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Abstract In this contribution, the advantages and

limitations of two computational techniques that can

be used for the investigation of nanoparticles activity

and toxicity: classic nano-QSAR (Quantitative Struc-

ture–Activity Relationships employed for nanomate-

rials) and 3D nano-QSAR (three-dimensional

Quantitative Structure–Activity Relationships, such

us Comparative Molecular Field Analysis, CoMFA/

Comparative Molecular Similarity Indices Analysis,

CoMSIA analysis employed for nanomaterials) have

been briefly summarized. Both approaches were

compared according to the selected criteria, including:

efficiency, type of experimental data, class of nano-

materials, time required for calculations and compu-

tational cost, difficulties in the interpretation. Taking

into account the advantages and limitations of each

method, we provide the recommendations for nano-

QSAR modellers and QSAR model users to be able to

determine a proper and efficient methodology to

investigate biological activity of nanoparticles in

order to describe the underlying interactions in the

most reliable and useful manner.

Keywords Nano-QSAR � 3D QSAR � CoMFA �

Nanomaterials � Toxicity � Environmental, health and

safety effects

Introduction

There has been a significant increase in computational

studies related to nanoparticles’ activity and toxicity in

the last few years (Ahmed et al. 2013; Durdagi et al.

2008b; Epa et al. 2012; Gajewicz et al. 2015;Electronic supplementary material The online version of
this article (doi:10.1007/s11051-016-3564-1) contains supple-
mentary material, which is available to authorized users.
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Mikolajczyk et al. 2015; Puzyn et al. 2011b; Salahine-

jad 2015; Sizochenko et al. 2014, 2015; Toropov et al.

2012, 2013; Tzoupis et al. 2011; Winkler et al. 2013).

The majority of these contributions are based on the

main chemistry principle that similar compounds will

have similar biological properties (Hansch et al.

1963). The most important group of these techniques

is represented by Quantitative Structure–Activity

Relationships (QSAR) modelling (Gajewicz et al.

2015; Mikolajczyk et al. 2015; Puzyn et al. 2011b;

Salahinejad 2015; Sizochenko et al. 2015; Toropov

and Toropova 2015; Toropov et al. 2010; Winkler

et al. 2013).

Classical QSAR approach, known also as Hansch

Analysis (Hansch et al. 1963), is based on the

assumption that biological activity of chemicals is

correlated with their physicochemical properties and/

or so-called structural descriptors (Puzyn et al. 2010).

These descriptors encode certain structural features,

such as polarizability, electronic properties and steric

parameters. In this case, the developed model includes

a set of selected variables (descriptors) that are

statistically important and allow providing useful

insights and understanding of the mode of studied

interaction. However, this approach does not consider

the 3D geometric features of the molecules, which

leads to some difficulties in adequately describing

ligand–receptor interactions. For this type of interac-

tions, better results one can obtained by applying 3D

QSAR methodology (Cramer et al. 1988; Klebe et al.

1994; Sippl 2010).

The first application of 3D QSAR technique was

proposed in 1988 by Cramer et al. (1988). Their

program, the Comparative Molecular Field Analysis

(CoMFA) (Cramer et al. 1988), assumes that differ-

ences in biological activity correspond to changes in

shapes and strengths of non-covalent interaction fields

surrounding the molecules (Sippl 2010). Other tech-

niques that also allow to describe 3D interactions in a

quantitatively manner include: Comparative Molecu-

lar Similarity Indices Analysis (CoMSIA) proposed by

Klebe et al. (1994) and the GRID/GOLPE program

developed by Reynolds et al. (1989). Both could be

considered as the extensions of CoMFA methods that

propose to expand its applicability, and in many cases

are applied as an alternative to the original CoMFA

approach. Taking into account that 3D QSAR tech-

niques consider the ligand properties calculated in its

bioactive conformation, it is more suitable than classic

approach to study the ligand–receptor interactions

(Sippl 2010).

Recently, both classical QSAR and 3D QSAR

methodologies are widely applied to study biological

activity of nanoparticles (Ahmed et al. 2013; Puzyn

et al. 2011b; Tzoupis et al. 2011). Thus, the question:

‘‘How to select the best approach in order to properly

describe the biological activity of nanomaterials in the

most reliable and efficient manner?’’ may be raised. In

this contribution, we compare the efficiency and

applicability of both techniques: nano-QSAR (the

classic Hansch approach applied for nanomaterials)

with 3D nano-QSAR (CoMFA/CoMSIA approach

applied for nanomaterials), in order to provide

recommendations for QSARmodellers and themodels

users, to determine the right methodology for inves-

tigating nanoparticles’ biological activity.

