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Abstract 

Background: High levels of pro-inflammatory cytokines in leukocyte- and platelet-rich plasma (L-PRP) may activate 

the nuclear factor κB (NF-κB) pathway to counter the beneficial effect of the growth factors on bone regeneration. 

However, to date, no relevant studies have substantiated this.

Methods: L-PRP and pure platelet-rich plasma (P-PRP) were isolated. The in vitro effects of L-PRP and P-PRP on the 

proliferation, viability and migration of human bone marrow-derived mesenchymal stem cells (HBMSCs) and EaHy926, 

tube formation of EaHy926, and osteogenic differentiation of HBMSCs were assessed by cell counting, flow cytometry, 

scratch assay, tube formation assay, and real-time quantitative polymerase chain reaction (RT-PCR), western blotting 

and Alizarin red staining, respectively. The in vitro effects of L-PRP and P-PRP on the nuclear translocation of NF-κB 

p65, mRNA expression of inducible nitric oxide synthase and cyclooxygenase-2, and production of prostaglandin E2 

and nitric oxid were assessed by western blotting, RT-PCR, enzyme-linked immunosorbent assay and Griess reaction, 

respectively. The in vivo effects of L-PRP or P-PRP preprocessed β-tricalcium phosphate (β-TCP) on the calvarial defects 

in rats were assessed by histological and immunofluorescence examinations.

Results: P-PRP, which had similar platelet and growth factors concentrations but significantly lower concentrations of 

leukocytes and pro-inflammatory cytokines compared with L-PRP, promoted the proliferation, viability and migration 

of HBMSCs and EaHy926, tube formation of EaHy926 and osteogenic differentiation of HBMSCs in vitro, compared 

with L-PRP. The implantation of P-PRP preprocessed β-TCP also yielded better histological results than the implanta-

tion of L-PRP preprocessed β-TCP in vivo. Moreover, L-PRP treatment resulted in the activation of the NF-κB pathway 

in HBMSCs and EaHy926 in vitro while the postoperative delivery of caffeic acid phenethyl ester, an inhibitor of NF-κB 

activation, enhanced the histological results of the implantation of L-PRP preprocessed β-TCP in vivo.

Conclusions: Leukocytes in L-PRP may activate the NF-κB pathway via the increased pro-inflammatory cytokines to 

induce the inferior effects on bone regeneration of L-PRP compared with P-PRP. Hence, P-PRP may be more suitable 

for bone regeneration compared with L-PRP, and the combined use of P-PRP and β-TCP represents a safe, simple, and 

effective alternative option for autogenous bone graft in the treatment of bone defects.
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Background

Challenges are still frequently encountered in the man-
agement of bone defects arising from trauma or pathol-
ogy [1–3]. Although autogenous bone graft is still the 
gold standard, it suffers from inadequate tissue avail-
ability and associated donor site morbidity. Allografts 
and xenografts have been used as alternative options. 
However, there are concerns about the risks of disease 
transmission and rejection. To overcome these problems, 
β-tricalcium phosphate (β-TCP), a synthetic calcium 
phosphate ceramic, has been introduced because of the 
advantages of unlimited availability, consistent quality 
and good biocompatibility. β-TCP commonly functions 
as an osteoconductive material that lacks the osteogenic 
properties of autogenous bone, and therefore, the use of 
β-TCP alone in repairing critical size defects can be chal-
lenging [4, 5].

Platelet-rich plasma (PRP) is an autologous blood 
product composed of concentrated platelets. α-granules 
of concentrated platelets in PRP contain and release 
concentrated levels of platelet-derived growth factor 
(PDGF), transforming growth factor-β1 (TGF-β1), vas-
cular endothelial growth factor (VEGF), and insulin-like 
growth factor (IGF) [6–8], which are known to have ben-
eficial effects on osteogenesis [9–13]. Numerous stud-
ies have demonstrated that the use of autologous PRP 
in bone regeneration represents a safe, simple, and cost-
efficient approach that has positive effects on cell prolif-
eration and migration [14–16], osteogenesis [17–19], and 
angiogenesis [20, 21]. Consequently, the combined use of 
PRP and β-TCP has gained popularity in the field of bone 
tissue engineering for the combination of all properties 
required in an ideal bone graft material, including oste-
oinductivity, osteoconductivity, osteogenesis, and angio-
genesis [22–24].

