each gene states the amount of neglected bits at the
matching comparator.

A better choice would take into account more significant hardware measurements, such
as area, power consumption or maximum clock speed, rather than the number of neglected
bits. Unfortunately, the estimation of such parameters is not suitable as it does not come from
immediate evaluation, but requires to run synthesis tools that would make exploration not
feasible in terms of computational time. Conversely, the number of neglected bits is directly
expressed by chromosomes, and it is directly related to area, time and power consumption
of target circuit; therefore, the considered fitness function is effective and pretty much like
immediate to evaluate.

In order to evaluate choices concerning the reward fitness function, and, in particular, the
correspondence between neglected bits and area savings, a classifier system has been trained
on purpose. This classifier, consisting in 100 DBs, has been synthesized on a Xilinx Zynq-
7020 FPGA, varying the number of neglected bits without taking accuracy into account.
Figure 6 shows this preliminary result. As expected, the amount of area saved increases
as the number of mantissa bits discarded grows. This is because DBs, which are bit string
comparators, have fewer bits to compare; therefore, they need less combinational logic.

As for the accuracy, the fitness function is evaluated by performing the same approach
exploited in KNIME, hence requires simulation of a test set onto the approximate model.
In order to simulate reduced-mantissa floating point in software, we resort to the FLexible
Arithmetic Library (FLAP), previously introduced in [44].

As result, approximate DT models are provided in PMML as well. In order to get VHDL
code to synthesize the approximate hardware DT accelerator, a modified PMML2VHDL tool
is involved into the flow [10].

Last step of the flow in Fig. 5 involves the synthesis of VHDL. As in this paper, we exploit
FPGA devices as hardware configurable technology, and in particular a Xilinx Zynq 7020,
we employ the Xilinx Vivado tool.

123



1588 M. Barbareschi et al.

5 Experimental result and case study

In this section, we present experimental result of the proposed approach. In particular, we
show two different experimental campaigns. The first takes into account 50 different classifi-
cation problems in order to evaluate, at different workload, the robustness of our approximate
computing methodology. Then, we give details about a case study based on the SPAM clas-
sification public dataset. Each experiment has been executed by means of the previously
illustrated flow, reported in Fig. 5. It is worth noticing that as for NSGA-II algorithm involved
into our proposed approach, there are some parameters that does not depend on the partic-
ular classification model, though they affect the result quality and computational time of
experiments. Among the many, parameters that most affect the quality of the results and the
execution time are the size of the initial population, the number of iterations and the mutation
and crossover probabilities. Nevertheless, since there are only a few parameters, we have
succeeded in a good configuration by successive attempts.

During the experimental phase, several campaigns were conducted, during which the
configuration parameters of the GA were modified several times aiming at Pareto frontiers
that were sufficiently diversified and populous. Though, as foreseeable, we realized that to
obtain a populous Pareto frontier and avoid local sub-optimum it is necessary to increase
the size of the initial population as much as possible. Then, in order to avoid long-run
exploration around local sub-optimum, mutations have to take place frequently. In addition,
we configured GA in order to discard solutions with a significantly high accuracy loss w.r.t.
accurate classifier. Hence, we set our GA parameters as follows: initial population equals
2000 individuals, mutation and crossover probabilities set to 0.7 and 0.9, respectively, and
accuracy loss threshold set to 4%.

5.1 Approximate MCSs

To prove the robustness of the proposed methodology, we exploited PMMLGen tool [8] to
provide different workloads, in terms of models, to be approximated.

In particular, we collected 51 different datasets varying on the number of features (from
1 to 50) and number of classes (from 2 to 20). Then, we trained, for each dataset, a single
DT classification model and random forest classification models with different number of
DTs, namely 5, 10, 15 and 20. For each of the 255 trained classifiers, we found several
approximate solutions by means of approximate exploration. Then, we synthesized the ones
that belongs to the Pareto frontier bounds, i.e., the ones characterized by best reward value,
meant maximum reduction of area overhead, and ones affected by minimum accuracy loss.
We report the amount of resource occupation gain (in terms of FPGALUTs and registers) and
the accuracy loss evaluated in percentage w.r.t. the original synthesized model in Fig. 7 and 8,
respectively, for maximum area overhead reduction and minimum accuracy loss synthesized
solutions. Please, kindly note that although both in percentage, the scale for overhead gains
is different w.r.t the one for accuracy loss.

