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Abstract. Objective. Spatial filtering has proved to be a powerful pre-
processing step in detection of steady-state visual evoked potentials and boosted
typical detection rates both in offline analysis and online SSVEP-based brain-
computer interface applications. State-of-the-art detection methods and the
spatial filters used thereby share many common foundations as they all build
upon the second order statistics of the acquired EEG data, that is, its spatial
autocovariance and cross-covariance with what is assumed to be a pure SSVEP
response. The present study aims at highlighting the similarities and differences
between these methods. Approach. We consider the canonical correlation analysis
(CCA) method as a basis for the theoretical and empirical (with real EEG
data) analysis of the state-of-the-art detection methods and the spatial filters
used thereby. We build upon the findings of this analysis and prior research
and propose a new detection method (CVARS) that combines the power of the
canonical variates and that of the autoregressive spectral analysis in estimating
the signal and noise power levels. Main results. We found that the multivariate
synchronization index (MSI) method and the maximum contrast combination
(MCC) method are variations of the CCA method. All these three methods were
found to provide relatively unreliable detections in low SNR regimes. CVARS and
the minimum energy combination (MEC) methods were found to provide better
estimates for different SNR levels. Significance. Our theoretical and empirical
results demonstrate that the proposed CVARS method outperforms other state-
of-the-art detection methods when used in an unsupervised fashion. Furthermore,
when used in a supervised fashion, a linear classifier learned from a short training
session is able to estimate the hidden user intention, including the idle state (when
the user is not attending to any stimulus), rapidly, accurately and reliably.
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1. Introduction and Motivation

Steady-state visual evoked potentials (SSVEP) refer
to the involuntary brain response to repetitive visual
stimulation of the eye in humans and some non-human
primates [1]. The measured scalp Electroencephalo-
graphic (EEG) potentials are characterized in the fre-
quency domain by constant amplitude and phase at the
Fourier components of the stimulation frequency and
its higher harmonics. SSVEPs can be observed when
the driving frequency of the stimulus is in the range
4 − 100 Hz [2], below which the electrical excitations
of the visual system is able to abate before the new
stimuli are presented, and in this case, it is the tran-
sient VEPs that can be observed [3]. Capilla et al. [4]
showed that steady-state VEPs can be accurately pre-
dicted from the linear summation of appropriately con-
structed transient responses and concluded that both
can be attributed to the same underlying neural mech-
anism.

Due to several factors, SSVEP has been a core
concept in non-invasive EEG-based brain-computer
interface (BCI) applications. Among these are its
robustness and relatively high signal-to-noise ratio
(SNR), the high information transfer rate (ITR) it
delivers and the short training time required, if any,
before it can be used for online applications. Typically,
in SSVEP-based BCIs, different frequency-tagged
stimuli are displayed simultaneously with each stimulus
given a predefined mapping to a system command.
This mapping is also known to the user, who can
control or communicate with the system, simply
by attending to the stimulus corresponding to the
command of interest. Relatively easy discrimination
between the different frequencies is facilitated by
the fact that selective attention to stimulus location
modulates SSVEP [5].

Early investigated methods for SSVEP analysis
and detection have relied mainly on Power Spectral
Density Analysis (PSDA) with Fast Fourier Transform
(FFT) applied on single-channel EEG data. Herewith,
the temporal EEG signal is transformed into its
Fourier representations where test statistics can be
derived from obtained information about the power (or
amplitude) [3, 6, 7, 8, 9], phase [10] or both [11], at all
considered driving frequencies. FFT-based methods
require relatively long data segments to give reasonable
detection results since the frequency resolution (∆f) in
the Fourier domain is determined by the reciprocal of

the temporal data length available (e.g. it is required to
have a 4 s data segment to get a frequency resolution
of ∆f = 0.25 Hz). Known issues with FFT like the
grid effect (Fourier components cannot be computed
for frequencies that are not an integral multiple of
∆f) and spectral leakage (energy spillover from one
frequency bin to adjacent ones due to rectangular
windowing) highly affect the calculated amplitude
and phase precision and should be accounted for
by choosing suitable window functions and segment
lengths [5, 12, 13]. In [14], authors argue that for an
arbitrary steady-state recording, there might not be
enough information to benefit from phase information
in SSVEP detection.

Recently, there has been a great tendency to-
wards different methods that rely on spatial filtering
of multi-channel EEG data, which proved to be more
efficient and stable than FFT-based methods. The ba-
sic idea here is to find a spatial filter that transforms
the original multi-channel EEG signals into single or
multi-channels with desirable characteristics. Friman
et al. [15] proposed the minimum energy combination
(MEC) spatial filter, the first of its kind, which aims
at minimizing the noise energy, with the noise defined
as the orthogonal complement to the projection of the
EEG signals onto the subspace spanned by the pure
SSVEP vectors. Alternatively, the canonical correla-
tion analysis (CCA) aims at finding a pair of spatial lin-
ear combinations for both, the EEG signals and the as-
sumed pure SSVEP responses, which jointly maximize
the correlation between the resulting canonical vari-
ates [16]. The maximum contrast combination (MCC)
filter maximizes the signal-to-noise ratio, defined with
the generalized Rayleigh quotient [15, 17]. Finally,
the multivariate synchronization index (MSI), through
spatial whitening, extracts a single metric that reflects
the synchronization level between the EEG signals and
assumed pure SSVEPs [18].

The main contribution of this work is that we
show the similarity of the spatial filters and the scoring
functions used by the standard unsupervised CCA,
MSI and MCC approaches to SSVEP detection, where
we conclude also that their detection accuracies should
not differ significantly. We show additionally that these
methods, in low signal-to-noise ratio (SNR) regimes,
fail to provide a reliable detection as they ignore the
noise power in the spontaneous EEG that overlaps the
stimulation frequencies.

On the other hand, parametric spectral analysis,
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like autoregressive methods, are able to provide an
estimate for the noise power levels after removing
the total energy of the driving frequencies from
the spatially filtered signals. This was shown to
provide reliable test statistics for SNR that can be
used for SSVEP detection [15, 19]. Based on the
theoretical analysis of these state-of-the-art methods,
we propose a new method, namely the canonical
variates with autoregressive spectral analysis (CVARS)
that estimates the signal and noise power levels
from the canonical variates which leads to slight
improvement in correct detection rates. This method,
when used in a supervised fashion, results in a rapid,
accurate and reliable SSVEP detection regardless of
the level of SNR as shown from the experimental
results with real EEG data. We additionally show the
conditions on which the MEC-based detection provides
similar results to the CVARS method.

2. Preliminaries

2.1. Notation

We use bold uppercase letters (e.g. Z) to denote two-
dimensional matrices and bold lowercase letters (e.g.
z) to denote column vectors, and conversely zT for
row vectors. The Frobenius norm of the matrix Z is
denoted by ‖Z‖F .

