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Abstract

Mixed linear models are emerging as a method of choice for conducting genetic association

studies in humans and other organisms. The advantages of mixed linear model association

(MLMA) include preventing false-positive associations due to population or relatedness structure,

and increasing power by applying a correction that is specific to this structure. An

underappreciated point is that MLMA can also increase power in studies without sample structure,

by implicitly conditioning on associated loci other than the candidate locus. Numerous variations

on the standard MLMA approach have recently been published, with a focus on reducing

computational cost. These advances provide researchers applying MLMA methods with many
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options to choose from, but we caution that MLMA methods are still subject to potential pitfalls.

Here, we describe and quantify the advantages and pitfalls of MLMA methods as a function of

study design, and provide recommendations for the application of these methods in practical

settings.

Mixed model association methods prevent false-positive associations and

increase power

Mixed linear models are an emerging method of choice when conducting association

mapping in the presence of sample structure, including geographic population structure,

family relatedness and/or cryptic relatedness1–12. The basic approach is to build a genetic

relationship matrix (GRM) modeling genome-wide sample structure, estimate its

contribution to phenotypic variance using a random-effects model (with or without

additional fixed effects), and compute association statistics that account for this component

of phenotypic variance (Online Methods). We note that mixed linear models can also be

used to estimate components of heritability explained by genotyped markers13–14, and to

predict complex traits using genetic data15–16.

Mixed linear model association (MLMA) methods are effective in preventing false-positive

associations due to sample structure in studies of humans and model organisms1–6. In

particular, simulations show that the correction for confounding is nearly perfect for

common variants even when geographic population structure, which is a fixed effect, is

modeled as a random effect based on overall covariance6,17–19 (however, rare variants pose

a greater challenge for all methods, due to differential confounding of rare and common

variants20). MLMA methods also provide an increase in power, by applying a correction

that is specific to sample structure1–6. In the case of geographic population structure,

markers with large allele frequency differences between populations will receive a larger

correction. In the case of relatedness structure, the contribution of related individuals to test

statistics will be reduced, preventing overweighting of redundant information due to

correlation structure.

An underappreciated point is that MLMA can also increase power in studies without sample

structure, by implicitly conditioning on associated loci other than the candidate locus that

are not genome-wide significant in the data being analyzed8. For example, a GRM computed

from all markers can be used to approximate the set of causal markers (implicitly assuming

that all markers are causal), but this approximation can be generalized. The increase in

power scales with the ratio N/M of the number of samples (N) to the effective number of

independent markers (M), since the information about unknown associated loci depends on

the number of samples. In simulations of a quantitative trait with no sample structure and no

LD between markers (Online Methods), application of MLMA instead of linear regression

increased average −log10P-values at causal markers from 2.89 to 2.94 (1.8% increase) when

N=10,000 and M=100,000, and from 2.92 to 3.46 (18% increase) when N=10,000 and

M=10,000. We note that this improvement is contingent on the exclusion of the candidate

marker from the GRM (see below).
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Reducing the computational cost of mixed model association analysis

In initial implementations of MLMA, the component of phenotypic variance explained by

the GRM was estimated separately when testing for the association of each candidate

marker. This accounts for the fact that the total variance explained by all markers except the

candidate marker may vary across candidate markers, in the case of markers of large

effect1–3. Even for efficient implementations3, this is computationally demanding, with

computation time O(MN3) where M is the number of markers and N is the number of

samples, because the variance component estimation is repeated for each candidate marker.

Several computational speedups have subsequently been developed. First, two independent

studies observed that if markers have small effects, variance components can be

approximated by estimating them only once using all markers (as previously proposed in

family-based tests21), making MLMA feasible on large datasets4–5. Two subsequent studies

developed computationally efficient exact methods7,11, which do not require variance

components to be the same for all candidate markers. Each of these methods enables exact

MLMA analysis in computation time O(MN2 + N3). The difference between approximate

and exact methods was reported to be large in a mouse dataset with pervasive relatedness

and large effect sizes, but negligible in a human dataset11. Another fast approximate method

has recently been described12. Several of these methods use a single eigendecomposition of

the GRM to rotate the data, removing its structure7,11–12.

The computation time of each method can be broken down into three steps: (1) building the

GRM, (2) estimating variance components, and (3) computing association statistics for each

SNP. In Table 1, we list the computational cost of each of these steps for the EMMAX4,

FaST-LMM7, GEMMA11 and GRAMMAR-Gamma12 implementations, as well as our

GCTA implementation (Online Methods and Web Resources). GRAMMAR-Gamma has the

advantage that the cost of step (3) is reduced from O(MN2) to O(MN), greatly reducing the

cost of analyzing a large number of phenotypes. To quantify the computational cost in

datasets of realistic size, we benchmarked the running time and memory usage of GCTA

using simulations of a quantitative trait without sample structure (Supplementary Note,

Supplementary Table 1).