For both graphs, we can state that accuracy loss decreases on the number of trees involved
into the classification system. This observation confirms that random forest models are char-
acterized by inherent resiliency property, and the greater the number of trees involved into
models, the lower error introduced by approximation. Then, as for the reward, significant
overhead reduction can be observed for random forest with 5, 10 and 15 trees, while the
single DT model and 20 trees random forest exhibit lower area reduction values. Indeed,
single DT models cannot be conveniently approximate w.r.t. random forest models for the

123



Advancing synthesis of decision tree-based multiple... 1589

Fig. 7 Amount of resource gain and accuracy loss for 50 different classification problems for maximum area
overhead reduction approximate solutions. Please, kindly note that the scale on the left differs from the one
on the right

absence of a combiner that could mitigate the effect of introduced approximation. Never-
theless, contribution on area overhead of combiner circuits for random forest models with
a significant number of trees makes the approximate computing technique less effective.
As for solutions characterized by the minimum accuracy loss, we can see that even a small
percentage of accuracy loss corresponds to a significant resource gain. As for synthesis of
maximum accuracy loss solutions, we observe for some experiments area reduction of more
than 50% against about 0.2% of accuracy loss.

5.2 Case study: SPAM detection

Since recognizing emails as SPAMonnon-SPAM involves the classification of a large amount
of information, a spam-detector case study is used to evaluate the approach introduced in this
paper. The dataset used for this case study is Spambase [45], which contains 4601 emails,
1813 of which are SPAM. This dataset is freely available and makes use of 57 different

123



1590 M. Barbareschi et al.

Fig. 8 Amount of resource gain and accuracy loss for 50 different classification problems for minimum
accuracy loss approximate solutions. Please, kindly note that the scale on the left differs from the one on the
right

features, expressed in the floating-point notation, to characterize elements that are part of
the dataset. Each of the features specifies how often a word or a character appears in each
element of the dataset, i.e., in an email.

During the training phase, conducted using the KNIME tool, 40 different random forest
classifiers with a number of DTs ranging from 1 to 40 are trained.

The AxC exploration phase found, for each of the 40 classifiers, a certain number of
approximate configurations on the Pareto frontier but for each of them only the configuration
with minimum error and the one that requires less silicon area has been reported.

Figure 9 shows the area requirements in terms of LUTs, as the number of DTs used by
the classifier increases. For all the measured quantities, an increasing trend, as the number
of trees grows, is shown for area requirements. The growth, however, is clearly sub-linear.
In addition, it can be seen that the difference between requirements of the exact classifier
and the approximate one increases as the number of trees grows. This is because even if the
complexity of single DTs—i.e., the number of nodes of which they consist of and the height
of DTs themselves—decreases significantly as the number of trees used by the classifier

123



Advancing synthesis of decision tree-based multiple... 1591

0 5 10 15 20 25 30 35 40

Number of DTs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
re

a 
re

qu
ire

m
en

ts
 (L

U
Ts

)
10 4

Non-approx. classifier
Approx. classifier (minimum error config.)
Approx. classifier (minimum area config.)

Fig. 9 Area requirements (LUTs)

increases, the total number of nodes increases, providing more approximation opportunities.
This behavior can be observed also for the amount of FPGA slices and FPGA registers, and
both when considering solutions providing minimum error and those requiring the minimum
silicon area. Furthermore, it can be noted that the difference in terms of area requirements
between the minimum error and the minimum area solutions always remains negligible.

Figure 10 compares the levels of classification accuracy, as the number of trees used by
the classifier increases, provided by the precise version—without approximation—and by
the approximate version that has minimum area requirements. It is evident, from the graph,
that there is only a small difference in accuracy between the configurations. Moreover, it
remains very small as the number of trees used for classification varies. On the other hand,
the increase in the number ofDTsused in the classification processmakes smaller contribution
as the number of DTs grows. This asymptotic behavior can be seen in exact and approximate
classifiers, and it is due to the fact that by increasing the number of models, datasets involved
for training turn out simpler and corresponding DTs get less branched, which leads to a
saturation of the accuracy level provided by the classifier model.

5.3 Comparison with previous approaches

In [14], a similar approach to the one presented in this paper has been adopted, but instead of
exploring the solutions space with heuristics, the use of an exact algorithm, namely Branch
& Bound (B&B), was proposed. While, on the one hand, the use of an exact algorithm for
the solution of a MOP allows to reach a global optimal solution, on the other hand its use
becomes prohibitive with large solutions spaces. Despite numerous improvements that the
authors have made to the algorithm (B&B), such as pre-pruning of the tree and grouping
features by information gain, they have managed to evaluate only a few classifiers, and for
each of them only a few approximate configurations. This has greatly limited the quality of
the solutions obtained. Table 2 shows classification error and hardware requirements in terms
of LUTs for both approaches. As it can be observed, when compared to those obtained using

123



1592 M. Barbareschi et al.

0 5 10 15 20 25 30 35 40

Number of DTs

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95
A

cc
ur

ac
y 

(%
)

Non-approx. classifier
Approx. classifier (minimum area config.)