A p-variate random variable is denoted by an
uppercase letter, where it refers to a vector of p random
variables, e.g. Z = [Z1, Z2, . . . Zp]. Realizations of
Z are denoted the same way as vectors (e.g. z). A
sequence of n p-dimensional vectors is concatenated
in the sample data matrix Z = [z1, z2, . . . zn]

T , where
Z ∈ R

n×p. The expectation of a random variable
Z is denoted by E[z] and E[z], for one and multi-
dimensional variables, respectively. For an arbitrary
matrix Z ∈ R

n×p, σ(Z) = (σ1, σ2, . . . σmin(n,p))
denotes the singular values of Z, where σ1 ≥ σ2 ≥
. . . σmin(n,p) ≥ 0. For arbitrary square matrix Z ∈
R
n×n, λ(Z) = (λ1, λ2, . . . λn) denotes the eigenvalues

of Z with λ1 ≥ λ2 ≥ . . . λn. The dominant eigenvalue is
denoted by λ1(Z) or λmax(Z). An arbitrary diagonal
matrix D ∈ R

n×n can be defined with its diagonal
elements as diag(d1, . . . , dn).

The autocovariance matrix of p-variate random
variable X is denoted by Cxx and the cross-covariance
matrix between two random vectors X and Y is
denoted by Cxy. Often in practice, the true value of
such covariances remains unknown, and therefore they
are replaced by the sample auto and cross-covariance
matrices Qxx and Qxy, computed from the centered
sample matrices with Qxx = 1

NXTX and Qxy =
1
NXTY, where N is the number of available samples
in X and Y. Unless explicitly stated otherwise, all
sample matrices encountered here will be centered or

made centered by subtracting the sample mean from
all observations.

2.2. Background

We assume that after the retina is excited by flickering
light, and after the transient VEPs vanish [20], pure
SSVEP responses appear as multiple phase-shifted
sinusoidal waves whose frequencies are integer multiple
(up to Nh) of the driving frequency. The assumed pure
waves propagate to the scalp where EEG signals are
measured. Due to volume conduction of the head, a
linear combination of these source signals corrupted
with noise will be observed at each measurement
location, i.e. electrode. The additive noise might have
encephalic or non-encephalic sources, and is generally
non-stationary. However, for short EEG segments, it is
often assumed to be stationary in the wide sense [21].
No statistical knowledge about the noise is additionally
assumed here. Formally, we state that in response to
flickering light with driving frequency f , the values
recorded over time at each electrode i can be written
as

yi(t) =

Nh
∑

h=1

ai,h sin(2πhft+ φi,h) + ψi(t), (1)

where i ∈ {1, . . . , Ny} and Ny is the total number
of recording electrodes. The terms ai,h and φi,h ∈
]−2π, 0] respectively denote the harmonic-specific
amplitude and phase lag at electrode i. The additive
noise contributing to yi(t) is denoted by ψi(t). For the
digitized EEG with sampling rate of Fs (in Hz), (1)
becomes

yi[k] =

Nh
∑

h=1

ai,hxi,h[k] + ψi[k], where (2)

xi,h[k] = sin(2πhf
k

Fs
+ φi,h)

= sin(2πhf
k

Fs
) cos(φi,h) + cos(2πhf

k

Fs
) sin(φi,h).

With conformable transformation of the ampli-
tude values ai,h, the above notation can be rewritten
for a collection of N samples from all Ny electrodes
(see figure 1) in matrix form as

Y = XA+Ψ. (3)

Here, Y =
[

y1 y2 · · · yNy
]

,Ψ ∈ R
N×Ny and

the propagation (or mixing) matrix A ∈ R
2Nh×Ny .

The source model matrix X ∈ R
N×2Nh is defined now

as

X =
[

X1 X2 · · · Xh · · · XNh

]

, (4)

where Xh = [sin(2πhfk′) cos(2πhfk′)] ∈ R
N×2, and

k′ = 1
Fs
, 2
Fs
, . . . , NFs .

In absence of any statistical knowledge about the
noise, A can be estimated from the source model and
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2Nh

Y = X A + Ψ

Figure 1: Matrix representation of the EEG model
containing SSVEPs

the acquired EEG data by ALS = (XTX)−1XTY
which minimizes the total least squares error, i.e.
‖Y − XA‖2F . Equivalently, the LS estimate of ALS

can be written asALS = Q−1
xxQxy, whereQxx andQxy

respectively denote the sample spatial autocovariance
matrix of the pure SSVEP response and the sample
cross-covariance between the acquired EEG data and
the assumed source model, both are estimated from N
observations. Despite the fact that the source signals
are defined deterministically, they can be modeled as
stochastic with empirical means computed on segments
of length N , which can be approximated with the zero-
vector 0 for large N . Due to the orthogonality of
the basis vectors in X, the sample covariance matrix
Qxx, for centered and normalized X, can also be
approximated for relatively large N with INx , where
Nx = 2Nh. In this formulation, the number of
harmonics in the SSVEP response, i.e. Nh, is not a
random variable but rather an unknown deterministic
value.

Where it is necessary, in order to avoid ambiguity
when we refer to the source model for the different
driving frequencies, the subscript f will be added to
matrix Xf to indicate the source model of the driving
frequency under consideration.

2.3. Stimulus identification during SSVEP-based
interaction

During concurrent repetitive visual stimulation, an
SSVEP detector aims at finding the stimulus, at which
the user is attending, based on multi-channel EEG data
segment Y ∈ R

N×Ny , obtained online from continuous
scalp EEG data by means of buffering (with buffer
length N and buffer overlap O where 0 ≤ O <
N). Based on the requirements of the application at
hand, the buffer length and the interaction temporal
resolution (T ) are determined. T is defined as the
shortest time (in samples) between two consecutive
commands. The overlap can be computed from O =
max(0, N − T ).

The problem of stimulus identification from EEG
data thus can be formulated as having M spatially-

Buffered
EEG Data
Y ∈ R

N×Ny

Scoring Function
(e.g. CCA-based,

MSI-based,
MEC-based, . . . )

Source
Models

Xf ∈ R
N×Nx

Continuous EEG Data
s

Buffer Length N

O T

Figure 2: Schematic of a general SSVEP detector from
continuous EEG data. Different scoring functions can
be used to provide the score vector s ∈ R

M+1, whereby
a decision about the user intention can be made every
T samples.

distributed flickering lights, driven by different frequen-
cies f1, f2, . . . , fM , and a mapping function ĝ is sought,
where ĝ : RN×Ny 7→ {f0, f1, . . . , fM}, and f0 denotes
the idle state, i.e. when the user does not attend to any
of the stimuli. Often, ĝ(Y) is defined as the argument
which maximizes a score function or a test statistic s.
SSVEP detection can be formally written as

f̂ = ĝ(Y) = argmax
fl∈{f0,f1,...,fM}

s(Y,Xfl). (5)

We denote by g(Y) the ground truth frequency of the
stimulus, to which the user attends while Y is being
acquired. The score s(Y,Xf0) is considered here as
to test whether or not a given response is statistically
significant and not due to noise fluctuations and
background EEG. More often than not, it is defined
as a constant threshold which is either computed
from the EEG data segments themselves or a priori
computed from training data. For completeness, let
s ∈ R

(M+1)×1 denote the vector containing the score
value for all frequencies plus the idle state.

Figure 2 depicts the schematic of SSVEP detection
in continuous EEG data. Available scoring functions
used in (5) will be discussed in section 3.

2.4. Evaluation

The different detection methods, which will be
discussed later, are compared with regard to their
average accuracy (P̄D), which is typically computed
from labeled EEG segments as the ratio of the correctly
classified segments to the total number of available
segments. Average misclassification error can be easily
computed with Em = 1− P̄D.