Pitfall: loss in power when candidate marker is included in GRM

Recent work has shown that inclusion of the candidate marker in the GRM can lead to a loss

in power7–8,22. This is due to double-fitting the candidate marker in the model, both as a

fixed effect tested for association and as a random effect as part of the GRM. Listgarten et

al.8, who referred to this phenomenon as “proximal contamination”, demonstrated that

MLM with candidate marker excluded (MLMe) is the mathematically correct approach, and

provided an elegant and efficient algorithm for MLMe analysis (implemented in FaST-

LMM software). However, due to computation time or memory constraints (and

complexities of LD), MLM with candidate marker included (MLMi) is more commonly

applied in practice22. It is of interest to quantify the power loss of MLMi vs. MLMe, in

order to help guide this choice. In this section, we provide new analytical derivations,

validated by simulations, to quantify the reduction in test statistics when MLMi is applied.
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Analytical derivations of mean association statistics (λmean)

We assume a set of unrelated samples without population structure or other artifacts. Let N

denote the number of samples, M denote number of markers, and hg
2 denote the heritability

explained by genotyped and/or imputed markers13. We assume markers are unlinked, but the

same derivations apply to linked markers if M denotes the effective number of independent

markers, which for humans is approximately 60,000 (ref. 23; Supplementary Note). We

emphasize that it is the effective number of independent markers (not the total number of

markers) that matters. Details of each derivation below are provided in the Supplementary

Note.

For linear regression (LR), the expected mean of χ2 association statistics (λmean) is

[1]

regardless of the genetic architecture of the trait23.

For MLMi, λmean at markers used to construct the GRM is

[2]

This highlights the dangers of using λmean (or λmedian) to assess the presence of population

stratification or other artifacts. A researcher who observes lower λmean (or λmedian) for

MLMi than for LR might conclude that this is due to correction for confounding, but in fact

this result is expected even in the absence of any confounding.

Finally, for MLMe,

[3]

where  when M > N. The ratio of λmean between MLMe and MLMi is also

, which is consistent for causal, null and all markers (Supplementary Table 2). If

M ≫ N (i.e. r2 is small), this is only slightly larger than . The difference between

MLMe and MLMi is that MLMe is testing the null hypothesis that the candidate marker has

no effect, whereas MLMi is testing the null hypothesis that the candidate marker has an

effect size drawn from a normal distribution N(0, hg
2/M).

Simulations

We compared results of LR, MLMi and MLMe in simulations of a quantitative trait without

sample structure, for various values of N and M (Online Methods). Our results show that

MLMe increased power relative to LR but MLMi reduced power (Table 2, Supplementary

Figure 1). The magnitude of these effects was proportional to N/M, consistent with our
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derivations (Table 2, Supplementary Table 3); the power differences are small at N=10,000

and M=100,000, but it is increasingly common for GWAS to be performed at sample sizes

considerably larger than N=10,000. In all simulations, LR and MLMe had λmean at null

markers equal to 1.00, but MLMi had λmean at all markers equal to 1.00 so that MLMi had

λmean for null markers less than 1.

We also conducted simulations based on real genotypes of 133,036 SNPs on chromosomes

1, 2 and 3 in 10,000 unrelated individuals from data analyzed in ref. 24 (Online Methods).

For simplicity, when running MLMe we excluded from the GRM all the SNPs on a

chromosome where the candidate SNP was located. Results again show that MLMe

increases power relative to LR but MLMi reduces power (Figure 1, Table 2, Supplementary

Table 3), consistent with our derivations. The effects are magnified because only a subset of

the genome was analyzed, but analogous effects in proportion to N/M are expected at other

values of N and M.

In summary, we recommend the use of MLMe in preference to MLMi. An efficient

implementation of MLMe via a leave-one-chromosome-out analysis is provided in the

GCTA software (GCTA-LOCO; Online Methods). An efficient implementation is also

provided in the FaST-LMM software7–8.

