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Abstract

The promises of data-independent acquisition (DIA) strategies are a comprehensive and 

reproducible digital qualitative and quantitative record of the proteins present in a sample. We 

developed a fast and robust DIA method for comprehensive mapping of the urinary proteome that 

enables large scale urine proteomics studies. Compared to a data-dependent acquisition (DDA) 

experiments, our DIA assay doubled the number of identified peptides and proteins per sample at 

half the coefficients of variation observed for DDA data (DIA = ~8%; DDA = ~16%). We also 
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tested different spectral libraries and their effects on overall protein and peptide identifications and 

their reproducibilities, which provided clear evidence that sample type-specific spectral libraries 

are preferred for reliable data analysis. To show applicability for biomarker discovery experiments, 

we analyzed a sample set of 87 urine samples from children seen in the emergency department 

with abdominal pain. The whole set was analyzed with high proteome coverage (~1300 proteins/

sample) in less than 4 days. The data set revealed excellent biomarker candidates for ovarian cyst 

and urinary tract infection. The improved throughput and quantitative performance of our 

optimized DIA workflow allow for the efficient simultaneous discovery and verification of 

biomarker candidates without the requirement for an early bias toward selected proteins.
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INTRODUCTION

Urine is of particular interest for proteomic biomarker discovery studies as urine has several 

advantages over, for example, physiologically active blood-derived body fluids such as 

serum or plasma including (1) superior stability as the easily degradable proteins are 

proteolyzed during the prolonged “storage” at body temperature; (2) lower biohazard as 

bloodborne pathogens including HIV or M. tuberculosis have a much lower titer in urine; (3) 

excellent availability as urine is easily and noninvasively obtainable in large amounts; and 

(4) smaller analytical challenge as the urinary proteome is characterized by lower 

complexity and dynamic range. The urinary proteome comprises proteins from the blood 

that passed the glomerular barrier of the kidney as well as proteins secreted or shed by the 

kidney and genitourinary organs, which are in direct contact with the urine. Thus, urine is a 

systemic body fluid reflecting the state of the entire organism as well as a proximal body 

fluid for the kidney and genitourinary tract with obvious potential as a source for biomarkers 

of, for example, renal diseases (reviewed in ref 1). The systemic nature of urine has been 

exploited in studies aiming at identifying urinary biomarkers for a wide range of diseases 

unrelated to the kidney or the genitourinary tract including (but not limited to) Kawasaki 

disease,2 coronary artery disease,3 prostate cancer,4 appendicitis,5 tuberculosis,6 and major 

depressive disorder.7 Attempts to map the urinary proteomes date back to at least 2001 when 

Spahr and colleagues identified 124 proteins.8 Since then, the field has evolved allowing for 

the routine identification of 1000+ proteins in a single urine samples and more than 2500 
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proteins when using prefractionation and combining the proteomic data from several urine 

specimens.9 This relatively low number of proteins has been consistent across numerous 

extensive urine proteomics studies, suggesting that the vast majority of the accessible 

urinary proteome is covered by these ~2500 proteins. Thus, the urinary proteome lends itself 

to be analyzed without any prefractionation in a single liquid chromatography–mass 

spectrometry (LC–MS) experiment when using state-of-the-art instrumentation.

Leveraging the unique characteristics of urine as a promising source for clinically relevant 

biomarkers, we aimed at developing a robust method for the comprehensive mapping of the 

urinary proteome that enables large scale urine proteomics studies requiring fast, accurate, 

and reproducible quantitation across many samples. This need for robust quantification of 

thousands of features raises the question as to whether data-dependent acquisition (DDA) 

routines are the appropriate choice given the stochastic aspect of the precursor ion 

selection,10 which is particularly problematic for unfractionated samples of high complexity 

resulting in noticeable undersampling.11 This undersampling, in turn, leads to a large 

number of missing data points, which poses a particular problem for the discovery and initial 

verification phases where it is crucial to distinguish between a peptide signal being truly 

absent for biological reasons or simply missing due to the limitation in the acquisition 

method. A typical way to overcome this problem is the use of targeted acquisition methods 

such as selected reaction monitoring (SRM).12 In such targeted acquisition method, a select 

set of easily detectable, that is, “proteotypic”,13 peptides of the protein of interest are 

monitored, which allow very sensitive, accurate, and precise protein quantification in urine 

samples across several orders of magnitude.14 The drawback is that only the targeted, that is, 

preselected, set of peptides/proteins can be quantified, potentially missing biomarker 

candidates that were not identified as such in the initial discovery experiment. Additionally, 

the development of the SRM assay can be a very time-consuming undertaking and needs to 

be optimized for each protein individually.

Recent studies showed that data-independent acquisition (DIA) methods can overcome 

several of the limitations associated with DDA, resulting in SRM-like quantification for 

thousands of proteins with fewer missing values.15 In contrast to SRM experiments, in 

which the analytes have to be preselected prior to the data acquisition, a DIA data set is most 

commonly analyzed with a spectral library comprising a list of peptides from previously 

identified proteins.15a This strategy also allows for revisiting old data sets to quantify 

initially missed biomarker candidates with SRM-like precision.

Here, we evaluate the use of DIA methods on the newest generation quadrupole Orbitrap 

instrument, the Q Exactive HF mass spectrometer,16 for urine protein biomarker discovery, 

with particular emphasis on effect of spectral library on the data analysis, DIA data 

reproducibility, and quantitation precision. The optimized DIA workflow was subsequently 

applied to the analysis of 87 urine samples from pediatric patients visiting the emergency 

room (ER) because of abdominal pain. In this proof of concept study, we focused on patients 

that were diagnosed with ovarian cyst (12 patients) and urinary tract infections (UTI, 11) and 

combined other causes in a symptomatic control group (64), representing the intended use 

population.
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MATERIALS AND METHODS

Urine Sample Collection

Urine samples were collected from consenting patients visiting the ER at Boston Children’s 

Hospital in Boston, MA, USA. Samples were taken before final diagnosis of the patients. 