Despite the increasing use of PRP, the optimal PRP 
formulation for tissue regeneration is still unknown, 
and over the past few years attention has been drawn 
to the concentration of leukocytes in PRP. It has been 
demonstrated that high concentrations of leukocytes in 
PRP may deliver increased levels of pro-inflammatory 
cytokines, including interleukin-1β (IL-1β) and tumor 
necrosis factor-α (TNF-α), and result in the production 
of destructive proteases, together with inhibited forma-
tion and enhanced degradation of extracellular matrix 
[25–27]. IL-1β and TNF-α have been described to induce 
harmful effects on tissue regeneration through the acti-
vation of nuclear factor κB (NF-κB) signaling pathway. 
NF-κB heterodimers are normally located in the cyto-
plasm in an inactive form bound to inhibitory κB (IκB). 
Stimulation of receptive cells by IL-1β or TNF-α leads 
to the degradation of IκB to release NF-κB heterodimers 
and allow their subsequent translocation to the nucleus 

where they can activate the expression of a wide range 
of regulatory genes involved in apoptosis, inflammation, 
and other immune responses [28]. �erefore, leuko-
cyte- and platelet-rich plasma (L-PRP) may activate the 
NF-κB pathway via IL-1β and TNF-α to induce deleteri-
ous effects on tissue regeneration. However, to date, no 
relevant studies have substantiated this.

Considering the harmful effects of pro-inflammatory 
cytokines released from leukocytes on tissue regenera-
tion, effort has been put into the depletion of the leu-
kocytes in PRP to prepare pure platelet-rich plasma 
(P-PRP), in an attempt to achieve maximum therapeutic 
benefit [25, 29]. While the superior effects of P-PRP over 
L-PRP have been proved on regeneration of articular car-
tilage [26, 30–32] and tendons [33–36], they have not yet 
been evaluated on bone regeneration.

�e objective of the current study is to evaluate the 
effects of L-PRP and P-PRP on bone regeneration and the 
NF-κB pathway in vitro and in vivo, in order to develop 
an alternative method for autogenous bone graft.

Methods

�is study was in adherence with the Declaration of Hel-
sinki. Independent Ethics Committee and the Animal 
Care and Use Committee of Shanghai Jiao Tong Univer-
sity Affiliated Sixth People’s Hospital approved the proto-
cols of this study (No. 2015-33 and No. DWSY2014-33). 
Written informed consent was obtained from each 
human volunteer.

Preparation and analysis of human PRPs

Preparation of human PRPs

Whole blood was collected from ten healthy human vol-
unteers (6 men and 4 women, 21–45 years old) into acid-
citrate dextrose solution A (ACD-A) anticoagulant (1 mL 
ACD-A/9 mL blood). Each blood sample was divided and 
used to prepare L-PRP and P-PRP in a single-donor model.

L-PRP was prepared using WEGO PRP preparation 
system (WEGO, Weihai, Shandong, China), the only 
commercial PRP preparation system approved by the 
China Food and Drug Administration. P-PRP was pre-
pared using a method developed in our laboratory, which 
was demonstrated to be able to concentrate platelets sim-
ilarly to WEGO PRP preparation system while removing 
leukocytes and erythrocytes (data unpublished). To pre-
pare P-PRP using the method developed in our labora-
tory, 40 mL of whole blood was spun at 160g for 10 min 
in a 50-mL centrifuge tube to separate platelet-contain-
ing plasma from erythrocytes and leukocytes, and then 
the separated plasma was transferred to a new tube and 
spun again at 250g for 15 min. After discarding superna-
tant plasma, precipitated platelets were resuspended in 
the residual plasma to obtain 4 mL of P-PRP.
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Quanti�cation of leukocyte and platelet concentrations

Leukocyte and platelet concentrations of whole blood, 
L-PRP, and P-PRP were determined by whole blood anal-
ysis using an automatic hematology analyzer (XS-800i, 
Sysmex, Kobe, Japan).

Quanti�cation of growth factors and pro-in�ammatory 

cytokine concentrations

PDGF-AB, TGF-β1, VEGF, IL-1β, and TNF-α concentra-
tions of whole blood, L-PRP, and P-PRP were quantified 
by enzyme-linked immunosorbent assay (ELISA) [30]. 
In brief, whole blood, L-PRP, and P-PRP were incubated 
with 10 % CaCl2 (final concentration 22.8 mM) at 37 °C 
for 7 days. At the end of the incubation period, the for-
mulations were spun at 2800g for 15 min, and the super-
natants were collected and assayed for growth factors 
and pro-inflammatory cytokine concentrations using the 
Quantikine Human Immunoassay kits (R&D Systems, 
Minneapolis, MN, USA) according to manufacturer’s 
instructions.

