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Over the last few decades, technological and methodological advances 

in genetics and genomics have permitted the identification of mutations 

that are involved in thousands of rare Mendelian conditions and in the 

etiology of more common, complex diseases1–7 (http://www.ebi.ac.uk/

gwas/). In this regard, genetic findings have played a major role in neu-

rodevelopmental disorders, such as ASD, for which many contributing 

genes have been identified (Fig. 1), providing a platform for unraveling 

the causal chain of events that result in ASD.

The challenges in understanding ASD are many, ranging from defin-

ing ASD’s heritable genetic components and understanding ASD risk 

more completely in individuals to determining whether the probable 

hundreds of different genetic forms of ASD might converge into a trac-

table set of targetable pathways for treatment8,9. Additionally, given 

ASD’s clinical and genetic heterogeneity, it is perhaps not surprising 

that no common macroscopic or microscopic neuropathology is rec-

ognized and that no specific brain region or cell type is uniquely impli-

cated9–11 (Fig. 2). Nevertheless, the identification of veritable genetic 

risk factors provides a solid mechanistic grounding on which to base 

therapeutic development. Here we start by reviewing the clinical features 

of the syndrome and providing a broad overview of genetic findings. 

We then describe how mouse and in vitro human stem cell–based mod-

els can advance mechanistic understanding. Finally, we highlight the  

evidence for the most prevalent neurobiological models that attempt to 

bring together diverse genetic findings, molecular pathways and model 

systems to develop an evidence-based theoretical framework for under-

standing ASD.

Clinical overview

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

(ref. 12) defines ASD by deficits in two core domains—social interac-

tion and communication, and repetitive, restrictive behaviors—with 

onset during early development. ASD unifies three previously separate 

but highly related diagnoses: autistic disorder, Asperger’s disorder and 

pervasive developmental disorder–not otherwise specified (PDD-NOS). 

Although prevalence estimates in the early 1990s were on the order of 1 

in 1,000, they have consistently increased and are presently 1 in 68 chil-

dren under 8 years of age in the USA13. There are substantial differences 

in ASD prevalence between the sexes (1 in 42 for males; 1 in 189 for 

females), suggesting mediation by as yet unknown biological factors14,15. 

ASD also occurs with frequent comorbidities, such as motor deficits 

(hypotonia, apraxia or motor delay), sleep abnormalities, gastrointestinal 

disturbances and epilepsy16. Sensory hyper- or hyposensitivity, previ-

ously listed as a frequent (~90%) comorbidity, is now integrated into 

the core diagnosis within the repetitive and restrictive domain. Another 

salient comorbidity is intellectual disability (ID), which is observed in 

~35% of individuals with ASD and can markedly confound diagnostic 

instruments17,18. These comorbidities also present challenges in disease 

modeling, as they can complicate assessment of core ASD behaviors in 

animal models and overlap with phenotypes observed in other neuro-

psychiatric disorders, such as schizophrenia, attention deficit–hyper-

activity disorder (ADHD) and obsessive-compulsive disorder (OCD).

Current therapeutic options are predominantly restricted to behav-

ioral interventions, which can be highly successful in a subset of patients, 

and, as such, early intervention is warranted19,20. The only FDA-

approved drugs, risperidone, which is effective in treating aggressive 

and repetitive behaviors, and aripiprazole, which reduces irritability, are 

not directed at the core social deficits. We have few ways to prognosticate 
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Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances 

in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight 

extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize 

the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and 

integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models 

of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of 

rational, targeted molecular therapies.

REV I EW

n
p
g

©
 2

0
1
6 

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

http://www.nature.com/nm
http://www.ebi.ac.uk/gwas/
http://www.ebi.ac.uk/gwas/
mailto:dhg@mednet.ucla.edu
http://dx.doi.org/10.1038/nm.4071


346 VOLUME 22 | NUMBER 4 | APRIL 2016   NATURE MEDICINE

Figure 1  Genetic architecture of autism spectrum disorders. (a) The inheritance patterns of syndromes with known genetic etiology and high incidence 

of autism, as well as that of genes recently identified to be associated with autism. The red stars indicate a causal allele and the red pie charts indicate a 

small proportion of risk. Most dominant disorders show de novo inheritance. Autosomal recessive, autosomal dominant and X-linked inheritance patterns 

best fit a major gene model, whereas a polygenic model is best represented by additive risk. (b) The types of genetic variation (left and middle) and the 

developmental disorders (right) associated with autism. Genes that have been associated with ASD are also indicated. (c) The penetrance of known syndromic 

mutations summarized from multiple studies. 95% binomial proportion confidence intervals, based on Wilson’s score interval, are shown. (d) The percentage 

of individuals with ASD harboring known mutations, as well as the percentage of liability from different classes of mutations (taken from ref. 57). The 

percentage variance in liability measures the contribution of a particular variant or class of variants relative to the population variance in a theoretical variable 

called liability. Liability is a continuous and normally distributed latent variable that represents each individual’s risk (both genetic and environmental) for 

developing a disease266. Notably, percentage variance in liability is directly dependent on the frequency of the variant and the effect size of the variant, and 

it is inversely dependent on the frequency of the disease in the population. References for this figure are found in Supplementary Table 1.
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to cause ASD60,61. An important instance of the major gene model is a 

unified theory of ASD inheritance and occurrence62,63 that groups fami-

lies into two types: low risk and high risk. In the more prevalent low-risk 

group, children develop ASD due to de novo mutations62. Female children 

of low-risk families with de novo mutations are ‘protected’ by an as yet 

unidentified mechanism and are less likely to develop ASD. In high-

risk families, unaffected mothers transmit mutations that have reduced 

penetrance in females in a dominant manner to multiple, predominantly 

male, affected children. The polygenic and major gene models are not 

mutually exclusive, and both have support in the literature, but the extent 

of their contribution to ASD is a subject of debate57,63.

Polygenic models are supported by multiple lines of evidence. Firstly, 

recurrence of ASD in families implies a strong inherited genetic compo-

nent28,29. Secondly, the first-degree relatives of children with ASD show 

related phenotypes more than in the general population, such as social 

and behavioral differences64–66. Finally, heritability estimates using 

single-nucleotide polymorphism (SNP) (Box 1) data demonstrate that 

commonly inherited genetic variants (minor allele frequency > 0.05) or 

variants that are tagged by common genetic variants collectively explain 

a large proportion of the variance in susceptibility to ASD57,67,68, as in 

many other common, complex disorders67,69. However, a weakness of 

the polygenic model is that statistically significant and replicable com-

monly inherited variants have not yet been identified for ASD70. This is 

probably due to the limited statistical power using current sample sizes 

and study designs6,71,72.

The unified major gene model62,63 is supported by the significant 

increase in damaging de novo mutations found in subjects with ASD 

and stratify patients for treatment at this point. We also do not have 

any clear biomarkers, although tracking eye movements21 and electro-

encephalogram (EEG) parameters22 have shown promise. The hope is 

that understanding the underlying genetic risk and neurobiologically 

anchored disease mechanisms in individual patients will fuel therapeutic 

development and patient selection for the most appropriate treatments.

Genetic architecture of ASD

We are just starting to elucidate the genetic architecture of ASD (Box 1). 

In Figure 1, we highlight the specific risk genes that have been identified, 

the types of mutations, the patterns of inheritance and the contribu-

tion of these genes to ASD. A key early insight into the genetic basis of 

ASD came from the recognition that dozens of rare medical genetic syn-

dromes with diverse modes of inheritance have high penetrance (Box 1)  

for ASD23–26. Each of these known syndromes are rare, and none are 

found in more than 1% of patients with ASD; however, collectively they 

are estimated to be found in ~5% of the total population of individuals 

with ASD (Fig. 1).

Family and twin studies show that ASD is highly heritable27–32, 

and this has spurred genome-wide analyses of genetic variants using 

microarrays, whole-exome sequencing (WES) and, more recently, 

whole-genome sequencing (WGS) (Box 1). However, the most suc-

cessful efforts in gene discovery so far have identified rare protein- 

disrupting genetic variants in the affected child that are not found in the 

healthy parents, which represent new, or de novo, copy-number variants 

(CNVs)33–41 or single–base pair mutations (single-nucleotide variants; 

SNVs) that have arisen in the germline18,42–49 (Box 1). These studies 

have shown that there is an overall enrichment in ‘likely gene-disrupting’ 

mutations (LGDs; nonsense, frameshift and splice site mutations that 

often result in production of truncated proteins) in individuals with ASD 

as compared to their healthy relatives or to other unaffected individuals. 