The study was reviewed and approved by Boston Children’s Hospital’s Internal Review 

Board (Protocol Number: X06–10–0493).

Sample Preparation/Digestion

Samples were prepared using the in-house developed MStern blot protocol.17 In brief, 

undiluted neat urine (150 μL, i.e., ~15 μg of protein) was added to a mixture of 150 μg of 

urea and 30 μL of dithiothreitol (DTT) (100 mM in 1 M Tris/HCl pH 8.5). The samples were 

incubated for 20 min, and the cysteine residues were blocked with 50 mM iodoacetamide for 

20 min in the dark. Afterward, samples were transferred into a 96-well plate with a PVDF 

membrane at the bottom (MSIPS4510, Millipore). Protein digestion was performed with 

sequencing-grade trypsin (V5111, Promega) at a nominal enzyme to substrate ratio of 1:15. 

After incubation for 2 h at 37 °C in a humidified incubator, the remaining digestion buffer 

was evacuated. Resulting peptides were eluted twice with 150 μL of 40% ACN (v/v)/0.1% 

(v/v) formic acid (FA) each, and the solutions were pooled and subsequently dried in a 

vacuum concentrator. For DDA experiments, iRT peptides (Biognosys, Schlieren, 

Switzerland) were spiked into the sample, and for the DIA experiments, HRM calibration 

peptides (Biognosys) were added to the samples prior to analysis according to manufacturer 

instructions.

DDA Sample Analysis and Database Search

For the spectral library, all 87 samples were analyzed using a nanoLC system (Eksigent, 

Dublin, CA) equipped with a LC-chip system (cHiPLC nanoflex, Eksigent, trapping 

column: Nano cHiPLC Trap column 200 μm × 0.5 mm Reprosil C18 3 μm 120 Å, analytical 

column: Nano cHiPLC column 75 μm × 15 cm Reprosil C18 3 μm 120 Å) coupled online to 

a Q Exactive mass spectrometer (Thermo Scientific, Bremen, Germany). Peptides (4 μL of 

digest) were separated by a linear gradient from 93% buffer A (0.2% FA in water)/7% buffer 

B (0.2% FA in ACN) to 75% buffer A/25% buffer B within 75 min. The mass spectrometer 

was operated in data-dependent TOP10 mode with the following settings: mass range 400–

1000 Th; resolution for MS1 scan 70 000 @ 200 Th; lock mass: 445.120025 Th; resolution 

for MS2 scan 17 500 @ 200 Th; isolation width 1.6 Th; NCE 27; underfill ratio 1%; charge 

state exclusion: unassigned, 1, >6; dynamic exclusion 30 s.

Additionally, a subset of randomly chosen 23 samples was analyzed on Q-TOF mass 

spectrometer (Sciex, TripleTOF 5600) using the same LC setup and gradient as described 

earlier of the Q Exactive-based analysis. The mass spectrometer was operated in data-

dependent TOP50 mode with following settings: MS1 mass range 400–1000 Th with 250 ms 

acc. time; MS2 mass range 100–1700 Th with 50 ms accumulation time and following MS2 

selection criteria: UNIT resolution, intensity threshold 100 cts; charge states 2–5. Dynamic 

exclusion was set to 17 s.
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The human UNIPROT protein sequence database (only reviewed entries, downloaded on 

October 31, 2014) was searched with MaxQuant (v1.5.0.0)18 directly using the .RAW 

and .WIFF files. The protein sequence database was appended with common laboratory 

contaminants (cRAP, version 2012.01.01) and the iRT fusion protein sequence (Biognosys) 

resulting in 20 296 entries. The following settings were applied: trypsin with up to two 

missed cleavages; mass tolerances set to 20 ppm for the first search and 4.5 ppm for the 

second search for the Q Exactive data and 0.1 Da for the first search and 0.01 for the main 

search for the TripleTOF 5600 data. Oxidation of M was chosen as dynamic modification 

(+15.995 Da) and carbamidomethylation of C as static modification (+57.021 Da). False 

discovery rate (FDR) was set to 1% on peptide and protein level. For the analysis of the 

DDA replicate data, the matching option was used. For all other search parameters, the 

default settings were used.

To generate a spectral library for the analysis of the UTI samples, we searched these DDA 

files against a concatenated human (as described earlier), Escherichia coli, and 

Staphylococcus saprophylicus database (both downloaded from uniprot.org on December 4, 

2014); this combined database featured in total 27 005 entries.

Generation of Spectral Libraries

For spectral library testing, two libraries were generated using data from those 23 samples 

that were analyzed on both the Q Exactive and the TripleToF 5600 Q-TOF instrument. Two 

spectral libraries were generated in Spectronaut 7.0 (Biognosys) using a Q value cutoff of 

0.01 and minimum of three and a maximum of six fragment ions. Proteins were grouped 

according to the MaxQuant search result. Library 1 was based on the Q Exactive data 

(Supplementary Table 1A) and library 2 on the TripleToF 5600 data (Supplementary Table 

1B). To generate a comprehensive urinary library (library 3), the MaxQuant search results of 

all 87 Q Exactive files were loaded into Spectronaut and merged with library 2 

(Supplementary Table 1C). To merge the libraries, peptide precursors occurring in only one 

of the two spectral libraries were simply combined. For peptide precursors occurring in both 

spectral libraries, a weighted average of the iRT was taken based on the number of 

observations of the peptide in the DDA data. The relative fragment ion intensities were 

averaged between the two spectral libraries without weighting. The comprehensive human 

library (library 419) was downloaded from SWATHAtlas (https://db.systemsbiology.net/

sbeams/cgi/PeptideAtlas/GetDIALibs) and directly used in Spectronaut. The subset library 

was generated by extracting the identified proteins from comprehensive urinary library 3 

from publicly available human library 4 (library 5, Supplementary Table 1D). An overview 

of all libraries can be found in Table 1. For data analysis of the biomarker study, the 

comprehensive urinary library 3 was applied. Additionally, we generated an UTI-library in 

Spectronaut based on the search results against the concatenated human and bacterial 

database (Supplementary Table 1E).