2.5. Challenges in SSVEP-based interaction

The user in SSVEP-mediated applications continu-
ously shifts his/her gaze between the M spatially dis-
tributed stimuli for active control and towards the
stimuli-free areas of the display for the idle control
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state. Obviously, such interaction is asynchronous and
completely paced with the user actions. However, and
regardless of the SSVEP detection method used, recog-
nition of these asynchronous spatial attention shifts
does not happen usually on the spot due to inher-
ent limiting factors of the buffering stage. The shorter
the buffer size (small N and T ), the faster is the re-
sponse of the system. With larger buffer sizes, however,
the temporal random fluctuations in the score func-
tion s(Y,Xf ) are made less severe as the noise (the
assumed source of variability in the evoked potentials)
attenuates typically in proportion to the square root of
the number of time averages done on the data. On the
other hand, larger buffer sizes introduce delays into
the system and reduce the achievable bit rate. Con-
sequently, finding a trade-off between interaction ac-
curacy and speed is of high importance for practical
systems.

3. SSVEP detection methods

In the next subsections, we will provide the theoretical
background for the spatial filtering methods used in
state-of-the-art SSVEP detection and show in which
ways they differ and how the spatial filters obtained are
related to each other. Additionally, we propose a new
detection method that performs superiorly in different
SNR regimes as it combines CCA spatial filtering and
autoregressive spectral analysis to estimate the signal
and noise levels at all possible driving frequencies.

3.1. Canonical correlation Analysis (CCA)

Lin et al. [16] used canonical correlation analysis
(CCA) to recognize the narrow-band driving frequency
of SSVEPs from EEG data. The CCA-based method
was found to outperform the FFT-based spectrum
estimation method in terms of classification accuracy.
This result has been repeatedly reported in [8, 22]. The
superior performance can be attributed to the ability of
CCA to reveal spatial coherence in data contaminated
by either white Gaussian noise or colored noise fields,
should the data have high SNR [23].

CCA [24] does that by finding the maximally
correlated pairs among all possible linear combinations
of two zero-mean multivariate random variables X and
Y , where x ∈ R

Nx×1 and y ∈ R
Ny×1. Without loss of

generality, we assume in the following that Nx ≤ Ny.
Formally, we look for the canonical weight vectors

wx and wy where x = wT
x x and y = wT

y y, such
that the correlation coefficient between the canonical

variates x and y, ρ1(x, y) is maximized. By definition,

ρ1(x, y) =
E[xy]

√

(E[x2]E[y2])

=
E[wT

x xy
Twy]

√

E[wT
x xx

Twx]E[wT
y yy

Twy]

=
wT
xE[xyT ]wy

√

wT
xE[xxT ]wxwT

y E[yyT ]wy

=
wT
xCxywy

√

wT
xCxxwxwT

yCyywy

. (6)

Since scaling of wx and wy doesn’t affect the objective
function, the search space is limited by constraining
the variance of the variates x and y to be 1 [25]. This
leads to the new optimization problem

wx,wy = argmax
wx,wy

wT
xCxywy

subject to wT
xCxxwx = wT

yCyywy = 1

By introducing Lagrange multipliers, one can
easily obtain the following generalized eigenvalue
problems

CxyC
−1
yyCyxwx = ρ21Cxxwx (7)

CyxC
−1
xxCxywy = ρ21Cyywy. (8)

Due to the fact that Cxx and Cyy denote
covariance matrices, which are symmetric positive
semi-definite, (7) and (8) can be rearranged into two
standard symmetric eigenvalue problems,

TTTw′
x = ρ21w

′
x, (9)

TTTw′
y = ρ21w

′
y, (10)

where T = C
−1/2
xx CxyC

−1/2
yy , w′

x = C
1/2
xx wx and

similarly w′
y = C

1/2
yy wy. The matrix T is referred to as

the coherence matrix and denotes the cross-covariance
between the whitened vectors C

−1/2
xx x and C

−1/2
yy y.

This yields that ρ1(x, y) = σmax(T) =
√

λmax(TTT ).
The matrix productTTT is often referred to as squared
coherence matrix [26]. Other uncorrelated canonical
variates can be found using the remaining eigenvectors
and eigenvalues [25].

For later use, we define the decomposition TTT =
W′

yP
2W′T

y , where W′
y ∈ R

Ny×Nx and P has all
the canonical correlations on its diagonal, i.e. P =
diag(ρ1, ρ2, . . . , ρNx) = diag(

√

λ(TTT )). Similarly,
TTT = W′

xP
2W′T

x , where W′
x ∈ R

Nx×Nx .
The score function in (5) can thus be defined for

the standard CCA method as scca = ρ1. Alternatively,
other score functions can be derived as an arbitrary
function of (ρ1, . . . , ρNx), in the form sfcca = f(σ(T)).

Since true covariance matrices are not known
a priori, the coherence matrix is defined with the
empirical estimates thereof. Recall that Qxx ≈ INx .
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Xf4

Xf2Xf3

Xf1

Y

{θ2i }

{θ4i }

{θ3i }

{θ1i }

Figure 3: Principal angles between the subspaces
spanned by the different source models and the
acquired EEG data. Each is a subspace in R

N and
is represented by a convex cone. Note also that the
column spaces of the different Xfl may intersect if they
share, at least, one basis vector, as it is the case with
Xf1 and Xf3 , where f1 = 15 and f3 = 10, and Nh = 3.

Given enough samples for Y, i.e. N ≫ Ny, then Qyy

will be full rank and invertible.
Equivalently, the canonical correlations [27] can

be found by first applying the QR decomposition
of Y = QyRy and X = QxRx, to obtain the
orthonormal matrices Qx and Qy and the full rank Rx

andRy matrices. The second step involves the singular
value decomposition of QT

xQy as UPVT , where U =
1√
N
RxWx and V = 1√

N
RyWy

This formulation is computationally more effi-
cient and provides more insights on the geometric in-
terpretation of CCA. Hereby, the canonical correla-
tions correspond to the cosine of the principal an-
gles between the two subspaces spanned by the col-
umn spaces of Qx and Qy or formally, σ(QT

xQy) =
(

cos(θ1), . . . , cos(θmin(Ny,Nx))
)

. Geometrically, the
maximum canonical correlation is the cosine of the
smallest angle possible between any two vectors in the
subspaces spanned by Qx and Qy. Figure 3 illustrates
this relation.

3.2. Multivariate Synchronization Index (MSI)

More recently, Zhang et al. [18] introduced the
multivariate synchronization index (MSI) for online
SSVEP detection, where the synchronization level
between the source model and the acquired EEG is
measured based on the S-estimator [28]. The joint
covariance matrix CX,Y which includes the auto and
cross-covariance matrices of X and Y can be written

in block form as

CX,Y =

[

Cxx Cxy

Cyx Cyy

]

. (11)

The transform U that orthogonalizes the diagonal
block matrices, i.e. whitens the original data matrices
X and Y, was applied such that R = UCX,YU

T and

U =

[

C
−1/2
xx 0

0 C
−1/2
yy

]

,R =

[

INx T
TT INy

]

, (12)

where T = C
−1/2
xx CxyC

−1/2
yy is the coherence matrix

already encountered. Let P = 2Nh + Ny, λ(R) =
(λ1, . . . , λP ), and the normalized eigenvalues to be
defined as λ′i = λi

P . The synchronization index then
can be obtained from the entropy-like quantity

smsi = 1 +

∑P
i=1 λ

′
i log(λ

′
i)

log(P )
. (13)

The MSI-based score is tightly related to scca, as
the eigenvalues of R are nothing more than a simple
transformation of the canonical correlations, such that
λi = 1 + ρi, ∀i ∈ {1, . . . , Nx}, λi = 1 − ρi, ∀i ∈
{Nx+1, . . . , 2Nx} and λi = 1, otherwise (see Appendix
A). This renders smsi as a mere nonlinear function of
all canonical correlations, and as special case of the
sfcca. Additionally, the filtering step (i.e. whitening)
involved is similar to that in the CCA method.

