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Abstract: Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable
tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It
is advantageous for less stable anticancer metal complexes that fail administration by the standard
intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer
cells and cause cell death, while the release of their relatively non-toxic decomposition products into
the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was
recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be
applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were
previously unsuccessful in human clinical trials when administered via intravenous injections. The
potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities
for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic
activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such
as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the
conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for
the delivery of unstable metal complexes into the tumor.

Keywords: cancer; intratumoral injection; platinum; vanadium; iron; titanium; gallium; ruthenium;
Schiff base; nanocarrier formulation

1. Introduction

The treatment of inoperable cancers, particularly those of the brain, head and neck,
lung or pancreas, by direct injection of cytotoxic and/or immunomodulating drugs into
the tumor is currently transitioning from experimental procedures to mainstream clinical
practice [1–5]. Detailed clinical guidelines for intratumoral injections (ITI) have been out-
lined [6], and hundreds of clinical trials are either underway or have been completed [7].
The treatment of unresectable metastatic melanoma by ITI of an oncolytic virus (T-VEC)
has been approved by the Food and Drug Administration (FDA) for human clinical use [8].
A related technique, convection enhanced delivery (CED), which is based on intracranial
injections of chemotherapeutic drugs to overcome the blood-brain barrier, continues to
be extensively trialed for the treatment of malignant gliomas [9–11]. Another related
technique, pressurized intraperitoneal aerosolized chemotherapy (PIPAC), is under de-
velopment for the treatment of metastatic cancers of the digestive system [12,13]. One of
the main aims of these techniques is to maximize the concentrations of cytotoxic drugs
within the tumor and to minimize their concentrations in the blood, which reduces the
systemic toxicity of the treatment [1–5,9–13]. While ITI, CED and PIPAC treatments are
generally regarded as palliative rather than curative, they can be applied in combination
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with systemic chemotherapy to reduce the spread of metastases and significantly prolong
the life of cancer patients [14]. Classical Pt(II)-based anticancer drugs (cisplatin, carboplatin
and oxaliplatin) [15] are increasingly used in ITI, CED and PIPAC formulations both in
pre-clinical studies [14,16–31] and in human clinical trials as shown in Table 1 [7,32].

Table 1. Current and recent clinical trials of ITI and related techniques using Pt-based drugs [7].

Identifier No Treatment * Drug Disease Phase No. of
Participants Institution Dates **

NCT04311762 ITI cisplatin stage IV lung
cancer I 9

University of
Vermont,

Burlington, VT,
USA

February
2020–March

2022

NCT04809103 ITI cisplatin non-small cell
lung cancer I 10

University of
Vermont,

Burlington, VT,
USA

March 2021–
September

2023

NCT05200650 ITI cisplatin-
loaded gel

head and neck
cancer I 20

Hadassah
Medical Center,

Jerusalem,
Israel

March 2022–
November

2022

NCT04781725 ITI
new cisplatin
formulation
(INT230-6)

breast cancer II 90

The Ottawa
Hospital
Research

Institute and
Cancer Center,

Ontario,
Canada

March
2021–March

2023

NCT01644955 CED carboplatin
recurrent

high-grade
gliomas

I 10

Ohio State
University

Medical center,
Columbus,
OH, USA

June 2012–
December

2017

NCT03294252 PIPAC oxaliplatin and
L-folinic acid

nonresectable
peritoneal

metastases of
digestive
cancers

II 50

Centre
Hospitalier
Lyon Sud,

Pierre-Bénite,
France

May 2017–June
2021

NCT04541108 ITI
carboplatin

(various
formulations)

development
of master

protocol for
intratumoral
microdosing

0 36

Presage
Biosciences

(various
locations in

USA)

July 2021–
December

2031

* ITI = intratumoral injection; CED = convection enhanced delivery; PIPAC = pressurized intraperitoneal
aerosolized chemotherapy. ** Start and end dates.

Extensive changes in the speciation of most metal-based drugs typically occur after
their administration, due to the abundance of potential biomolecular ligands and reducing
(or less commonly, oxidizing) agents in biological fluids [33–42]. One possible solution
for this problem is the design of substitutionally inert (mostly organometallic) complexes
where the metal ion acts either as a scaffold to build a three-dimensional organic structure
for selective binding to protein targets [43–45] or as a catalytic center for intracellular redox
reactions [46–48]. Another approach is to use kinetically inert Pt(IV) (see Section 7) or
Co(III) prodrugs, which can be converted to their more labile Pt(II) or Co(II) counterparts in
the reducing the environment of solid tumors [42,49–51]. This approach is often proposed
for the targeted delivery of biologically active organic molecules that are bound to such
metal ions [51–53]. However, their administration by intravenous injection can result in
the reduction of the metal ion by Fe(II) in red blood cells with premature release of the
active components [54–56].