DIA Sample Acquisition on Q Exactive HF

The samples were analyzed on an EASY-nLC 1000 nanoLC system (Thermo Scientific) 

equipped with a trapping column (PepMap100, 75 μm × 2 cm, C18, 3 μm, 100 Å) and an 

analytical column (PepMapRSLC, 75 μm × 25 cm, C18, 2 μm, 100 Å) coupled online to a Q 
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Exactive HF mass spectrometer (Thermo Scientific) equipped with an EASY-Spray nano-

electrospray ion source (Thermo Scientific).

Peptides (2 μL of digest) were separated by a linear gradient from 93% buffer A (0.2% FA in 

water)/7% buffer B (0.2% FA in ACN) to 75% buffer A/25% buffer B within 30 min. The 

total run time with loading and washing steps was 50 min. Column oven was set to 40 °C.

For the DIA method on Q Exactive HF, each DIA cycle contains one full scan and 24 DIA 

scans covering a mass range of 400–1000 Th covering 97% of peptides in a urinary sample 

(Supplementary Figure 1), full scan with a resolution of 30 000 @ 200 Th; AGC target 

−3e6, maximal IT, 50 ms; mass range 400–1000 Th; followed by DIA scans with resolution 

30 000 @ 200 Th; isolation width 20 Th for the first 20 DIA scans, 40 Th for the following 

two DIA scans, and 60 Th for the last two DIA scans; NCE −b30; target value −1e6, 

maximal injection time, auto, which automatically calculates the maximal injection time 

based on the resolution settings. This setting ensured that the mass spectrometer was always 

working in parallel ion filling and scanning mode. The cycle time was 2 s, which resulting in 

more than eight scans across the LC peak (8 s @ fwhm).

All mass spectrometric data are available at PeptideAtlas.20 The identifier is PASS00706.

DIA Data Analysis

All DIA data were directly analyzed in Spectronaut 7.0 (Biognosys)15b without any file 

conversion. The following settings were applied in Spectronaut 7.0: peak detection, dynamic 

iRT; correction factor 1; dynamic score refinement and MS1 scoring, enabled; interference 

correction and cross run normalization (total peak area), enabled; peptides were grouped 

according to the protein grouping. The number of fragment ions was defined in the spectral 

library (at least 3 and up to 6), and all were required for identification and quantification. 

Spectronaut utilizes the spiked-in HRM peptides for m/z and retention time calibration. For 

our data set, the m/z tolerance was in the range of 4 ppm and the median retention time 

extraction window 8 min. All results were filtered by a Q value of 0.01 (equals a FDR of 1% 

on peptide level). All other settings were set to default.

Protein intensity was calculated by summing the peptide peak areas (sum of fragment ion 

peak areas as calculated by Spectronaut) of each protein from the Spectronaut output file. 

For testing of the spectral libraries, one urinary sample was measured three times on the Q 

Exactive HF and afterward analyzed in Spectronaut using the spectral libraries 1–5 (Table 

1). The results were benchmarked based on the number of detected peptides and proteins as 

well as the reproducibility of the peptide and protein detection. To enable comprehensive 

urinary proteome analysis, library 3 (Table 1) was applied to analyze the complete DIA data 

set of 87 urinary samples. All quantitative data are summarized in Supplementary Table 3.

For statistical analysis, the data were imported into Perseus 1.5.1.6 (http://141.61.102.17/

perseus_doku/doku.php?id=start), and missing values were imputed using the lowest 

intensity of each individual protein. Significance of protein abundance changes was 

calculated using the nonparametric Mann–Whitney u-test, and Bonferroni multiple testing 

correction was applied.
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RESULTS AND DISCUSSION

The objective of this study was to establish a robust DIA-based method for comprehensively 

mapping of urinary proteomes to facilitate the discovery of disease-relevant biomarker 

candidates. To this end, we optimized a workflow based on different parameters including 

protein identification, data reproducibility, quantification precision, and applied the 

optimized workflow to a urine proteomics study comprising 87 samples from pediatrics ER 

patients that were seen because of abdominal pain.

Finding the Right Balance for the DIA Method

For setting up a DIA experiment, it is crucial to cover the mass range containing all analytes 

of interest. This can be achieved by selecting the entire mass range for simultaneous 

fragmentation or by fragmenting windows 20–50 Th. The latter increases the specificity by 

reducing the precursor range at the expense of increased cycle time. An appropriate 

implementation of such DIA method has to ensure that the cycle time allows for at least 8–

10 points per LC peak. To account for this minimum number of data points per LC peak, 

precursor window size, fragment ion resolution, and LC peak profile have to be considered 

for the method optimization.