Methods

Nano-QSAR model

Objects

Fullerene derivatives were previously studied in order

to understand their binding mode to HIV-1 protease

based on the 3D-QSAR approaches (Durdagi et al.

2008b; Tzoupis et al. 2011). The CoMFA/CoMSIA

models proposed by Tzoupis et al. (2011) were

developed for binding energy (BE, kJ/mol) of 74

fullerene derivatives to HIV-1 protease. Among the

studied inhibitors, there are 54 compounds, for which

BE was calculated with docking simulations and 20

compounds for which the binding energy was obtained

experimentally. This is a source of additional variance

in the dataset. The average value of the binding energy

in the first set (for which BE was calculated with

docking simulations) is of an order of magnitude

higher than the average binding energy in the second

set (for which the binding energy was obtained

experimentally).

According to the OECD QSAR recommendations

(OECD 2004), data for the modelled property (end-

point) should be obtained with the same methodology/

protocol. Thus, theoretically, we would develop

classic QSAR model either for the first set of 54

fullerene derivatives or by using the second set of 20

compounds. Tzoupis’s model was calibrated based on
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the compounds with the computed BE and then

validated based on the only 3 compounds with the

computed BE and the 20 compounds with the exper-

imentally measured BE. Therefore, we have decided

to take the derivatives with the computed BE for

calibrating our model.

Thus, the dataset used in this study contains 54

fullerene analogues that were tested for interaction

with HIV-1 protease. All data have been taken from

the literature (Tzoupis et al. 2011). The structures of

the molecules are given in Table 1. Binding energies

(BE) for these chemicals to HIV-1 protease have been

calculated from docking simulations (Tzoupis et al.

2011).

Quantum–mechanical and descriptors calculations

To obtain optimal geometries of the investigated

fullerene derivatives, we applied Density Functional

Theory (DFT) approach employing the hybrid meta

exchange–correlation functional M06-2X (Zhao and

Truhlar 2008). All calculations were performed with

the Gaussian 09 code. The 6-31G(d,p) basis set was

used throughout the computations (Rassolov et al.

2001).

The following quantum-chemical descriptors were

computed for all optimized structures: the total dipole

moment, the energy of the highest occupied molecular

orbital (EHOMO), the energy of the lowest unoccupied

molecular orbital (ELUMO) and the total energy. In

addition, we have calculated structure-based additive

descriptors for the fullerene substituents by applying a

Dragon (version 6.0) software (Talete 2014). We have

assumed, as it was previously described and adopted

(Ahmed et al. 2013) that functional groups have a

major contribution to the change of the properties of

fullerenes since the fullerene core remains constant in

each fullerene molecule. Thus, at first, we have

calculated a full series of descriptors available in the

Dragon software (about 4500 descriptors), then we

excluded: (1) descriptors with standard deviation less

than 0.0001, (2) descriptors with at least one missing

value and (3) descriptors with cross-correlation larger

than or equal to r = 0.95. The final set of Dragon-

generated and quantum–mechanical descriptors con-

tained 1419 descriptors. Then, the whole set of

descriptors was used to develop a nano-QSAR (Han-

sch) model.

Nano-QSAR modelling procedure

First, the binding energies of fullerenes to HIV-1

protease were sorted according to the increasing

values of the energy (response variable). Then, the

dataset was split into two subsets: training and

validation ones. The splitting was performed using a

3:1 algorithm according to which, after sorting, every

third compound was assigned to a validation set

(Puzyn et al. 2011a). Thus, we obtained a training set

containing 36 (68 %) compounds and a validation set

containing 17 (32 %) of them.

To select the most optimal combination of descrip-

tors, we have used a genetic algorithm (Gramatica

et al. 2014) implemented in the QSARINS software

(Gramatica et al. 2013) (population size: 300, muta-

tion rate: 65). In addition, descriptors with cross-

correlation coefficient values higher than 0.85 have

been excluded during final model construction. The

chosen descriptors were then used to develop the

model using a multiple linear regression analysis

(MLR), as it is implemented in QSARINS software

(Gramatica et al. 2013). The goodness-of-fit of the

developed model was assessed through the squared

correlation coefficient (R2) and Root-Mean-Square

Error of Calibration (RMSEC). The Leave-One-Out

(LOO) cross-validation technique was utilized for

internal validation. The predictivity of the model was

assessed by using the squared external validation

coefficient (QExt
2 ) and Root-Mean-Square Error of

Prediction (RMSEP) (Gramatica 2007). The applica-

bility domain was verified by applying the Williams

plot analysis (Gramatica 2007).