A novel concept that was recently proposed by our groups [57] involves the use of
reactive metal complexes that have some stability but limited lifetimes in biological media.
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Such complexes are ideal agents for ITI and related delivery techniques of anticancer drugs.
In this case, the binding of hydrophobic organic ligands to a toxic metal ion assists its
efficient uptake into tumor cells and results in high cytotoxicity, while the decomposition
products that are released into the blood stream consist of relatively non-toxic ligands and
metal–protein complexes (Figure 1) [57]. This approach is expected to exhibit low systemic
toxicity, similar to photodynamic therapy [58] or boron neutron capture therapy [59], where
highly cytotoxic but short-lived agents are generated locally in the tumor tissue. Similar
principles are also applied to organic anticancer prodrugs that hydrolyze in biological media
with the formation of highly cytotoxic but short-lived active species [60,61]. Importantly,
the decomposition products of some metal anticancer drugs are likely to have beneficial
biological effects, as suggested previously for a V(V) complex with hydrophobic organic
ligands [57]. In this review, we discuss a number of metal complexes with known anticancer
properties that have potential for intratumoral applications.

Figure 1. The principle of the use of reactive and unstable metal complexes in intratumoral injec-
tions [57]. Designations: M is the metal ion; and L are the ligands.

2. Vanadium(V) Complexes

Anticancer activities have been reported for V(V/IV) complexes with many different
structures [62,63]. The concept of using relatively unstable metal complexes for ITI, where
the complexes had some stability and exerted high reactivity, was developed for a non-
innocent oxidovanadium(V) complex with a tridentate Schiff base and a redox-active
di-3,5-tert-butylcatecholato ligand (1 in Figure 2a) [57,64]. Despite the vanadate–phosphate
analogy [65,66], the nature of V−O bond in 1 and in other V(V/IV) complexes with organic
ligands is closer to a triple than a double bond (2.5 < n ≤ 3, Figure 2a) due to the presence
of one σ and two π bonds, and the bond is thus presented as a triple bond [67,68]. Due to
the hydrophobic nature of the ligands [57,64] and sufficient stability of the coordination
complex in biological media, 1 is efficiently taken up by cancer cell monolayers and causes
high cytotoxicity (IC50 ~ 1–4 µM in 72 h treatments). Complex 1 is ~10-fold more toxic than
cisplatin under the same conditions [57,64]. This effect is likely to be caused by changes
in cell signaling that could originate from direct interactions of the cell membrane with
V-complexes [69–71], inhibition of protein phosphatases by V-derivatives [66,72], as well as
from V(V) reactions with cellular reductants that generate reactive oxygen species (ROS); see
Figure 2a [73–75]. In parallel, rapid decomposition of 1 in cell culture medium occurs (half-
life, ~30 s at 37 ◦C) [57], which involves hydrolysis of the Schiff base ligand, the release of
oxidovanadium(V) species and their binding to serum proteins, predominantly transferrin
(Tf, Figure 2a) [37,40,76,77]. This decomposition leads to a decrease in cytotoxicity by an
order of magnitude, due to the low cellular uptake of V-Tf adducts and low cytotoxicity of
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the ligand fragments [37,57]. Furthermore, V-Tf adducts are likely to be involved in the
beneficial biological activities of V, such as the well-known antidiabetic [78,79] and the
recently demonstrated neuroprotective and neurostimulatory [80–82] effects. The latter
activities, together with the favorable cytotoxicity ratio of fresh and decomposed 1 in
human glioma multiforme (T98g) cells, led to the suggestion [57] that 1 can be used in the
ITI formulations for this aggressive form of brain cancer. This suggestion is supported
by the recently demonstrated low acute oral toxicity of 1 in mice [83]. Neuroprotective
and neurostimulatory activities of the decomposition products of 1 may help to fight the
neurological and cognitive disorders that commonly occur from cancer itself, or from
standard chemotherapy [84,85].

Figure 2. Proposed mechanisms of cytotoxic activity (red) and deactivation (blue) of V(V) complexes:
(a) a complex with hydrolytically unstable Schiff base ligand (1) [57]; and (b) a complex with stable
and cytotoxic salan-type ligand (2) [86]. Potential beneficial activities of the decomposition products are
shown in green. Designations: Tf is apo-transferrin; ROS are reactive oxygen species and tBu is tert-butyl.

For comparison, the parent analog of 1 without tert-butyl substituents in the catechol
ligand (the simple catechol) decomposes completely within a few seconds in the cell culture
medium and is not taken by the cells to a significant extent [64]. Further developments in
this field will involve tuning the hydrophobicity and aqueous stability of mixed-ligand
V(V) complexes. This will enable optimization of their cellular uptake and decomposition
rates and cytotoxic activities for the use in ITI and related techniques [87].