Pitfall: using a small subset of markers in GRM can compromise correction

for stratification

Three recent papers have advocated choosing a subset of markers to include in the GRM

when employing MLMA methods7–8,25. FaST-LMM7 uses an equally spaced subset of

MR=4,000 (or 8,000) markers in the GRM, motivated by a computational speedup that

reduces computational cost to O(MR
2N) when MR<N. FaST-LMM-Select8,25 uses the MT

markers with most significant linear regression P-values in the GRM, where MT is chosen

based on either the first local minimum of the genomic control factor λmedian
8 or the global

maximum of out-of-sample prediction accuracy using the resulting GRM25. The latter

approach allows for the possibility of including all markers in the GRM (MT=M), but is

computationally intensive (with a running time >10 times larger than MLMA using all

markers) due to the high cost of computing out-of-sample prediction accuracy using all

markers; an alternative (described on p.10 of the FaST-LMM version 2.05 user manual) is to

choose MT based on the first local maximum of out-of-sample prediction accuracy. These

approaches have made the valuable observation that a substantial increase in power can be

attained by implicitly conditioning only on loci that are relatively likely to be truly

associated, motivating a thorough investigation of the impact on correcting for stratification.

Below, we evaluate the impact of these choices on both false-positive associations and

power. In all of these simulations, we excluded the candidate marker from the GRM

(MLMe), consistent with ref. 7–8,25.

To investigate the number of random markers needed to correct for stratification, we

conducted simulations of a quantitative trait with population stratification (Online Methods).

Our results indicate that when there is subtle population stratification, a few thousand
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random markers are not sufficient to provide a thorough correction for stratification (Figure

2, Supplementary Table 4, Supplementary Note), consistent with previous studies11,26.

We also investigated the use of the top MT associated markers to correct for stratification.

Our results indicate that using the top MT associated markers based on the first local

minimum of the genomic control factor λmedian
8 may not be effective in correcting for

stratification, and can lead to a local minimum in λmedian that is different from the global

minimum25 (Figure 2, Supplementary Note). On the other hand, the ref. 25 approach of

using the MT top associated markers based on the global maximum of out-of-sample

prediction accuracy selected MT=M and thus provided an effective correction for

stratification in these simulations (but see below).

We now turn to the question of power. We generalized our simulations without sample

structure, with fraction p=0.05 or p=0.005 of causal markers, to consider the impact of using

the top MT associated markers in the GRM, for various values of MT (Figure 3). When

p=0.05, there are a large number of causal markers with small effect sizes, so that the top MT

associated markers do not correspond to the true set of causal markers, and including all

markers in the GRM (MT = M) performed best. When p=0.005, there are a smaller number

of causal markers with larger effect sizes, so that the top MT associated markers more

closely reflect the true set of causal markers, and including only a small subset of top

markers in the GRM performed best. Results at other parameter settings show that the

optimal strategy depends on both the sample size and the genetic architecture of the trait

(Supplementary Table 5, Supplementary Note). The ref. 25 approach of using the MT top

associated markers based on the global maximum of out-of-sample prediction accuracy

selected the value of MT that maximized power in each of these simulations, achieving the

optimal strategy.

Finally, we explored using the top MT associated markers in simulations with both

stratification and causal markers. Results on stratification correction were similar to our

simulations without causal markers (Supplementary Table 6), and results on power were

similar to our simulations with no sample structure (Supplementary Table 7). The ref. 25

approach of using the MT top associated markers based on the global maximum of out-of-

sample prediction accuracy again selected the value of MT that maximized power in these

simulations, often at the cost of effective stratification correction. For example, for

N=10,000, M=100,000, p=0.005, this approach selected MT=300, leading to a λmedian of

1.26 (vs. a λmedian of 1.00 if including all markers in the GRM). This highlights the

challenge that efforts to maximize power can compromise effective stratification correction.

In summary, based on methods published to date, we recommend that studies of randomly

ascertained quantitative traits in which population stratification is a key concern should

generally include all markers (except for the candidate marker and markers in LD with the

candidate marker) in the GRM. On the hand, the approach of ref. 25 is expected to perform

well when maximizing power and correcting for cryptic relatedness are the primary goals,

and may also prove useful in the case of differential confounding of rare variants due to

spatially localized stratification27.
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Pitfall: loss in power in ascertained case-control studies

All methods for mixed model association analysis published to date assume that study

samples are randomly ascertained with respect to the phenotype of interest. While this is

usually true for quantitative phenotypes, it is not true for case-control studies, which

generally oversample disease cases to increase study power. Recent work has highlighted

the loss in power that occurs in ascertained case-control studies when genetic or clinical

covariates are modeled as fixed effects without accounting for ascertainment, and a subset of

these studies have developed new methods to address this problem28–32. However, the issue

of power loss due to ascertainment has not previously been investigated for MLMA, which

models both known and unknown associated markers as random effects.