Evaluation of the e�ects of L-PRP and P-PRP on cells 

in vitro

Isolation and expansion of cells

Human bone marrow-derived mesenchymal stem cells 
(HBMSCs) were isolated according to the protocols 
described previously [37]. In brief, bone marrow aspirates 
were harvested from the greater trochanter of 14 femur 
fractures patients (8 men and 6 women, 25–48 years old) 
during surgery. Bone debris were removed by filtering 
and cells were then cultured in 75 cm2 flasks at a density 
of 5.0 × 105 cells/flask in the α-modification of minimum 
essential medium (α-MEM; Sigma-Aldrich, St Louis, 
MO, USA) containing 10  % fetal bovine serum (FBS; 
Gibco, Carlsbad, CA, USA) and 1 % antibiotics (penicillin 
G and streptomycin, Gibco, Carlsbad, CA, USA) at 37 °C 
in a humidified atmosphere containing 5  % CO2. �e 
medium was changed after 48 h to remove non-adherent 
cells and thereafter every 3  days. Cells were detached 
with 0.25  % trypsin–EDTA (Invitrogen, Rockford, IL, 
USA) and passaged at ~80 % confluence. Cells at the fifth 
passage were used for this study.

EaHy926, the human umbilical vein endothelial cell 
line, was purchased from the American Type Culture 
Collection (Manassas, VA, USA) and cultured in Dulbec-
co’s Modified Eagle’s Medium (DMEM; Sigma-Aldrich, 
St Louis, MO, USA) containing 10 % FBS and 1 % antibi-
otics at 37 °C in a humidified atmosphere containing 5 % 
CO2. Cells were passaged at ~80 % confluence.

Cell proliferation analysis

Cells were seeded in 96-well plates at a density of 4000 
cells/well and cultured for 24  h in serum-free medium 

to permit them to adhere. Cells were then cultured in 
medium supplemented with 10 % (v/v) of FBS, L-PRP, or 
P-PRP for 7 days. 10 % was selected because that it is the 
most frequently used PRP concentration in in vitro stud-
ies, and may be comparable to the concentration of PRP 
reached during in vivo administration [15]. Cell prolifera-
tion was assessed on days 1, 3, 5, and 7 using Cell Count-
ing Kit-8 (CCK-8; Dojindo, Kumamoto, Japan) according 
to manufacturer’s instructions.

Cell viability and apoptosis analysis

Cells were seeded in 6-well plates at a density of 
1.0 × 105 cells/well, serum-starved for 24 h, and treated 
with 10 % of FBS, L-PRP, or P-PRP for 7 days. �e cells 
were then incubated with 10  μM camptothecin (Med-
Chem Express, Monmouth Junction, NJ, USA) for 6 h to 
induce apoptosis. Cell viability and apoptosis was ana-
lyzed by staining with Annexin V and PI [37]. Briefly, 
cultured cells were detached, centrifuged, resuspended 
in phosphate buffered saline (PBS; Gibco, Carlsbad, CA, 
USA) and stained with an Annexin V-FITC/PI stain-
ing kit (Cell Signaling Technology, Denvers, MA, USA). 
Data was acquired and analyzed by flow cytometry and 
guavaSoft (Guava easyCyte 8HT flow cytometry system, 
Millipore, MA, USA).

Cell migration analysis

Cells were seeded at a density of 2.1  ×  104 cells/well 
in Culture-Inserts (ibidi, Martinsried, Germany) and 
serum-starved as above. After removing the inserts to 
create a cell-free gap of 500 μm, cells were treated with 
10 % of FBS, L-PRP, or P-PRP for 24 h. Cell migration was 
observed using an inverted microscope (Leica, Heidel-
berg, Germany) and quantified using WimScratch soft-
ware (Wimasis, Munich, Germany) after 0, 12, and 24 h.

Tube formation analysis

Confluent EaHy926 were serum-starved for 24  h, 
detached, seeded at the density of 1.0 × 104 cells/well in 
μ-slide angiogenesis plates (ibidi, Martinsried, Germany) 
precoated with 10  μL/well Matrigel (BD, Oxford, UK) 
and treated with DMEM containing 10 % of FBS, L-PRP, 
or P-PRP for 24 h. Tube formation was observed using an 
inverted microscope and quantified using WimTube soft-
ware (Wimasis, Munich, Germany) after 12 and 24 h.

Osteogenic di�erentiation induction of HBMSCs

For osteogenic differentiation induction, nearly conflu-
ent HBMSCs were treated with osteogenic differentiation 
medium containing 10  % of FBS, L-PRP, or P-PRP. �e 
osteogenic differentiation medium was α-MEM supple-
mented with 10−2 M β-sodium glycerophosphate (Sigma-
Aldrich, St Louis, MO, USA), 50 μg/mL L-ascorbic acid 
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(Sigma-Aldrich, St Louis, MO, USA), and 1 % antibiotics. 
�e medium was changed every 3 days.

