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Abstract
Objective—Brain-computer interfaces (BCIs) aim to provide a means for people with severe
motor disabilities to control their environment directly with neural activity. In intracortical BCIs
for people with tetraplegia, the decoder that maps neural activity to desired movements has
typically been calibrated using “open-loop” (OL) imagination of control while a cursor
automatically moves to targets on a computer screen. However, because neural activity can vary
across contexts, a decoder calibrated using OL data may not be optimal for “closed-loop” (CL)
neural control. Here, we tested whether CL calibration creates a better decoder than OL calibration
even when all other factors that might influence performance are held constant, including the
amount of data used for calibration and the amount of elapsed time between calibration and
testing.

Approach—Two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial performed
a center-out-back task using an intracortical BCI, switching between decoders that had been
calibrated on OL vs. CL data.

Main results—Even when all other variables were held constant, CL calibration improved
neural control as well as the accuracy and strength of the tuning model. Updating the CL decoder
using additional and more recent data resulted in further improvements.

Significance—Differences in neural activity between OL and CL contexts contribute to the
superiority of CL decoders, even prior to their additional “adaptive” advantage. In the near future,
CL decoder calibration may enable robust neural control without needing to pause ongoing,
practical use of BCIs, an important step toward clinical utility.
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1. Introduction
Conventional assistive devices for people with severe motor disabilities are inherently
limited, often relying on residual motor function for their use. Brain-computer interfaces
(BCI) and brain-machine interfaces (BMI), sometimes collectively called neural interface
systems (NIS), are being developed to provide a more powerful control signal by decoding
movement intentions in real time directly from neural activity (Burrow et al., 1997; Chapin
et al., 1999; Serruya et al., 2002; Taylor et al., 2002; Hochberg et al., 2006, 2012;
Santhanam et al., 2006; Velliste et al., 2008; Jarosiewicz et al., 2008; Kim et al., 2008;
Ganguly and Carmena, 2009; Simeral et al., 2011; Hauschild et al., 2012; Collinger et al.,
2013). Intracortical BCIs have permitted people with tetraplegia to control cursors on
computer screens, robotic arms, and other prosthetic devices by simply imagining
movements of their own arms (Hochberg et al., 2006, 2012; Kim et al., 2008; Simeral et al.,
2011; Collinger et al., 2013).

Because it is not possible to map neural activity to actual arm movements in people with
tetraplegia, in many previous human intracortical BCI studies the decoder has been
calibrated using imagined arm movements (Hochberg et al., 2006; Simeral et al., 2011).
Specifically, the participant was asked to imagine moving a mouse with his or her hand to
guide a cursor that automatically moved to targets displayed on a computer screen while
neuronal ensemble activity was recorded from a 96-microelectrode array implanted in the
participant’s motor cortex. A decoder was then created by mapping the recorded patterns of
neural activity to the computer-generated cursor movements. This decoder calibration
procedure is termed “open-loop” (OL) because the participant does not receive any feedback
about his or her neural activity. Subsequently, this “OL decoder” is used to infer movement
intention from neural activity in real time, allowing the participant to control the motion of
the cursor by simply imagining moving his or her arm. This is termed “closed-loop” (CL)
neural control because the participant receives real-time visual feedback of the effect of his
or her neural activity on cursor motion.

A potential shortcoming of using an OL decoder for CL neural control is that the relation
between neural activity and movement intention can vary with changes in context. For
example, the directional tuning of motor cortical neurons in able-bodied monkeys can differ
when cursor movement is hand controlled compared to when it is neurally controlled
(Taylor et al., 2002; Carmena et al., 2003; Lebedev et al., 2005; Ganguly et al., 2011).
Similar context-dependent changes in neural tuning have also been reported in motor cortex
of people with tetraplegia switching from a 2-cursor hybrid OL/CL decoder calibration task
to purely CL neural control (Kim et al., 2008). If neural activity differs between OL decoder
calibration and CL neural control, then an OL decoder will not be optimal for CL neural
control. Additionally, the participant may not be as mentally engaged during OL
imagination of movement as s/he would be during CL neural control, potentially further
reducing the quality of a decoder calibrated on OL data.