We conducted simulations to investigate the use of existing MLMA methods in ascertained

case-control studies. We extended our simulations without sample structure to simulate

different values of disease prevalence f via the liability threshold model33 (Online Methods).

Results for MLMe vs. linear regression show that, for large N/M and small f, MLMe can

suffer a substantial loss in power (Table 3). Similar results were obtained for different values

of p (the fraction of non-candidate markers that are causal) and the proportion of variance

explained by each candidate marker (Supplementary Table 8). We further note that, for large

N/M and small f, the heritability explained by genotyped markers (hg
2) is mis-estimated by

MLMe, even after accounting for observed vs. liability scale with correction for case-control

ascertainment34. However, using the correct value of hg
2 does not ameliorate the loss in

power (Supplementary Note and Supplementary Table 9).

In summary, MLMA can suffer a severe loss in power due to case-control ascertainment,

motivating further research on MLMA methods in case-control samples. The choice of

whether to apply MLMA or other methods should be a function of sample size and severity

of case-control ascertainment.

Advantages and pitfalls of MLMA in two empirical case-control studies

We investigated the advantages and pitfalls of MLMA in two recent GWAS of multiple

sclerosis (MS) and ulcerative colitis (UC) involving over 20,000 samples22,35. We chose

these studies for several reasons. First, the MS study was the first large GWAS conducted

using MLMA methods. Second, the authors of that study recognized that inclusion of

candidate markers in the GRM (MLMi) was a potential pitfall, although analyses were

conducted using MLMi based on available methods and software. Third, due to the large

sample sizes, these were ideal datasets for exploring the issues highlighted by our

simulations.

We analyzed data from 10,204 MS cases and 5,429 controls genotyped on Illumina arrays22

(Online Methods). This subset of cases and controls were not matched for ancestry (in

contrast to ref. 22), and exhibit substantial population stratification. We retained unmatched

samples to maximize the sample size, which we believe is appropriate for these analyses.

We also analyzed data from 2,697 UC cases and 5,652 controls genotyped on Affymetrix

arrays35 (Online Methods).
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We compared seven methods of computing association statistics: linear regression (LR), LR

with 5 PC covariates26 (PCA), MLMi, MLMe, FaST-LMM using MR=4,000 random

markers7 (FaST-4K), FaST-LMM-Select using top MT markers based on first local

minimum of λmedian
8 (FaST-Top), and FaST-LMM-Select using top MT markers based on

the first local maximum of out-of-sample prediction accuracy using the resulting GRM

(FaST-TopX). For each method, we computed average χ2 association statistics at all

markers and at 75 and 24 known associated markers for MS and UC respectively (Online

Methods).

We first consider genome-wide average χ2 values (Table 4 and Supplementary Table 10).

For MS, the genome-wide value of 0.994 for MLMi is consistent with our derivations and

simulations (Table 2), as is the value of 1.232 for MLMe if the effective number of markers

is M=60,000 and the heritability explained by genotyped markers is hg
2=0.266 on the

liability scale (0.757 on the observed scale34, assuming disease prevalence 0.1%), which is a

plausible value given the liability-scale hg
2=0.30 ± 0.03 estimated in ref. 36 using

independent data. For UC, we observed a genome-wide value of 0.998 for MLMi and 1.100

for MLMe, consistent with hg
2=0.244 on the liability scale (0.695 on the observed scale)

given the lower sample size. The average χ2 for PCA was similar to that of MLMe for both

traits. Thus, for both MLMe and PCA, the observed inflation in test statistics is consistent

with polygenic effects according to our derivations, simulations, and independently obtained

estimates of hg
2. A higher value for PCA than for MLMi does not necessarily imply that

PCA fails to correct for population structure (as suggested by ref. 22), because our

derivations and simulations show that correctly calibrated test statistics are expected to have

a higher average χ2 than MLMi under a polygenic model. On the other hand, FaST-4K,

FaST-Top and FaST-TopX generally exhibit average χ2 values that are higher than PCA

and MLMe, consistent with an incomplete correction for stratification (Figure 2,

Supplementary Tables 4 and 6). Although it is theoretically possible that the higher average

χ2 for these methods could be entirely due to higher average χ2 at causal markers, this is

unlikely given that the methods attain relatively similar average χ2 at known associated

markers (see below).