Fig. 10 Accuracy

Table 2 Comparison of results obtained from previous approaches

Approximate Minimum Error Approximate Minimum Area
Error LUTs Error LUTs

DTs B&B GA B&B GA B&B GA B&B GA

1 0 0 635 610 8.692E-4 1.0E-4 630 586

10 0 0 11853 10106 8.692E-4 3.0E-4 9646 9605

20 0 0 18091 18012 0 2.0E-4 18091 16996

30 0 0 23357 23243 4.346E-4 1.0E-4 23330 22243

40 0 0 33811 30544 8.692E-4 0.0E+0 30847 29747

GA, solutions provided by the B&B approach are worse. The difference in quality does not
depend on the search algorithm itself, but on the amount of approximate configurations that
have been taken into account during the space exploration phase.

6 Conclusion

This paper addresses the design of DTs-based MCSs. Leveraging the AxC design paradigm,
the classification accuracy is traded off for a reduction in the silicon area requirements of
hardware-implemented MCSs. By referring to automatic approaches for MCSs hardware
implementation, proposed in the scientific literature, approximation has been added directly
in MCS models, acting on the number of bits used to represent the value of each model
feature.

To prove the validity of the proposed approach, a spam-detector case study is provided.
Several classifiers, with a number of trees ranging between 1 and 40, have been trained.
Then, the optimal number of bits to be used to represent each of the features of the model
is searched by means of NSGA-II genetic algorithm. Among all Pareto-optimal hardware

123



Advancing synthesis of decision tree-based multiple... 1593

configurations, the one providing minimum classification error configuration and the one
requiring the minimum amount of silicon area were taken into account for further consid-
eration. Experimental results show a significant reduction in area requirements, for both
the minimum error and minimum area configuration. Since the classification is very resis-
tant to error, those configurations are very similar both in terms of area requirements and
classification error.

Funding Open access funding provided byUniversità degli Studi diNapoli Federico IIwithin theCRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gargiulo F, Mazzariello C, Sansone C (2013) Multiple classifier systems: theory, applications and tools.
In: Handbook on neural information Processing, Springer, pp 335–378

2. Mohammed AM, Onieva E, Woźniak M (2019) Vertical and horizontal data partitioning for classifier
ensemble learning. In: International Conference on Computer Recognition Systems, Springer, pp 86–97

3. Bellmann P, Thiam P, Schwenker F (2018) Multi-classifier-systems: architectures, algorithms and appli-
cations. In: Computational Intelligence for Pattern Recognition, Springer, pp 83–113

4. Van Essen B, Macaraeg C, Gokhale M, Prenger R (2012) Accelerating a random forest classifier:
Multi-core, GP-GPU, or FPGA? Proceedings of the 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2012 pp 232–239, https://doi.org/10.1109/FCCM.
2012.47

5. Amato F, Barbareschi M, Casola V, Mazzeo A (2014) An fpga-based smart classifier for decision support
systems. Intel Distrib Comput VII. Springer, Cham, pp 289–299

6. Amato F, Barbareschi M, Casola V, Mazzeo A, Romano S (2013) Towards automatic generation of
hardware classifiers. International Conference on Algorithms and Architectures for Parallel Processing.
Springer, Cham, pp 125–132

7. Barbareschi M, Mazzeo A, Miranda S (2016b) Adopting decision tree based policy enforcement mech-
anism to protect reconfigurable devices. Intelligent Interactive Multimedia Systems and Services 2016.
Springer, Cham, pp 73–81

8. BarbareschiM (2016) Implementing hardware decision tree prediction: a scalable approach. In: 2016 30th
International Conference on Advanced Information Networking and Applications Workshops (WAINA),
IEEE, pp 87–92

9. Tong D, Qu YR, Prasanna VK (2017) Accelerating decision tree based traffic classification on fpga and
multicore platforms. IEEE Trans Parallel Distrib Syst 28(11):3046–3059

10. Barbareschi M, Del Prete S, Gargiulo F, Mazzeo A, Sansone C (2015) Decision tree-based multiple
classifier systems: An fpga perspective. InternationalWorkshop onMultiple Classifier Systems. Springer,
Cham, pp 194–205

11. Nguyen HL, Woon YK, Ng WK (2015) A survey on data stream clustering and classification. Knowl inf
syst 45(3):535–569

12. O’donovan P, Gallagher C, Bruton K, O’Sullivan DT, (2018) A fog computing industrial cyber-physical
system for embedded low-latency machine learning industry 4.0 applications. Manufacturing Letters
15:139–142

13. (2014) The data mining group. http://dmg.org/
14. BarbareschiM, PapaC, SansoneC (2017)ApproximateDecisionTree-BasedMultipleClassifier Systems.