Furthermore, these studies have identified individual rare de novo muta-

tions that show strong evidence for their involvement in ASD, including 

mutations in chromodomain helicase DNA binding protein 8 (CHD8) 

and dual-specificity tyrosine phosphorylation–regulated kinase 1A 

(DYRK1A), and a deletion or duplication of chromosome 16 (16p11.2) 

that encompass a ~600-kb region containing dozens of genes (Fig. 1 and 

Supplementary Table 1). Because the ASD-linked mutations are rare, 

comparing the difference in variant frequency at an individual gene in 

individuals with ASD versus the variant frequency in control subjects, 

which is a typical case-control design, while correcting for genome-wide 

comparisons of mutation rate has not yet reached statistical significance 

for the association of a mutation in individuals with ASD at any indi-

vidual gene within current sample sizes. In general, current estimates of 

the significance of an association between a mutation and ASD are based 

on comparing the frequency of the observed mutations in patients to the 

expected rate at which null mutations would occur in that gene47,50,51. 

This has resulted in somewhat of a moving target for genetic significance 

estimates, as significance depends on the number of variants found in 

cases and controls, as well as the overall number of cases and controls. 

WES is not only allowing the discovery of rare de novo heterozygous 

mutations, but it has also identified rare recessive mutations that are 

inherited in consanguineous families52–55.

Genetic models. Several models have been presented to explain the 

observed familial aggregation patterns and recent genetic findings (Fig. 1).  

Polygenic risk models (Box 1) assume that there are many inherited vari-

ants contributing to ASD, each with a small effect that, in combination 

with environmental factors, result in an individual crossing a risk thresh-

old to develop the disease56–59. In contrast, major gene models (Box 1) 

assume that either one highly penetrant rare mutation or a limited num-

ber of moderately to highly penetrant mutations (oligogenic) are sufficient  

BOX 1  Glossary of genetic terms

Genetic architecture: the relative contributions of different forms 

of genetic variation.

Penetrance: the proportion of mutation carriers who also are 

diagnosed with the disease or carry a given phenotype.

WES: Whole-exome sequencing—reading only the genetic 

sequence that encodes for proteins in an organism.

WGS: Whole-genome sequencing—reading the entirety of the 

genetic code of an organism.

De novo mutation: A mutation that is present in the offspring but 

that was not inherited from either parent.

SNV: Single-nucleotide variant—a rare (<1%) or common 

single-bp change in the genome.

CNV: Copy-number variation—deletion or duplication of large 

genomic regions leading to changes in the number of copies of the 

genetic elements encoded within those regions.

Polygenic model: a model that describes the genetic risk factors 

of a disease as many inherited variants, each of which contributes 

a small, additive risk for developing a disease.

Oligogenic model: a model that describes the genetic risk factors 

of a disease as a few variants, each of which contributes a large 

risk for developing a disease.

Major gene model: a model that describes the genetic risk factors 

of a disease as due to genetic variants, each of which contributes 

a large risk for developing a disease. One major gene mutation is 

typically considered sufficient to cause a disease in an individual.

SNP: Single-nucleotide polymorphism—a single bp change that is 

common (>1%) in the population.

Simplex family: a family in which only one individual is affected 

with a disease.

Multiplex family: a family in which multiple individuals are 

affected with a disease.
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have never been observed in unaffected individuals, indicating high 

penetrance of these mutations43,44. Patients with these rare mutations 

were then extensively phenotyped to identify distinct syndromic sub-

types78–80. In contrast, individual common variants indicate only a small 

risk for disease and cannot be used for diagnosis. It is possible that the 

aggregate risk from common variants can be used as a part of the clas-

sification tools for diagnosis and subtype definition within and across 

disorders after confounders, such as population structure, are properly 

taken into account81–85.

Finally, the complexity of therapy development is probably propor-

tional to the number of targetable biological pathways in the population, 

not the number of genetic insults identified. Although the polygenic 

model predicts a large number of loci to be associated with ASD, drug 

development may be simplified if convergent targetable pathways are 

identified. Conversely, if many different pathways are associated with 

ASD, then many different treatments may be necessary to alleviate the 

burden of disease across the population. Current evidence from known 

mutations does suggest significant convergence in the pathways in which 

the mutations are found, but the full extent of convergence will be bet-

ter defined after further clarification of the genetic landscape8,18,86–89. 

Notwithstanding these challenges, the identification of genetic variants 

provides a clear causal foothold into the underlying biology of ASD18,90.

Neurobiological models and mechanisms of ASD

Genetic advances have fueled the generation and characterization of 

numerous mouse models of ASD (Table 1 and Supplementary Table 2),  

the major strengths and limitations of which are summarized in Box 2 

(refs. 91,92). A variety of established assays are now considered standard 

assessments for ASD-related behavioral phenotypes93 (Box 2). It is nota-

ble that the majority of mouse models for monogenic forms of ASD have 

social impairment or repetitive behaviors; however, these core features 

of ASD and additional comorbidities, such as motor dysfunction, hyper-

activity and anxiety, vary widely (Table 1 and Supplementary Table 2). 

Despite their potential limitations (Box 2), mouse models have been 

valuable in translating genetic findings and have provided evidence for 

shared molecular pathways and phenotypes in ASD. Primate models or 

invertebrates have not yet been widely used to model ASD, but they are 

complementary to mouse models92. Nonhuman primates are expected 

to more closely model complex behavior and higher cortical functions, 

whereas zebrafish and invertebrates offer efficient, higher-throughput 

genetic manipulation92,94,95.

In parallel, advances in stem cell biology in the past decade make it 

possible to generate and study human neurons and their development92. 

Differentiation into functional neurons that may model phenotypes of 

ASD has been shown to be possible from human embryonic stem cells 

(hESCs), human induced pluripotent stem cells (hiPSCs) and primary 

human neural progenitor cells (phNPCs) (Table 2 and Supplementary 

Table 3), although limitations exist (Box 3). Together, human neural 

as compared to their unaffected siblings44,49. Further support for this 

model is seen in the phenomenon that there are more inherited SNVs 

that disrupt protein function in conserved genes transmitted from the 

mother to individuals with ASD than in unaffected siblings73. However, 

all pathogenic CNVs considered as a group have not yet shown evidence 

for enriched maternal transmission to probands74.

There are findings that are inconsistent with a major gene model. For 

example, if de novo mutations comprise the majority of genetic risk, 

then one expects monozygotic (MZ) twins (who share both germline de 

novo and inherited genetic risk factors) to be concordant for ASD more 

than twice as frequently as dizygotic (DZ) twins, who share on average 

only half of their inherited genetic risk factors. Evidence for this was 

demonstrated by early twin studies. However, larger, more recent studies 

show a DZ concordance rate that is higher than expected for de novo 

mutations that comprise the major contribution to ASD risk (reviewed 

in refs. 32,49). Similarly, if most cases of ASD were due to de novo muta-

tions in the parental germline, then risk in relatives would be very low50. 

However, familial risk implies a strong inherited genetic component, 

consistent with the polygenic model described above29. Furthermore, 

estimates of the influence of de novo mutation on risk for ASD have been 

derived mostly from a sample of simplex families (Box 1), which may 

inflate the contribution of de novo mutations40,44,45,47,49. Estimates of the 

heritability of ASD on the basis of the amount of common genetic varia-

tion (as measured from SNPs) shared in unrelated affected individu-

als57,67,68 demonstrate that the collective commonly inherited genetic 

variants can explain a large proportion of the variance in predisposition 

of a population to ASD, supporting the polygenic model. It is also rec-

ognized that some predictions of a major gene model have not yet been 

rigorously tested; the model predicts dominant maternal transmission 

of highly penetrant alleles, but estimating the contribution of dominance 

effects from family or population data is difficult to separate from the 

contribution of interaction between different loci29,75.