Real-time quantitative polymerase chain reaction

After osteogenic differentiation induction for 14  days, 
real-time quantitative polymerase chain reaction (RT-
PCR) was performed to detect the levels of mRNA 
expression of runt-related transcription factor 2 (Runx2; 
an early osteogenic marker) and osteocalcin (OC; a late 
osteogenic marker). Total RNA was extracted from cul-
tured HBMSCs using TRIzol reagent (Invitrogen, Rock-
ford, IL, USA). Reverse transcription was performed 
using the High Capacity Reverse Transcription kit (Inv-
itrogen, Rockford, IL, USA). RT-PCR was then per-
formed using SYBR Green detection reagent (SYBR 
Premix, Roche, Stockholm, Sweden). β-Actin was used 
as a housekeeping gene for the normalization of data. 
�e primer sequences for the target genes are listed in 
Table  1. Data were analyzed using the ΔΔCt method as 
described previously [38].

Western blotting

Protein expression of Runx2 in HBMSCs was analyzed by 
western blotting after osteogenic differentiation induc-
tion for 14 days. HBMSCs were lysed using mammalian 
protein extraction reagent (Pierce, Rockford, IL, USA) 
supplemented with complete protease inhibitor, and the 
total protein concentration was detected using BCA Pro-
tein Assay Kit (Pierce, Rockford, IL, USA). SDS-PAGE 
was performed using 100  μg of total protein and then 
transferred to a PVDF (Millipore, Billerica, MA, USA). 
After blocking with a solution of low-fat milk protein, the 
membranes were incubated with anti-Runx2 antibody 
(abcam, Cambridge, MA, USA) and anti-GAPDH (Cell 
Signaling Technologies, Danvers, MA, USA), followed by 
peroxidase-conjugated secondary antibodies. �e blots 
were subjected to chemiluminescence detection using 
ECL western blotting substrate (Pierce, Rockford, IL, 
USA).

Analysis of osteocalcin production

To avoid artifacts due to the presence of OC in blood 
products [39], the medium above HBMSCs was changed 
into serum-free α-MEM after osteogenic differentia-
tion induction for 14 days. After incubation for 24 h, the 
conditioned medium above HBMSCs was collected 
to quantify the amount of OC released by ELISA using 
Quantikine Human Osteocalcin Immunoassay kit (R&D 
Systems, Minneapolis, MN, USA).

Alizarin red staining

After osteogenic differentiation induction for 21  days, 
alizarin red staining was performed to visualize the extra-
cellular accumulation of calcium [40]. In brief, cultured 
cells were fixed 4 % paraformaldehyde for 30 min, stained 
with 2 % alizarin red (Sigma-Aldrich, St Louis, MO, USA) 
for 30 min, rinsed with PBS for three times. After observ-
ing the mineral nodules using an inverted microscope, 
the cultures were incubated with 20  % methanol/10  % 
acetic acid solution (Sinopharm Chemical Reagent, 
Shanghai, China) for 15 min followed by measurement of 
the absorbance value at 450 nm.

Evaluation of the e�ects of PRPs on NF-κB pathway in vitro

Cell culture conditions

Nearly confluent cells were serum-starve for 24  h and 
treated with medium supplemented with 10  % of FBS, 
L-PRP, or P-PRP. �e cells were collected after 1  hour 
for western blotting or after 24  h for RT-PCR. For pro-
duction of prostaglandin E2 (PGE2) and nitric oxide 
(NO) analysis, the medium was changed into serum-free 
medium after incubation for 24 h to minimize the poten-
tial artifacts due to the presence of PGE2 and NO in 
blood products. After 24 h, the conditioned medium was 
collected for the analyses.

Western blotting

Expression of NF-κB p65 (a subunit of NF-κB heter-
odimers) in the nucleus was analyzed by western blot-
ting. Nuclear protein extracts were prepared using 
NE-PER Nuclear and Cytoplasmic Extraction Reagents 
Kit (�ermo Fisher Scientific, Rockford, IL, USA) accord-
ing to manufacturer’s instructions. Western blotting was 
then performed as above using anti-NF-κB p65 antibody 
(Cell Signaling Technologies, Danvers, MA, USA).

RT-PCR

mRNA expression of inducible nitric oxide synthase 
(iNOS) and cyclooxygenase-2 (COX-2) were analyzed by 
RT-PCR, as above. �e primer sequences for the target 
genes are listed in Table 1.