We also tried running FaST-LMM-Select using top MT markers based on the global

maximum of out-of-sample prediction accuracy25. Our runs failed to complete, because the

96GB memory limit was exceeded. The authors of ref. 25 have reported that running this

approach to completion on the same data results in every marker being selected for both MS

and UC, and obtains results identical to MLMe (D. Heckerman and O. Weissbrod, personal

communication).

We next consider χ2 values at known associated markers (Table 4 and Supplementary Table

11). Among methods attaining a complete correction for stratification, MLMe consistently

produced higher χ2 values than MLMi for both MS (70 of 75 markers; P=1×10−15) and UC

(24 of 24 markers; P=1×10−7), consistent with simulations (Figure 1). MLMe also produced

higher χ2 values than FaST-Top for UC (18 of 24 markers; P=0.02), the only instance in

which FaST-4K, FaST-Top or FaST-TopX attained a complete correction for stratification.

However, the comparison between MLMe and PCA was inconclusive, with MLMe

producing higher values for MS (43 of 75 markers; P=0.25) and PCA producing higher
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values for UC (13 of 24 markers; P=0.84). Due to the lower correlation between these

methods, these comparisons are noisy, and analyses of additional datasets will be needed to

conclusively distinguish the performance of MLMe vs. PCA in empirical data. We note that

the much lower χ2 values for MLMi vs. PCA at known associated markers are consistent

with ref. 22, who attributed this to structure that is not captured by PCA. However, the

pitfalls of MLMi (Figure 1) provide an alternative explanation.

Recommendations and future directions

MLMA methods can prevent false-positive associations and increase power, at reasonable

computational cost. However, our theoretical derivations, simulations and application to

empirical data show that potential pitfalls include including the candidate marker in the

GRM, using a small subset of markers in the GRM, and effects of case-control

ascertainment.

We recommend excluding candidate markers from the GRM (MLMe) in preference to

including them (MLMi). This can be efficiently implemented via a leave-one-chromosome-

out analysis7, implemented in the GCTA software (GCTA-LOCO; Online Methods). An

efficient implementation is also provided in the FaST-LMM software7–8. Our analytical

derivations demonstrate the advantages of MLMe over MLMi, and also quantify the

expected inflation in MLMe test statistics in the absence of confounding, potentially

ameliorating the need to apply an additional round of Genomic Control37 correction as in

many recent studies38. However, distinguishing between polygenic effects and incomplete

correction for stratification is an important direction of future research (B. Bulik-Sullivan,

N. Patterson, A.L.P., M. Daly, B. Neale, unpublished data).

We recommend that studies of randomly ascertained quantitative traits should generally

include all markers (except for the candidate marker and markers in LD with the candidate

marker) in the GRM, except as follows. First, the set of markers included in the GRM can be

LD-pruned to reduce running time (with association statistics still computed for all markers).

Second, genome-wide significant markers of large effect should be conditioned out as fixed

effects4,9. Third, when population stratification is less of a concern, we recommend the

ref. 25 approach of using the MT top associated markers based on the global maximum of

out-of-sample prediction accuracy. (This approach may choose either a subset of markers

(MT<M) or all markers (MT=M), but computational constraints may preclude the latter

choice.) Finally, a potentially appealing way to capture the power advantages of selecting a

subset of SNPs to include in the GRM while addressing concerns about stratification is to

employ FaST-LMM-Select + PCs (G. Tucker, A.L.P., B. Berger, unpublished data and D.

Heckerman, C. Lippert, J. Listgarten and O. Weissbrod, personal communication).

Ascertained case-control studies present a special challenge due to the potential loss in

power of standard MLMA methods. When sample size is small or disease prevalence is

high, standard MLMA methods can be used (Table 3). Otherwise, in datasets with no

relatedness structure, PCA can be used26. (In this case, conditioning on genome-wide

significant markers or other covariates of large effect can be either omitted31, or retained

using methods that explicitly model case-control ascertainment to increase power28–30,32.)
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In ascertained case-control datasets with relatedness structure, we know of no good

alternative to MLMA.

We conclude by highlighting three areas in mixed model association analysis in which there

is a pressing need for development of new methods. First, there is a need for MLMA

methods for ascertained control-traits that do not suffer a loss in power. Second, there is a

need for MLMA methods that use mixture distributions of prior effect sizes to increase their

power, mirroring advances in phenotypic prediction of livestock and human traits using

Bayesian methods39–41. Third, further work is needed to develop and assess methods for

rare variants, which pose a greater challenge for all methods20,27.