After comparison of the currently available data for genetic associa-

tion with ASD, the data fit a model in which the largest component of 

genetic risk derives from common genetic variants of an additive effect 

with a smaller, although clearly important, contribution from de novo 

and rare inherited variation57 (Fig. 1). This is relevant because presump-

tions about genetic architecture have important implications for future 

study design, nosology and treatment. For example, if de novo muta-

tions provide the major contribution to ASD risk, then we should focus 

genetic discovery efforts in simplex families with parents (and unaf-

fected siblings when available). On the other hand, common variation 

is most efficiently detected with large case-control association studies, 

whereas heritable rare-variant detection is best served by studying larger 

multiplex families76 (Box 1).

With regards to nosology, highly penetrant variants may be very use-

ful for defining subtypes of ASD77. For example, LGDs in CHD8 and 

DYRK1A have been found in individuals with ID and ASD but as yet 

Figure 2  Convergent neurobiological mechanisms in ASD. Normal brain development requires the generation and positioning of the correct number and type of 

cells, the growth and targeting of neuronal processes, and the formation of the precise number and type of synapses. (a) These events are regulated by molecular 

pathways in development. Genes within these pathways for which there is genetic evidence for a link to ASD18 (Fig. 1), including from our meta-analysis of 

SNVs and CNVs (compiled from refs. 43,44,73,74), are colored in gold. Chemical compounds that reverse behavioral or cellular ASD phenotypes in model 

systems are indicated in green font near their predicted site of action. (b) The cellular events leading to changes in the higher-order organization of the brain, 

including disruption of fetal cortical development and synaptic function. The cortical laminae are depicted from early fetal to neonatal stages (not to scale). The 

numbers indicate the molecular pathways important at each stage of development. (c) The widespread pathology10 and functional phenotypes observed in ASD, 

including altered brain growth trajectories, altered cortical cytoarchitecture (red triangles indicate excitatory upper layer neurons; green triangles are excitatory 

deep-layer neurons; blue triangles are interneurons; numbers indicate cortical layers; WM, white matter) and connectivity, may arise from combined deficits 

in neurogenesis, cell fate, neuronal migration and morphogenesis during fetal development and dysregulated synaptic function, possibly in combination with 

reactive microglia infiltration and astrocytosis. RG, radial glia; oRG, outer radial glia; IP, intermediate progenitor; MN, migrating neuron; EN, excitatory neuron; 

IN, interneuron; A, astrocyte; E/I, excitatory or inhibitory neuron; U/D, upper-layer or deep-layer neuron. MPEP, 2-methyl-6-(phenylethynyl)-pyridine; CDPPB, 

3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide; DCS, D-cycloserine; IGF1, insulin-like growth factor 1. VZ, ventricular zone; ISVZ, inner subventricular 

zone; OSVZ, outer subventricular zone; IZ, intermediate zone; SP, subplate; CPi, inner cortical plate; CPo, outer cortical plate; MZ, marginal zone.
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Table 1  Mouse models of ASD

Molecular function Mouse model
Social  

interaction

Social 
communi-

cation
Repetitive 
behavior Other symptoms

Molecular, cellular and

circuit phenotypes Treatment

Multiple dup 15q11-
q13 (refs. 
267,268)

Impaired ↓Calls Behavioral inflex-
ibility

NA Altered serotonergic signaling,  
↑ spine dynamics

NA

Transcriptional  
regulator

Tbr1 HT Impaired Impaired 
STFP

Behavioral  
inflexibility

CTA defects, learning 
deficits

Axonal projection defects in amygdala DCS (adult)170

↓NMDAR function clioquinol (A)269

Translational  
regulator

Fmr1 KO255 Impaired ↓Calls Hand flapping PPI of startle, audiogenic 

seizure, learning deficits

 ↑mGluR function, immature protrusion MPEP (A)233,237

Learning impairment PI3K signaling,  ↑spine density, impaired 

AMPAR-mediated synaptic plasticity

5-HT and DA  
compound 
(A)270,271

Audiogenic seizure Hypersensitivity to ERK1/2 pathway 
activation, ↑ protein synthesis

SL327 (A)272

↓Calls NA ↑Fetal or early postnatal GABA and Cl–, 

abnormal EEG

Bumetanide, oxyto-
cin (P13-15)251

Tsc1 HT, 
Tsc1Cb KO

Impaired ↑Calls Grooming, behav-

ioral inflexibility

Ataxia Cerebellar deficits Rapamycin (P7)183

Tsc2 HT Impaired ↑Calls Increased  
marble burying

Lethality, learning deficits Brain enlargement, hyperactive mTOR 
signaling, autophagy deficiency

Rapamycin 
(A)144,240

Pten cKO Impaired NA NA Learning deficits, seizure, 

anxiety

Macrocephaly, cellular hypertrophy,  
PI3K pathway hyperactivation

Rapamycin (4–6 
weeks)114,184

Neuron-glia  
interaction, K+  
channel clustering

Cntnap2 KO Impaired ↓Calls Grooming Seizure, hyperactivity ↓Interneuron number, abnormal  
neuronal migration

Risperidone (A)109

Impaired Grooming Hyperactivity ↓Oxytocin neurons Oxytocin (P7–P21; 
A)249

Na+ channel Scn1a KO Impaired NA Grooming Seizure, learning  

impairment

↓GABAergic interneuron firing Clonazepam (A)239

Synaptic adhesion 
molecule

Nrxn1a 
KO273,274

Impaired,  
aggression  
in males

NA Grooming Anxiety, sensory-gating 
deficits, motor learning

↓Glutamatergic trans. and synaptic 
density

NA

Nlgn3 R451C 
KI275,276

Impaired ↑Calls NA Enhanced learning Context-dependent impaired glutama-
tergic and GABAergic trans

NA

Nlgn3 KO277 Impaired ↓Calls Normal behav-
ioral flexibility, 
Stereotyped motor 

routine

Hyperactivity ↓Brain volume, cerebellar deficit NA

↓GABAergic trans. in D1-MSN in NAc NLGN3 expression 
in D1-MSN211

Nlgn4 KO278 ↓Impaired, 
aggression

↓Calls Normal NA ↓Brain volume NA

Synaptic scaffold-
ing molecule

Shank2

exon7 KO279

Impaired ↓Calls, 
pattern 
change

Grooming Hyperactivity, anxiety ↑ NMDAR function, ↑LTP NA

Shank2

exons 6–7 
KO

Impaired ↓Calls Jumping Hyperactivity, anxiety ↓NMDAR function, ↓LTP and LTD CDPPB,

DCS (A)232

clioquinol (A)269

Shank3B 
KO210

Impaired NA Grooming Anxiety Striatal dysfunction NA

Shank3

exons 4–9 
KO280

Impaired Pattern 
change

Grooming Learning deficits ↓Activity-dependent AMPAR distribu-
tion and LTP

NA

Shank3 
HT281

Impaired ↓Calls NA Motor coordination ↓Glutamatergic trans. by presynaptic 

mechanism, ↓LTP
IGF1

(P13–P28)177

Shank3+/DC 

(ref. 282)
Impaired NA Grooming NA ↓NMDAR function, Rac1, PAK, cofilin 

signaling defects,

F-actin dysregulation in PFC

TAT–p-cofilin 
peptide (A)

Impaired Grooming CA-Rac1 (A)

Selected mouse models of ASD organized by the molecular function of the mutated gene. Phenotypes rescued by tested therapeutic or gene re-expression strate-
gies are in bold, whereas non-rescued phenotypes are italicized. Non-bold or non-italicized phenotypes were not tested in rescue experiments. Genetic evidence 
for each modeled variant in ASD, if available, can be found in the listed reference. Up and down arrows signify an increase or decrease in the measured pheno-
type, respectively. STFP, social transmission of food preference; CTA, conditioned taste aversion; PPI, prepulse inhibition; A, adult; DCS, D-cycloserine; MPEP, 
2-methyl-6-(phenylethynyl)-pyridine; PI3K, phosphoinositide 3-kinase; 5-HT, 5-hydroxytryptamine (serotonin); DA, dopamine; SL327, a-[amino[(4-aminophenyl)
thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile; P, postnatal day; EEG, electroencephalogram; D1-MSN, D1-dopamine receptor–expressing medium spiny 
neuron; NAc, nucleus accumbens; LTP, long-term potentiation; LTD, long-term depression; trans., transmission; CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)
benzamide; IGF1, insulin-like growth factor 1; TAT-p-cofilin, HIV TAT domain conjugated with phospho-cofilin; CA-Rac1, constitutively active Rac1; PFC, prefrontal 
cortex; KO, knockout; cKO, conditional knockout; KI, knock-in; HT, heterozygous.
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and study designs to date have presumably identified the low-hanging 

fruit or specific types of mutations (for example, de novo mutations 

with large effects), which may paint a skewed picture of the underlying 

biology. With these factors in mind we discuss the evidence for each, 

in turn, below.