Table 1 The primers sequences used for RT-PCR

Forward primer sequence 
(5′–3′)

Reverse primer sequence 
(5′–3′)

Runx2 CCAACCCACGAATGCACTATC TAGTGAGTGGTGGCGGACATAC

OC CCCCCTCTAGCCTAGGACC ACCAGGTAATGCCAGTTTGC

COX-2 CTTCACGCATCAGTTTTTCAAG TCACCGTAAATATGATTTAAGTC-
CAC

iNOS GCTGCCAAGCTGAAATTGA GATAGCGCTTCTGGCTCTTG

β-Actin TTCAACACCCCAGCCATGT GTGGTACGACCAGAGGCATACA
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Analysis of PGE2 and NO production

�e amount of PGE2 released into the medium was 
quantified by ELISA using the Quantikine Human Immu-
noassay kits (R&D Systems, Minneapolis, MN, USA) 
according to manufacturer’s instructions. �e production 
of NO was measured by Griess reaction using the NO 
Assay Kit (�ermo Fisher Scientific, Rockford, IL, USA) 
according to manufacturer’s instructions.

Evaluation of the e�ects of PRPs on bone regeneration 

in vivo

Animals

Forty male Sprague–Dawley rats (12  weeks old, weight 
250–300  g) were used to create a calvarial defects 
model in this study and divided into four groups: (1) 
control (n  =  10): unpreprocessed β-TCP was used to 
treat the defects; (2) L-PRP group (n =  10): autologous 
L-PRP was used to preprocess the β-TCP implanted; 
(3) L-PRP +  caffeic acid phenethyl ester (CAPE) group 
(n = 10): CAPE, a specific inhibitor of NF-κB activation 
[41], was delivered to rats treated with L-PRP preproc-
essed β-TCP postoperatively; (4) P-PRP group (n = 10): 
autologous P-PRP was used to preprocess the β-TCP 
used.

Preparation of rat PRPs and transplanted constructs

Autologous whole blood was collected from each rat into 
ACD-A according to the protocols mentioned previously 
[42]. An equal volume of sterile saline was immediately 
injected to replace the collected blood. 0.15 mL of L-PRP 
or P-PRP was prepared as described. Platelet and leuko-
cyte concentrations of whole blood, L-PRP, and P-PRP of 
were quantified by whole blood analysis. Sterile β-TCP 
scaffolds were then immersed in autologous L-PRP 
or P-PRP at 4  °C overnight to prepare transplanted 
constructs.

Animal surgery

�e calvarial defects model in rats was created as 
reported previously [43]. Briefly, after anesthetization 
was achieved, a 1.0 cm sagittal incision was made on the 
scalp to expose the calvarium. A full-thickness defect 
5 mm in diameter was created in the central area of each 
parietal bone using a trephine bur. �e bone defects were 
then treated with prepared transplant constructs.

Each rat received an intramuscular injection of peni-
cillin G (SPH, Shanghai, China) at a dose of 160,000 U/
kg postoperatively. All rats had ad libitum access to food 
and water. Rats in the L-PRP  +  CAPE group received 
10  μmol/kg/day CAPE intraperitoneally to inhibit the 
activation of NF-κB [44]. All rats were euthanized at 
8 weeks postoperatively to harvest calvarias.

Micro-computed tomography scanning

Harvested calvarias were fixed in 4 % paraformaldehyde 
in 0.1 M phosphate buffer (pH 7.2) for 72 h and scanned 
using micro-computed tomography (micro-CT; Skyscan 
1076, Kontich, Belgium) to evaluate new bone formation 
in the defects [43]. Scanning was performed at a resolu-
tion of 18  μm and the image data was used to analyze 
local bone mineral density (BMD) and bone volume to 
total bone volume (BV/TV) of the regenerated bone by 
NRecon software (Skyscan, Kontich, Belgium).

Sequential �uorescent labeling

Polychrome sequential fluorescent labeling was per-
formed according to the protocols described previously 
to observe the amount of new bone formation and min-
eralization [43]. Briefly, rats received an intraperitoneal 
injection of 25  mg/kg tetracycline (Sigma-Aldrich, St 
Louis, MO, USA), 30 mg/kg alizarin red (Sigma-Aldrich, 
St Louis, MO, USA) and 20  mg/kg calcein (Sigma-
Aldrich, St Louis, MO, USA) at 2, 4, and 6  weeks post-
operatively, respectively. �e calvarias were harvested 
at 8  weeks postoperatively, fixed in 4  % paraformalde-
hyde solution, dehydrated in a graded series of ethanol, 
embedded in methyl methacrylate, and sectioned into 
150 μm thick specimens in the orientation of the sagittal 
surface. �e sections were then glued onto a plastic sup-
port to polish a final thickness of approximately 50 μm. 
�e sections were then observed for fluorescent labeling 
using a confocal laser scanning microscope (Leica, Hei-
delberg, Germany). �e area of the newly formed bone 
was measured using Image Pro Plus (Media Cybernetics, 
Silver Springs, MD, USA) and expressed as a fraction of 
the total defect area.