Furthermore, the relationship between movement intention and neural activity can change
over time because of physiological and/or recording nonstationarities in the neural signals
(Kim et al., 2006; Wessberg and Nicolelis, 2006; Santhanam et al., 2007; Chestek et al.,
2011; Perge et al., 2013). If only OL calibration were available, BCI use would have to be
disrupted to recalibrate the decoder when such nonstationarities occur. Adaptive decoding
has been proposed and used successfully as a solution to the signal nonstationarity problem
by using data acquired during ongoing CL neural control to periodically or continuously
recalibrate the decoder (for reviews, see Millán et al., 2007; Berger et al., 2010; Schlögl et
al., 2010).
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In continuous spike-based BCIs such as the one used in this study, various adaptive
decoding methods have been tested in closed-loop neural control in able-bodied non-human
primates (Taylor et al., 2002; Helms Tillery et al., 2003; Wahnoun et al., 2006; Jarosiewicz
et al., 2008; Velliste et al., 2008; Shpigelman et al., 2009; Li et al., 2011; Gilja et al., 2012;
Orsborn et al., 2012; Sussillo et al., 2012) and in people with tetraplegia (Hochberg et al.,
2012; Collinger et al., 2013). In these studies, the decoder was initialized in OL by mapping
neural activity to hand movements, to observed target presentations, or to observed effector
movements. The decoder was then recalibrated using data acquired during CL neural
control. In a subset of these intracortical studies (Helms Tillery et al., 2003; Shpigelman et
al., 2009; Li et al., 2011; Gilja et al., 2012; Sussillo et al., 2012), the quality of neural control
using the “CL decoder” was compared to the quality of neural control using the original OL
decoder, and in each case, the CL decoder outperformed the OL decoder. However, none of
these studies were designed to distinguish among the multiple possible contributions to the
superiority of CL decoders, which could include (1) differences in neural activity during the
OL vs CL calibration tasks, (2) increased mental engagement during CL than during OL, (3)
the inclusion of more calibration data in the CL decoder, and/or (4) the ability of CL
decoders to adapt to signal nonstationarities.

To disambiguate among these contributions to the superiority of CL decoders, we compared
the quality of neural control and the strength and accuracy of the neural tuning models
obtained using OL vs. balanced CL decoder calibration in people with tetraplegia
performing a 2 dimensional (2D) center-out task using an intracortical spike-based BCI
(Figure 1A). We found that CL decoders improved neural control relative to OL decoders
even when the two decoders were balanced for the total amount of data used in their
calibration, thereby excluding a possible contribution from item 3 above (the ability to
include more data in CL decoder calibration). They were also balanced for the amount of
elapsed time between calibration and testing, thereby excluding a possible contribution from
item 4 above (the ability of CL decoders to adapt to signal nonstationarities). Directional
tuning differed between OL and CL contexts, suggesting that eliminating context differences
between decoder calibration and neural control (item 1 above) contributed to the
performance improvement when using a CL decoder. Directional tuning was also
significantly stronger during CL than during OL, suggesting an additional contribution from
increased mental engagement during CL than during OL (item 2 above). Because the
decoders were interleaved across blocks within each recording session, these improvements
are unlikely to be attributable to uncontrolled time-varying factors. Harnessing the full
adaptive potential of CL decoders by recalibrating them with additional and more recent
data (i.e. including possible contributions from items 3 and 4), as could be done in practical
BCI use, resulted in further improvements in tuning model accuracy and in neural control.

2. Methods
2.1. Participants

Permission for these studies was granted by the US Food and Drug Administration
(Investigational Device Exemption 1 ) and the Partners Healthcare/Massachusetts General
Hospital Institutional Review Board. The two participants in this study (S3 and T1) were
enrolled in a pilot clinical trial of the BrainGate2 Neural Interface System (http://
www.clinicaltrials.gov/ct2/show/NCT00912041), and were implanted with a 96-channel
intracortical silicon microelectrode array (Cyberkinetics Neurotechnology Systems, Inc.,
now Blackrock Microsystems, Salt Lake City, UT), as previously described (Hochberg et
al., 2006; Simeral et al., 2011).

1“CAUTION: Investigational device. Limited by federal law to investigational use.”
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Participant S3 is a 58-year-old woman with tetraplegia and anarthria (inability to speak)
resulting from a pontine stroke that occurred 9 years prior to array implantation. She retains
eye movement, some head movement and facial expression, and breathes spontaneously.
She has bilateral upper extremity flexor spasms that occur sporadically with many intended
body movements. The array, which had electrodes 1.5 mm in length, was implanted in the
hand area of her dominant motor cortex ~5 years prior to the start of this research project
(See Simeral et al., 2011; Hochberg et al., 2012 for additional detail). Participant T1 was a
48-year-old woman with tetraplegia resulting from amyotrophic lateral sclerosis (ALS),
diagnosed 6 years prior to array implantation. She was completely paralyzed except for
some eye movement, and her breathing was assisted by a ventilator. The array, with
electrodes 1.0 mm in length, was implanted in her dominant motor cortex ~9 months prior to
the start of this research project.