Altered fetal cortical development. Both human genetic evidence and 

post-mortem studies indicate that ASD can be caused by dysregulation 

of fetal cortical development10,87–89. Neuropathological studies, albeit 

with small cohorts (fewer than 36 individuals per study), have identi-

fied a number of cortical abnormalities in individuals with ASD that 

may be caused by errors in cortical development—including decreased 

neuron size, increased neuron number, ectopic cells, misoriented pyra-

midal neurons, irregular lamination, reduction in white matter tracks 

and dendritic abnormalities10 (Fig. 2). A few small studies consistently 

report narrower and more densely packed cortical minicolumns (a basic 

processing unit of cortical circuits)104. Recently, patches of cortical cells 

lacking specific laminar markers were observed in a large proportion of 

ASD cases within a small cohort105, although the neurodevelopmental 

process that this abnormality corresponds to is unknown. Furthermore, 

smaller brain size at birth followed by overgrowth during childhood is 

a widely reported phenotype for individuals with ASD106, although its 

anatomical or cellular basis also remains undefined.

Studies in model systems have established a role for genetic mutations 

associated with major syndromic forms of ASD—including mutations 

in fragile X mental retardation 1 (FMR1), tuberous sclerosis 1 and 2 

(TSC1 and TSC2), phosphatase and tensin homolog (PTEN), contac-

tin associated protein-like 2 (CNTNAP2) and chromodomain helicase 

stem cell models suggest that abnormalities in neurogenesis, cell fate, 

neuronal morphogenesis and synaptic function contribute to the patho-

genesis of ASD (Table 2 and Supplementary Table 3). Transcriptomic 

studies in these models point to dysregulation in specific molecu-

lar processes that may be driving pathogenesis, including chromatin 

modifications, RNA-splicing, Wnt signaling and Ca2+ signaling96–99. A 

small number of drugs, including insulin-like growth factor 1 (IGF1) 

and roscovitine, have been used to reverse phenotypes associated with 

Rett syndrome, Timothy syndrome and Phelan-McDermid syndrome 

(PMDS) in hiPSC models99–102 (Table 2). Although promising, human 

in vitro studies using neurons derived from stem cells have focused on 

syndromic ASD variants, and thus, modeling of idiopathic ASD103 and 

ASD-associated de novo variants will be crucial to obtain a compre-

hensive picture of phenotypic overlap and potential, convergent disease 

mechanisms. A further challenge to in vitro studies is that it is not cur-

rently certain what the most relevant cellular and physiological ASD 

phenotypes are that need to be modeled in vitro. 

Several molecular or cellular mechanisms of ASD pathophysiology 

have multiple lines of supporting evidence from studies in humans or 

model systems (Table 3). Most of these mechanisms are individually 

quite broad and considerable work is needed to refine these models to 

targetable molecular pathways. Furthermore, these mechanisms are not 

entirely distinct. Indeed, the same genes or molecular pathways contrib-

ute to several of these processes at different points during development 

(Fig. 2), and it is not always clear how early developmental dysfunction 

relates to later events. An important caveat is that we only have a limited 

knowledge of the specific genetic contributions to autism susceptibility, 

BOX 2  Modeling ASD with mice

Mouse models provide an experimental platform for studying ASD at multiple levels, including molecular, cellular, circuit and behavioral 

analyses, and offer one of the few systems in which behavioral abnormalities and reversal by potential therapeutics can be tested 

before translating them to humans. A variety of established assays are now considered standard assessments for ASD-related behavioral 

phenotypes in mouse models93. The juvenile social interaction and three-chamber test, in which the time spent with a conspecific versus 

a novel object is measured, are widely used in both juvenile and adult mice to assess social interaction and social novelty recognition and 

is presumed to test behavioral correlates of social deficits in humans. The ultrasonic vocalization (USV) test measures the frequency and 

properties of vocal communication in multiple settings, including separation of pups from dams or adult males interacting with estrous 

females. Motor stereotypies, such as repetitive grooming, jumping and digging, are assessed by the marble-burying assay or home-cage 

behavioral analysis. Human correlates for restricted patterns of behavior and perseverance are tested by the alternating T-maze and reversal 

learning in the Morris water maze.

One serious challenge in neuropsychiatric disease is that the circuitry underlying social behaviors in most model systems or their human 

parallels are unknown. Moreover, many relevant phenotypes in humans are assessed via patient report, whereas internal states can only be 

inferred from outward behavior in animal models. Although these comorbidities are also observed in individuals with ASD, they confound 

interpretation. Sociability can be impaired by sensory dysfunction, fear and anxiety, learning deficits and abnormal locomotor activity, and 

similar cross-modal effects can influence repetitive behavior. Therefore, it is important to perform a full battery of behavioral tests, rather 

than to evaluate only core ASD-associated behaviors. Rigorous assessment of construct validity (whether a model recapitulates the genetic 

variant or mechanism of disease as in individuals with ASD) and convergent validity (whether application of more than one test in a given 

domain yields a high correlation among tasks) is critical to interpreting animal model behavioral data91.

Advantages and limitations of mouse models

Advantages Limitations

1. Homologs exist for most human genes. Reasonable degree of conservation of 
some relevant circuits (for example, cortico-striatal286).

1. Evolutionary distance, which manifests in many ways, including limited 
knowledge of the circuitry of social behaviors and its human counterparts, as 
well as the inability to model poorly conserved regulatory elements.

2. Practical, genetically tractable and cost-effective. Multiple ASD models  
displaying core phenotypes are available.

2. Certain behavioral phenotypes in neuropsychiatric disease are internal states, 
as assessed by patient report or not measurable in mice (language); however, 
some are inferred in mouse models on the basis of outward behaviors.

3. Well-established phenotypic batteries for core ASD phenotypes. 3. Assessment of core ASD phenotypes can be confounded by common comor-
bidities, including sensory dysfunction, learning deficits, locomotor dysfunction, 
fear and anxiety. Multiple tests are required for meaningful interpretation.

4. Uniquely accessible to multiple levels of experimentation: molecular,  
cellular, circuit and behavioral.

4. Invertebrate and other vertebrate models (for example, zebrafish) permit 
higher-throughput studies.
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dorsoventral patterning in the brain116,117. In mice, modulation of the 

Wnt pathway results in altered cortical neuronal production and ASD-

like social deficits118–121. Moreover, many of the ASD-related rare de 

novo mutations that are predicted to disrupt gene function are in genes 

also thought to regulate or have cross-talk with canonical Wnt signal-

ing and that are involved in chromatin modification and regulation of 

gene expression, such as CHD8, T-box brain 1 (TBR1), and members of 

the Brg1-associated factors (BAF) and mixed-lineage leukemia (MLL)  

complexes122–129 (Fig. 2). Recent work indicates that these genes are 

highly coexpressed in the human fetal brain during the period of neu-

DNA binding protein 7 (CHD7)—in fetal brain development107–111. A 

number of these syndromes are caused by loss-of-function variants in 

multiple genes that may converge in the mechanistic target of rapamycin 

(mTOR) pathway, which regulates cell proliferation, growth and neuro-

nal morphogenesis (Fig. 2)112,113. Indeed, PTEN mutations cause fore-

brain macrocephaly in both mice and humans, consistent with defects 

in corticogenesis51,114.