Like 1, V(V) complexes with reduced Schiff base (salan-type) [86,88] ligands, such
as 2 in Figure 2b, are efficiently taken into cultured human cancer cells and are highly
cytotoxic [86,89]. Unlike for 1, the cytotoxicity of 2 is predominantly due to the release of
hydrolytically stable ligands, extracellularly and/or intracellularly (Figure 2b) [86]. Similar
ligand-based cytotoxicity mechanisms have been proposed for V(V/IV) complexes with
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typical hydrophobic and cytotoxic chelating ligands, such as 1,10-phenanthroline or 8-
hydroxyquinoline [39,90,91]. The release of stable and highly cytotoxic ligands into the
blood stream is likely to lead to significant systemic toxicity that complicates the use of 2
and other V(V) complexes with stable cytotoxic ligands in ITI (Figure 2b). However, salan-
type ligands in V(V) complexes can also be relatively non-toxic [92], which emphasizes the
need for comparative biological activity studies of metal complexes and the corresponding
free ligands [36].

Schiff bases, particularly those derived from salicylaldehyde and diamines (salen-
type ligands), have long been considered a staple of coordination chemistry. Numerous
metal complexes of these ligands have undergone biological activity assays, but none
seem to have entered advanced preclinical development, as of yet [88,93,94]. Although
the hydrolysis of Schiff bases to the original aldehyde and amine components in neutral
aqueous solutions has long been known [95,96], its implications for biological activities of
metal Schiff base complexes have not been recognized until recently [88]. For instance, the
formation of aldehyde and amine precursors of the Schiff base ligand during the dissolution
and subsequent decomposition of 1 in water (Figure 2a) has been demonstrated by 1H
NMR spectroscopy [64]. The reactivity of the complex and ligand cleavage and V(V) release
(Figure 2a) is responsible for the short lifetime of 1 under biologically relevant conditions,
which forms the basis of the proposed use of 1 in ITI [57].

3. Iron(III) Schiff Base Complexes

Complexes of Fe(III) with salen-type ligands (3 in Figure 3) [97–100] have recently
been highlighted because of their ability to induce uncommon modes of cancer cell death,
ferroptosis and necroptosis. Such modes of toxicity reduce the chance of the development
of drug resistance [101]. These Fe(III) complexes are thought to bypass normal cellular Fe
uptake and metabolism pathways by entering the cell through passive diffusion, which
leads to the formation of highly reactive low-molecular mass (LMM) Fe(III/II) complexes
and ROS (Figure 3) [97–100]. Although hydrolysis of the ligands has not been reported
in the original articles, it is likely to contribute to the decomposition of 3 and related
complexes in an extracellular medium. This would assist the binding of the released Fe(III)
to Tf (Figure 3) [102], which has been observed experimentally [98]. Furthermore, the
release of Fe from 3 and its binding to Tf and other biomolecules is likely to be assisted by
the reduction of Fe(III) to Fe(II) in the hypoxic environment of solid tumors [1,50,55].

Figure 3. Proposed mechanism of cytotoxic activity (red) and deactivation (blue) of a Fe(III) complex
with Schiff base ligand (3) [97,98]. Various substituents (X and Y) in the ligand were used, including
halogens, CH3, OCH3, NO2, or C(O)XR, where X is O or NH, and R is Et, n-Pr or n-Bu [97,98]. The
anticipated hydrolysis of the Schiff base ligand was not reported in the original articles and is based
on the data reported for V(V/IV) Schiff base complexes [57,64]. Designations: Tf is apo-transferrin;
TfR1 is transferrin receptor 1; LMM is low-molecular-mass; and ROS are reactive oxygen species.
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The resultant Fe(III)-loaded Tf can then enter cells via a canonical pathway through
the binding to its cell surface receptor (TfR1 in Figure 3), followed by receptor-mediated
endocytosis [102,103]. Apart from delivering essential Fe into the cells, Fe(III)-Tf binding in
the blood plays a protective role by ensuring that no adventitious low-molecular-mass Fe
species enter cells and cause excessive oxidative stress [37,102]. Therefore, the amount of
Fe that enters cells through Tf-mediated uptake is expected to be lower than that delivered
by the passive diffusion of a hydrophobic Fe(III) complex (Figure 3) [37,104].