2.2. Signal acquisition
Neural activity was detected by the 96-channel microelectrode array and monitored via a
cable that was connected to a percutaneous connector during each 2-3 hour recording
session. Signals were analog filtered (4th order Butterworth band pass with corners at 0.3 Hz
and 7.5 kHz) and digitized by a 96-channel NeuroPort Neural Signal Processor (Blackrock
Microsystems, Salt Lake City, UT) at 30 kilosamples per second (kS s−1).

In participant T1, signals were then causally filtered with a digital 4th order 250 Hz high-
pass Butterworth filter and, for each of the 96 channels, spike waveforms were manually
sorted using Cerebus Central (Blackrock Microsystems, Salt Lake City, UT) into putative
single neurons (‘units’) using window discriminators in 1.6 ms epochs that crossed a
manually set amplitude threshold. Spike counts for each unit in each 100 ms bin were sent to
custom-written software in Simulink (Mathworks, Natick, MA), where they were saved to
disk and, in “closed-loop” blocks, decoded into intended movement direction for real-time
neural control.

In participant S3, the 30 kS s−1 signals were fed in 100 ms segments through custom
software written in Simulinkx™, where they were buffered for 4 ms to avoid edge effects
and then non-causally band-pass filtered using a 4th order Butterworth filter with corners at
250 and 5000 Hz. The extracted signals were compared to an amplitude threshold set to −4.5
times the standard deviation of the filtered signals on each channel (for details on the non-
causal filtering and threshold crossing methods, see Hochberg et al., 2012). The number of
threshold crossing events in each 100 ms segment was saved to disk and, in CL blocks,
decoded into intended movement direction for real-time neural control (see below for
details).

2.3. Task design
To determine the relationship between intended movement and brain activity, we first asked
the participant to watch a cursor move to targets on a computer screen in a pre-programmed
2D four-target center-out-back task and imagine that she was controlling the cursor with her
own hand while her motor cortical neural activity was recorded (“open-loop”, or “OL”,
decoder calibration). Participant S3 was asked to imagine bending her wrist in the desired
cursor movement direction, as imagined wrist movement had previously been found to elicit
robust responses in her recorded units. Participant T1 was asked to imagine that she was
moving a mouse on a tabletop plane to control the movement of the cursor. Targets appeared
one at a time on a 19” LCD monitor (30.5 cm high and 38 cm wide) which was placed ~56
cm in front of the participant; targets appeared at the center, at 13 cm above or below the
center, or at 15 cm left or right of the center. The targets were 1.2 cm in radius (1.2 degrees
visual angle) and the cursor was 0.6 cm in radius (0.6 degrees visual angle). Each of the 4

Jarosiewicz et al. Page 4

J Neural Eng. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



targets appeared in a random order before the set of targets was repeated. After the OL data
were collected, we used these data to construct a Kalman filter (Wu et al., 2006; Kim et al.,
2008) that mapped the observed patterns of neural activity to instantaneous target direction,
which was assumed to be the person’s intended movement direction (for details, see 2.4.,
Kalman filter calibration). For participant S3, the OL decoder was calibrated on data from
24 trials, each trial consisting of a 3 second excursion of the cursor from a center to a
peripheral target or a peripheral to a center target followed by a 1 second target hold period.
For T1, the OL decoder was calibrated on data from 3 OL blocks of 16 trials, with each trial
consisting of a 5 second excursion with a 1 second target hold period.

In subsequent blocks, the participant was asked to perform the 4-target center-out-back task
under CL neural control: the participant’s intended movement direction was decoded from
her neural activity, and this movement intention was used to directly control the continuous
movement of the cursor in real time. For a trial to be considered successful, S3 had 8
seconds to move the cursor to the target and hold it there for at least 500 milliseconds. The
target acquisition rate expected by chance in this task was near 0% because the cursor and
targets were small relative to the size of the screen, continuous trajectories were decoded,
and the cursor had to be held over the target for it to count as a successful acquisition. For
participant T1, we simplified the task by increasing the trial time to 20 seconds and
decreasing hold time to 300 milliseconds. Also, we algorithmically discarded the component
of the commanded velocity vector orthogonal to the instantaneous target direction, similar to
“deviation gain” used by Velliste et al (2008), which constrained the possible cursor
movements at each moment in time to a single line toward and away from the current target.
This effectively reduced the difficulty level of the task to that of a 1D task, while still
allowing a 2D model to be generated and used for neural control. Thus, for T1, the target
acquisition rate expected by chance had a theoretical range of 0% to 50%, depending on the
amount and direction of bias in cursor motion. Because the baseline performance levels
were expected to vary across participants and across days due to any number of uncontrolled
factors, all statistical analyses were done on relative performance measures that were
normalized to baseline performance on each day.