Similarly, ASD-associated genetic variants are enriched in genes 

involved in the Wnt pathway115 (Fig. 2), a regulator of the balance 

between radial glia self-renewal and neuronal differentiation, as well as 

Table 2  Human in vitro models of ASD

Syndrome Key gene
Modeled  
mutation

Cell 
model

Brain region 
or cell type Cell maturity Cellular phenotype(s) Suggested mechanism Rescue or treatment

ASD98 CHD8 CHD8 loss 
of function 
(shRNA)

iPSC Not defined NPC Dysregulated expression of 
genes related to neuronal  
development (RNA-seq)

CHD8 regulates different 
sets of genes associated 
with ASD by direct and 
indirect mechanisms

NA

PMDS102 SHANK3 22q11.3 iPSC Forebrain 
neurons

3 weeks, syn-
apses, electrical 
activity (APs, 
sEPSC, sIPSCs)

↓neuron production,  
= resting membrane  
potential, capacitance and  
APs, ↑input resistance,  
↓amplitude and frequency of 
sEPSCs, ↓AMPA and NMDA 
EPSC amplitude, = IPSC ampli-
tude and frequency, ↓AMPA 
and NMDA receptors. (WB),  
↓currents from focal AMPA 
or NMDA application, but not 
GABA, ↓excitatory synapse  
density, ↓SHANK3 expression

Reduced SHANK3 
expression leads to  
excitatory synapse  
dysfunction. IGF1  
promotes synapse  
maturation

SHANK3 expression: 
sEPSC amplitude and 
frequency, evoked 
AMPA (all cells) 
and AMPA + NMDA 
(partial) EPSC; IGF1: 
excitatory synapse 
density, sEPSC 
amplitude and fre-
quency, evoked EPSC 
amplitude (AMPA or 
NMDA), focal AMPA 
application (partial), 
focal NMDA appli-
cation (full), input 
resistance

Rett100 MECP2 T158M, 
Q244X, 
R306C, 
1155del32; 
MECP2-
specific 
shRNA, 
MECP2 
expression

iPSC Not defined NPC–8 weeks, 
synapses,  
dendritic spines, 
electrical activity 
(APs, sEPSCs, 
sIPSCs)

 = cell death, = GABAergic 
neuron number, = cell cycle 
progression, ↓soma size,  
↓dendritic spine density,  
↓synapse number, ↓activity 
(Ca2+ imaging), ↓sEPSC and 
sIPSC frequency and amplitude

Dysregulation in  
MeCP2 expression

MECP2 expression: 
synapse number. 
IGF1: synapse  
number. Gentamycin: 
MeCP2 levels and 
synapse number

Timothy99 CACNA1C 1216G->A iPSC Cortical neu-
rons (lower 
85% /upper 
15%)

NPC–45 d,  
electrical  
activity (APs)

= NPC proliferation, = neuron 
generation, = NPC migration, 
= AP amplitude or threshold, 
= resting membrane potential, 
input resistance or capaci-
tance, wider AP at midpoint, 
↑depolarization-induced Ca2+ 
rise, ↓in lower-layer neurons,

↑in upper-layer neurons, 
altered callosal/subcortical 
projection neuron production, 
↑in TH+ neurons and catechol-
amine secretion

Decreased CACNA1C 
inactivation leads to 
Ca2+ signaling dysregula-
tion, dysregulated gene 
expression and increased 
catecholamine synthesis 
in a subpopulation of 
cortical neurons

Roscovitine: propor-
tion of TH+ neurons

Non-syndromic103 Unknown NA iPSC 3D 
organoid

Dorsal  
forebrain  
neurons

Rosette–50 d, 
synapses,  
electrical  
activity (APs, 
sEPSCs)

 = neuron generation,

 = AP threshold; upregulation  
of neural cell fate, axon guid-
ance, synaptic and GABAergic 
genes, downregulation of 
non-neuronal genes, ↓ cell 
cycle length, ↑MAP2 density, 
↑inhibitory synapse density, 
↑GABAergic progenitor and neu-
ron production

Altered cell fate  
leading to increased  
production of  
GABAergic progenitors 
and neurons caused by 
FOXG1 upregulation

FOXG1-specific 
shRNA: DLX1, DLX2 
and GAD1 expres-
sion, GABAergic pro-
genitor and neuron 
production

Selected human in vitro syndromic and idiopathic models of ASD point to dysregulation in gene expression, neurogenesis and cell fate, and synaptic function in ASD. 
Rescued phenotypes are listed under the specific treatment or genetic manipulation. Upward and downward arrows signify an increase or decrease in the measured 
phenotype, respectively. Equal sign signifies no change in that phenotype. iPSC, induced pluripotent stem cells; NPC neural progenitor cell; PMDS, Phelan-McDermid 
syndrome; AP, action potential; EPSC, excitatory postsynaptic current; IPSC, inhibitory postsynaptic current; sEPSC, spontaneous excitatory postsynaptic current; 
sIPSC, spontaneous inhibitory postsynaptic current; IGF1, insulin-like growth factor 1; WB, western blot. References for each model are included in the first column.
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Genetic evidence for synaptic dysfunction is also supported by neu-

ropathological studies, providing suggestive evidence of increased spine 

density144,145, abnormalities in inhibitory function (such as reduced 

GABARs in the cortex and hippocampus146–149), abnormal mRNA 

expression of glutamate decarboxylase (GAD1 and GAD2) in the cor-

tex and cerebellum150–153, and downregulation of interneuron markers 

(such as parvalbumin (PVALB) and somatostatin (SST)) in post-mortem 

brains89. Impaired glutamatergic and GABAergic transmission, as has 

been reported in several mouse models of ASD, can result in ASD-

like behaviors that can be alleviated by modulators of AMPA recep-

tor (AMPAR), NMDA receptor (NMDAR) and GABAAR (Table 1).  

Similarly, human neurons derived from individuals with PMDS, a syn-

dromic form of ASD associated with deletions of SHANK3, have defi-

cits in excitatory (AMPAR- and NMDAR-mediated) transmission102. 

Together, these studies provide evidence that dysregulation in synap-

togenesis and synaptic transmission154 has a role in ASD (Fig. 2 and 

Tables 1 and 2).

The observation of defects in both glutamatergic and GABAergic 

synaptic function has led to the hypothesis that alterations in the excit-

atory/inhibitory (E/I) balance contribute to ASD. Consistent with this, 

mouse models with altered synaptic transmission or plasticity (activity-

dependent changes in synaptic strength usually related to learning and 

memory155,156) that are outside the normal range in either direction 

exhibit social dysfunction. Indeed, directly increasing the E/I ratio in 

the medial prefrontal cortex (mPFC) of the brain, using optogenetic 

stimulation, led to impaired social interactions in mice157.

However, E/I imbalance is a broad concept that is frequently observed 

in a wide variety of brain disorders including epilepsy, Alzheimer’s 

disease and schizophrenia158–160; therefore, the contribution of E/I 

imbalance to ASD pathophysiology requires considerable refinement. 

Identifying spatiotemporal dynamics of synaptic dysfunction in multiple 

ASD model systems may help to delineate this question—for example, 

rogenesis (4–24 weeks after conception)88,130 and are expressed in both 

neural progenitors and newly born neurons131, again implicating altered 

fetal cortical development, as mutations in these genes are expected to 

affect cortical development.

The CNS function of the majority of these chromatin-modifying 

genes and transcriptional regulators is mostly unknown, with the excep-

tion of the BAF complex, a multi-subunit chromatin-remodeling com-

plex that regulates neurogenesis and neuronal morphogenesis127. The 

ASD candidate gene SMARCC2, which encodes a subunit of the SWI/

SNF chromatin-remodeling complex, was shown to regulate cortical 

thickness by modulating neurogenesis132. In addition, TBR1 has a role 

in cortical deep layer neuron generation, and mice lacking Tbr1 have 

impaired callosal and thalamocortical axon projections128. Knockdown 

of CHD8 expression in human neural progenitors causes downregula-

tion of genes governing cell adhesion, neuronal differentiation and axon 

guidance, the Wnt pathway and genes related to chromatin modification 

that are enriched in de novo ASD variants98,133. Moreover, individuals 

with LGD mutations in CHD8 have macrocephaly, consistent with its 

reported function as a regulator of Wnt signaling, which is known to 

regulate brain size via regulation of neurogenesis80,134.

Synaptic dysfunction. Mutations in genes encoding excitatory 

and inhibitory synaptic cell-adhesion molecules (including neurex-

ins43,73,74,135,136 and neuroligins137), excitatory synaptic scaffolding 

molecules (including the SH3 and multiple ankyrin-repeat domain 

(SHANK) proteins43,74,138,139), the excitatory glutamatergic receptor 

GRIN2B43,44,73 and inhibitory GABAergic receptor (GABAR) sub-

units43,73,140, and exonic deletions in the gene encoding the inhibitory 

synaptic scaffolding molecule gephyrin (GPHN)43,141, are associ-

ated with ASD in multiple unbiased and targeted sequencing studies. 