According to our shotgun experiment on the urine sample, >97% peptides fall into the m/z 
range 400–1000 (Supplementary Figure 1). Typically, we defined 30 windows with 20 Th 

width using the first generation Q Exactive mass spectrometer to cover this mass range. The 

DIA scans were acquired with a resolution of 17 500 resulting in a cycle time of 2.6 s; since 

this cycle time could not be significantly reduced, the LC conditions had to be chosen to 

ensure LC peak widths in the 25–30 s range, resulting a minimum gradient time of 60 min 

on the Q Exactive mass spectrometer. The ultrahigh-field Orbitrap mass analyzer of the Q 

Exactive HF instrument almost doubles the resolution at the same transient times, allowing 

us to keep the similar cycle time but acquiring all scans at 30 000 resolution settings, which 

improves the separation of the analyte of interest from interferences. In addition, a 

rectangular isolation window shape was generated by the segmented quadruple design on Q 

Exactive HF instrument,16 enabling the accurate isolation of the peptides on the isolation 

edges. After slightly adopting the DIA method (for details see Materials and Methods), we 

were able to achieve a duty cycle 2 s to cover the mass range 400–1000 Th, including one 

full scan and 24 DIA MS/MS scans acquired at 30 000 resolution. Thus, moving to the Q 

Exactive HF enabled us to shorten gradient time to 30 min at twice the resolution without 

compromising the number of data points across the LC peaks. This shortened gradient 

length, which led to a reduced peptide elution peak width of about 40% (shown for three 

examples in Supplementary Figure 2), resulted in an increased sample throughput, which is 

important for the analysis of a large number of urinary samples.

Selecting the Most Appropriate Spectral Library

The most common way of analyzing DIA data is an assay-driven approach. By using this 

approach, DDA data are acquired of some or all of samples of interest and used to generate a 

spectral library containing all spectral information for the detectable peptides and proteins 

present in the sample. The spectral library is then the basis of for qualitatively and 
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quantitatively analyzing the DIA data.15a The Aebersold group has recently started to 

publish spectral libraries for DIA data, namely for M. tuberculosis,21 S. cerevisiae (http://

www.swathatlas.org/), and H. sapiens.19

To investigate the influence of the spectral library on the data analysis, we generated and 

tested five different spectral libraries (workflow in Figure 1A) based on the following inputs: 

(1) Q Exactive-based DDA data from a random subset of 23 urine samples searched with 

MaxQuant; (2) DDA data from the same set of 23 samples acquired on a quadrupole TOF 

type instrument (Sciex TripleToF 5600) searched with MaxQuant; (3) a comprehensive 

urinary spectral library based on all 87 Q Exactive samples combined with the input from 2; 

(4) the publicly available spectral library for samples of human origin;19 and (5) a subset of 

the publically available H. sapiens library featuring 1900 of the 2600 proteins identified in 

the comprehensive library (see library 3). More details about the fragments, peptides, and 

proteins covered in these five spectral libraries can be found in Table 1 and an overview of 

the overlap between the libraries in Supplementary Figure 3A (complete libraries: 

Supplementary Tables 1A–D).

We assessed the different spectral library using two different criteria: (1) number of 

identified peptides and proteins, and (2) the reproducibility of peptide/protein detection, 

which are measures of the relevance of the database since an irrelevant increase in search 

space will result in irreproducible hits across, for example, technical repeats. Additionally, 

the reproducibility can be reduced by variability of the fragment ion intensities and the 

retention time. Within our workflow, the retention times are normalized by application of the 

indexed retention time concept (iRT), in which the retention times are converted into a 

dimensionless space to make them comparable across runs/different gradients.22 By 

application of this concept, we could correct for the variability within the retention time 

space. All libraries contained iRT values, and the data analysis was based on iRT rather than 

the peptide retention times in the library. To this end, we analyzed an unrelated urine 

samples in triplicate using our optimized DIA routine and searched the data against the five 

spectral libraries (Table 1). We identified the largest number of peptides with the 

comprehensive urinary spectral library (library 3: 6061 peptides), followed by the Q 

Exactive library with 5429 peptides (library 1). Using the other libraries, we identified in 

total only between 3259 and 3721 peptides (Figure 2A, left panel). For the in-house 

generated project specific spectral libraries (1–3), the overlap in identified peptides was 

high; more than 80% of the peptides were detected in more than one library (Supplementary 

Figure 3B), and it resembled the differences in the overlap of the spectral libraries 

(Supplementary Figure 3A). The overlap with the libraries based on the publicly available 

human library (libraries 4 and 5) was comparably low, for example, 54% of the peptides 

were unique to comprehensive urinary library 3, and 36% of the peptides unique to entire 

human library 4 (Supplementary Figure 3B).

There was a clear correlation between the number of identified peptides and identified 

proteins for the in-house generated project specific spectral libraries 1, 2, and 3, which 

resulted in 1191, 894, and 1393 protein identifications, respectively. In contrast, the two 

spectral libraries based on the publicly available H. sapiens spectral library were clear 

outliers (library 4 and 5). These searches resulted in relatively large numbers of identified 
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proteins (1660 and 1122, respectively) despite the small number of identified peptides (3259 

and 3396). This problem was particularly noticeable when using the entire H. sapiens 
spectral library featuring 14 000+ proteins (library 4, Figure 2A, right panel). The overlap 

between the protein identification results was comparable to the peptide results. We 

observed a high overlap for libraries 1–3 and a large number of unique proteins comparing 

the results to libraries 4 and 5, for example, 659 proteins (47% of all identified proteins 

using library 5) and the majority of the proteins identified by the application of library 4 

were unique (908 proteins, 55%, Supplementary Figure 3B).

To assess the reproducibility, we calculated the percentage of peptides and proteins that were 

detected in all three replicates, in two out of three replicates, or in only one single replicate. 