For S3, the OL decoder was used in the first CL block. After the CL block finished, a
“balanced” CL (CLb) decoder was calibrated using the neural data from the first 3 seconds
of each trial of that CL block (see Figure 1A), using the same total amount of data to
calibrate the decoder as was used to calibrate the OL decoder. For T1, the OL decoder was
used in the first 3 CL blocks, and the first 5 seconds of each trial of these three CL blocks
were used to calibrate the CLb decoder. To test whether using CL data to train the decoder
improved task performance and/or the accuracy of the decoder’s neural tuning model (even
when the CL decoder was built from the same amount of data as the OL decoder), the CLb
decoder was used in the next block of neural control. To test whether more improvement
would be obtained using a CL decoder that is calibrated on additional, more recent data, as
could be done in practical use of the BCI, a third, “cumulative” CL (CLc) decoder was built
using all of the CL blocks acquired up to that point; this decoder was then used for decoding
in the following block.

To ensure that any changes in performance and/or model accuracy that were attributed to
decoder type were not influenced by any other uncontrolled time-varying factors (amount of
practice, learning, fatigue, etc.), several more blocks of neural control were run, interleaving
the OL, CLb, and CLc decoders across blocks (see Figure 1B for an example). Each time a
CLc decoder was to be used, it was first calibrated using data from all of the CL blocks that
had been acquired up to that point. To control for the amount of time that elapsed since
decoder calibration when comparing the OL to the CLb decoder (whose sole difference was
meant to be the context under which the calibration data were collected), the OL and CLb
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decoders were never recalibrated. In S3, 12 total CL blocks were run in each session, with
24 trials per block, cycling 4 times through the OL, the CLb, and the CLc decoders, in that
order. In T1, 10-13 total CL blocks were run in each session, with 16 trials per block,
repeating each decoder type 2-5 times in random order after the initial OL, CLb, and CLc
blocks.

2.4. Kalman filter calibration
Movement intention was decoded from spiking activity using a steady-state Kalman filter.
We briefly review its properties here; full accounts can be found in other studies (Wu et al.,
2006; Kim et al., 2008; Malik et al., 2011). The Kalman filter is a recursive Bayesian
estimation algorithm that infers the desired cursor state from the history of spike rates. Its
“observation model” assumes that the baseline-subtracted spike rates z are linearly related to
the intended movement direction d at each time point t

(1)

where H is the matrix relating spiking activity to movement direction and the error term, q,
is drawn from a normal distribution with zero mean and covariance matrix Q Its “state
model” assumes that the intended movement direction at any time evolves from the
movement direction in the previous time point

(2)

where A is the matrix relating movement directions at consecutive time points and the error
term, w, is drawn from a normal distribution with zero mean and covariance matrix W

Given equations 1 and 2, the log probability of jointly observing the set of intended motion
directions, D = {d(1), d(2),…,d(N)}, and the set of spike rates, Z = {z(1), z(2),…,z(N)}, can
be expressed as:

(3)

where Z is a normalization factor. Usually, the Kalman filter is calibrated by finding the
parameters H, Q, A, W that maximize this joint distribution. However, we found that fixing
A = 0.965I and W = 0.03I where I is the identity matrix, provided a good trade-off between
smoothness and responsiveness of cursor movement (Hochberg et al., 2012). Thus, for
decoder calibration, we only calculated the parameters H and Q that maximized the
distribution. These two parameters have the following closed-form solutions:

(4)

(5)
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We note that each row of H contains a 2D vector representing the Kalman filter’s model of a
recorded unit’s preferred direction; its direction corresponds to the cursor direction in which
the unit’s spike rate is highest (i.e. the peak of its cosine fit), and its magnitude is the unit’s
modulation depth (i.e. the difference in firing rate between the peak of its cosine fit and its
baseline). The modeled preferred direction vector of neuron i will be denoted as Hi.