Neurotransmitter release regulators including the synaptotagmins43,45,47 

and synapsins43,142,143 also harbor mutations, but so far there is less 

statistical support for their involvement in ASD.

BOX 3  Human in vitro models of ASD

The need for human models of brain development and function is supported by a growing list of differences between rodents and 

humans212,287, a poor track record in drug development92 and the scarcity of human tissue, especially representing the period of disease 

onset10. Human neural stem cells overcome the species barrier, provide a high-throughput experimental platform for drug discovery 

and phenotypic screening, and could potentially be used in isogenic cell-based therapies. To gain meaningful insights into disease 

mechanisms, the differentiation of neural progenitors into specific neuronal subtypes of sufficient maturity is necessary116,288; however, 

cell identity and maturity have not been consistently assessed in human neural stem cell models of ASD (Table 2 and Supplementary Table 3), 

with all but a few studies using markers to rigorously define the populations of the cells under study99,101–103,289,290. Human stem cell–derived 

neurons are immature, approaching fetal stages of development even after prolonged in vitro culture, thus limiting their potential to model 

synaptogenesis and synaptic function130,291–294. Unbiased genome-wide frameworks can be applied130 to measure the extent to which in 

vitro models recapitulate in vivo development and to assess their neuroanatomical identity and maturity. Thus, this and other studies295 

point to the validity of using neural stem cells to model early stages of human corticogenesis that are predicted to be dysregulated in 

ASD88,296. Advances in 3D organoid culture systems, organotypic slice culture and cell engraftment into rodent models may provide 

avenues for studying cortical lamination, circuit connectivity and more mature stages, including synaptic function290,297–300.

Advantages and limitations of human in vitro models

Advantages Limitations

1. Genomic conservation not an issue; allows for modeling of coding and non-
coding variants.

2. One of the few living systems in which human brain development can be 
studied.

3. High experimental tractability, including genetic manipulation, neuronal 
physiology and the potential for high-throughput assays for phenotypic screen-
ing and drug discovery.

4. Neurons derived directly from affected individuals (iPSCs) can be used to 
model disease without knowing the causal or contributory genetic variants.

1. Culture variability, heterogeneity and reproducibility issues arising from 
multiple sources, including culture methodology and differences in lines and 
clones used.

2. Cultures to date produce immature fetal-like neurons, limiting their potential 
to properly model later developmental stages.

3. Neuronal migration, cortical lamination, projection patterns and circuit-level 
organization are difficult to model in 2D cultures. Tissue engineering and 3D 
organoid cultures will enable the study of some of these phenotypes.

4. So far, mostly limited to syndromic ASD or small cohorts of idiopathic ASD.

5. As a fundamentally in vitro system, in vivo connectivity and external milieu 
are not preserved; thus findings may not precisely translate to in vivo biology.
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deficits were also observed in Tsc2+/- mice, which were restored by treat-

ment of the mice with the mTOR inhibitor rapamycin144.

Many genes known to be associated with an increased risk for ASD 

(which we refer to as ASD risk genes) are also predicted to be tran-

scriptionally co-regulated by MEF2A, MEF2C and SATB homeobox 1 

(SATB1), and to be translationally regulated via FMRP, further impli-

cating activity-dependent gene regulation as a potential convergent 

mechanism in ASD pathogenesis88. How changes in synapse dynam-

ics that are under the control of ASD risk genes lead to the specific 

behavioral deficits observed in model systems and humans with ASD 

is a critical area of investigation. One can speculate that even small 

changes in synaptic function and timing will preferentially disrupt the 

connectivity of higher-order association areas that mediate social behav-

ior, which include the frontal-parietal, frontal-temporal and frontal-

striatal circuits11,194. Identification of the spatiotemporal dynamics of 

transcriptional and translational regulation and the subsequent changes 

in micro- and macro-circuit connectivity will be necessary to link syn-

aptic dysfunction to complex behavioral traits in individuals with ASD.

Altered neural circuitry. Human cognitive neuroscience and neu-

roimaging in ASD have been extensively reviewed elsewhere195–197. 

Neuroimaging and neuropathology studies in humans suggest that 

changes occur both in resting state network activity and alterations in 

macro-circuit connectivity within the cortex and in cortico-striatal cir-

cuits198–203. The only study using systematic imaging phenotyping in 

ASD mouse models highlighted the parieto-temporal lobe, the cerebellar 

cortex, the frontal lobe, the hypothalamus and the striatum as the most 

affected regions, which were shared across many of the 26 models exam-

ined204; however, not all mouse models showed structural phenotypes, 

including mice lacking Cntnap2, which had normal gross anatomy.

The brain circuitry underlying social behavior in mice is not yet well 

defined. In addition to frontal circuits, cerebellar function has also been 

implicated in social behavior. Cell type–specific knockout of Tsc1 in 

cerebellar Purkinje cells was sufficient to elicit core ASD-like behavior 

in mice183, providing experimental evidence that cerebellar dysfunc-

tion can lead to ASD-like social deficits in mice. Systemic analysis of 

cerebellar function in five ASD mouse models has identified defects in 

cerebellum-dependent learning, although the functional implication of 

cerebellar dysfunction in core ASD behaviors remains to be identified205. 

In fact, developmental injury in cerebellar circuitry may increase ASD 

risk 36-fold, whereas adult injury does not lead to social dysfunction206, 

suggesting that the cerebellum may not be the direct neural correlate of 

social behavior, but that instead cerebellar injury during early develop-

ment may lead to a cascade of long-term deficits in cerebellar-associated  

targets, leading to the core behavioral deficits observed in ASD. 

Therefore, comprehensive mapping of developmental circuit forma-

tion will be essential to finding the neural correlates of social behavior.

The amygdala is another candidate region that may be affected in 

ASD because of its role in modulating fear and social behavior202,207,208. 

Tbr1+/– mice have defective amygdala axonal projections and neuronal 

activation. Notably, direct infusion of d-cycloserine, a partial agonist 

of NMDAR, to basolateral amygdala restored social deficits of Tbr1+/– 

mice170, even though Tbr1 has an established role in deep-layer neuron 

generation and cortical lamination.

In contrast to social behavior, the neuroanatomical substrate for 

repetitive behavior is better understood in both mice and humans. 

Several lines of evidence suggest that striatal dysfunction is a neural 

substrate for repetitive behavior and motor routine learning in mice 

and in humans209. Mice lacking Shank3b showed striatal dysfunction, 

including striatal hypertrophy, and reduced cortico-striatal excitatory 

synaptic transmission along with repetitive behavior210. Mice lacking 

Nlgn3 display stereotyped motor routines that are dependent on inhibi-

whether there is a critical period for an E/I imbalance that mediates 

ASD-associated behavior, or whether the E/I imbalance in ASD is circuit 

specific. Furthermore, an E/I imbalance may arise not only from changes 

in synaptic physiology but also from altered cell fate that can lead to 

abnormal proportions of inhibitory and excitatory cells, as evidenced 

by recent findings in human in vitro models103 (Table 2 and Fig. 2). 

This further highlights how early developmental abnormalities may have 

repercussions later on. It is also important to note that E/I imbalance 

studies have mainly been carried out in animal models, hence a detailed 

evaluation of when, where and how an E/I shift contributes to the ASD 

phenotypes in humans is warranted161–163.

Activity-dependent transcription and translation. In neurons, gene 

transcription and protein translation are dynamically regulated by 

neuronal activity, creating spatially or contextually restricted gene 

expression within subcellular compartments164,165. Disruptions in activity- 

dependent transcriptional regulators or their targets are associated 

with ASD. These include mutations in methyl-CpG–binding protein 2 

(MeCP2)166 and calcium channel, voltage-dependent L-type, alpha 1C 

subunit (CACNA1C)167; de novo mutations in the neuronal activity-

induced transcription factor myocyte enhancer factor 2C (MEF2C)168; 

abnormal imprinting and microdeletion of MEF2-regulated ubiquitin-

protein ligase E3A (UBE3A) (which causes Angelman syndrome169) 

or duplication (dup) 15q11-q13 syndrome (which also encompasses 

UBE3A); and de novo mutations in TBR1, whose product is required for 

activity-dependent Grin2b expression170,171. Studies with iPSCs derived 

from individuals with Timothy syndrome demonstrate that CACNA1C 

regulates a network of genes involved in synaptic function96,99. 