The flexibility of salen-type ligands to diverse chemical modifications [88,93,94] offers
possibilities for the design of Fe(III) complexes with suitable ratios of cellular uptake versus
extracellular decomposition rates (Figure 3) for ITI. The use of an essential metal ion, such as
Fe(III), enables the exploitation of the natural metal-binding capacity of extracellular fluids,
including proteins (mainly transferrin and albumin) and low-molecular-mass ligands (such
as citrate and phosphate) [36,40,102] to reduce the possibility of unwanted side effects.
Schiff base ligand design can also be used to enable pH-dependent prodrug activation
in the acidic extracellular environment surrounding solid tumors [105]. In addition to
Schiff bases, other common transition metal ligands, such as (thio)semicarbazones, contain
potentially hydrolysable imine functionalities [106]. These compounds are generally stable
under physiological conditions and biologically active in their own right, or through the
coordination to endogenous Fe(III) and Cu(II) [107,108]. Nevertheless, the possibility
of metal- or enzyme-catalyzed hydrolysis of (thio)semicarbazone complexes [107,109] in
biological media has potential use in ITI.

4. Titanium(IV) Complexes

Titanocene dichloride and budotitane (4 and 5 in Figure 4) were two of the earliest
metal complexes after cisplatin to be developed as potential anticancer drugs in the late
1970s. The design was based initially on their structural similarity with cisplatin with
two labile chlorido or ethanolato ligands in a cis arrangement [110–112]. Unfortunately,
these complexes did not progress beyond phase I clinical trials because of formulation
problems and dose-limiting nephrotoxicity [113]. Notably, 4 and 5 showed low systemic
toxicity in animal studies, which is consistent with the generally low toxicity of Ti [112].
Nevertheless, the anticancer activities of 4 and 5 were attributed to the Ti(IV) ion, since
this is the only structural element shared between the two complexes (Figure 4). A wide
range of effects of Ti(IV) complexes was observed at the cellular level, including induction
of apoptosis and paraptosis, inhibition of mitochondrial activity and inactivation of topoi-
somerases, but the origin of these effects remained uncertain [114]. Recently, interference
with the Fe metabolism has emerged as the most likely underlying mechanism of Ti(IV)
anticancer activity [115–118].
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Figure 4. Typical first-generation (4, 5) and second-generation (6–8) anticancer Ti(IV) complexes [112,116].
Likely decomposition products in an extracellular medium are shown in blue (Tf is apo-transferrin), and
their potential beneficial activity is shown in green.

The complicated reactivity of Ti(IV) under biologically relevant conditions has been
reviewed recently [117,119]. Complexes 4 and 5 are likely to decompose within seconds
after intravenous injection with the formation of a mixture of low-molecular-mass hydroly-
sis products and Ti(IV)-protein adducts [112,117,119]. Extracellularly, Ti(IV) binds strongly
and specifically to the Fe(III) binding sites of Tf [102,117]. This binding is mediated by
citrate that helps to maintain Ti(IV) in a soluble form in neutral aqueous solutions [115]. De-
pendent on the nature of ligands, Ti(IV) complexes can also bind non-covalently to serum
albumin [117,118]. Although Ti(IV)-Tf adducts can bind to cell surface TfR1 and enter cells
through receptor-mediated endocytosis, similarly to Fe(III)-Tf (Figure 4), this uptake is less
efficient compared with the passive diffusion of hydrophobic Ti(IV) complexes through
the cell membrane [115]. Intracellularly, Ti(IV) complexes are likely to lose their ligands
and to displace Fe(III) from the active sites of crucial enzymes, such as ribonucleotide
reductase [104,116,117].

Many second- and third-generation anticancer Ti(IV) complexes were developed
with the aim to slow down the rate of decomposition in the extracellular medium and
to increase cellular uptake and cytotoxicity [112,118,120]. Typical examples (Figure 4)
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include increasing lipophilicity of cyclopentadiene ligands (6, titanocene Y) [121], using
hexadentate ligands to easily exclude hydrolyzable groups (7) [122] and using ligands that
mimic Tf binding sites to prevent extracellular Ti(IV) binding to Tf (8) [116]. It should be
noted that the salan-type ligand in 7 is likely to be cytotoxic in its own right [86,88], which
means that this complex is unlikely to be suitable for ITI. Some of the complexes shown in
Figure 4, as well as other anticancer Ti(IV) complexes described in the literature [112], may
be suitable for ITI if the ligand is sufficiently nontoxic. A possible additional advantage of
the formation of Ti(IV)-Tf adducts during the decomposition of such complexes outside the
cells (Figure 4) is the decrease in availability of Fe(III)-Tf to rapidly growing cancer cells
since they have a high metabolic demand for Fe [102,123].