Histological and immunohistochemical analysis

Harvested calvarias were decalcified in 10  % EDTA 
for 14  days, dehydrated with graded ethanol solutions, 
embedded in paraffin and sectioned at 5 μm at the cen-
tral area of the defect. Sections were stained with hema-
toxylin and eosin (HE) to observe new bone formation. 
�e area of the regenerated bone was measured using 
Image Pro Plus and expressed as a fraction of the total 
defect area.

�e expression and distribution of OC and CD31 were 
evaluated by immunohistochemical staining using the 
primary antibodies (Abcam, Cambridge, MA, USA) at 
4  °C overnight followed by HRP-conjugated anti-rabbit 
IgG for 1 h at 37  °C. Staining was developed in diamin-
obenzidine solution, with hematoxylin counterstaining. 
�e number of blood vessels, which were defined by 
CD31-positive staining and a typical round or oval struc-
ture, was measured using Image Pro Plus.
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Statistical analysis

Data were analyzed using the Statistical Package for 
Social Sciences version 22.0 (SPSS, Chicago, IL, USA) 
and presented as mean ± standard deviation (SD). One-
way analysis of variance (ANOVA) and Bonferroni post 
hoc test were performed for statistical analysis. Pearson 
correlation analysis was conducted to analyze the lin-
ear correlations between blood cells concentrations and 
cytokines concentrations. A P value less than 0.05 was 
considered statistically significant.

Results

Components of human whole blood and PRPs

�e results demonstrated that platelets, PDGF-AB, 
TGF-β1, and VEGF were significantly concentrated in 
L-PRP and P-PRP compared with the whole blood, and 
there was no significant difference between L-PRP and 
P-PRP (Table  2). �ere were significantly positive cor-
relations between platelet concentration and PDGF-AB 
concentration (r = 0.921, P < 0.001, Fig. 1a), and TGF-β1 
concentration (r = 0.913, P < 0.001, Fig. 1b), and VEGF 
concentration (r = 0.972, P < 0.001, Fig. 1c).

�e results also demonstrated that the leukocyte con-
centrations were significantly different for all formula-
tions, with L-PRP as being the highest concentration and 
P-PRP as being the lowest concentration (Table 2). Simi-
larly, L-PRP also had the highest IL-1β and TNF-α con-
centrations compared with other formulations (Table 2). 
Although P-PRP had lower IL-1β and TNF-α concentra-
tions compared with the whole blood, the differences of 
those between P-PRP and the whole blood were not sig-
nificant (P  >  0.999, and P  =  0.979, respectively). �ere 
were significantly positive correlations between leuko-
cyte concentration and IL-1β concentration (r  =  0.872, 
P  <  0.001, Fig.  2a), and TNF-α (r  =  0.937, P  <  0.001, 
Fig. 2b).

Table 2 Components of human whole blood and PRPs

The asterisks indicate the signi�cant di�erences between groups on ANOVA and with use of the Bonferroni post hoc test for multiple comparisons (P < 0.05)

WB whole blood

Platelet concen-
tration (109/L)

Leukocyte con-
centration (109/L)

PDGF-AB concen-
tration (ng/mL)

TGF- 
β1  concentration 
(ng/mL)

VEGF concentra-
tion (pg/mL)

IL-1β concentra-
tion (pg/mL)

TNF-α concen-
tration (pg/mL)

WB 228.30 ± 50.50 6.18 ± 1.57 8.87 ± 4.67 23.83 ± 12.07 35.92 ± 8.51 11.68 ± 5.90 9.31 ± 5.05

L-PRP 1436.70 ± 257.97 34.58 ± 8.48 42.54 ± 12.65 122.22 ± 43.42 157.89 ± 33.64 93.33 ± 69.88 54.67 ± 27.10

P-PRP 1461.80 ± 189.14 0.18 ± 0.18 43.71 ± 14.39 126.95 ± 35.96 151.82 ± 29.29 3.83 ± 2.61 2.20 ± 0.78

Comparison, P value

 ANOVA <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

 WB vs. L-PRP <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

 WB vs. P-PRP <0.001* 0.036* <0.001* <0.001* <0.001* >0.999 0.979

 L-PRP vs. P-PRP >0.999 <0.001* >0.999 >0.999 >0.999 <0.001* <0.001*

Fig. 1 Correlations between platelet concentration and PDGF-AB 

concentration (a), TGF-β1 concentration (b), and VEGF concentration 

(c)

Fig. 2 Correlations between leukocyte concentration and IL-1β 

concentration (a), and TNF-α concentration (b)
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P-PRP promotes the proliferation, viability and migration 

of HBMSCs and EaHy926 more e�ectively than L-PRP

As shown in Fig. 3a, HBMSCs and EaHy926 proliferated 
gradually with increase in the culture time for all groups, 
whereas the proliferation of HBMSCs and EaHy926 was 
substantially promoted in the presence of PRP, with the 
highest proliferation observed in the presence of P-PRP.