3.3. Minimum Energy Combination (MEC)

Friman et al. [15] proposed to apply the spatial filter
WMEC ∈ R

Ny×Ns , which minimizes the noise energy
in S = YWMEC ∈ R

N×Ns , where Ns ≤ Ny. The
noise here is defined as the difference between the
original EEG signal and its best LS approximation in
the subspace spanned by the SSVEP sinusoids. The
noise is thus estimated as

Ψ̃ = Y −XALS = Y −XQ−1
xxQxy. (14)

Note that scca(Ψ̃,X) = 0. The sample noise covariance
matrix can be written as Qψψ = Qyy − QyxQ

−1
xxQxy

with the eigendecomposition QψDψQ
T
ψ . The spatial

filter WMEC is then obtained by concatenating the
last Ns vectors in Qψ which correspond to the

least proportion of energy in Ψ̃, e.g. correspond
to the eigenvalues whose sum does not exceed
Tr(Qψψ)/10 [15].

A test statistic can be derived from the filtered
signals, to which we will refer as smec(Y,X) and is
obtained with [15]

s(Y,X) =
1

NsNh

Ns
∑

l=1

Nh
∑

k=1

P̂kl
σ̂2
kl

, (15)

where P̂kl = ‖XT
k sl‖2 estimates the signal power and

σ̂kl provides an estimate to the noise power at the k-
th harmonic in the lth spatially filtered signal. σ̂kl
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is obtained by fitting a p-order autoregressive AR(p)
model, with parameters {α̂l1, . . . , α̂lp, σ̂2

l } to the data
of each column (l) in the matrix
S̃ = S − X(XTX)−1XTS = Ψ̃WMEC ∈ R

N×Ns [15],
where l ∈ {1, . . . Ns}. It can be computed as

σ̂2
kl =

πNσ̂2
l /4

|1 +∑p
m=1 α̂lm exp(−j2πmkf/Fs)|2

,

where j =
√
−1, Fs is the sampling frequency and f is

the stimulation frequency.
The discrimination power of the statistic in (15)

stems from its ability to incorporate the noise power
estimate at the frequencies under consideration. So
far, the score functions in CCA and MSI reflected the
signal power only. Furthermore, we can write the noise
covariance matrix as

Cψψ = Cyy −CyxC
−1
xxCxy

= Cyy

(

INy −C−1
yyCyxC

−1
xxCxy

)

= Cyy

(

INy −C−1/2
yy TTTC1/2

yy

)

= Cyy

(

INy −C−1/2
yy W′

yP
2W′T

y C1/2
yy

)

= Cyy

(

C−1/2
yy W′

y

(

INy −P2
)

W′T
y C1/2

yy

)

= C1/2
yy W′

y

(

INy −P2
)

W′T
y C1/2

yy (16)

= CyyWy

(

INy −P2
)

WT
yCyy. (17)

Multiplying both sides with WT
y from the left and Wy

from the right, yields the following relation

WT
yCψψWy = INy −P2. (18)

Therefore it is possible to diagonalize the noise
covariance matrix with the canonical weights matrix
Wy, which is generally not orthogonal, as by definition
WT

yCyyWy = INx . Recall that the diagonalization

of Cψψ = QψDψQ
T
ψ in the original paper of the

MEC method was done with eigendecomposition [15].
Should the EEG data be spatially white or pre-
whitened, i.e. Cyy = INy before running the MEC
procedure, and Ns is fixed to 2Nh, then Wy =
W′

y = Qψ, This result provides another intuitive
insight on the MEC filtering. When the original
EEG signals is pre-whitened, MEC maximizes the
canonical correlation coefficients while minimzing the
noise energy since the smallest diagonal elements in
Dψ and

(

INy −P2
)

correspond to the largest canonical
correlations.

3.4. Maximum Contrast Combination (MCC)

The goal of the maximum contrast combination
(MCC) method is to find the linear spatial filter
that maximizes the generalized Rayleigh quotient[15,
17]. Formally, we are after w which maximizes

λ =
w
T
Cyyw

wTCψψw
subject to ‖w‖2 = 1. The true

covariance matrices are not known and thus they are
substituted with their sample estimates. The sample
noise covariance matrix Qψψ can be found the same
way as in section 3.3. With the help of Lagrangian
multipliers, one can show that λ attains its maximum
with the dominant eigenvector of the matrix C−1

ψψCyy,
which can be rewritten with the result in (16) as

C−1
ψψCyy = C−1/2

yy W′
y

(

INy −P2
)−1

W′T
y C1/2

yy . (19)

Thus, λi(C
−1
ψψCyy) = 1/(1 − ρ2i ) = fmcc(ρi) , ∀i ∈

{1, . . . ,min(Nx, Ny)}, and consequentially, λmax =
1/(1 − ρ2max). The spatial filter w which attains
the maximum quotient can be found by normalizing

the columns C
−1/2
yy W′

y = Wy with respect to the
Euclidean norm, and picking the one corresponding to
ρmax. This proves that MCC and the CCA methods
have exactly the same discrimination power since the
function fmcc(ρ1) is monotonically increasing in ρ1.

3.5. Canonical variates with autoregressive spectral
estimation of noise (CVARS)

As stated earlier, the standard CCA method is able
to reveal spatial coherence in high SNR regimes.
When SNR ≪ 1, however, the canonical coefficients
mainly reflect the correlation between the noise and the
assumed source signals, which often leads to erroneous
detection as the separate contribution of the signal and
the noise to the total values of ρi cannot be determined.

Therefore, we propose to estimate the noise
at each frequency for each signal after spatial
filtering with parametric spectral density estimation.
That is, the noise power is estimated by fitting
an autoregressive model to canonical variates after
cleaning them from all energy at the SSVEP driving
frequencies and their higher harmonics. The test
statistic scvars is computed exactly as in (15) with
the AR(p) models fitted on S̃ = S−X(XTX)−1XTS,
where S = YWy and Wy ∈ R

Ny×Nx is the canonical
weighting matrix. Additionally, we observe that
XTS = NWxP and therefore P̂kl = Nρ2l (w

2
kl,1+w

2
kl,2),

where wkl,1 and wkl,2 denote the respective weight of
the sine and cosine signals of the kth harmonic in the
lth canonical variate.