5. Gallium(III) Complexes

Unlike for Ti(IV) complexes, the use of Ga(III) complexes as anticancer drugs was origi-
nally based on the concept of chemical similarity of Ga(III) to high-spin Fe(III). This was ex-
pected to lead to the disruption of Fe metabolism in rapidly growing cancer cells [113,124–126].
Inorganic Ga(III) salts (nitrate or chloride, 9, Figure 5), injected intravenously in citrate-buffered
solutions [127] (shown schematically as 9a, Figure 5) [128,129], reached phase II clinical trials
for non-Hodgkin’s lymphoma and advanced melanoma [113]. The use of Ga(III) nitrate was
later approved for the treatment of cancer-related calcium overload, but it is currently not
used in the clinic [113]. Radiolabeled 67Ga(III)-citrate injections are still used in the diagnostics
of cancer and inflammation, although they are increasingly replaced by 18F-based positron
emission tomography (PET) scans [113,125]. Complexes with hydrophobic organic ligands,
such as maltol or 8-hydroxyquinoline (10 and 11, respectively, in Figure 5) were designed to
increase the bioavailability of Ga(III) for their potential use as oral anticancer drugs [113,125].
While clinical trials of 10 were discontinued after phase I/II, 11 is still in active trials and has
shown promising results against renal cell carcinoma [113].

Figure 5. Proposed mechanisms of cytotoxic activity (red) and deactivation (blue) of Ga(III) complexes
(9–11; Tf is apo-transferrin) [124–126]. The mono-citrato Ga(III) complex 9a represents one of the
many possible structures of Ga(III)-citrato complexes [128,129], and 10 and 11 are the fac isomers
but other species may be present. Potential beneficial activities of the extracellular decomposition
products are listed in green.

The cellular uptake of Ga(III) is generally thought to occur through Tf binding and
interactions of the resultant Ga(III)-Tf adducts with TfR1 (similar to that for Fe(III) in
Figure 3) [124], although the ability of Ga(III)-Tf to bind strongly to TfR1 has been dis-
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puted [130]. Speciation studies in bovine serum and in cell culture medium by X-ray
absorption spectroscopy showed that 9 was bound to serum proteins, particularly albumin
and transferrin, within minutes at 37 ◦C, 10 decomposed over several hours, and 11 reached
partial decomposition after 24 h under these conditions [131–133]. These data suggest that
11 was more likely than 10 to enter cells intact through passive diffusion (Figure 5), although
both complexes underwent extensive metabolic changes upon entering the cells [131–133].
The two complexes also differ in the biological activity of their ligands: maltol in 10 is
considered non-toxic and is approved as a food additive [78], while 8-hydroxyquinoline in
11 is cytotoxic, probably due to the binding of extracellular Cu(II) and its delivery into cells
(Cu ionophore) [134].

The moderate stability of 10 in biological media [132,133] and the non-toxic nature
of its ligands make this Ga(III) complex a more suitable candidate for potential use in ITI,
compared with 9 or 11. The potential beneficial activities of the decomposition products of
10 (Figure 5) include decreased availability of Fe(III) to rapidly growing cancer cells due
to the binding of Ga(III) to Fe(III)-binding sites of Tf [124], in the same way as proposed
for Ti(IV) (Figure 4) [102,117]. In addition, the ability of Ga(III) to inhibit bone resorption
and Ca(II) release has been reported [135], but the link between Ga(III) and Ca(II) remains
much less explored than the similarities between Ga(III) and Fe(III) [124,125]. Recently,
inorganic Ga(III) salts and Ga(III) complexes with organic ligands have emerged as potent
antibacterial and antifungal agents with low toxicity to animals and humans [136–143].
Such beneficial antimicrobial activities are likely to be based on the differences in both Fe
and Ca metabolism between microbial and mammalian cells [138,144]. This activity can
potentially be used to help fight opportunistic infections that commonly occur as a result of
cancer treatment by chemotherapy [145].