In addition to the above-described internal and

external validation tests, an advanced statistical pro-

cedure was performed according to recommendation

provided by Roy et al. (2015).

3D nano-QSAR model

As it was mentioned in the Introduction, the 3D QSAR

methodology was recently applied to study the inter-

action of nanomaterials with their biological targets

(Durdagi et al. 2008a, b; Tzoupis et al. 2011). For this

contribution, we have adopted CoMFA/CoMSIA

approach developed for interaction of fullerene

derivatives with HIV-1 protease described in Tzoupis

et al. (2011).
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Table 1 Chemical structures of fullerene derivatives and the values of binding energy (BE) for these carbon-based nanoparticles to

HIV-1 protease
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Table 1 continued
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Table 1 continued

256 Page 6 of 16 J Nanopart Res (2016) 18:256

123



Table 1 continued
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Classic nano-QSAR versus 3D nano-QSAR

Nano-QSAR and 3D nano-QSARwere then compared

according to the following criteria: (1) efficiency,

which is measured by the obtain statistics, (2) type of

experimental data: receptor-base response, cell-based

response and tissue-based response, (3) type of

nanomaterials: their chemical nature (organic, non-

organic, metals) and the homogeneity of their struc-

tures, (4) computational cost and time required

to perform whole procedure and (5) software

availability.

Results and discussion

Nano-QSAR model

Based on the values of the binding energy (BE,

kcal/mol) and the calculated descriptors, we have

Table 1 continued

Calculated binding energies from docking simulation, values taken from Tzoupis et al. (2011)
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developed a classic nano-QSAR model by employing

the MLR methodology. The obtained model Eq. (1) is

as follows:

BE kcal=mol½ � ¼ �7:84þ 0:73 �MAXDN

þ 1:77 �GATS2e� 0:51 �HNar� 0:51 � C

� 0:07� 0:95 � B08½C�O� ð1Þ

Ntrain = 36, Ntest = 17, R2
= 0.80, RMSEc = 0.85,

QCV
2
= 0.74, RMSEcv = 0.98, Qext

2
= 0.73,

RMSEp = 0.92, CCC = 0.86, rm
2 (training)scaled =

0.80, rmaver
2 (training)scaled = 0.72, Drm

2 (training)

scaled = 0.16, rm
2 (test)scaled = 0.66, rmaver

2 (test)

scaled = 0.65, Drm
2 (test)scaled = 0.02, rm

2 (overall)

scaled = 0.76, rmaver
2 (overall)scaled = 0.70, Drm

2

(overall)scaled = 0.12.

As it can be noticed, the developed model repre-

sents a linear combination of five descriptors. Two of

them belong to topological indices, namely: maximal

electrotopological negative variation (MAXDN)

(Todeschini and Consonni 2009) and Narumi har-

monic topological index (HNar) (Todeschini and

Consonni 2009). Next three descriptors are: Geary

autocorrelation of lag 2 weighted by Sanderson

electronegativity (GATS2e) (Todeschini and Con-

sonni 2009), the descriptor of atom-centred CH2X2

fragment (C-007) (Todeschini and Consonni 2009),

the presence or absence of C–O at topological distance

8, and B08—descriptor that belongs to 2D atom pairs

group (Todeschini and Consonni 2009).

The Narumi harmonic topological index (HNar) is

related to molecular branching and is proposed as the

number of non-hydrogen atoms divided by the recip-

rocal vertex degree sum (Todeschini and Consonni

2009). According to Eq. 1, higher values of this

descriptor decrease the binding energy. The presence

of aromatic rings in the structure increases the value of

this descriptor. Most probably, the presence of HNar

in the model means that the higher number of rings (for

example, aromatic cycles) and connected to them

functional groups increase the interaction with protein

in comparison to structures with the same number of

atoms composed of long, linear alkyl chains only.