Decoder calibration was performed in batches between blocks using data from each 100 ms
bin in the first 3 seconds (for S3) or 5 seconds (for T1) of each trial after target presentation
(hereafter called the decoder “calibration data”). In OL decoder calibration, this was
equivalent to the cursor movement period of each trial. In CL decoder calibration, this was
meant to balance the amount of time from each trial that data were used for calibrating the
CL decoders with that of the OL decoders, and also to isolate the initial, “ballistic” portion
of each trial, during which the participant’s intended movement direction was less likely to
be influenced by error correction. For CL calibration, data from any part of the trial in which
the edge of the cursor was within 1 cm (1 degree visual angle) of the edge of the target were
also excluded from the decoder calibration because, as the cursor gets closer to the target,
small cursor movements lead to larger angular changes in target direction, making intended
movement direction more difficult to infer. The neural calibration data were shifted by a
small temporal delay (200 ms for S3, 300 ms for T1) relative to the kinematic calibration
data to account for a reaction time between cursor position updates and neural responses;
these delays were chosen because they produced the largest directional modulation in off-
line analyses of previous sessions from each participant (data not shown).

2.5. Data analysis
Performance and tuning model accuracy of the OL, CLb, and CLc decoders were compared
as follows. For each session, data from all blocks in which a given decoder type was used
were combined to obtain a single target acquisition rate (% correct) and model accuracy for
that decoder type. For example, in the session shown in Figure 1B, blocks 4, 7, 10, and 13
were combined into one OL data point in Figure 2; blocks 5, 8, 11, and 14 were combined
into one CLb data point, and blocks 6, 9, 12, and 15 were combined into one CLc data point.

As stated above, the decoder is calibrated by estimating the preferred direction of each unit.
Intuitively, the participant’s quality of neural control over the cursor will be influenced by
the accuracy of these estimates. To assess model accuracy, we computed a “model error”
defined as the angular difference between the preferred direction measured when calibrating
the decoder (Hi for unit i) to the preferred direction measured during those blocks in which
that decoder was used (the “post-hoc PD”). A smaller angle between the preferred directions
measured when calibrating and using the decoder reflects a more accurate tuning model
(Figure 1C).

Because baseline performance and model error varied across sessions and between the two
participants, statistics were performed within-session on differences in performance and
model error metrics relative to the OL decoder blocks (see Figure 2 B,D). P-values were
obtained for these within-session comparisons using the non-parametric Wilcoxon signed
rank test. Because there is more certainty in the angular error for units with stronger
directional tuning, the model error of each unit was weighted (Taylor, 1996; Jarosiewicz et
al., 2008, 2012b) by its whole-session “normalized modulation index” (NMI). The NMI of
unit i was defined as the norm of its PD divided by the standard deviation of the residuals in
the fit:

(6)
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Thus, a unit with no directional tuning would have a NMI of 0, a unit whose modulation
depth is equal to the standard deviation of its residuals would have a NMI of 1, and a unit
whose directional modulation is larger than the standard deviation of its residuals would
have a NMI greater than 1. To estimate each unit’s whole-session NMI, firing rates were
baseline-subtracted within each block, and then all of the baseline-subtracted CL calibration
data from the whole session were used to obtain a single PD and NMI for that unit; this NMI
was used as the weight for that unit.

Model error was also compared across decoder types treating all units from all sessions as
independent samples: each unit’s model error for one decoder type vs. another decoder type
contributed one pair of data points in a paired weighted t-test (Goldberg et al., 2005;
Jarosiewicz et al., 2008, 2012b), again weighting each unit’s contribution by its NMI.

To test whether CL neural control yields stronger directional modulation than OL imagined
movements, we also compared the NMIs of the OL and CL decoder models themselves
(“decoder NMIs”; see Figure 1C) as a measure of how strongly modulated the units were
during the blocks on which the decoders were built. The decoder NMIs were computed the
same way as the post-hoc PD NMIs (using Equation 6), but they were computed for each
decoder rather than for the post-hoc PD. Because NMI is sensitive to the amount of data
used in its calculation, we only applied this comparison to the OL vs. the CLb decoders,
which were created from matching quantities of calibration data; the CLc decoders, which
were created from more calibration data than the other decoder types, were excluded from
the decoder NMI comparison.

3. Results
Across seven sessions from the two participants, the decoders calibrated on CL data
provided a better target acquisition rate and a superior model fit than the decoders calibrated
on OL data (Figure 2). In the blocks in which the CLb decoder was used, the target
acquisition rate was 14.6 ± 3.4% higher and the model error was 9.9 ± 2.9° lower than in the
blocks in which the OL decoder was used (difference in target acquisition rate, p < 0.01;
difference in model error, 1-tailed Wilcoxon signed rank test, p < 0.01). Recalibrating the
tuning model using additional and more recent CL data resulted in further improvement of
both neural control and tuning model accuracy (difference in target acquisition rate, CLc
relative to OL: 20.0 ± 2.9%; p < 0.01; difference in target acquisition rate, CLc relative to
CLb = 5.4 ± 2.0%; p < 0.05; improvement in model error, CLc relative to OL: 20.0 ± 4.9°; p
< 0.01; improvement in model error, CLc relative to CLb: 10.1 ± 3.5°; p < 0.05).