With the project specific spectral libraries (library 1–3), between 69% and 77% of the 

peptide and between 75% and 81% of the proteins were detected in all three replicates. In 

contrast, only 26% of the peptides and 22% of the proteins were detected in all three 

replicates when using the entire publicly available human spectral library (library 4). Given 

this low reproducibility, we concluded that the large human spectral library is inadequate for 

searching urinary samples. Although the use of a urine specific subset of proteins (library 5) 

improved the reproducibility to 61% and 62% at the peptide and protein level, respectively, 

these numbers are still inferior to the project specific in-house generated spectral libraries. In 

general, the reproducibility of the peptide/protein detection is also lowered by variation in 

fragment intensity and retention times. Although we made use of the iRT concept,22 the 

accuracy of the iRT in the library will have a small influence on the detection 

reproducibility. To compare the libraries in this regard, we generated an additional spectral 

library only containing the peptide overlap of library 3 and 4. The peptide and protein 

detection reproducibility was comparable to the in-house generated libraries (71% of 

peptides were detected in three of three replicates and 75% of the proteins, Supplementary 

Figure 3C). We concluded that the variability of retention time and fragment ion intensity 

had only a minor influence on the detection reproducibility. Given that the peptide 

assignment is FDR-controlled, it can be assumed this lack of reproducibility is not due to 

false positives, that is, wrong assignments, but due to false negatives, that is, the current 

software discarded a (true) peptide match because of, for example, the presence of too many 

spurious signals that can be assigned to other peptides. This problem of false negatives is 

particularly relevant in the case of very large search spaces as in case of the published 

human spectral library. Data for peptides are extracted that do not exist, and the multiple 

testing in the data analysis need to correct for it, resulting in the loss of many true signals 

thereby reducing the confidence of the original peptide assignment. We assume that with 

instrument and software improvements in the future, the number of false negatives will 

decrease.

Since the publicly available spectral library is based on quadrupole-TOF data, we also 

investigated the possibility that the differences in the search results are due to instrument 

dependent peptide fragmentation. However, our in-house generated spectral library using 

quadrupole-TOF data showed the same reproducibility as the Q Exactive data-derived 

spectral libraries, albeit at lower peptide and protein identifications. We concluded that the 

instrument type or more precise the fragmentation type has only a minor effect on the 

spectral library quality. It is more important to apply a sample type-specific spectral library. 
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In this context, it was interesting to note that the Q Exactive and the TripleTOF 5600 

resulted in complementary peptide fragmentation spectra such that combining both data sets 

resulted in the largest number of identified peptides. Therefore, we decided to continue with 

the most comprehensive urine specific spectral library 3, which provides a good basis for a 

comprehensive and reliable analysis of the urinary proteome.

In summary, the significantly lower reproducibility in combination with much lower 

numbers of identified peptides and the low number of overlapping peptides and proteins 

between the urinary libraries (1–3) to the publicly available libraries (4, 5) clearly shows that 

the use of project specific spectral library are highly recommendable for successful DIA data 

analyses and that publicly available spectral libraries can be of limited use (Figure 2A), at 

least with currently produced DIA data.

Highly Reproducible Peptide Detection and Quantitation in DIA Experiments

In DDA experiments, often technical replicates are acquired to increase the number of 

identified peptides and proteins23 as well as to improve the quantification. To elucidate how 

the DIA-based quantification performs compared to DDA-based quantification, we analyzed 

an unrelated urine sample six times: three technical repeats in standard DDA-mode and three 

technical repeats using our optimized DIA method. A 30 min gradient on a Q Exactive HF 

was used for these analyses. The DDA samples were analyzed by MaxQuant18 without and 

with the matching option activated. The matching options employs the accurate mass tag 

concept24 and transfers confident peptide identifications from one run to another based on 

accurate precursor mass and retention time irrespective of whether a MS2 spectrum was 

acquired or not, however, without providing a proper FDR. This strategy increases the 

peptide and protein identifications and results in much fewer missing quantification values 

across multiple LC–MS experiments. The DIA results were analyzed using the 

comprehensive urinary library (library 3).

With the standard DDA routine, we identified in each replicate 2536 ± 34 peptides and 622 

± 14 proteins (Figure 2B, Supplementary Table 2A). Combining the data of the first two 

replicates increased the identified peptides and proteins by 15.2% and 7.5%, respectively. 

Combining all three replicates resulted in an overall increase of 24.6% and 13.8% for the 

peptides and proteins, respectively. By using the matching option in MaxQuant, the number 

of identified peptides increased to 2972 ± 1 peptides and 683 ± 7 proteins (Figure 2B, 

Supplementary Table 2B), that is, 14.6% more peptide and 9% more protein identifications 

when compared to the searches without matching. The peptide and protein identifications 

were highly reproducible such that only 5.1% more peptides and 3.4% more proteins were 

identified when all three replicates were searched together. Given the concept behind the 

matching option, these numbers will decrease with an increasing number of replicate runs.

Using our optimized DIA workflow, we observed a significantly larger number of peptides 

and proteins per replicate, namely 5219 ± 42 peptides and 1200 ± 12 proteins corresponding 

to an increase of more than 75%. Combining the searches of all three replicate LC–MS runs 

led to 15.8% and 9.7% increase in identified peptides and proteins, respectively (Figure 2B, 

Supplementary Table 2C), placing the DIA method in between the standard DDA workflow 
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and the matching-based DDA workflow with respect to the peptide and protein identification 

reproducibility.

After we evaluated the identification reproducibility, we also assessed the reproducibility of 

the protein quantification, that is, its precision. To this end, we calculated the coefficients of 

variation (CV) for all peptide and protein identifications for the DIA data and the DDA data 

using label free quantification algorithm in MaxQuant as well as simple spectral counting. 