Second topological descriptor, the maximal electro-

topological negative variation (MAXDN), describing

the maximum negative intrinsic state difference in the

molecule is related to the nucleophilicity of the

molecule. The positive value (0.726) of the coefficient

(Eq. 1) implies that this descriptor is correlated

positively with the value of BE. Fullerenes that have

more electronegative elements in theirs structures, are

characterized by higher values of MAXDN. Next

descriptor: Geary autocorrelation of lag 2 weighted by

Sanderson electronegativity (GATS2e) represents 2D-

autocorrelation classes of descriptors. This descriptor

is related to the topology of the structure or its parts

that are in association with a given physicochemical

property (in this case—Sanderson electronegativity)

(Todeschini and Consonni 2009). According to Eq. 1,

an increase in GATS2e descriptor’s value increases

the binding energy. Another descriptor that is indi-

rectly connected to electronegativity is C-007, which

encodes the presence of CH2X2 atom-centred frag-

ment. The X stands for a highly electronegative atom,

like oxygen, nitrogen, sulphur, phosphorus and vari-

ous halogens (Todeschini and Consonni 2009). Only

four of the considered structures (S18, S41-S44)

display negative value for this descriptor.

Interestingly, we noticed that all descriptors

selected by the genetic algorithm into the model (1),

although not internally correlated, were connected to

the electronegativity to some extent. Certainly, the

presence of the electronegative elements results in

polarization of a molecule, changes the binding

energy, and thereby increases or decreases the inter-

action between investigated ligands and protein.

Goodness-of-fit, robustness and predictive ability

of the developed QSAR model have been confirmed

by high values of R2, QCV
2 , QExt

2 , CCC and relatively

low values of the errors represented by: RMSEC,

RMSECV, RMSEP. Moreover, the visual correlation

between the observed and predicted values of BE for

the training (T) and validation (V) sets confirmed the

good quality of the model (Fig. 1a). Additional

metrics (summarized under Eq. 1) confirmed the

robustness of the developed model as well.

Since the error values (RMSEC, RMSECV, RMSEP)

are at the same level and there are no significantly

large residual values for the validation set, one can

conclude that the model has not been over fitted

(Jagiello et al. 2014). This means that the model

predictions are correct not only for the training

compounds, but also for external set of compounds.

In order to verify the applicability domain of the

nano-QSAR model, we have applied the leverage

approach (Gramatica 2007). So-called the Williams

plot (Fig. 1b) presents the relationship between lever-

age values (expressing similarity of a given compound
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to the training set) and the standardized cross-validated

residuals (prediction errors observed for particular

compounds). Analysis of the plot confirmed that

because the prediction errors for all compounds from

the training and validation sets do not exceed the

square area between±3 standard deviation units, there

are not outlying predictions observed. The formal

leverage (similarity) threshold value h* is equal to

0.51. Interestingly, two compounds from the training

set (S4 and S42) and two from validation set (S43 and

S44) are characterized by the leverages greater than the

threshold value, but—simultaneously—they have

small residuals. Such compounds are called ‘‘good

high leverage points’’, and—as it has been previously

demonstrated by Jaworska et al. (Jagiello et al. 2014;

Jaworska et al. 2005)—compounds having hi greater

than h*, stabilize the model and make it predictive for

new compounds differing structurally from the training

set. Obviously, this is the true only when the residuals

observed for the training compounds are small.

3D nano-QSAR model

Recently, the contributions aimed at the application of

3D QSAR approach for evaluation of the binding

energy of fullerene inhibitors to HIV-1 protease have

been published (Durdagi et al. 2008a, b; Tzoupis et al.

2011).

In order to compare the classic nano-QSAR (Han-

sch Analysis) approach with the 3D nano-QSAR, we

have adopted contribution proposed by Tzoupis et al.

(2011). The main objective of these studies was to

design a series of fullerene-based inhibitors for HIV-1

protease by employing the CoMFA/CoMSIA

approach. Models proposed by Tzoupis et al. (2011)

were developed for the same set of fullerenes as we

have used in developing nano-QSAR (Hansch) model

(Table 1). Moreover, Tzoupis et al. (2011) obtained

models with better statistics than those previously

presented by Durdagi et al. (2008a).

Comparison between the classic nano-QSAR

(Hansch Analysis) and 3D nano-QSAR

In order to assess the efficiency of the classic nano-

QSAR versus the 3D nano-QSAR, we have made a

comparison of the statistics characterizing quality of

the predictions for each approach (Table 2). The

obtained statistics are very close to each other. Similar

statistics were also obtained in previously published

contributions related to fullerenes activity against

HIV-1 protease (Ahmed et al. 2013; Toropov et al.

2010). Nano-QSAR model developed by Toropov

et al. (2010) displays statistics, as follow:

R2
= 0.9769, Qcv

2
= 0.9646, similar to model devel-

oped by Ahmed et al. (2013): R2
= 0.882,

Qcv
2
= 0.738. This could suggest that both approaches

have similar efficiency and can be applied to study this

phenomenon. Which one is more suitable depends on

particular task, i.e. a type of information one would

like to gather.