Each of the above analyses treated each decoder type from each session as one data point in
a pairwise analysis. To gain statistical power in comparing model accuracy across decoder
types, we also computed the model error of each decoder type combining across all 251
units from all sessions (217 units from T1 and 34 units from S3), and used the difference in
model error across decoder types for each cell as independent samples in a paired analysis.
Across all units, the weighted mean model error was 49.9 ± 3.2° (SEM) for the OL
decoders, 39.8 ± 2.6° for the CLb decoders, and 31.8 ± 2.4° for the CLc decoders (Figure
3A). The CLb decoders had significantly smaller model error than the OL decoders (mean
pairwise difference, CLb – OL: 10.2 ± 3.3°, paired t-test, t = 3.12, p < 0.001). Because this
improvement in model error could not be attributed to differences in the amount of
calibration data or the amount of elapsed time between calibration and testing, the fact that
the post-hoc PDs obtained from CL blocks were more similar to the CLb model than they
were to the OL model implies that directional tuning differs between OL and CL contexts.
Furthermore, the CLc decoders had significantly smaller model error than both the OL
decoders (CLc – OL: 18.1 ± 3.6°, t = 5.02, p < 10−7) and the CLb decoders (CLc – CLb: 8.0

Jarosiewicz et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



± 2.8°; t = 2.85; p < 0.005), implying that even better model accuracy can be obtained by
including additional and more recent data in decoder calibration. Each of these differences
were also significant for each individual participant (participant S3: CLb – OL: 6.15 ± 3.6°,
p < 0.05; CLc – OL: 13.9 ± 3.7°, p < 10−4; CLc – CLb: 7.79 ± 2.0°, p < 10−4. Participant T1:
CLb – OL: 13.0 ± 4.4°, p < 0.005; CLc – OL: 21.2 ± 4.9°, p < 10−5; CLc – CLb: 8.12 ± 3.9°,
p < 0.05).

The CLb decoders also had significantly higher decoder NMIs (median = 0.12) than the OL
decoders (median = 0.07; mean pairwise difference = 0.029 ± 0.006; t = 4.67, p < 10−6),
implying stronger directional modulation during the CL calibration task than during the OL
calibration task (Figure 3B). This difference was also significant for each individual
participant (participant S3: mean pairwise difference = 0.031 ± 0.015, t = 2.08, p < 0.05;
participant T1: mean pairwise difference = 0.029 ± 0.007, t = 4.22, p < 10−5).

4. Discussion
When calibrating a decoder for a spike-based neural interface for people with paralysis, data
acquired during neural control (“CL” decoder calibration) resulted in a superior decoding
model and better subsequent neural control than data acquired during imagined movements
without feedback (open-loop or “OL” calibration). Model error was smaller, the directional
modulation was stronger, and neural control was better with CL decoders than OL decoders,
even when the same amount of data were used to calibrate both decoders and when the same
amount of time elapsed between each decoder’s calibration and its use. Because the
decoders were interleaved across blocks within each session, the observed differences are
unlikely to be attributable to time-varying factors such as practice, learning, fatigue, or
elapsed time since decoder calibration.

Given that neural tuning can change across different contexts (Taylor et al., 2002; Carmena
et al., 2003; Lebedev et al., 2005; Kim et al., 2008; Ganguly et al., 2011), a likely reason for
the observed improvement in neural control and smaller model error using the balanced CL
decoders is that CL calibration minimizes the contextual differences between decoder
calibration and neural control. In BCI studies with able-bodied monkeys, if the monkeys’
arms are restrained or allowed to move differently during neural control than during OL
calibration, it is perhaps not surprising that MI directional tuning differs between hand
control and neural control (Taylor et al., 2002; Carmena et al., 2003; Lebedev et al., 2005;
Ganguly et al., 2011) given the sensitivity of motor cortical tuning to arm kinematics,
dynamics, and proprioceptive feedback (Georgopoulos et al., 1982; Schwartz et al., 1988; Fu
et al., 1995; Sergio and Kalaska, 1998; Kakei et al., 1999; Churchland and Shenoy, 2007).
However, in people with tetraplegia, arm movements are absent in both OL and CL
contexts, so differences in arm movements cannot explain these results. Instead, these results
suggest that the activity of neurons in human MI is sensitive to the subtle distinction
between imagination of movement without an effect on the external world (arguably a
relatively “natural” scenario) and imagination of movement with an effect on the external
world (a scenario that has only become possible recently with the advent of brain-computer
interfaces).