3.6. Discussion

In the light of the previous analysis and findings, it
is obvious that the scores of the CCA, MCC and
MSI methods correspond to different functions of the
canonical correlations (ρi), and their scores can all be
considered special cases of sfcca. Common to all of
them is the spatial pre-whitening step of both, the EEG
signals and the assumed SSVEP pure response, which
is spatially white by construction. Though it is not
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necessary to do so to obtain the scoring functions scca
and smcc, these methods additionally involve applying

the transform C
−1/2
yy to the left singular vectors of

the coherence matrix in order to obtain the optimal
spatial filter. The spatial filtering of the MEC and
CVARS methods is accomplished with the eigenvectors
of the noise covariance matrix and the canonical
weighting matrix Wy, respectively. Additionally, both
involve spectral analysis of AR(p) models fitted on
the spatially filtered data cleaned from the energy at
the driving frequencies of the SSVEP. The rationale
behind using (3.3) in [15, 19] is that the temporally
colored noise in each column s̃l in the matrix S̃, can
be modeled as discrete-time autoregressive random
process of order p, such that

∑p
k=0 αks̃[n − k] = u[n],

where u[n] is white Gaussian noise of power σ2 and
α0 = 1. As a result, this modeling allows to whiten the
temporally colored noise, and produce an unbiased (or
with small bias [19]) estimate for the noise power at
each stimulation frequency and its higher harmonics.
The CVARS method, therefore, involves whitening
the data, both spatially and temporally, before it
can provide the scoring function scvars. If the data
is spatially pre-whitened before applying the MEC
method, then results will be very similar to those of
the CVARS method, but not exactly the same as Ns
used to compute smec is governed by a fraction of the
total energy in the noise signal and in case of CVARS,
Ns = 2Nh is fixed.

4. Material and methods

In order to compare the different detection methods,
several experiments with volunteer subjects were
conducted.

4.1. Subjects

A total of 10 healthy adults (1 female) aged 29.3 ±
5.5 (range 22 − 39) with normal or corrected-to-
normal vision served as paid volunteer subjects in
this study. During the experiments, the participants
were seated 0.65 m away from an LCD monitor on
a comfortable armchair in a slightly dimmed room.
All participants gave their written informed consent.
Participants were additionally asked to fill in pre-
and post-questionnaires, that were meant to collect
data about the level of tiredness before and after the
experiment in addition to some demographical data.

Scalp EEG signals were recorded from 16
electrodes positioned according to the international
extended 10/20 electrode system over the parieto-
occipital scalp areas at P3, Pz, P4, PO9, PO7, PO3,
POz, PO4, PO8, PO10, O9, O1,Oz, O2, O10 and
Iz. Electrodes were referenced to the right earlobe
and the ground electrode was positioned at FPz. The

Forward

TurnL TurnR

Stop

Figure 4: Stimulus presentation. In synchronization
with the display refresh rate, four white rectangles
were flickered on and off against a black screen at rates
of 15 Hz (Forward), 12 Hz (TurnL), 10 Hz (TurnR)
and 8.57 Hz (Stop). The labeling of the different
rectangles serves robotic control applications. The size
proportions between the flicker and the display are
preserved in the figure.

signals were acquired with sampling rate of 512 Hz
using g.USBamp acquisition system (g.tec medical
engineering GmbH, Schiedlberg, Austria) and band-
pass filtered at 0.5−60 Hz. The power line interference
at 50 Hz was removed with a 4th order butterworth
notch-filter with 48− 52 Hz stop band. All electrodes
were filled with highly conductive gel in order to reduce
impedance.

This study is part of a larger project, which is
approved by the Ethics Committee of the Faculty
of Medicine of the Technical University of Munich
(TUM).

4.2. Experimental paradigm

A 22 ′′ liquid-crystal display (LCD) monitor‡ with
60 Hz refresh rate and 1280 × 1024 resolution
was used to view the stimuli which consisted
of four spatially distributed flickering rectangles
presented simultaneously to participants. The driving

‡ In addition to the LCD monitor, participants viewed stimuli
via a head-mounted display (HMD) from Oculus VR, United
States. The HMD has 60 Hz refresh rate as well. Each
subject sequentially viewed the stimuli on both displays (i.e.
the monitor and the HMD) with either their left eye only,
right eye only, or both eyes. This resulted in a total of
2×3 different viewing conditions which were pseudo-randomized
across subjects. Subjects were assigned either to finish all the
HMD or the LCD conditions at first to minimize electrode
displacement that might take place after mounting/unmounting
the HMD. Two consecutive sessions per condition were recorded
for later analysis. In total, each subject underwent 12 sessions,
each of around 5 min duration. The whole experiment lasted
around two hours including preparations and rest breaks between
sessions. In order to provide results that can be compared with
those in the literature, we will base our evaluation throughout
this work solely on the two recording sessions obtained with
binocular LCD viewing.
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Figure 5: Trigger timing for one complete stimulation
sequence. When stimulation is on, all flickering
stimuli are presented concurrently. Each stimulus
is highlighted for 10 seconds as shown with the
stimulation train signal.

frequencies of the stimuli were chosen as integer
divisors of the display refresh rate, namely 15, 12, 10
and 8.57 Hz. The chosen and fixed driving frequencies
are known to evoke moderate to high SSVEP’s
amplitude strength [29]. The spatial distribution of
the stimuli is shown in figure 4. The EEG acquisition
and visual stimulation were running on two different
computers, and synchronized with the screen overlay
control interface (SOCI) [30, 31].

Two recording sessions were performed, each
started with a blank screen for around 15 seconds
followed by the presentation of the flickering stimuli.
During stimulation, participants were instructed to
overtly sustain the spatial attention on the cued
stimulus. Stimuli were highlighted in turn with a green
rectangle as shown in figure 4 for 10 seconds followed
by a rest period of 3.5 seconds, in which the screen
went blank. The stimuli were cued in the descending
order of their driving frequencies (i.e. the sequence will
be top, left, right and bottom according to the stimuli
constellation shown in figure 4). Detailed timing of one
complete sequence is shown in figure 5. Each recording
session consisted of five such full sequences.

5. Experimental Results

The accuracy for each of the different detection
methods is highly influenced by the choice of the
key system parameters, e.g N,T,Nh and Fs. In
the following, we will firstly highlight the effect of
each of these parameters individually on unsupervised
CCA detection accuracy. We chose the CCA method
here as the other scoring functions can be obtained
from the canonical coefficients, canonical variates
and the canonical weights, and thus it can serve
as an indicator of the information gain/loss that
accompanies parameter change. By fixing these
parameters in the light of the empirical evaluation
of CCA, the unsupervised detection accuracy of the
CVARS is then compared to the state-of-the-art
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Figure 6: Average misclassification error for CCA
computed as Em = 1 − P̄D for varying buffer length,
Nh = 1.

methods.

5.1. CCA results with varying key system parameters

Labeled non-overlapping EEG data segments (i.e. O =
0) are extracted from the two available recording
sessions per subject. The segment size was varied
between 0.5 − 5 seconds with steps of 0.5 seconds,
respectively yielding 200, 100, 60,50,40,30,20,20,20 and
20 segments, per stimulation frequency. Segments
which were obtained during the idle state were
not included in the evaluation since we consider
unsupervised CCA at this stage.

Figure 6 shows the average misclassification error
(Em) for all subjects as a function of the buffer size,
when the CCA method was used with Nh = 1 and
Fs = 512 Hz. With larger buffer sizes, one can
observe that misclassification errors for all subjects get
suppressed due to enhanced SNR and more accurate
estimates of Qyy and Qxy.