By employing classic nano-QSAR, the certain parts

of molecules, that are responsible for the biological

activity, have been identified statistically. For

Fig. 1 a Docking-based

versus predicted binding

energy plot for the MLR

model; b Williams plot:

standardized residuals

versus leverages
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example, changes in the electronegativity have been

determined to be the driving force of the interactions

between fullerenes and HIV-1 protease (this work).

CoMFA/CoMSIA analysis of fullerene-based inhibi-

tors of HIV-1 protease pointed out that the highest

contribution to the binding energy is associated with

the electrostatic interactions, where highly electroneg-

ative groups increase (decrease) the affinity of

fullerene derivatives to the protein. This is in agree-

ment with the classic nano-QSAR results (Tzoupis

et al. 2011). However, the applied 3D QSAR approach

indicates also other effects that favour these interac-

tions, such as: hydrophobic interactions and H-bond-

ing (Tzoupis et al. 2011). Thus, one can conclude that

classic nano-QSAR allows gathering general knowl-

edge about the mechanism of the studied interaction,

while 3D nano-QSAR describes the ligand-based

response in more details, relying on their three-

dimensional structures.

Additionally, 3D nano-QSAR approach provides a

clear visualization, i.e. allows obtaining 3D graphics

image superimposed on a core molecule of the dataset.

This permits to determine more precisely functional

groups of the molecules involved in interactions with

residues within the binding pocket of the protease (see

details in (Tzoupis et al. 2011)). Such information

facilitates appropriate modifications of fullerene

derivatives that appropriately improve their binding

affinity to the HIV-1 protease.

The literature studies (Kim et al. 1998; Klebe et al.

1994; Podlogar and Ferguson 2000; Puzyn et al.

2010) allow us to provide comprehensive comparison

between both techniques. Thus, the advantage of 3D

QSAR over Hansch analysis includes also applica-

bility of this approach to evaluate a set of structurally

diverse compounds, as long as they act within the

same mechanism (Kim et al. 1998; Kubinyi 1998).

This advantage, in the case of nanomaterials, is of a

high value. Since the classic nano-QSAR is

developed with the application of various statistical

techniques, they require experimental data measured

for sufficient number of considered species. Thus, in

order to apply QSAR one needs to have at least

15–20 experimentally measured values of biological

activity for chemicals that are located within the

applicability domain of the model, which means that

they are structurally similar. This principle is often

difficult to be fulfilled in case of nanomaterials.

Moreover, the application of nano-QSAR is limited

also by insufficient set of tools to describe the

uniqueness of nanoparticles. More appropriate types

of descriptors should reflect not only the molecular

structure of these species but also their supra-

molecule pattern (e.g. size, shape, porosity, morphol-

ogy, etc.), and very often their system dependent

properties (e.g. agglomeration, formation of protein

coronas etc.).

On the other hand, there is no limitation for the

application of classic nano-QSAR considering the

type of the experimental endpoint values (in vivo and

in vitro) and the type of chemicals for which this

model could be applied (organic, inorganic, etc.). The

various quantum-chemical descriptors can provide

useful insight into mode of cytotoxic/toxic action of

nanoparticles involving metal oxides (Gajewicz et al.

2015; Toropov et al. 2013), as well as fullerene

derivatives (Ahmed et al. 2013; Toropova et al. 2010).

Nevertheless, 3D nano-QSAR is much more applica-

ble for organic nanomaterials.

Both techniques require similar calculation time

and computational costs. In case of classic nano-

QSAR, computer resources are limited mainly by

calculations of appropriate nano-descriptors. In 3D

QSAR approach, the proper orientation of the ligand to

its biological target becomes a crucial factor of success

(Kim et al. 1998). The bioactive conformation of

ligand can be obtained experimentally, by NMR

spectroscopy or X-ray crystallography, or theoreti-

cally by means of molecular docking. For both

techniques, commercial tools with user-friendly inter-

face are available (Gramatica et al. 2013; TRIPOS Inc.

2001).

In Table 3, we have summarized a comparison of

the two considered approaches: nano-QSAR and 3D

nano-QSAR according to the described above criteria:

type of experimental data; type and characterization of

nanomaterials; required software, time and computa-

tional costs.