6. Ruthenium(III) Complexes

The anticancer activities of Ru(III) tetrachlorido complexes with axial N-heterocyclic ligands
(Figure 6) have been extensively studied since the 1980s [33,113,146–149]. Two of the complexes,
NAMI-A (12) and KP1019 (13a), reached human clinical trials but did not proceed beyond
phase I/II. A more water-soluble analog of 13a, KP1339 (13b, also known as NKP-1339, IT-139
and BOLD-100) is currently in phase I clinical trials in combination with established anticancer
drugs [113,150–153]. The postulated mechanism of action of Ru(III) complexes involves the
exchange of labile chlorido ligands for donor groups of various biomolecules, which leads to the
binding to numerous intra- and extra-cellular targets [33,34,36,113,146,147,154,155]. Complexes
with bulkier, more hydrophobic ligands, such as 13a, rapidly enter the cells and cause significant
cytotoxicity, while 12 binds predominantly to extracellular targets and is generally not cytotoxic
(Figure 6) [33,113,146,147,156–160]. These complexes decompose in typical cell culture media
or in blood serum within ~1 h (12) or ~4 h (13a) at 37 ◦C with the formation of predominantly
Ru(III)-albumin adducts [156,160]. The binding of 12 to albumin involves the complete loss of
the original ligands and the formation of covalent bonds with the side chains of the protein,
and the resultant Ru(III)-albumin adducts are anti-invasive in cell culture assays [156,160]. The
complete loss of the original ligands in NAMI-A during protein binding has been confirmed in
several protein crystallography studies [161–163]. Fast non-covalent binding of 13a to albumin
occurs through hydrophobic interactions, followed by slower covalent binding [157,159,164].
The addition of trifluoromethyl groups to the indazole ligands in 14 enhances hydrophobic
interactions with albumin, which results in increased stability in extracellular media and higher
cellular uptake and cytotoxicity (Figure 6) [146].
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Figure 6. Structures of anticancer Ru(III) complexes that entered human clinical trials (12,13) and an
investigational drug, 14 [113]. Their main modes of action in extra- and intracellular spaces (ECM
is extracellular matrix, DAMP is damage-associated molecular pattern) are presented [33,113,147].
Intracellular cytotoxic species are shown in red, extracellular decomposition products are shown in
blue, and their potential beneficial activities [151,154–156,165,166] are listed in green.

Based on the results of animal experiments, a unique mode of action of 12 was pro-
posed, in which the drug does not decrease the size of primary tumors but prevents the
spread of metastases [147,148]. Covalent binding of 12 to cell surface integrins and to
the components of extracellular matrix (ECM), such as collagens (Figure 6), can disrupt
the cell–cell and cell–ECM communication and prevent the invasion of aggressive cancer
cells [33,147,148,156]. On the other hand, extensive binding to extracellular targets was
likely to cause problems observed in the clinical trials of 12, such as the binding to skin
collagen that result in painful blisters [147,148]. In these trials, 12 was administered by
conventional intravenous injections. It is possible that administration of 12 by ITI could
result in the predominant binding to the ECM that surrounds the tumor and to slow the
spread of metastases, but this is yet to be established experimentally. More hydrophobic
members of the Ru(III) series that have already undergone extensive preclinical devel-
opment, such as 13a,b, also have a potential for ITI, given that a suitable drug delivery
formulation is used (see Section 7) [167]. The administration of such drugs directly into the
tumor would result in rapid uptake by cancer cells and in cell death, while the formation
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of Ru-containing cell debris could lead to Ru–ECM binding and antimetastatic activity
(Figure 6) [33,147,148,156].

The ability of certain metal complexes to promote the expression of damage-associated
molecular patterns (DAMPs, Figure 6) on the surface of dying cancer cells, which leads
to engagement of immune cells to the tumor (immunogenic activity), is crucial for the
future of metal-based anticancer drugs [168,169]. Immunogenic properties have been
demonstrated for many established anticancer drugs, including oxaliplatin, while cisplatin
is generally considered to be non-immunogenic [168,169]. At least one Ru(III) compound
(13b) has demonstrated the ability to induce immunogenic cancer cell death in vitro [151].
Such activity can provide an important additional benefit for the use of Ru(III) complexes
in ITI [2,4,170]. Additional potential beneficial effects of the decomposition products
of Ru(III) complexes used in ITI (Figure 6) include antimicrobial activity [165] and the
disruption of the formation of amyloid aggregates, which are postulated to contribute to
Alzheimer’s disease [154,155,166].

7. Drug Formulations for ITI

Producing stable, injectable formulations of poorly water soluble and/or water-
sensitive metal-based drugs is a significant challenge [49,167]. Many of the proposed
ITI formulations of cytotoxic drugs, including Pt(II) complexes, involve polymeric matrices
that are designed for the slow release of the drug [25,171–173], but these are less applica-
ble to unstable metal complexes that have to be delivered rapidly. Some of the possible
solutions that can be applied to unstable and reactive V(V) complexes, as well as to other
metal complexes, include micellar systems (Figure 7a), graphene quantum dots (Figure 7b),
human serum albumin (HSA) adducts (Figure 7c), liposomal systems (Figure 7d) and
oncolytic virus–metal complex suspensions (Figure 7e).