Of note: for estimating the protein CV, we simply added the intensities of all observed 

peptides associated with a particular protein. The median CVs of the DIA-based peptide and 

protein quantifications were 6.7% and 8.1%, respectively, with 65% of the peptides and 57% 

of the proteins showing CVs of ≤10% (84% of the peptides and 76% of the proteins showed 

a CV of ≤20% Figure 2C).

In contrast, the median CVs of the DDA-based quantification were with 15.7% and 16.3% 

for the peptide and protein quantifications, respectively, more than twice as large as the CVs 

of the DIA-based quantifications. These large CVs meant that only 30% of the peptide and 

protein quantifications featured CVs of ≤10% (61% of the peptides and 59% of the proteins 

showed a CV of ≤20%). While these DDA-derived numbers are based on searches without 

the matching option in MaxQuant, using matching only resulted in negligible differences in 

the CV values on peptide level (16.6%), whereas the CV on protein level dropped to 12.6%. 

In addition, we also assessed the quantification precision of a peptide peak area based 

quantification (MS1 level) of the DIA data set. These data showed a slightly better median 

CV on peptide (12.9%) and a slightly worse CV on protein level (18.2%) as the 

quantification of the DDA data, suggesting that the peptide quantification on MS2 level is 

superior to quantification on MS1 level (Supplementary Figure 4).

For completeness, we also evaluated the CV for spectral counting-based protein 

quantification. Interestingly, the median CV for this protein quantification was in a similar 

range as the CVs determined for the area-based quantification, namely 16.1% (Figure 2C). 

However, the spectral counting method showed a very strong dependence on the spectral 

count, that is, the quantification reproducibility decreased with lower protein spectral counts 

indicating that spectral counting delivers surprisingly reproducible results for abundant 

proteins. On the basis of our data, a spectral count of ~10 is needed to ensure that half of the 

protein quantifications feature a CV of ≤10%, providing an estimate for a minimum for 

reproducible spectral counting-based quantification.

By binning the protein in 20 intensity bins and calculation of median CV for each bin, we 

were able to assess the quantification precision in relation to the protein intensity (Figure 

2D). For the peptide peak area based quantification, it is possible to maintain a median 

quantification precision of 25% across the whole intensity range; only the top 30% proteins, 

that is, 30% of the proteins associated with the largest signal intensities, could be precisely 

quantified with a CV < 10%. Spectral counting based quantification is highly precise for the 

top 10% of the proteins (median CV < 10%; spectral counts above 10); a good precision 

(median CV < 20%) was maintained for about half of the proteins. In contrast, for the 

fragment ion based quantification in our DIA workflow, the overall highest median CV was 

only 16% even for the 5% proteins with the lowest signal intensity. More than half of the 
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proteins in the intensity bins were quantified with a CV < 10%, the highest intense 20% 

proteins even with a CV < 5% (quantitative data for all three approaches in Supplementary 

Tables 2A–C).

Several conclusions can be drawn from these assessments of the peptide and protein 

identification and quantification. First, a single DIA experiment on the Q Exactive HF 

enabled to almost double the number of identified peptides and proteins compared to a 

standard DDA experiment. The in-house generated urinary spectral library (library 3) allows 

us to comprehensively map the urinary proteome within a 30 min LC gradient. Second, the 

quantification precision with the DIA method is very good and with median CVs in the 7%-

range is significantly smaller than the biological CV, which has been reported to be in the 

60–70% range.25 This allows omitting replicate runs and to focus on the analysis of 

additional biological samples, which greatly improves the sample throughput. Third, all 

information about the sample is recorded in a DIA experiment. In case a new biomarker 

candidate becomes interesting, the samples can be easily re analyzed. It is not necessary to 

reacquire the samples as it would be the case for a SRM-like MS method.

Comprehensive Urinary Proteome Coverage by DIA Workflow

After we established the optimized DIA workflow, we applied it to a urine proteomics study 

comprising 87 samples from patients seen in the ER for abdominal pain. Abdominal pain 

can be related to various diseases, and therefore diagnosis in the ER is not always easy. To 

prove the applicability of our workflow in a biomarker discovery studies, we focused on two 

diagnoses that could be unambiguously made after examination of the patients in the ER: 

ovarian cyst (12 patients) and urinary tract infection (UTI, 11). We imagine the use of the 

biomarker candidates in a simple urinary test to either diagnose an ovarian cyst and UTI or 

to exclude these causes of abdominal pain and to further focus on other abdominal pain-

causing conditions. Therefore, we created an abdominal pain control group that comprised 

urinary samples of patients with other diagnoses and cases in which no cause could be made 

(64 samples).

After digestion in a 96-well plate format using our in-house developed MStern blotting 

approach, all 87 samples were analyzed in less than 4 days using our optimized DIA 

workflow (whole workflow in Figure 1B). As for now, the acquisition of the spectral library 

more than doubled the instrument time. However, now that a comprehensive urine-specific 

library has been created, no major instrument time has to be spent for DDA data acquisition, 

and it can easily be applied in other urinary studies.

Prior to further analysis, we applied an arbitrary minimum threshold of 3000 peptides or 800 

proteins for a sample to be considered. This threshold resulted in the removal of three 

samples: one ovarian cyst sample and two abdominal pain control group samples.