Springer Proceedings in Mathematics and Statistics 217:39–47
15. Xu Q, Mytkowicz T, Kim NS (2015) Approximate computing: A survey. IEEE Design & Test 33(1):8–22

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1109/FCCM.2012.47
http://dmg.org/


1594 M. Barbareschi et al.

16. Mittal S (2016)A survey of techniques for approximate computing.ACMComput Surv 48(4):62:1–62:33.
https://doi.org/10.1145/2893356

17. Sidiroglou-Douskos S, Misailovic S, Hoffmann H, Rinard M (2011) Managing performance vs. accuracy
trade-offs with loop perforation. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, ACM, pp 124–134

18. KeramidasG,KokkalaC,Stamoulis I (2015)Clumsyvalue cache:Anapproximatememoization technique
for mobile gpu fragment shaders. In: Workshop on Approximate Computing (WAPCO’15)

19. Tong JYF, Nagle D, Rutenbar R (2000) Reducing power by optimizing the necessary precision/range of
floating-point arithmetic. Very Large Scale Integration (VLSI) Systems. IEEE Trans 8(3):273–286

20. Fang F, Chen T, Rutenbar R, et al. (2002) Floating-point bit-width optimization for low-power signal
processing applications. In: Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, IEEE, vol 3, pp III–3208

21. Yeh T, Faloutsos P, Ercegovac M, Patel S, Reinman G (2007) The art of deception: Adaptive precision
reduction for area efficient physics acceleration. In: 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), IEEE, pp 394–406

22. Osborne WG, Coutinho J, Luk W, Mencer O (2008) Power-aware and branch-aware word-length opti-
mization. In: Field-Programmable Custom Computing Machines, 2008. FCCM’08. 16th International
Symposium on, IEEE, pp 129–138

23. Rubio-González C, Nguyen C, Nguyen HD, Demmel J, Kahan W, Sen K, Bailey DH, Iancu C, Hough D
(2013) Precimonious: Tuning assistant for floating-point precision. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, ACM, p 27

24. Chippa VK, Chakradhar ST, Roy K, Raghunathan A (2013) Analysis and characterization of inherent
application resilience for approximate computing. In: Proceedings of the 50th Annual Design Automation
Conference, ACM, p 113

25. Traiola M, Savino A, Barbareschi M, Di Carlo S, Bosio A (2018) Predicting the Impact of Functional
Approximation: From Component- to Application-Level. 2018 IEEE 24th International Symposium on
On-Line Testing and Robust System Design, IOLTS 2018 (iii):61–64, https://doi.org/10.1109/IOLTS.
2018.8474072

26. Traiola M, Savino A, Di S (2019) Microelectronics Reliability Probabilistic estimation of the
application-level impact of precision scaling in approximate computing applications. Microelectron
Reliab 102:113309. https://doi.org/10.1016/j.microrel.2019.06.002

27. Breiman L (2001) Machine learning. Random forests 45(1):5–32
28. Rokach L, Maimon O (2005) Top-down induction of decision trees classifiers-a survey. IEEE Trans Syst,

Man, and Cybernetics, Part C (Applications and Reviews) 35(4):476–487
29. Quinlan JR (2014) C4. 5:programs for machine learning. Elsevier, Netherlands
30. Venkataramani S, Raghunathan A, Liu J, Shoaib M (2015) Scalable-effort classifiers for energy-efficient

machine learning. In: Proceedings -DesignAutomationConference, Institute of Electrical andElectronics
Engineers Inc., vol 2015-June, https://doi.org/10.1145/2744769.2744904

31. Nepal K, Li Y, Bahar RI, Reda S (2014) ABACUS: A technique for automated behavioral synthesis of
approximate computing circuits. Proceedings -Design, Automation and Test in Europe, DATE pp 1–6,
https://doi.org/10.7873/DATE2014.374

32. AisermanM,BravermanEM,Rozonoer L (1964) Theoretical foundations of the potential functionmethod
in pattern recognition. Avtomat i Telemeh 25:917–936

33. Mohri M, Rostamizadeh A (2013) Perceptron mistake bounds. arXiv preprint arXiv:1305.0208
34. Van LeussenM, Huisken J, Wang L, Jiao H, De Gyvez JP (2017) Reconfigurable Support Vector Machine