�e results of Annexin V/PI apoptosis assay are shown 
in Fig. 3b. �e percentages of negative, Annexin V posi-
tive, and Annexin V/PI double positive cells represent 
the percentages of viable cells, early apoptotic cells, and 
late apoptotic or dead cells, respectively. �e results 
demonstrated that both L-PRP and P-PRP inhibited the 
camptothecin-induced apoptosis to enhance the viability 
of HBMSCs and EaHy926, with P-PRP showing greater 
effects.

Cell migration analysis showed that both L-PRP and 
P-PRP significantly promoted the migration of HBMSCs 
and EaHy926 compared with FBS after incubation for 12 
and 24 h, whereas P-PRP was shown to be more effective 
than L-PRP in aspect of the promotion of cell migration 
(Fig. 4).

P-PRP promotes EaHy926 tube formation more e�ectively 

than L-PRP

�e results of tube formation analysis are shown in Fig. 5. 
EaHy926 treated with L-PRP or P-PRP formed elongated 
and tube-like structures, whereas EaHy926 incubated 
with FBS formed incomplete or sparse tubular networks. 
WimTube software quantification demonstrated that 
both PRP treatments promoted EaHy926 tube formation 
in term of total tubes and total tube lengths, with P-PRP 
showing greater effects.

P-PRP improves the osteogenic di�erentiation of HBMSCs 

more e�ectively than L-PRP

RT-PCR analysis revealed that mRNA expression of 
OC was upregulated significantly by P-PRP compared 
with FBS and L-PRP (P  <  0.001), whereas it was also 
upregulated significantly by L-PRP compared with FBS 
(P < 0.001, Fig. 6a). Similarly, mRNA expression of Runx2 
was significantly upregulated by P-PRP compared with 
L-PRP and FBS (P < 0.001), while it was also significantly 
increased by L-PRP compared with FBS (P  =  0.001, 
Fig. 6c).

�e analyses of protein expression of OC and Runx2 
demonstrated that P-PRP upregulated the expression of 
OC (Fig. 6b) and Runx2 (Fig. 6d) significantly compared 
with L-PRP and FBS, while L-PRP also upregulated those 
compared with FBS.

Alizarin red staining showed more calcium nodules 
in the PRP groups compared with the FBS group, while 
the mineralization of HBMSCs was improved more 

effectively in those treated with P-PRP (Fig.  6e). �e 
trend observed in the qualitative analysis was also shown 
by the results of the quantification of alizarin red stain-
ing, which demonstrated that the cultures of the P-PRP 
group had a significantly higher absorbance value at 
450 nm compared with that of the L-PRP group, which, 
in turn, had a significantly higher absorbance value com-
pared with the FBS group (Fig. 6f ).

L-PRP induces activation of NF-κB in vitro

Western blotting demonstrated that NF-κB p65 was 
located in the cytoplasm of HBMSCs in FBS and P-PRP 
group (Fig.  7a), while stimulus of L-PRP resulted in the 
accumulation of NF-κB p65 in the nucleus (Fig. 7a). RT-
PCR demonstrated that mRNA expression of COX-2 and 
iNOS in HBMSCs treated with L-PRP was significantly 
upregulated compared with HBMSCs treated with FBS 
or P-PRP (P < 0.001, Fig. 7c). Also, upregulated produc-
tion of PGE2 and NO was observed in HBMSCs treated 
with L-PRP compared with HBMSCs treated with FBS or 
P-PRP (Fig. 7e).

Similarly, L-PRP treatment also resulted in the nuclear 
translocation of NF-κB p65 (Fig. 7b), upregulated COX-2 
and iNOS mRNA expression (P  <  0.001, Fig.  7d), and 
upregulated PGE2 and NO production of EaHy926 
(P < 0.001, Fig. 7f ), compared with incubation with FBS 
and P-PRP.

Components of rat whole blood and PRPs

�e mean leukocyte and platelet concentrations 
of rat whole blood were 8.10  ±  2.04  ×  109/L and 
616.50  ±  136.248  ×  109/L, respectively. Similar to 
the components of human PRPs, an almost sixfold 
increase in platelet concentration was detected in 
both L-PRP (3735.40  ±  670.81  ×  109/L) and P-PRP 
(3800.70 ± 491.78 × 109/L) compared with whole blood 
(P  <  0.001). Besides that, leukocytes were concentrated 
in L-PRP (45.02 ± 11.01 × 109/L) and almost depleted in 
P-PRP (0.10 ±  0.09 ×  109/L) compared with the whole 
blood (P < 0.001).