Furthermore, the stronger directional modulation that was observed during CL neural
control than during OL imagination of movement is consistent with a higher level of mental
engagement during CL neural control, as increased attention, motivation, and alertness are
known to increase the amount of neural activation and information present in neural activity
(Edeline, 2003; Reynolds and Chelazzi, 2004; Roesch and Olson, 2004; Chapman and
Meftah, 2005; Zhang et al., 2011).
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Another possible source of the observed differences in neural activity between OL and CL
contexts might be additional feedback-enabled neural modulation in CL that corresponds to
the user’s attempts to seek strategies that improve neural control (see, e.g., Fetz, 1969, 2007;
Moritz et al., 2008; Chase et al., 2009; Koyama et al., 2010), which does not occur during
OL because such feedback is not provided. The improvements in neural control using a CL
decoder, then, might be partly attributable to the incorporation of these modified neural
patterns into the CL decoding model, combined with the person’s continued use of similar
strategies during subsequent CL neural control.

Regardless of the source of the observed improvements with CL decoders, if these
improvements translate to practical BCI applications (e.g. increased typing speed in a point-
and-click communication interface), then their functional implications are substantial. Even
before taking advantage of the “adaptiveness” of CL decoder calibration (i.e., when using
the balanced CL decoder), we observed a ~30% relative improvement in target acquisition
rate over baseline performance using the OL decoder. Using the cumulative CL decoder, we
observed a ~40% relative improvement over baseline. In a practical BCI setting, even more
improvement could potentially be obtained by including more calibration data as it is
collected and/or by selecting the calibration data with attention to other relevant factors such
as signal nonstationarities. When neural signals are not stably recorded, the decoder could be
continually recalibrated using only the most recent and relevant CL data. When the neural
signals are stable over long periods of time, adding more calibration data as it is collected
would continually improve the accuracy of the tuning model, and would enable more
complex tuning models to be utilized that require more parameters to be fitted.

Future intracortical BCIs should provide users with control over multiple types of assistive
devices over the course of a day – e.g., a computer keyboard from morning to noon, and an
assistive robotic limb at mealtime. It will thus be important to understand the degree to
which a decoder calibrated in one CL context (e.g., the center-out-back task) will extend to
other CL contexts (e.g., a communication interface, physical devices, etc.). If neural tuning
also differs across different CL contexts, a decoder created during the use of one BCI
application might not be optimal for another BCI application. However, preliminary work
shows that the tuning model of a CL decoder calibrated in a center-out task matches the PDs
obtained in a communication interface as closely as it matches the PDs obtained from other
blocks of the same center-out task (Jarosiewicz et al., 2011), suggesting that neural activity
does not differ as strongly across CL contexts as between OL and CL contexts.

A crucial component of decoder calibration is knowledge of the person’s movement
intention, so that its relationship with the corresponding neural data can be modeled. How
will this be accomplished in practical BCI applications in which targets are not pre-
specified? In most conceivable practical applications of point-and-click BCIs (such as in a
neural communication interface; see Bacher et al., 2011), selections will be made by
dwelling or neurally “clicking” on possible targets on the computer screen (Kim et al., 2011;
Simeral et al., 2011). This allows for a possible solution to the absence of a priori knowledge
of target location: if a given selection is not followed by a corrective action (e.g.,
“backspace” or “undo”), one could infer retrospectively that the BCI user correctly selected
his or her desired target. Once that target location is known, the person’s intended
movement direction during each moment of the preceding trajectory can be assumed to have
been toward that target, and as before, the tuning model can be calibrated using this
inference of instantaneous intended direction (Jarosiewicz et al., 2012a). With additional
constraints on the assumptions of the intended movements and on the data that would be
included in decoder calibration, similar approaches for retrospective target inference guiding
ongoing CL calibration could conceivably be extended to multi-dimensional neural control,
such as reach and grasp control of a robotic arm (Hochberg et al., 2012; Collinger et al.,
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2013) or functional electrical stimulation of the person’s own limbs (Moritz et al., 2008;
Chadwick et al., 2011; Ethier et al., 2012).