Online Methods

GCTA implementation of MLMi (GCTA-MLMi)

The phenotype y is modeled as

[Model 1]

where c is a vector of fixed covariates (including the affine term) with corresponding

coefficient matrix K; g is a vector of genetic effects with g ~ N(0, Aσg
2); A is the GRM

defined by , where xij = 0, 1 or 2 and M is the total number

of autosomal markers; and e is a vector of non-genetic effects with e ~ N(0, Iσe
2). We note

that this is the same GRM used in previous work on principal components analysis26. The

variance explained by the GRM (σg
2), the noise variance (σε2) and the heritability explained

by genotyped markers (hg
2 = σg

2/(σg
2 + σe

2)) can be estimated via restricted maximum

likelihood (REML)13,42. Association statistics are computed by comparing the causal model

with an effect at the candidate marker to the null model with no effect at the candidate

marker, for example via a generalized least squares (GLS) F-test or χ2 score test4.

We then test the effect of SNP i based on the model

[Model 2]

where wi is a vector of mean-adjusted genotypes, i.e. wij = xij − 2pi. The fixed effects,

including both the effects of the covariates and the effect of SNP i, are estimated by GLS,

i.e. q̂ = (QTV−1Q)−1QTV−1 y with var(q̂) = (QTV−1Q)−1, where q = [cT ⋮ bi]T, Q = [K ⋮ wi]

and . The test-statistic is calculated as , where var(b̂i) the last

diagonal entry of (QTV−1Q)−1. Assuming that the proportion of variance explained by a

single SNP is small, the estimates of  and  from [Model 1] will be very similar to those

from [Model 2]. To decrease the computational burden, we estimate  and  once based on

[Model 1], without any SNPs included in the fixed effect vector c, and use them for effect

size estimation and significance testing of each SNP based on [Model 2]; this is an

approximate approach similar to that implemented in EMMAX4. If there are no covariates,
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the vector c will become a scalar (i.e. the affine term). In this case, for ease of computation,

we can adjust the phenotype as y* = y − 1ĉ with ĉ = (1T V−11)−11T y and simplify the

estimation of SNP effect as  with .

However, when there are covariates fitted in the models, we estimate the effects of the

covariates and the SNP jointly rather than using the simplified approach. This is because if

the covariates and the SNP genotype are correlated and the phenotype is pre-adjusted by the

covariates, the power of detecting the SNP effect can be reduced. To improve computational

efficiency, the efficient computational libraries EIGEN, BLAS and LAPACK are used for

linear algebra calculation, and the parallel computing technique OpenMP is used for multi-

thread computing.

GCTA implementation of MLMe via LOCO analysis (GCTA-LOCO)

This implementation is identical to GCTA-MLMi, except that markers on a given autosome

are evaluated using a GRM constructed from the remaining autosomes, via pre-computing

and storing the GRM constructed from all autosomes. GCTA-LOCO attains running time

and memory usage only 2–3× higher than GCTA-MLMi (Supplementary Table 1).

Simulations of a quantitative trait with no sample structure

We simulated phenotypes for N samples using M non-candidate markers plus 500 candidate

markers. All simulations used N=10,000 and M=100,000 unless otherwise specified. (We

also included simulations at smaller values of N and M, in order to understand how the

relative performance of different methods varies with N and M.) Allele frequencies were

uniformly distributed on [0.1,0.9]. The M non-candidate markers included Mp causal

markers (p=0.05 unless otherwise specified) explaining 50% of the variance of the trait, with

normalized effect sizes ~ N(0,0.5/Mp). The 500 candidate markers explained an additional

50% of the variance of the trait, with normalized effect sizes ~ N(0,0.5/500). We ran MLMe

by including the M non-candidate markers in the GRM and testing only the 500 candidate

markers. We ran MLMi by the including the M non-candidate markers plus the 500

candidate markers in the GRM. Thus, the heritability explained by markers included in the

GRM was 50% for MLMe and 100% for MLMi.

Yang et al. 2011 data and simulated phenotypes

We analyzed data from 14,347 individuals from the ARIC, HPFS and NHS cohorts that

were genotyped using Affymetrix 6.0 arrays at 565,040 autosomal markers after quality

control, as described previously24. Informed consent was obtained from all subjects. We

excluded one of each pair of individuals with genetic relatedness >0.025 in the GRM,

leaving 11,586 unrelated individuals. We selected a random subset of 10,000 unrelated

individuals. We restricted to 45,772 markers on chr1, 47,596 markers on chr2 and 39,668

markers on chr3, for a total of M=133,036 markers. We randomly selected 200 causal

markers (100 each on chr1 and chr2) explaining 50% of the variance of the trait, with

normalized effect sizes ~ N(0,0.5/200). We ran MLMi by including all markers in the GRM

(GCTA-MLMi), and ran MLMe using a GRM estimated from the remaining chromosomes

(GCTA-LOCO). We included causal markers on two different chromosomes in order to

assess the benefit of running MLMe using a GRM containing causal markers on a different
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chromosome, and included a third chromosome with no causal markers in order to assess

association statistics at markers that are not causal and not in LD with a causal marker.