Figure 7(a) shows the average misclassification
error of the CCA method (averaged over all subjects)
for different number of harmonics Nh that ranges from
1 to 6 as a function of buffer length. For Nh > 3,
no further improvement is observed, which cannot be
explained by the fact that EEG data itself was lowpass-
filtered with a cutoff frequency 60 Hz since the fourth
harmonic of the maximum stimulation frequency is
not rejected thereby. However, the fourth harmonic
of the driving frequency f2 = 12 Hz, lies within
the stop band of the notch filter. In order to fully
isolate the influence of the notch filter, we reevaluated
the average misclassification error of the unsupervised
CCA method (excluding f2 from the analysis). Again,
the results shown in figure 7(b), suggest that no further
improvement for Nh > 3. The increased accuracy for
Nh > 1 is however not statistically significant as it
was also reported in [22]. The value of Nh is set to 3
throughout the remaining of this work.
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Figure 7: Average misclassification error for CCA
computed with different number of harmonics. For
Nh > 3, no further improvement in accuracy is
observed. Evaluation is based on (a) all stimulation
frequencies (b) and execluding f2 = 12 Hz.

As has been mentioned earlier, one can derive
arbitrary scoring functions sfcca from the canonical
correlations ρi. Figure 8 shows the results for sfcca =
∑k

1 ρi, while fixing Nh = 3, and k ∈ {1, 2, . . . 2Nh}.
The performance degradation of sfcca for k > 1
suggests that the fluctuations in ρi, ∀i > 1 over time
cannot be used in winner takes all (WTA) assignment
as ρ1 for SSVEP detection.

The effect of changing the sampling rate is shown
in figure 9. Downsampling with a factor of 2 or 4, which
respectively resembles sampling frequency of 256 and
128 Hz leads to accuracies that are comparable with
the full data segments (with Fs = 512). Estimation
of covariance matrices Qyy and Qxy is not, therefore,
significantly affected by downsampling. This behavior
suggests that adjacent samples inY are correlated (and
they are) and that allowing for ∆t between samples
that is larger than the expected maximum correlation
lag would not affect the obtained results. Going
to downsampling factor of 8 (Fs = 64) deteriorates
the performance significantly, as this would introduce
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Figure 8: Average misclassification error for CCA
averaged over all frequencies and subjects computed
for different scoring function of ρi and i ∈ {1, . . . , Nx}.

aliasing and loss of information of the higher harmonics
(with frequencies larger than Fs/2). Throughout the
remaining of this work, we use Fs = 512 Hz. Sampling
rates Fs ∈ {256, 128} are expected to produce similar
results in terms of the reported scores and the reported
misclassification rates.
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Figure 9: Average misclassification error for CCA
averaged over all frequencies and subjects for different
downsampling factors. Hardly any difference is noticed
for d ∈ {1, 2, 4}. When the downsampling factor
is 8 (the dotted purple line), significant reduction in
accuracy is observed.

The estimates of the detection accuracies obtained
so far using the non-overlapping data segments can
be a bit misleading as classification is performed only
on homogeneous EEG data segments, during which
subjects attended to one single driving frequency.
However, during online usage, EEG data collected in
one segment can reflect two or more different states
of user attention (e.g. user shifts his attention from
one stimulus to another or from the idle state to
one of the active states within the segment). This
behavior becomes more probable with larger buffer
sizes. To simulate this case, maximally overlapping
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data segments (i.e. T = 1 sample) were continuously
extracted from the data and used to plot the CCA
score evolution of the different stimulation frequencies
over time. The resulting segments thus contain both
homogeneous and heterogeneous data. In order to
additionally provide more insights about the inter-
subject variability in figure 6, the score evolution
will be shown for the subjects S5 and S2, whose
CCA results were the best and the worst, respectively.
CCA score evolution during the first full sequence
(after viewing all stimulation frequencies once) for
(N,T ) = (1024, 1) samples is shown in the upper row
of figure 13. These plots show, to some extent, that
during stimulation with f , the score s(Y,Xf ) increases
over time and surpasses the scores of the other
frequencies. Additionally, among the used stimulation
frequencies, one can observe for each subject, that a
specific frequency is somewhat dominant throughout
the whole sequence (12 Hz for S5 and 10 Hz for
S2), and to this specific frequency most of the faulty
detections and false alarms can be attributed. While
high scores for the dominant frequency (most likely
due to interference from the alpha brain band waves,
within which a peak can be observed in most subjects’
EEG[32]) starts to appear during the idle state, they
get suppressed (though not always) when subjects shift
their visual attention to flickering light. Furthermore,
one can categorize the SSVEPs of the two subjects into
high and low SNR with respect to the obtained CCA
score values, where S2 is the one with the low SNR.

5.2. Distribution of canonical correlations

In the following, we will refer to the canonical
correlation values obtained when users attended to
a specific stimulus with frequency f as the target
canonical correlations (or target scores) for that
frequency. Nontarget scores of a stimulation frequency
f , on the other hand, refer to the values obtained when
the user attended to other or no stimuli. By fixing
Nh = 3 and (N,T ) = (1024, 1) samples, we computed
the target and nontarget correlation coefficients for all
stimulation frequencies in all recording sessions for all
subjects. We assigned a data segment to a frequency
f , if the most recent sample in the buffer was obtained
when the corresponding stimulus was then cued for
viewing.

From the histogram of all these values, we
estimated the distribution of all target and nontarget
canonical correlations which are shown in figure 10.
These plots show that the difference between the
distributions of the target and nontarget canonical
correlations ρi is most pronounced for ρ1. Most
importantly, we could see that the typical means (for
all canonical correlations) per stimulation frequency
differ significantly, in a way that reflects the general
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Figure 11: Mean and standard deviation of target
(solid) and nontarget (dotted) ρi computed for the
different stimulation frequencies.

power density of EEG data which, similar to pink
noise, exhibits a characteristic 1/f profile [32, 33].
The mean and standard deviation of all target and
nontarget canonical correlations are shown in figure 11
as a function of stimulation frequency f . Besides
the 1/f profile, we can observe a peak at 10 Hz,
which stems from interference of the dominant alpha
brain waves at the same frequency. The distributions
of the target and nontarget ρi’s clearly justify why
sfcca defined as the sum of canonical correlations did
deteriorate detection performance when compared to
scca, as the bias towards the low frequencies and the
subject-dependent peaks in the alpha band, increases
by adding further correlations to the value of ρ1.
Therefore, the CCA scores need to be scaled differently
for each frequency in order to correct for the observed
bias. This scaling is done efficiently in the CVARS
method.

5.3. Comparison of the different methods

The same non-overlapping EEG segments from sec-
tion 5.1 were used to compare the CCA, MCC, MSI,
MEC and CVARS methods. The mean misclassifica-
tion error averaged over all subjects is shown in fig-
ure 12 for Nh = 3 and Fs = 512 Hz. MEC and CVARS
were used with AR(7) model. By visual inspection, the
results of the CCA, MCC and MSI methods don’t differ
significantly. The MEC and CVARS methods outper-
form CCA for all buffer lengths, except for 0.5 s buffers,
in which case, all methods have comparable accuracies.
The CVARS method performs slightly better than the
MEC for almost all buffer lengths.