A simple approach that is compatible with ITI involves the encapsulation of hydropho-
bic complexes, such as 1, within micelles that are formed by a mixture of polyethylene glycol
and fatty acids or triglycerides (Figure 7a) [174]. More recently, the binding of inorganic
vanadate to small peptides that are incorporated into cell-permeable graphene quantum
dots has been used for the precise delivery of V(V) to its cellular targets, such as a labile
protein tyrosine phosphatase 1B (PTP1B) inhibitor, which was stabilized by the graphene
framework (Figure 7b) [64,65]. This delivery system led to pronounced antidiabetic activity
in mice [175]. Such technology also enabled the targeting of the compound using protein ty-
rosine phosphatases (protein tyrosine phosphatase 1B and T-cell protein phosphatase) [175].
Since applications of graphene quantum dots for selective anticancer therapy are under
active development [176], a similar approach could potentially be designed for the delivery
of unstable anticancer metal complexes to tumors via ITI techniques.

Another way to increase the aqueous solubility and stability of hydrophobic metal
complexes, such as the V(V) tris-3,5-di-tert-butylcatecholato complex 15, is to enclose them
in hydrophobic pockets of human serum albumin (HSA, Figure 7c) [177]. The use of
HSA as a carrier of anticancer drugs is expected to assist their retention in tumors [178]
and a formulation using a HSA adduct of a Pt(IV) complex has entered human clinical
trials [179]. In a related approach, the binding of inorganic V(V) and V(IV) salts to HSA
through a covalently attached chelating ligand (EDTA) led to their efficient cellular uptake
through caveolae-mediated endocytosis and high antiproliferative activity in cultured
cancer cells [180]. This approach can potentially be used for the development of metal-
ligand-HSA conjugates with an optimized lifetime for ITI applications [57].

Liposomal formulations of immunomodulating drugs are widely applied for use
with ITI [181]. Water-soluble complexes, such as ammonium decavanadate 16, or other
polyoxometalates, can be encapsulated within unilamellar liposomes (Figure 7d) [182].
The pH value within the liposomes can be regulated to increase the stability of such
complexes (Figure 7d) [183]. This approach may open the way for the wider use of unique
biological activities of polyoxometalates that are different from those of mononuclear metal
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complexes [182,184,185]. Liposomal formulations have also been developed to enhance the
stability of hydrophobic V(V) complexes in biological media [92].

A novel and highly promising way to harness the effect of V complexes on cellular sig-
nal transduction [66,70,72,186] is their use in enhancing the effects of oncolytic viruses [187].
Co-administration of a virus with inorganic vanadate (17 in Figure 7e) or selected V com-
plexes enhanced their uptake and cytotoxicity in cultured cancer cells and reduced tumor
sizes in mice [187]. Viral infection and cytotoxicity in cancer cells was further enhanced
by using more lipophilic V(V) complexes with dipicolinate ligands (18 in Figure 7d) [188],
although such complexes are known to be short-lived in aqueous solutions [189]. These
findings are of immediate interest for the use in ITI of oncolytic viruses, which is the only
ITI application currently approved for clinical use [8].

Figure 7. Potential pharmaceutical formulations for intratumoral injections of V(V) complexes
(1, 15–18): (a) hydrophobic micelles [174]; (b) protein tyrosine phosphatase (PTP)-targeting graphene
quantum dots [175]; (c) adducts with human serum albumin (HSA) [177]; (d) pH-controlled lipo-
somes [182]; and (e) co-administration with oncolytic viruses [187,188]. tBu is tert-butyl.

Injections of well-known cytotoxic Pt(II) complexes [15] directly into the tumor have
been extensively trialed (Table 1) [7] to reduce their systemic toxicity compared with
standard intravenous injections. However, significant side effects can still occur due to the
partial escape of Pt(II) species into the blood stream [18,26,190]. To overcome this problem,
a Pt(IV)-based nanocarrier formulation for ITI was developed recently (19 in Figure 8) [190].
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The formulation consists of a Pt(IV)-tocopherol derivative that is bound non-covalently
(through hydrophobic interactions) to a hyaluronan-tocopherol adduct (Figure 8) [190].
The resulting nanoparticles are efficiently taken up by cancer cells and reduced by cellular
reductants, such as glutathione and ascorbate, to form reactive Pt(II) species (marked with
red color in Figure 8) [190,191]. These species enter the cell nucleus and form irreparable
Pt(II)-DNA adducts, leading to cell death [15,191]. Importantly, the expressions of DAMPs
on the surface of dying cancer cells [168,169] leads to the engagement of immune cells
to the tumor and enhances the anticancer activity of 19 in an immunocompetent mouse
model [190]. This immunogenic activity provides an additional benefit of using 19 for ITI
(shown in green color in Figure 8) [31,181,190]. This example further demonstrates the
potential of nanocarrier formulations in enhancing the activity and selectivity of metal
complexes for ITI applications.

Figure 8. Structure of a Pt(IV)-tocopherol-hyalouronan nanocarrier 19 [190] and its proposed mecha-
nism of action in ITI (based on a general mechanism of anticancer activity of Pt(IV) complexes) [191].
Proposed cytotoxic species are shown in red, and the beneficial immunogenic activity [168,190] is
shown in green. Designations: Red are cellular reductants (e.g., ascorbate or glutathione), and DAMP
are damage associated molecular patterns.