5. Conclusions
In two people with tetraplegia enrolled in the BrainGate pilot clinical trial, neural control
was superior, and the decoder had a more accurate tuning model with a higher signal-to-
noise ratio, using closed-loop decoder calibration compared to open-loop decoder
calibration. Closed-loop calibration was superior even when the amount of data used to
calibrate the closed-loop decoder was balanced with the open-loop decoder and when the
same amount of time had elapsed between each decoder’s calibration and its use. These
improvements are likely attributable to differences in neural activity between open-loop and
closed-loop contexts and to increased levels of mental engagement during closed-loop
neural control. Recalibrating the decoder using additional and more recent closed-loop data,
as could be done during practical use of the neural interface system, resulted in further
improvement of both the tuning model and of neural control. These methods may enable
robust neural control without needing to pause ongoing, practical use of BCIs, an important
step toward clinical utility.
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Figure 1. Methods and example data
(A) The center-out-back task. Possible target locations are shown as yellow dots that turn
red when they become active. After reaching a peripheral target, the participant must bring
the cursor back to the center target before the next peripheral target becomes active. To
obtain a tuning model from data acquired during CL control, at each moment along the
cursor’s trajectory (white dotted line) toward each active target, the person’s intended
movement direction is assumed to be from the current cursor location (white dot) toward the
active target location (red dot). The normalized direction vectors (white arrows) were
regressed against neural activity in each 100 ms bin from the initial, “ballistic” portion of
each trial to obtain a model of each unit’s directional tuning. This method was used both for
in-session CL decoder calibration and for post-hoc analysis. (B) Example performance data
from participant S3, 1966 days post-implant, showing the percent of targets successfully
acquired in each 3-5 minute CL “block” of 24 target presentations. Each dot is color-coded
according to whether the decoder used in that block was an OL decoder (black), a CLb
decoder (red), or a CLc decoder (blue). Decoder types were interleaved throughout each
session to control for elapsed time since decoder calibration and other time-varying factors.
(C) Examples of PDs from the same session. Each color (magenta, blue, green) represents
one unit. The dashed arrow of that color represents the PD used by the decoder for that unit
(Hi) and the solid arrow of the same color represents the PD obtained post-hoc for that unit
from the blocks in which that decoder was used. The left plot shows 3 units in the OL
decoder blocks, the middle plot shows the same 3 units in the CLb decoder blocks, and the
right plot shows the same 3 units in the CLc decoder blocks. The length of each solid arrow
represents the unit’s whole-session PD normalized modulation index (NMI) (see Methods).
Similarly, the length of each dotted arrow represents that unit’s decoder NMI. As
exemplified most clearly by the blue unit, the narrowing of the angle between the model and
post-hoc PD in the CL blocks is a measure of improved model accuracy.
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Figure 2. Improvement in performance and tuning model error with CL decoder calibration
(A) Performance data from each session from both participants. The percent of targets
acquired (% correct) across all blocks using the OL decoder, all blocks using the CLb
decoder, and all blocks using the cumulative CLc decoder are shown for each session. Filled
circles represent sessions from participant S3, and filled triangles represent sessions from
participant T1 (whose version of the task was simplified; see Methods). (B) Changes in
performance relative to OL, averaged across all sessions. There was a significant
improvement in performance when using the CLb and CLc decoders compared to the OL
decoders in the same session (Wilcoxon signed rank test, p = 0.0078). In addition, there was
a significant improvement when using the CLc decoder over using the CLb decoder (p =
0.031). (C) Model error from each session from both participants. (D) Changes in model
error relative to OL, averaged across all sessions. There was a significant decrease in model
error (i.e. improvement in model accuracy) using the CLb and CLc decoders compared to the
OL decoders (Wilcoxon signed rank test, p = 0.0078 for both CLb and CLc). There was also
a significant improvement when using the CLc decoder compared to the CLb decoder (p =
0.023). Key: * = p < 0.05; ** = p < 0.01.
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Figure 3. Model error and decoder normalized modulation index (NMI), all units from all
sessions
(A) Distribution of model error, combining all units from all sessions. Arrows denote the
weighted mean model error for each decoder type across all units. Both the CLb decoders (p
< 0.001) and the CLc decoders (p < 10−7) had significantly smaller model error than the OL
decoders. Furthermore, the CLc decoders had significantly smaller model error than the CLb
decoders (p < 0.005). (B) Distribution of decoder NMIs of the OL and CLb decoders
(because NMI is sensitive to the amount of data used in its calculation, the CLc decoders
were excluded from this comparison). Arrows denote the median for each group. The
balanced CL decoder models had significantly higher modulation indices than the OL
decoder models (p < 10−6), indicating that directional tuning was stronger during CL neural
control than during OL imagination of control.
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