Table 2 Comparison of statistics obtained in nano-QSAR and

3D nano-QSAR (CoMFA and CoMSIA) approaches

R2 Qcv
2 References

nano-QSAR 0.80 0.74 This work

CoMFA 0.84 0.613 Tzoupis et al. (2011)

CoMSIA 0.92 0.763 Tzoupis et al. (2011)
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Recommendations

Taking into account the advantages and limitations of

the nano-QSAR and the 3D nano-QSAR technique, we

provide some recommendations for nanomodellers as

well as for the users of these methodologies, Fig. 2, to

better understand and more efficient predict the

biological activity of nanomaterials.

According to the decision tree, shown in Fig. 2, the

recommendation which approach should be applied,

either classic nano-QSAR or 3D nano-QSAR, in order

to better understand the biological activity of nanoma-

terials, require to answer to the following questions:

1. What types of experimental (response) data are

available considered?

2. What types of nanomaterials are considered?

3. What is the major goal of the study?

It is obvious that the adequate experimental data are

essential to obtain proper models, both in case of

classic nano-QSAR and 3D approach. Appropriate

data should fulfil two main principles: (1) should be

measured according to the same protocol (ideally if

they could be from the same source) and (2) should be

symmetrically distributed around their mean value and

their precision should be distributed over its range of

variation (Kubinyi 1998). The more extensive discus-

sion on biological data for nanomaterials could be

found in the literature (Hristozov et al. 2012; Puzyn

et al. 2010). Besides the quality of the data, the type of

measured response is important to answer the first

above-listed question. In this point, it worth to

emphasize that classic nano-QSAR represents more

universal approach. There are models that have been

developed for particular molecular targets response

(Ahmed et al. 2013), cell response (Toropov et al.

2013), or the response measured on higher level of

organism organization (Toropova et al. 2015). On the

other hand, in the 3D nano-QSAR approach the

receptor-based response is required. This knowledge

one can obtain directly by performing the proper

experimental studies (e.g. X-ray crystallography,

NMR) or indirectly by applying classic QSAR studies.

Defining the type of descriptors that are correlated

with the modelled activity, in many cases allows

finding the molecular target of the process. Develop-

ment of 3D nano-QSAR model is not recommended,

unless one expects that the analysis will reveal insights

into 3D interaction between ligand and receptor in its

binding pocket (Puzyn et al. 2010).

The decision on which approach should be applied

depends also on the chemical nature of nanomaterials.

There is no limitation in application of classic nano-

QSAR considering type of chemicals for which this

model could be applied (organic, inorganic, metals,

etc.). However, 3D nano-QSAR is rather applicable

for organic nanomaterials.

The third question refers to the major task of the

study. If the biological target is not known, and the

objective is to find this target or gather general

information about the biological activity of nanoma-

terials, the classic nano-QSAR would be the right

choice. But, if one knows the binding pocket of the

studied materials, the 3D nano-QSAR might provide

more useful information regarding investigated

activity.

Table 3 Applications and requirements of classic nano-QSAR and 3D nano-QSAR

Methods criteria Nano-QSAR 3D nano-QSAR

Experimental data Cell-based response, tissue-based response, etc Ligand-based response

Nanomaterials Inorganic, organic, metals Organic

(a) Homogeneity of the

chemical structure

homogenous set Heterogeneous data with the same mode of action

(b) Data preparation Calculation of nanodescriptors Knowledge on the bioactive conformation of each

molecule (docking)

Statistics obtained Determination coefficients for calibration and

validation, root-mean-square errors

Determination coefficients for calibration and

validation, root-mean-square errors

Time Limited by descriptors’ calculation Limited by docking procedure

Computational costs Limited by descriptors’ calculation Limited by docking procedure

Software Commercially available in user-friendly software Commercially available in user-friendly software
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Conclusions

Summing up, we have developed nano-QSAR model

allowing to predict the activity of fullerenes deriva-

tives against HIV-1 protease. Developed model was

compared with previously published contribution

describing the same interaction by means of 3D

QSAR approach. Taking into account this case study

and literature available studies, the limitations and

advantages of each methodology have been discussed.

We have developed the recommendation tree for

determining a proper methodology to investigate

biological activity of nanoparticles. We do believe

that both approaches, nano-QSAR and 3D nano-

QSAR, could be used simultaneously, if it is possible.

Application of classic nano-QSAR model, which is

more universal approach, would allow gathering

general information about the mode of biological

activity of nanomaterials. Then, the 3D QSAR appli-

cation would help in understanding this activity in

detail.
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