Classifier with Approximate Computing. Proceedings of IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2017-July:13–18, https://doi.org/10.1109/ISVLSI.2017.13

35. ZhouY, Lin J,Wang Z (2018) Energy efficient SVM classifier using approximate computing. Proceedings
of International Conference on ASIC 2017-Octob:1045–1048, https://doi.org/10.1109/ASICON.2017.
8252658

36. Cortes C, Vapnik V (1995) Machine learning. Support-vector networks 20(3):273–297
37. Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned multiplier

architecture. In: 2011 24th Internatioal Conference on VLSI Design, IEEE, pp 346–351
38. (2007) Knime. https://www.knime.com/
39. Palesi M, Givargis T (2002) Multi-objective design space exploration using genetic algorithms. In: Pro-

ceedings of the tenth international symposium on Hardware/software codesign, ACM, pp 67–72
40. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: A tutorial.

Reliab Eng Syst Safe 91(9):992–1007

123

https://doi.org/10.1145/2893356
https://doi.org/10.1109/IOLTS.2018.8474072
https://doi.org/10.1109/IOLTS.2018.8474072
https://doi.org/10.1016/j.microrel.2019.06.002
https://doi.org/10.1145/2744769.2744904
https://doi.org/10.7873/DATE2014.374
http://arxiv.org/abs/1305.0208
https://doi.org/10.1109/ISVLSI.2017.13
https://doi.org/10.1109/ASICON.2017.8252658
https://doi.org/10.1109/ASICON.2017.8252658
https://www.knime.com/


Advancing synthesis of decision tree-based multiple... 1595

41. Erbas C, Cerav-Erbas S, Pimentel AD (2006)Multiobjective optimization and evolutionary algorithms for
the application mapping problem in multiprocessor system-on-chip design. IEEE Trans Evolut Comput
10(3):358–374

42. Van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: Analyzing the state-of-
the-art. Evolut comput 8(2):125–147

43. (2014) Paradiseo. http://paradiseo.gforge.inria.fr
44. Barbareschi M, Iannucci F, Mazzeo A (2016a) An extendible design exploration tool for supporting

approximate computing techniques. In: 2016 International Conference on Design and Technology of
Integrated Systems in Nanoscale Era (DTIS), IEEE, pp 1–6

45. (1998) Spambase. https://archive.ics.uci.edu/ml/datasets/Spambase

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mario Barbareschi Mario Barbareschi received the PhD in Computer
and Automation Engineering in 2015 and the masters degree in Com-
puter Engineering cum laude in 2012, both from the University of
Naples Federico II. His research interests include hardware security
and trust, cyber-physical security, approximate computing and embed-
ded systems design based on the FPGA technology. He has authored
more than 30 peer-reviewed papers published in leading journals and
international conferences.

Salvatore Barone Salvatore Barone received the masters degree in
Computer Engineering cum laude in 2018 from the University of
Naples Federico II, Italy, where he is currently a PhD student. His
research interests include safety-critical systems, railway systems,
approximate computing and embedded systems based on the FPGA
technology.

123

http://paradiseo.gforge.inria.fr
https://archive.ics.uci.edu/ml/datasets/Spambase


1596 M. Barbareschi et al.

Nicola Mazzocca Nicola Mazzocca is full professor of Computer Sys-
tems at the Department of Electrical Engineering and Information
Technology of the University of Naples “Federico II”. Since 1994,
he has held numerous university courses, in mater and in profes-
sional training activities on topics related to electronic computers, high-
performance systems, distributed systems, embedded systems, security
and reliability of computer systems. The research activities of Prof.
Mazzocca concern computer architecture, distributed systems, high-
performance systems, models for the evaluation of the specifications of
processing systems in critical applications. He is author of more than
250 papers on international journals, books and conference proceed-
ings.

123


	Advancing synthesis of decision tree-based multiple classifier systems: an approximate computing case study
	Abstract
	1 Introduction
	2 Scientific background
	2.1 Decision tree-based hardware classifiers
	2.2 Approximate classifiers

	3 Hardware architecture of DT-based MCS
	3.1 Implementing DTs on hardware
	3.2 Hardware combiner for class selection

	4 Towards approximate DTs
	4.1 Multi-objective optimization formalization
	4.2 Approximate hardware implementation of DTs

	5 Experimental result and case study
	5.1 Approximate MCSs
	5.2 Case study: SPAM detection
	5.3 Comparison with previous approaches

	6 Conclusion
	References