Simulations of a quantitative trait with population stratification

We simulated phenotypes for N/2 samples from each of two discrete subpopulations, based

on a mean trait difference of 0.25 standard deviations between subpopulations with no

causal marker effects. We simulated M markers for the GRM plus 500 additional candidate

markers, based on FST=0.005 or FST=0.0025 between subpopulations. Ancestral allele

frequencies x were uniformly distributed on [0.1,0.9], and subpopulation allele frequencies

were sampled from a beta distribution with parameters x(1− FST)/FST and (1−x)(1−

FST)/FST, which has mean x and variance FST x(1−x). Causal markers in simulations with

both stratification and causal markers were simulated in the same way as in simulations with

no sample structure (see above).

Simulations of ascertained case-control traits

We simulated normally distributed liabilities, transformed liabilities to case-control status by

defining individuals with liability >T to be cases and others to be controls (where the

liability threshold T is chosen to achieve a specified disease prevalence f), and continued in

this fashion until N/2 cases and N/2 controls were generated. Liabilities were simulated as in

the simulations of a quantitative trait with no sample structure, except that liability-scale

effect sizes of the 5 candidate markers were chosen so that each candidate marker explains

the proportion 10/N of observed-scale variance, after accounting for the transformation

between variance explained on the liability scale vs. the observed scale with correction for

case-control ascertainment34. We used only 5 candidate markers so as to limit the liability-

scale variance explained by the candidate markers, which exceeds observed-scale variance

when prevalence is low. We also included M non-candidate markers, of which the

proportion p were causal (p=0.05 or p=0.005) and explained 50% of the liability-scale

variance. To examine results for candidate markers of larger effect, we repeated all

simulations with each candidate marker explaining the proportion 20/N of observed-scale

variance.

MS and UC datasets

We analyzed data from 10,204 MS cases and 5,429 controls (from NBS and 1958BC)

genotyped on Illumina arrays made available to researchers via WTCCC2 (see Web

Resources). Although ref. 22 analyzed UK and non-UK samples separately followed by

meta-analysis in most of their analyses, the data made available to researchers includes both

UK and non-UK cases but only UK controls. We retained all samples in order to maximize

sample size. We considered markers that were present in each of MS, NBS and 1958 BC

datasets and removed markers with >0.5% missing data, P<0.01 for allele frequency

difference between NBS and 1958BC, P<0.05 for deviation from Hardy-Weinberg

equilibrium, P<0.05 for differential missingness between cases and controls, or MAF<0.1%

in any dataset, leaving 360,557 markers. We employed filters more stringent than in a

standard GWAS so as to minimize the impact of assay artifacts on our results34. The 75

known associated markers were defined by including, for each MS-associated marker listed
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in the NHGRI GWAS catalogue (see Web Resources), a single best tag at r2>0.4 from the

set of 360,557 markers if available.

We also analyzed data from 2,697 UC cases and 5,652 controls (from NBS and 1958BC)

genotyped on Affymetrix arrays35 and made available to researchers via WTCCC2. The MS

and UC datasets contain overlapping control samples. We employed stringent QC filters as

described above, leaving 458,560 markers. The 24 known associated markers were defined

by, for each UC-associated marker listed in the NHGRI GWAS catalogue, a single best tag

at r2>0.4 from the set of 458,560 if available.

PCA refers to PC correction using 5 PCs. Correction using 10 PCs (PCA10) or 20 PCs

(PCA20) was also evaluated (Supplementary Table 10). FaST-4K was run by including

MR=4,000 random markers in the GRM. FaST-Top was run by including the top MT

markers based on first local minimum of λmedian
8, using a grid search from 100 to 3,000

with a step size of 100. FaST-TopX was run using the command “fastlmmc -autoSelect

<outfile> -randomSeed 1 -autoSelectFolds 10 -bfilesim <indata> -pheno <inpheno> -

mpheno 1 -autoSelectSearchValues ASvalues.txt -topKbyLinReg 10000 -memoryFraction