8. Conclusions and Future Potential Applications

Metal-based anticancer drugs [113,149,192] often have low stability in biological me-
dia [36–42], and this is one of the main obstacles to their wider use in clinical practice. A
recent suggestion [57] was to take advantage of this instability and consequently reactivity
and use these compounds in ITI applications (Figure 1). This novel concept was based on
the results of in vitro stability studies and cell culture assays using a mixed-ligand V(V)
complex showing significantly enhanced activity over cisplatin, 1 (Figure 2a) [57]. This
literature survey highlights other metal-based anticancer drugs that could potentially be
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suitable candidates for ITI injections. Particularly, it focuses on considering anticancer
Ti(IV), Ga(III) and Ru(III) complexes that were previously tested in human clinical trials
but failed, which was attributed, at least in part, to the low stability when injected into
the bloodstream [113].

The question posed for the compounds identified in this review (or related systems)
is whether they would have the desired reactivity and sufficient stability to be useful for
ITI applications. This approach has been used successfully in clinical trials with estab-
lished Pt(II) drugs, mostly cisplatin (Table 1) [7] and in pre-clinical studies using a Pt(IV)
prodrug [190]. In cell culture models [57,87], V(V) complexes with hydrophobic organic
ligands were far superior to cisplatin in causing cancer cell death, particularly in short-
term treatments that are relevant to ITI. The use of these biologically active but relatively
unstable V(V) complexes can be further enhanced by the development of suitable drug
formulations that stabilize the compounds further (Section 7). This is particularly relevant
for their use in ITI and CED for the treatment of malignant gliomas [29,30,193]. Based on
the low acute toxicity of 1 in healthy mice [83], the next logical step is the use of stabilized
formulations of 1 and other hydrophobic metal complexes for intratumoral injections in
mouse models of human cancers. These would use similar procedures to those used in
previous studies with Pt(II) and Pt(IV) complexes [26,190]. The use of immunocompetent
animals is particularly important for the assessment of immunogenic activity of 1 and other
metal complexes [31,190].

Successful ITI has a cellular uptake of metal drugs that is faster than the extracellular
complex decomposition. Since the proposed ITI approach is dependent on the kinetic
competition between cellular uptake and extracellular decomposition, and this is charac-
teristic for transition metal complexes, these complexes are ideal for such ITI applications
(Figures 2–6) [33,36]. In addition, Pt(IV) and Co(III) prodrugs that are activated by the re-
duction in the hypoxic environment of solid tumors (Figure 8) [49–51,53,56,190] can benefit
from ITI by avoiding reduction in red blood cells before reaching the tumor target [54–56].
Generally, any cytotoxic metal complex can be considered for the use in ITI if it decomposes
in an extracellular medium at a comparable rate with its cellular uptake and the decom-
position products show lower toxicity compared with the initial complex [57]. The latter
consideration is crucial to exclude the possibility that the cytotoxicity of the metal complex
is due to the release of stable and biologically active ligands either inside or outside of the
cell, such as 2 in Figure 2b or 11 in Figure 5 [86,90,91]. Under the conditions of ITI, the
release of such ligands into the blood stream (Figure 1) is likely to lead to high systemic
toxicity. Therefore, metal complexes of the ligands that have limited lifetimes in neutral
aqueous solutions, such as Schiff bases (Figures 2a and 3), can be particularly suitable for
the use in ITI. More research is urgently needed to follow early kinetic studies [95,96] on the
decomposition of such ligands and their complexes under biologically relevant conditions
as well as methods that will stabilize these systems and facilitate the administration of
these complexes.

An important novel consideration in the use of metal complexes as anticancer drugs
for ITI is the potential beneficial activity of their decomposition products (shown in green
color in Figures 1–6 and 8), which is unlikely to occur for non-metal-based drugs. Some
of the most promising examples include the following: (i) immunogenic activities of
some Pt(II), Pt(IV) and Ru(III) complexes [151,168,190]; antidiabetic, tissue regeneration
and neurostimulatory activities of V(V/IV) complexes [63,78,79,81,82]; antimicrobial ac-
tivities of Ga(III) [136–138,140–143], V(V/IV) [194,195] and Ru(III) complexes [165]; and
antimetastatic and possibly neuroprotective activity of Ru(III) complexes [147,154–156,166].
The multiple modes of biological activity of many metal ions, dependent on their concen-
tration and speciation in biological compartments [33,35,36,42,196] highlight the unique
potential for metal complexes in medicinal applications, which is far from being fully
realized at this time [49,52,113].
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