Furthermore, the upper three rows in figure 13
compare the CCA, MEC and CVARS with respect to
their score evolution during the first full stimulation
sequence with (N,T ) = (1024, 1) samples. CVARS
and MEC methods show significant improvement over
CCA for the subject with the low SNR (S2), especially
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Figure 12: Average misclassification accuracy
averaged over all frequencies and subjects. As
expected, classification accuracies for CCA (plotted
with thick line to highlight this fact) and MCC are
the same.

for the stimulation frequency f1 = 15 Hz and less
for f2 = 12 Hz. Less or no improvement can be
observed for the subject with the high SNR (S5).
From the score evolution (N = 1024, T = 1) data,
we have computed the average accuracy per subject
over all stimulation frequencies (excluding the idle
state) for the unsupervised CCA, standard MEC and
CVARS. A repeated measures ANOVA determined

that mean classification accuracy differed statistically
significantly between the three methods (F (2, 18) =
19.902, p < 0.0001, partial η2 = 0.689). Post hoc tests
using the Bonferroni correction revealed statistically
significant (p = 0.005) improvement of unsupervised
CVARS (mean± std: 0.739 ± 0.099) over unsupervised
CCA (mean± std: 0.64 ± 0.137). Furthermore, we
found a trend for unsupervised CVARS being superior
over unsupervised standard MEC, which given the
current number of subjects though is not significant
(p = 0.069). Unsupervised standard MEC (mean±
std: 0.72 ± 0.107) performed significantly better than
the unsupervised CCA (p = 0.003).

The effect of choosing longer buffers (N = 2560)
with CVARS method is shown in the lower panel of
figure 13. We can easily observe that fluctuations in
the score function are reduced for both S2 and S5, with
the side effect of introducing delays into the system
(rise-up and decaying delays). This, however, did not
guarantee reliable SSVEP detection for S2.

5.4. Supervised CVARS method for SSVEP detection

The unsupervised detection methods discussed so far
provided estimates of the driving frequency in a WTA
fashion. This way, the system is always in the control
loop and the idle state is never reached. Furthermore,
the target and nontarget scores distributions in
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Figure 13: Score evolution for S5 (left) and S2 (right) obtained during the first stimulation sequence of the
first recording session for buffers of 2 seconds (except for the last row this was 5 s), T = 1 sample and Nh = 3
with the CCA, MEC, and CVARS methods. AR(7) models were used when necessary. The trigger is shown as
a staircase with 4 levels, each level corresponds to one stimulation frequency. For example, level 2 corresponds
to f2 = 12 Hz. The zero level corresponds to the idle state. The fourth level (i.e. for f4) is scaled to the largest
score obtained for better visibility.
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figures 10 and 13 suggest that the simple argmax
function in (5) will provide faulty detections due to
the large visible difference in the mean scores for the
different driving frequencies, and the resulting bias
towards the lower frequencies. Learning a simple
threshold from labeled data (obtained from a training
session for each user), although can reduce the rate
of false alarms and faulty detections, can lead also
to a larger rate of misses as can easily be seen for
CCA from the plots in figure 10 and for all methods
in figure 13. For instance setting a CCA threshold of
0.5 in figure 10 would result in a high probability of
miss, as can be computed from the area under the
curves of the target distributions for ρ1 < 0.5. It
can be additionally observed that it is more probable
to miss the detection of higher frequencies than the
lower ones. Linear Discriminant Analysis (LDA) lends
itself naturally to such a problem, where labeled score
vectors are obtained from one training session and an
LDA classifier is thereby learned. In online sessions,
the scores are computed as usual to produce the vector
s ∈ R

Nf×1. The LDA classifier is then applied on s
to provide the final estimate of the hidden attended
stimulus. We summarize the comparison between the
unsupervised and supervised CVARS with (N,T ) =
(1024, 128) in the form of the confusion matrices shown
in figure 14, for subjects S5 and S2, in addition to the
average over all subjects. We chose CVARS here as it
provided the best results in the unsupervised case. The
confusion matrices were computed with each method
applied on the two available recording sessions. In case
of the supervised CVARS, a classifier was learned from
each session and applied on the other one, and results
therefrom were averaged (i.e. a total of two classifiers
were used per subject). These results clearly show a
reduction in the rate of false alarms on the expense of
higher probability of misses. The probability of miss
and that of correct detections are quite uniform with
respect to the stimulation frequencies, on the contrary
to what is expected if a single threshold were used.
Furthermore, a large portion of the probability of miss
in the supervised CVARS replaces some of the wrong
detections in the unsupervised case. Falsely detecting
one control state as the idle state is generally favored
over confusing it with another control state.

5.5. Discussion

From the results in the previous subsections, we can
see that there are conflicting factors that affect the
detection accuracy of SSVEP. On one hand, accuracy
is a monotonically increasing function of the buffer size
(i.e. N), should the buffer contain only homogeneous
data, which is not the most probable case in online
applications. On the other hand, larger buffer sizes
introduce delays, as the old samples which contain no

f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.19 0.82 0.00 0.01 0.01

f̂2 0.52 0.17 0.99 0.14 0.16

f̂3 0.13 0.00 0.01 0.83 0.01

f̂4 0.16 0.01 0.00 0.01 0.82

(a) Unsupervised (S5)

f0 f1 f2 f3 f4

f̂0 0.80 0.34 0.29 0.32 0.37

f̂1 0.04 0.63 0.00 0.00 0.00

f̂2 0.07 0.02 0.71 0.02 0.05

f̂3 0.03 0.00 0.00 0.66 0.00

f̂4 0.06 0.00 0.00 0.00 0.57

(b) Supervised (S5)

f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.06 0.39 0.02 0.01 0.01

f̂2 0.18 0.03 0.48 0.03 0.02

f̂3 0.63 0.56 0.48 0.95 0.29

f̂4 0.13 0.02 0.02 0.02 0.69

(c) Unsupervised (S2)

f0 f1 f2 f3 f4

f̂0 0.64 0.30 0.32 0.34 0.25

f̂1 0.06 0.63 0.00 0.02 0.01

f̂2 0.11 0.02 0.66 0.02 0.01

f̂3 0.11 0.04 0.02 0.61 0.05

f̂4 0.08 0.01 0.01 0.01 0.68

(d) Supervised (S2)

f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.15 0.70 0.03 0.02 0.02

f̂2 0.31 0.09 0.74 0.08 0.10

f̂3 0.40 0.18 0.19 0.86 0.21

f̂4 0.14 0.04 0.04 0.04 0.66

(e) Unsupervised (Average)

f0 f1 f2 f3 f4

f̂0 0.69 0.29 0.31 0.32 0.30

f̂1 0.06 0.65 0.01 0.01 0.01

f̂2 0.10 0.02 0.63 0.02 0.03

f̂3 0.08 0.02 0.02 0.61 0.04

f̂4 0.08 0.02 0.02 0.04 0.62

(f) Supervised (Average)

Figure 14: Confusion matrices for the unsupervised
and supervised CVARS methods. The supervised
CVARS method produces reliable results for all
participants including S2, whose data has been shown
to have low SNR. This proves the ability of supervised
CVARS to deal with wide range of SNR levels.

information about the currently attended stimulus still
inhabit the buffer Y and contribute to the different
values s(Y,Xf ), leading to false alarms and faulty
detections.