0.2”, as described on p.10 of the FaST-LMM version 2.05 user manual. (The -

topKbyLinReg 10000 option was not used in our simulations, which selected the global

optimum of MT.) FaST-Top selected MT=2,000 top markers for MS and MT=400 top

markers for UC, and FaST-TopX selected MT=2,800 top markers for MS and MT=3 top

markers for UC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. MLMe increases power but MLMi reduces power vs. linear regression
We report χ2 association statistics at 500 causal markers for MLMi vs. linear regression and

MLMe vs. linear regression for one simulation with genotypes from ref. 24 data and

simulated phenotypes for N=10,000 samples. For MLMe, the 500 causal markers were

always excluded from computing the GRM.
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Figure 2. Effectiveness of MLM using MR random or MT top associated markers in correcting
for stratification
We report the average λmedian (± standard error) in 100 simulations with population

stratification based on N=10,000 samples, M=100,000 markers, two discrete subpopulations

with FST=0.005, and a mean trait difference of 0.25 standard deviations between

subpopulations. Calibration of small P-values is reported in Supplementary Table 4.
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Figure 3. Effectiveness of MLM using MT top associated markers in increasing study power
We report average −log10P-values (± standard error) at causal markers in 100 simulations

based on N=10,000 samples, M=100,000 markers, and fraction p=0.05 or p=0.005 of causal

markers. Power to detect significant associations at different P-value thresholds is reported

in Supplementary Table 5.
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Table 1
Computational cost of EMMAX, FaST-LMM, GEMMA, GRAMMAR-Gamma and
GCTA

For each method we list the computational cost of each step (see main text).

Building GRM Variance components Association statistics

EMMAX O(MN2) O(N3) O(MN2)

FaST-LMM* O(MN2) O(N3) O(MN2)

GEMMA O(MN2) O(N3) O(MN2)

GRAMMAR-Gamma O(MN2) O(N3) O(MN)

GCTA O(MN2) O(N3) O(MN2)

*
If M<N, the computational cost of FaST-LMM can be reduced to O(M2N).
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Table 2
MLMe increases power but MLMi decreases power vs. linear regression

In scenario I, we report average χ2 association statistics (± standard errors) at 500 candidate causal markers

for linear regression, MLMi and MLMe, averaged across 100 simulations based on simulated genotypes. In

scenario II, we report average χ2 association statistics (± standard errors) at 200 causal markers for

simulations based on ref. 24 genotype data with simulated phenotypes. In both scenarios, expected values

based on theoretical derivations are given in parentheses. More details including simulations at other values of

N and M, results for all markers, power to detect significant associations at different P-value thresholds, and

the equations to calculate the expected values are provided in Supplementary Table 3.

# samples (N) #markers (M) Linear regression (Expected value) MLMi (Expected value) MLMe & (Expected value)

Scenario I: Simulated unlinked markers

10,000 10,000 10.93 ± 0.03 (11.00) 9.81 ± 0.01 (10.05*) 13.27 ± 0.03 (13.36)

10,000 100,000 11.20 ± 0.03 (11.00) 10.97 ± 0.02 (10.09*) 11.40 ± 0.03 (11.25)

Scenario II: Simulations based on real genotype data24

10,000 133,036 26.99 ± 0.10 (26.00) 21.44 ± 0.05 (19.85) 28.42 ± 0.10 (29.08)

*
For MLMi, the  of markers included in the GRM is 100%, and the derivation is much less accurate. However, the derivation is much more

accurate at lower values of  (Supplementary Table 3a).

&
The 500 candidate causal markers were always excluded from calculating the GRM in scenario I and the MLMe analysis was performed using

GCTA-LOCO in scenario II.
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Table 3
MLMe decreases power vs. linear regression under case-control ascertainment

We report average −log10P-values (± standard error) at causal markers for linear regression and MLMe,

averaged across 100 simulations with p=0.05 and each candidate marker explaining 10/N of observed-scale

variance. Results for different values of N, M, p and the proportion of variance explained by each candidate

marker are reported in Supplementary Table 8, which also reports the power to detect significant associations

at different P-value thresholds.

# samples (N) #markers (M) Disease prevalence (f) Linear regression MLMe

10,000 10,000 0.001 3.06 ± 0.15 2.22 ± 0.12

10,000 10,000 0.01 3.04 ± 0.16 2.64 ± 0.14

10,000 10,000 0.1 3.04 ± 0.17 3.06 ± 0.17

10,000 100,000 0.001 2.96 ± 0.16 2.78 ± 0.16

10,000 100,000 0.01 2.66 ± 0.14 2.54 ± 0.13

10,000 100,000 0.1 3.24 ± 0.16 3.26 ± 0.16
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