Moreover, targets of Mef2 (such as activity-regulated cytoskeleton- 

associated protein, Arc172, and brain-derived neurotrophic factor, 

BDNF173), Mecp2 (such as BDNF174) and Tbr1 (such as Grin2b171) 

have established roles in synaptic transmission and plasticity, thus 

providing a point of mechanistic convergence between distinct genetic 

etiologies of ASD (Fig. 2). IGF1 treatment rescued core ASD behaviors 

that are present in untreated Mecp2y/- (refs. 175,176) and Shank3+/- 

mice177, as well as synaptic defects in iPSCs derived from subjects with 

PMDS102, presumably via cross-talk with activity-dependent signaling 

pathways175,178 (Fig. 2).

Mutations in TSC1 and TSC2, which encode canonical components 

of the mTOR pathway113, support dysregulation of neuronal transla-

tion in individuals with ASD179. Other ASD risk loci, including FMR1, 

which encodes fragile X mental retardation protein (FMRP) that also 

regulates neuronal translation180, and dup15q11-q13, which contains 

the FMRP interactor and translational repressor cytoplasmic FMR1-

interacting protein 1 (CYFIP1)181,182, also suggest convergence on neu-

ronal translational regulation (Figs. 1 and 2). Consistent with this, mice 

with disruptions in mTOR signaling or translation initiation have core 

ASD behaviors144,183–187 (Table 1), possibly through the modulation 

of translation of neuroligin 2 (Nlgn2), neurexin 1 (Nrxn1) and Shank3 

through Fmrp188, a point of molecular convergence between synaptic 

function and translational regulation. Further, metabotropic glutamate 

receptor (mGluR) activation modulates FMRP-mediated translational 

inhibition and FMRP modulates AMPAR trafficking and mGluR- 

mediated LTD189, emphasizing the cross-talk between synaptic plasticity 

and translational control.

Activity-dependent transcription and translation also regulate synap-

tic pruning and stability190,191. Increased dendritic spine density in the 

temporal lobe of individuals with ASD has been reported, although the 

cohorts have been very small144,145. Mef2 and Fmr1 cooperatively modu-

late synapse elimination192, and Mef2 has a crucial role in mGluR5-

mediated synapse elimination by stimulating the expression and 

dendritic translation of the Mef2 target gene Arc193. Spine-elimination 
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needed to relate neuroanatomical traits to the candidate brain circuits 

implicated in ASD pathogenesis. Moreover, given the developmental 

stage–related manifestations of ASD, the temporal trajectory of neural 

circuitry abnormalities and the developmental disconnectivity in ASD 

warrants study. Recent advances in connectomics213,214 and optogenet-

ics215,216 may help in delineating the functional neural correlates for core 

ASD-associated behaviors, thus providing therapeutic opportunities.

tory transmission by D1-dopamine receptor–expressing medium spiny 

neuron (D1-MSNs) in the nucleus accumbens211.

How these mouse phenotypes relate to human circuits is not well 

understood, and because many of the implicated brain regions in 

humans, such as the frontal and temporal lobes, have undergone massive 

changes during primate evolution212, additional comparative studies, 

which may involve primate models in addition to mouse models, are 

Table 3  Evidence for distinct neurobiological mechanisms in ASD

Brain region and  
mechanism Supporting evidence Caveats and limitations Treatment potential

Neocortex

Brain overgrowth • Multiple studies with large cohorts measur-
ing brain size (MRI) and head circumference

• Mutations in genes controlling neurogenesis 
and growth (Fig. 2)

• Small effect size (2 mm)

• Potential bias in measurements

• Incomplete understanding of biological 
mechanism. Evidence for both white and gray 
matter origin

• Limited. Targeting key pathways potentially 
risks broad developmental problems

• Rapamycin treatment reversed macrocephaly 
in a mouse model184

Altered cortical cytoar-
chitecture (neuron size, 
number, positioning 
and/or orientation)

• Cumulative evidence from >12 neuropatho-
logical studies

• Mutations in genes controlling neurogenesis, 
growth and neuronal migration (Fig. 2)

• Modeling in mice consistent with observed 
phenotypes (Table 1)

• Small cohorts. No systematic assessment of 
the same brain regions and phenotypes

• Multiple phenotypes; none unique to ASD

• Limited. Targeting key pathways potentially 
risks broad developmental problems

Neuronal

morphogenesis

• White matter reduction in neuropathological 
studies. Narrow minicolumns and altered con-
nectivity in cortical circuits

• Mutations in genes controlling axon growth 
or guidance and dendrite arborization (Fig. 2)

• Small cohorts. Limited number of studies • Limited. Targeting key pathways will prob-
ably lead to broad developmental problems

• Rapamycin successfully used in rescue 
experiments in mice184,240

Synaptogenesis • Increased layer-specific dendritic spine den-
sity in frontal (L2), parietal (L2) and temporal 
lobes (L2, L5)144,145

• Mutations in genes converge in pathways 
regulating synaptogenesis (Fig. 2)

• Increased spines and upregulated spine 
dynamics in some mouse models192,193,283

• Only two studies with small cohorts144,145

• Unclear mechanism: both increase and 
decrease in synapse density reported in  
mouse models (Table 1)

• Promising. Phenotypic reversal possible in 
postnatal periods

• IGF1 successfully used in rescue experi-
ments in hiPSC100,102

• PI3K antagonists rescue FXS-associated 
increased spine density in mice271

Synaptic dysfunction

E/I imbalance

• Decreased GABA receptor density and 
altered GAD1 and GAD2 levels. Functional 
imaging studies identify local hyperconnectiv-
ity and decreased long-range connections

• Mutations in genes converge in pathways 
regulating synaptic function (Fig. 2)

• Mouse models support disruption in E/I 
balance leads to ASD phenotypes (Table 1). 
Increasing E/I in prefrontal cortex using opto-
genetics leads to social deficits157

• Poorly documented in neuropathological 
studies. Small cohorts

• Unclear mechanism: both increase and 
decrease in excitatory synaptic function 
reported with and without concomitant 
inhibitory compensation. Multiple molecular 
mechanisms leading to synaptic dysfunction, 
including altered translation, Ca2+ signaling 
and activity-dependent transcription (Fig. 2)

• Promising. Phenotypic reversal possible in 
postnatal periods

• IGF1 rescues phenotypes in mouse models 
and hiPSC100,102,177

• Positive allosteric modulators for GABAA 
receptor239, mGluR5 antagonists and 
agonists230,232,233, NMDAR partial ago-
nist170,232, and blockers of NKCC1 cation-
chloride cotransporter251 restored behavioral 
deficits in mice

Cerebellum

Purkinje cell (PC)  
loss and dysfunction

• Reported decrease in PC size and number. 
Motor coordination problems in ASD

• PC-specific ablation of ASD risk gene Tsc1  
in mice recapitulates core ASD phenotypes 
and PC degeneration183

• Developmental cerebellar injury increases 
ASD risk206

• Small cohorts. Limited number of studies. 
Gliosis observed in most

• Global gene expression profiles between  
cerebellums of control subjects and those  
with ASD very similar89

• Limited knowledge of the role of the cerebel-
lum in ASD behavioral domains

• Promising. Postnatal cerebellar development 
increases therapeutic potential

• Rapamycin successfully used in rescue 
experiments in mice183

Widespread

Neuron-glia signaling • Reported increased microglia infiltration and 
astrogliosis in multiple brain regions (neuropa-
thology and PET imaging)

• Post-mortem transcriptome identifies 
increased microglial and immune signa-
ture89,223

• Role of microglia and astrocytes in regulat-
ing synapse formation, function and pruning. 
Disrupted neuron-microglia signaling in mice 
leads to social deficits225

• Small cohorts. Limited number of studies

• Lack of genetic evidence suggests a reac-
tive role

• Limited characterization in ASD mouse 
models

• Untested, but promising

• Microglia- and astrocyte-specific rescue 
experiments in Rett mouse models rescues 
disease phenotypes284,285