On average, we detected 5714 peptides per sample (3172–8231, Figure 3A) and 1301 

protein groups (848–1720, Figure 3B, identification and quantification data in 

Supplementary Table 3). In total, our DIA workflow resulted in the identification and 

quantification of 17 303 peptides and 2456 proteins, representing 95% of the proteins in the 

spectral library. The total number of identified proteins is comparable to recent 
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comprehensive urine proteomics studies.9b,c,26 However, in contrast to these previous 

studies, we achieved the high coverage of the urinary proteome without any prefractionation 

and with only 30 min gradient time per sample. Compared to the DDA data, which we 

acquired to generate the spectral library, the DIA data continuously identified about twice as 

many proteins in each individual sample: DIA 1301 versus DDA 638, and thus much fewer 

missing values resulting in more robust protein identification across many samples. Within 

the DIA data set, 490 proteins were identified in at least 95% of the samples and only 406 

proteins in less than 10% of the samples. These numbers are contrasted by the DDA output, 

in which only 130 proteins were identified in more than 95% of the samples and 838 

proteins in less than 10% of the samples (Figure 3C).

Statistical analysis of the data showed big differences in the composition of the urinary 

proteome between ovarian cyst, UTI, and pain control group samples. Compared to all other 

samples, 773 proteins were significantly changed in their amount in the UTI samples 

(nonparametric Mann–Whitney U test, p < 0.05) and 502 in the ovarian cyst samples. 

Application of the very conservative Bonferroni multiple testing correction (cut off p = 2.1e–

5) reduced the numbers to 55 proteins for the UTI samples and five in the ovarian cyst 

samples. These numbers reflect the proximal nature of urine for the two conditions: for UTI, 

urine is the immediate, that is, most proximal body fluid; since ovaries are part of the 

genitourinary tract, urine might be also considered a proximal body fluid in case of the 

ovarian cysts.

We also tried to quantify bacterial proteins to detect potential UTI-specific differences. 

Therefore, we reanalyzed the data set with a new spectral library comprising also bacterial 

proteins of interest (details in Materials and Methods section, Supplementary Table 1E). 

Although bacterial proteins were clearly identified in the urine samples, the results were 

inconclusive (Supplementary Figure 5). We concluded that the limit of detection of the assay 

may be insufficient to reliably detect sample cohort specific abundance differences of 

bacterial proteins in the urine samples. Alternatively, the sample handling/processing 

resulted either in a loss of the majority of the bacteria or in a contamination of the non-UTI 

urine samples. Nevertheless this analysis showed that the DIA data can be easily reanalyzed 

once new hypotheses are formulated.

Discovering Disease-Specific Biomarker

The main objective of establishing an optimized DIA workflow was the fast and efficient 

analysis of a large number of urine samples for biomarker discovery studies. Within this 

proof of concept study, we were interested in finding urinary biomarker candidates for 

diagnosing children with UTI or ovarian cyst and to clearly differentiate them from pediatric 

patients with other abdominal pain causing conditions. For both conditions, excellent urinary 

biomarker candidates could be identified. The performance of the most significant 

biomarker candidates was assessed by calculating the area under the receiver-operating 

characteristic (AUROC) against the other conditions (Figure 4).

For ovarian cyst, cystatin-B (CYTB) showed the best performance in separating the ovarian 

cyst samples from the other samples. Its level was increased by 5.8-fold in the ovarian cyst 

cohort (p = 1.3e–5, AUROC = 0.91, Figure 4A). Even after the very conservative Bonferroni 
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multiple testing correction was applied, the change in protein level was still statistically 

significant (q = 0.027). Interestingly, cystatin-B, which is intracellular thiol proteinase 

inhibitor, has also been described as potential urinary biomarker for bladder cancer27 and as 

potential biomarker candidate in ovarian clear cell cancer.28 Given the pediatric origin of our 

urine samples, bladder or ovary cancer is extremely rare, and an ovary cyst diagnosis can be 

easily confirmed by imaging techniques. Thus, cystatin-B might be a promising biomarker 

candidate for excluding other potential diagnoses in the context of pediatric patients with 

abdominal pain.

For the UTI samples with a large number of proteins with significant urinary abundance 

differences, the protein group PERE/PERM (eosinophil peroxidase/myeloperoxidase) 

showed the best performance for diagnosing UTI (Figure 4B, AUROC = 0.968). The average 

observed abundance increase was 122-fold in the UTI samples when compared to the all 

other non-UTI samples (p = 6.6e–8, q = 1.6e–4). We also identified and quantified peptides 

unique to PERE and PERM, which allowed us to conclude that the observed abundance 

increase is caused by PERM. On the basis of the unique PERM peptides, the protein amount 

is 97-fold increased (p = 1.1e–6, q = 2.8e–3), whereas the PERE-specific peptides did not 

show a significant abundance difference (p = 0.51). Myeloperoxidase (PERM) has been 

described as inflammatory marker and is believed to have bactericidal activity in the case of 

infection.29 A recent study on more than 500 people to identify early stage urinary 

biomarkers of UTI found that an increased activity of myeloperoxidase in the urine indicates 

a UTI with high specificity.30 With our study, we were able to explain the increased 

myeloperoxidase activity by a highly elevated level of the enzyme within in the urine and 

therefore confirm the myeloperoxidase as potential biomarker for an UTI.

CONCLUSIONS

Here, we present a fast and robust DIA workflow for the efficient, reproducible, and 

comprehensive quantitative mapping of urinary proteomes, which are ideal for DIA 

experiments due to their limited complexity in comparison to, for example, whole cell 

lysates. The established DIA workflow allowed us to analyze 87 urine samples in less than 4 

days, that is, 30 min gradients per sample. Without any prefractionation, we identified ~1300 

proteins per sample, which is almost twice as many proteins per sample as comparative 

DDA analyses. This large number significantly reduces the number of missing values, 

thereby increasing the confidence in identifying relevant biomarker candidates. Interestingly, 

despite the doubled number of identified proteins, the quantification CV halved, that is, 

improved from ~16% to ~8%. In summary, this DIA workflow for urine proteomics allows 

for a sufficient throughput to perform biomarker discovery studies that combine discovery 

and verification31 as all identified proteins can be precisely quantified in hundreds of 

samples; thus, the typical focusing on a few selected biomarker candidates during the 

verification is not necessary any longer (Figure 5).