Comparing figures 6 and 15, which respectively
show the misclassification results of non-overlapping
segments as a function of buffer length for CCA (Nh =
1) and CVARS (Nh = 3), we can see that buffer
lengths, at which acceptable accuracies are obtained,
differ from one subject to another, regardless of the
detection method used. Therefore, a trade-off between
accuracy and speed should be optimized for each
subject, based on a short training session. The same
session is also used to learn the LDA classifier from the
obtained scores.

Additionally, with our theoretical analysis and
empirical results, we have shown that CCA and MCC
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Figure 15: Average CVARS-method misclassification
error computed as a function of buffer length for non-
overlapping segments.
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Figure 16: The function f(ρ) qualitatively shows the
relatively large contribution of the maximum canonical
correlation in the final MSI score, especially when
ρ1 > 0.5. For ρ1 ≤ 0.5, smsi ≈

∑2Nh
i=1 ρ

2
i .

give exactly the same estimates and thus the same
misclassification error rates. MSI and CCA have shown
similar misclassification error rates, suggesting that ρ1
plays a major role in calculating smsi. This can be seen
by rewriting (13) as smsi =

∑2Nh
i=1 f(ρi), where

f(ρ) =
(1 + ρ) log(1 + ρ) + (1− ρ) log(1− ρ)

P log(P )
. (20)

Figure 16 plots f(ρ) in the range of [0, 1] in addition to
the function q(ρ) = ρ2/C, where C is a constant. The
quadratic function q(ρ) approximates f(ρ) relatively
well when ρ < 0.5. Therefore, for the case when all
ρi < 0.5, the MSI score function (and its quadratic
approximation) gives more weight to greater ρi’s. On
the other hand, when ρ1 > 0.5, the contribution of
ρ1 becomes more emphasized as the difference f(ρ1)−
q(ρ1) grows very rapidly. The latter case is the more
probable case given the empirical values of target ρi’s
shown in figure 10.

Furthermore, we have shown that MEC outper-
forms CCA. This result differs from what was shown

in [34]. However, the score function smec used there
was defined with σ̂kl = 1, which ignores the noise power
at the stimulation frequencies and consequently MEC
scores will be biased towards the low frequencies. This
reaffirms the need to scale the different correlations
with regard to estimates about the noise power, which
is done efficiently with test statistics used in standard
MEC and CVARS procedures. In [15], a test statis-
tic similar to smec is used with the MCC spatial filter,
where the spatial filter is obtained from a subset of the
columns in Wy. Again, this statistic should give simi-
lar results to the CVARS when the data is pre-whitened
before applying the MCC filter.

Alternatively, Yin et al. [35] proposed the
supervised CCA-RV method for the same purpose of
reducing the variability in the final target scores of
the different stimulation frequencies where scca-rv was
computed with

scca-rv(Y,Xf ) =
scca(Y,Xf )− scca-nt(Y,Xf )

scca(Y,Xf ) + scca-nt(Y,Xf )
, (21)

where scca-nt(Y,Xf ) is the mean nontarget scores of a
frequency f computed from a training session. Since
the CCA-RV method was published very recently, we
could not fully and fairly compare it to the CVARS
method, especially also that real-time biofeedback
mechanisms were employed in [35]. However, we
claim that the supervised CVARS method described
in this paper should outperform the supervised CCA-
RV (when we ignore the effect of the biofeedback).
Firstly, CVARS has been shown in the current paper
to outperform CCA when results for all subjects were
averaged and therefore plugging the CVARS scores
instead of CCA in (21) is expected to provide, on
average, better results. Additionally, LDA learns from
the available training session the optimal mapping from
the CVARS scores to the stimulation frequencies as it
takes into account not only the mean values as it is the
case in [35] but also the variances and covariations of
the individual scores.

Throughout this work, we had a number of
channels Ny = 16, which was larger than the number
of signals assumed in the source model Nx = 2Nh = 6.
Reversing this relation does not affect the obtained
results. For the CCA method, the number of canonical
correlations is upper bounded by min(Nx, Ny), which
will be Ny in this case. The eigenvalues in the MSI
method, will be defined the same way as in section 3.2
except that there are Nx −Ny eigenvalues which have
the value 1. The CVARS method, in this case, will
provide no dimension reduction, as the number of
canonical variates will be the same as the original
EEG channels. On the contrary, the MEC method can
always produce less output channels than available in
the original EEG signals. Friman et al. [15] reported
typical values for Ny = 6 and Ns ∈ {4, 5} which are
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comparable to 2Nh = 4. For our dataset, we got typical
values of Ns ∈ {14, 15, 16} for Ny = 16 and Nh = 3.
The result we proved here regarding the conditions
when WMEC = W′

y makes the CVARS method more
consistent with the assumptions about the the number
of source model signals.

6. Conclusion

Detection of SSVEP in continuous EEG signals lies
under the general problem of detecting sinusoids
in noisy measurements, a problem that has been
thoroughly investigated in the array signal processing
field. We have theoretically shown the conditions in
which state-of-the-art SSVEP detection methods share
similar spatial filters, a step required to enhance the
overall signal-to-noise ratio. The equivalence of the
discrimination power of the MCC and CCA methods
has been proven and it was conjectured that MSI
should have very similar results as well. Empirical
evaluations supported these results. The methods
CCA, MCC and MSI rely on a single metric that
is computed from the canonical correlations ρi to
provide an estimate about the stimulation frequency,
to which a user is attending. Thereby they fail to
provide reliable estimates when the signal is lost in
the noise floor. The MEC and the hereby proposed
CVARS methods, in addition to the step of spatial
filtering, base their discrimination upon the estimated
signal and noise powers at each considered frequency
(the fundamental stimulation frequency and its higher
harmonics). We have shown that the CVARS and
the MEC scores are the same, given that the EEG
signal is spatially whitened before running MEC
algorithm and Ns is rather fixed to min(Ny, 2Nh), i.e.
number of canonical correlations. The CVARS method
slightly outperformed the standard MEC method,
which typically requires no spatial pre-whitening as
reported in [15]. Finally, we have shown that the
supervised CVARS method based on a short training
session can be used to learn a mapping function
rather than the maximizer (argmax) that estimates the
hidden driving frequency and the idle state from the
obtained scores, reliably and accurately. The training
session should also serve the purpose of finding the
optimal buffer size for a specific subject to be used
in online applications.
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Appendix A. Relation between MSI and CCA

Finding the eigenvalues of the matrix R defined
in (12) involves solving the characteristic equation
det(R− λI) = 0, and thus

det

([

INx − λINx T
TT INy − λINy

])

= 0

Without loss of generality, we assume in the
following that Ny ≥ Nx. Using the Schur determinant
identity we can write

0 = det
(

INy − λINy
)

· det
(

(1− λ)INx −
1

1− λ
TTT

)

= (1− λ)Ny · det
(

1

1− λ

(

(1− λ)
2
INx −TTT

)

)

= (1− λ)Ny · 1

(1− λ)Nx
· det

(

(1− λ)
2
INx −TTT

)

= (1− λ)Ny−Nx · det
(

(1− λ)
2
INx −TTT

)

,

which means that either λ = 1 or (1 − λ)2 is one
of the eigenvalues of TTT . Consequently, there are
exactly (Ny−Nx) eigenvalues of R that take the value
1. The remaining 2Nx eigenvalues can be related to the
canonical correlations (subsection 3.1) with λ = 1∓ρi,
where i = 1, . . . , Nx.
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