Neuropathological and neuroimaging findings discussed here were recently reviewed10. See the section titled ‘Neurobiological models and mechanisms of ASD’ for 
additional references and detailed information on the genetic evidence and the function of specific genes involved in each biological process. hiPSC, human induced 
pluripotent stem cells; MRI, magnetic resonance imaging; PET, positron emission tomography; FXS, fragile X syndrome; IGF1, insulin-like growth factor 1; PC, 
Purkinje cell.
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strains are important issues that should be addressed to increase the 

therapeutic utility of animal models254–256. Even when mouse models 

suggest a potential mechanism or therapeutic avenue, caution should 

be exercised in translating animal studies to humans. The efficacy of 

mGluR5 antagonists and oxytocin, which showed promise in mouse 

models, is uncertain following clinical trials in humans257–260. It is 

unknown whether these failures are due to inadequate trial design and 

outcome measures, the lack of appropriate target engagement or sim-

ply choosing the wrong target261. It should be noted that the outcome 

measurements used in clinical trials are often not the same as those in 

animal models. This emphasizes the importance of understanding the 

factors that lead to variable results. Social behavior is particularly vexing 

in this regard, as its environmental context and the state of the subject 

are so important, both in humans and in model organisms. In addition 

to genetic background effects, how the animals are housed and treated, 

when they are tested and who the examiner is can have profound effects 

on the outcome262. The development of objective scoring systems, as 

well as the identification of measurable biomarkers and endopheno-

types (for example, EEG, magnetic resonance imaging (MRI) scans and 

molecular profiles) will help in more accurate cross-species assessment 

of the therapeutic effects.

Conclusions and future directions

Genetic evidence frames ASD not as a single disease but as a number of 

etiologically distinct conditions with diverse pathophysiological mecha-

nisms that lead to similar behavioral manifestations. This is supported by 

mouse models, which demonstrate that multiple mechanisms can lead 

to parallel outward social deficits. At the same time, the convergence of 

risk variants in molecular pathways and the identification of common 

transcriptomic signatures in brains from subjects with ASD argue for an 

unexpected degree of convergence at the molecular and cellular levels. 

Genetic findings now provide a firm causal foundation on which to 

understand the relationship of molecular pathways with cellular and cir-

cuit dysfunction, and ultimately with behavior. Furthermore, although 

little is known about the mechanisms of increased male prevalence, 

genetic models provide a route for identifying and testing the role of 

potential female protective factors, which could provide new therapeutic 

opportunities14,263. Finally, evidence for several models based on mater-

nal environmental factors, such as infection and the gut microbiome, 

are also growing253, but their definitive causal role in ASD and their 

relationship to genetic risk factors warrant further definition.

Work in animal models and in human cell lines supports some of 

the observations in post-mortem human brains and in clinical studies; 

yet we are far from parsimonious explanations. Microglial activation 

is variably observed in brains from individuals with ASD, along with a 

deficit in synaptic pruning. Conversely, a mouse model with a reduction 

in microglia displays deficits in synaptic pruning225. Understanding the 

role of glial cells in synaptic homeostasis and their adaptive or maladap-

tive roles in brains from subjects with ASD are thus important goals with 

significant therapeutic implications.

Interdisciplinary approaches combining genetics, functional genom-

ics, experimental modeling and ultimately their integration into cohe-

sive biological models, in line with those that are developing in cancer, 

may help drive therapeutic innovations264. The road ahead necessitates 

advances in each of these approaches. We must gauge where to put our 

resources for genetic discovery. Lessons from other common neuropsy-

chiatric disorders suggest that large cohorts (>50,000 subjects) are needed 

to identify predicted common variants6. The success of identifying  

de novo variants should not occlude the efforts of identifying inherited 

variants. Shared resources, such as single-cell transcriptomes and expres-

sion quantitative trait loci (eQTL) studies at relevant epochs, will provide 

Dysregulated neuron-glia signaling and neuroinflammation. Another 

consistently reported observation in brains from individuals with ASD 

is the presence of activated microglia and astrocytosis in multiple brain 

regions (Fig. 2). Neuropathological and positron emission tomogra-

phy (PET) imaging studies have identified microglial infiltration and 

activation in the frontal, prefrontal, cingulate, frontoinsular and visual 

cortices and in the cerebellum217–220. Astrocytosis has been observed 

in the frontal, parietal, cingulate and temporal cortices and in the cer-

ebellum220–222. Alongside these observations, transcriptomic studies in 

post-mortem brains consistently find that genes enriched in activated 

microglia and astrocytes are upregulated in the cortex of brains from 

individuals with idiopathic ASD, and to a lesser extent in the cerebel-

lum89,223. No studies have identified causal genetic variants associated 

with ASD in microglia- or astrocyte-specific genes, which combined 

with transcriptomic and genetic evidence suggests that this process is 

most likely a reaction or a secondary process coupled to underlying 

synaptic dysfunction89. However, the lack of primary genetic evidence 

for association with ASD does not reduce the value of these microglial or 

astrocyte pathways as potential therapeutic windows to explore. Notably, 

knockdown of chemokine (C-X3-C motif) receptor 1 (CX3CR1), which 

is not mutated in individuals with ASD, leads to a reduction in microglia, 

deficits in synaptic pruning and ASD-like behavioral and functional 

connectivity defects224,225. Thus, synaptic dysfunction in individuals 

with ASD could also arise from dysregulated synaptic pruning and 

homeostasis that is promoted by a vicious cycle of microglial and astro-

cyte upregulation. Because astrocytes and microglia regulate synaptic 

development and pruning226–228, this may provide another opportunity 

for therapeutic development. Mouse models have not been rigorously 

assessed for microglial activation, but given the observations in human 

brain, this should be done.

Therapeutic strategies

Currently, the following major molecular pathways have been primar-

ily targeted in model systems to evaluate novel therapeutic strategies. 

The E/I imbalance hypothesis highlights glutamatergic and GABAergic 

receptor modulators as potential therapeutic strategies; roscovitine, 

mGluR5 antagonists and agonists, NMDAR agonists and GABAAR 

agonists have shown varying degrees of preclinical efficacy in mouse 

models, including the alleviation of social deficits or repetitive behavior 

(Table 1 and Supplementary Table 2)170,229–239. Translational inhibition 

by eukaryotic translation initiation factor (eIF) 4E and eIF4G interac-

tion inhibitor (4EGI-1) and rapamycin have been effective in alleviating 

behavioral and neuronal phenotypes in models with perturbations in the 

mTOR pathway144,183–186,240–242. Transcriptional modulation through 

phosphatidylinositol 3-kinase (PI3K) and Ras signaling by IGF1 and 

BDNF also showed efficacy by rescuing physiological and behavioral 

abnormalities in some models, including in Mecp2-null mice175–

177,243,244. Treatment with clenbuterol and fingolimod also alleviated 

behavioral deficits in Mecp2-null mice by increasing levels of BDNF 

and IGF1 (refs. 245,246). Treatment with oxytocin, a neuropeptide 

involved in the modulation of various aspects of social behavior247,248, 

ameliorated ASD-like social deficits in several mouse models249–251 and 

has been implicated in improving information transfer by modulating 

inhibitory transmission252. In addition to these genetic models, strik-

ing evidence for a role of the gut microbiome in brain development 

and function has been demonstrated. Oral treatment of mice with 

Bacteroides fragilis restored social behavioral abnormalities in maternal 

immune activation (MIA) models253, but the direct relevance to various 

forms of human ASD has not yet been established. 

The lack of consistency in experimental findings between differ-

ent laboratories and the genetic background effects of different mouse 
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critical support to molecular pathway analysis that can bridge genetics, 

animal model and human studies.

Translating mechanistic understanding that is derived from model 

systems faces many challenges. One of them is understanding the opti-

mal timing for treatment249. Model systems based on neurodevelopmen-

tal syndrome genes demonstrate the ability to reverse certain deficits 

in adults, providing important hope that treatment long after birth can 

be efficacious. Yet, given the developmental roles of many ASD risk 

genes, we must acknowledge that there may be critical periods for cer-

tain treatment modalities249,265. Another important avenue is develop-

ing human biomarkers that are robust and, optimally, have parallels in 

animal models. These are challenging problems to be faced with, but 

they underscore the extraordinary recent progress in defining both the 

causes and mechanisms of ASD and a number of plausible routes toward 

developing more effective treatments.
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