To show the applicability of the DIA workflow in a biomarker discovery study, we analyzed 

urine samples from children seen in the ER for abdominal pain and identified biomarker 

candidates for UTI and ovarian cysts. An extension of the study to other diseases will bring 
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us a step closer to quickly stratifying children with abdominal pain simply based on their 

urine composition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow. (A) Generation of spectral library. Eighty-seven urinary samples from kids with 

abdominal pain, diagnosed with ovarian cyst (purple, 11), urinary tract infection (blue, 11), 

as well as a pain control group (yellow) were processed in a 96-well plate format. Twenty-

three randomly chosen samples were analyzed by LC–MS/MS on a Q Exactive (Thermo 

Scientific) and TripleToF 5600 mass spectrometer. The resulting data were searched with 

MaxQuant (FDR 1%), and a spectral library of each search result was generated in 

Spectronaut (libraries 1 and 2). Additionally, all remaining samples were run on the Q 

Exactive and combined with the other two libraries to create a comprehensive urinary library 

(library 3). Library 4 was a publically available spectral library from Rosenberg et al., and 

library 5 featured those proteins from this publicly available library, which were also 

identified in library 3. All libraries (Table 1) were used in Spectronaut to analyze the DIA 

data of an unrelated urinary sample, acquired three times on a Q Exactive HF mass 

spectrometer. (B) DIA sample acquisition. All 87 samples were analyzed by a 30 min LC 

gradient on a Q Exactive HF mass spectrometer in DIA mode. We applied the 

comprehensive urinary spectral library (library 3) to analyze the data in Spectronaut (1% 

FDR).
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Figure 2. 
Validation of workflow. (A) Influence of spectral library. A urinary sample was analyzed in 

triplicate with a DIA method on a Q Exactive HF mass spectrometer using five different 

spectral libraries (overview in Table 1). Plotted are the total numbers of identified peptides 

and proteins; each bar is divided into peptides/proteins that were identified in three of three 

replicates (dark green), two of three (green), and one of three (light green) as well as the 

percentages. (B) Number of peptide and protein identifications in replicate runs. A urinary 

sample was analyzed three times by a DDA and DIA methods on a Q Exactive mass 

spectrometer and analyzed using the comprehensive urinary library (library 3). The DDA 
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data were analyzed in MaxQuant with and without the ID matching. We plotted the number 

of identified peptides and proteins (DIA, orange; DDA without matching, blue; DDA with 

matching, blue/white stripes) as well as the increase in identifications with each of the 

replicates (DIA, light orange; DDA, light blue). (C) Quantification precision. An 

independent urine sample was analyzed in triplicate with a DDA and DIA method on a Q 

Exactive HF mass spectrometer. DDA were quantified in MaxQuant either based on peptide 

peak areas (DDA, peptide peak areas) or spectral counting (DDA, spectral counting). DIA 

data were quantified in Spectronaut (DIA, fragment ion peak areas). For both peak area 

based quantification methods, protein values were calculated by summation of the peptide 

peak areas. The %CV of the quantification was calculated, plotted against the peptide/

protein intensity, and the point density was color coded (Perseus: light blue, highest density; 

green, lowest density). The table gives an overview of the quantified peptides/proteins as 

well of number of peptides/proteins with a %CV below 10% and 20%. (D) Protein %CV in 

relation to protein abundance. The quantified proteins have been binned according to their 

intensity into 20 bins. The median %CV of each bin was plotted for three quantification 

methods (right panel, based on peptide peak areas of DDA data; middle panel, spectral 

counting; left panel, based on fragment peak areas of DIA data). The horizontal bars show 

the protein intensity spread of each bin.
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Figure 3. 
Overview of DIA data set. (A) Overview of peptide identification results. The bar charts 

(right and left panel) give an overview of the identified peptides/proteins in each of the 87 

individual samples using a 30 min gradient on a Q Exactive HF mass spectrometer with a 

DIA method (yellow, pain control group; purple, ovarian cyst; blue, urinary tract infections). 

(B) Overview of peptide identification results. (C) Protein sample coverage. We calculated 

how many proteins were identified in more than 95% of the samples, in 90–95% of the 

samples, etc. for DIA and DDA data (orange, DIA data; blue, DDA data).
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Figure 4. 
Biomarker candidates. The proteins with the largest area under the ROC (AUROC) were 

considered the best biomarker candidates. (A) The ROC of the best candidate for ovarian 

cyst (CYTB, purple) and UTI (PERM, blue) on the ovarian cyst cohort. Diagonal segments 

are produced by ties. Additionally, the figure shows the intensity of each protein in all 

conditions as a boxplot. (B) The ROC for CYTB (purple) and PERM (blue) on the UTI 

sample cohort as well as the protein intensity in all conditions as boxplot.
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Figure 5. 
Advanced biomarker research scheme. In a conventional biomarker experiment, the 

biomarker discovery with high proteome coverage is performed on a small subset of samples 

(before). Toward the further verification and validation of the candidates, the number of 

samples is increased, whereas through the application of targeted methods, fewer and fewer 

analytes are monitored. Focusing on a small number of candidates in the verification phase 

can result in missed biomarkers. Our optimized DIA workflow enables to keep a high 

number of analytes throughout the whole discovery and verification phase, increasing the 

robustness of biomarker discovery in the future (after).
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