P-PRP promotes the healing process of calvarial defects 

in rats more e�ectively than L-PRP

Micro-CT showed a greater amount of newly formed 
bone in the defects of both PRP groups than in the 
defects of the control group, whereas newly formed 
bone in the defects of the L-PRP group appeared to be 
less than in the defects of the L-PRP + CAPE group and 
P-PRP group, which did not different from one another 
(Fig. 8a). Quantative analysis of micro-CT demonstrated 
that BMD in the P-PRP group (400.98  ±  38.84  mg/
cm3) and L-PRP  +  CAPE group (378.93  ±  41.63  mg/
cm3) were similar (P  >  0.999), but significantly higher 
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than that in the control group (75.90  ±  12.20  mg/cm3, 
P  <  0.001) and L-PRP group (240.09  ±  30.69  mg/cm3, 
P < 0.001, Fig. 8b). A similar trend was observed in the 
results of BV/TV analysis (Fig. 8c), which demonstrated 
no significant difference between the BV/TV of the 
P-PRP group (25.43 ± 2.78 %) and L-PRP + CAPE group 

(24.79 ± 2.81 %)(P > 0.999), but these were higher than 
that of the control group (5.06 ± 0.76 %, P < 0.001) and 
L-PRP group (15.17 ± 2.10 %, P < 0.001, Fig. 8c).

�e formation and mineralization of new bone in the 
defects at week 2, 4, and 6 were determined histomorpho-
metrically by the quantification of tetracycline, alizarin 

Fig. 3 Effects of PRPs on the proliferation and viability of HBMSCs and EaHy926. a cell proliferation was analyzed with CCK-8 assay; b cell viability 

was analyzed with Annexin V/PI staining and flow cytometry quantification. Compared with FBS, both L-PRP and P-PRP promoted the proliferation 

and viability of HBMSCs and EaHy926, with P-PRP showing greater effects. Bars represent the means and standard deviation (n = 5); * indicates 

the statistically significant difference between PRPs and FBS (P < 0.05); # indicates the statistically significant difference between P-PRP and L-PRP 

(P < 0.05)
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red and calcein fluorescence (Fig. 9). At week 2, the per-
centages of tetracycline labeling (yellow, Fig.  9a, column 
1) in the P-PRP group (1.82 ± 0.20 %) and L-PRP + CAPE 
group (1.81 ± 0.18 %) were significantly greater than that 
in the L-PRP group (0.32 ± 0.07 %, P < 0.001), which, in 
turn, was significantly greater than that in the control 
group (0.10  ±  0.06  %, P  <  0.001, Fig.  9b). Likewise, the 
percentages of alizarin red labeling (red, Fig. 9a, column 2) 

at week 4 and the calcein labeling (green, Fig. 9a, column 
3), which were similar in the P-PRP group (1.93 ± 0.17 %, 
and 3.02  ±  0.38  %, respectively) and L-PRP  +  CAPE 
group (1.93  ±  0.19  %, and 3.02  ±  0.38  %, respectively, 
P > 0.999), lower in the L-PRP group (1.93 ± 0.19 %, and 
3.02  ±  0.38  %, respectively, P  <  0.001), and the lowest 
in the control group (0.10 ±  0.06 %, and 0.35 ±  0.08 %, 
respectively, P < 0.001, Fig. 9b).

Fig. 4 Effects of PRPs on the migration of HBMSCs and EaHy926. Cell migration was analyzed using Culture-Inserts and quantified using Wim-

Scratch software. Compared with FBS, both L-PRP and P-PRP promoted the migration of HBMSCs and EaHy926, with P-PRP showing greater effects. 

Bars represent the means and standard deviation (n = 5) and scales represent 250 μm; * indicates the statistically significant difference between 

PRPs and FBS (P < 0.05); # indicates the statistically significant difference between P-PRP and L-PRP (P < 0.05)
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HE staining was performed to evaluate new bone 
formation in the defects after 8  weeks postoperatively 
(Fig.  10a). �ere was abundant new bone formation 
in the defects of the P-PRP group and L-PRP  +  CAPE 

group, less in the defects of the L-PRP group, and little 
in the defects of the control group (Fig. 10a, line 1). HE 
staining was in accordance with the results of micro-CT 
and fluorochrome labeling and demonstrated that the 

Fig. 5 Effects of PRPs on EaHy926 tube formation. EaHy926 tube formation was analyzed using μ-slide angiogenesis plates and WimTube software 

quantification. Compared with FBS, both L-PRP and P-PRP promoted the tube formation of EaHy926, with P-PRP showing greater effects. Bars repre-

sent the means and standard deviation (n = 5) and scales represent 250 μm; * indicates the statistically significant difference between PRPs and FBS 

(P < 0.05); # indicates the statistically significant difference between P-PRP and L-PRP (P < 0.05)
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percentages of new bone area were similar in the defects 
of the P-PRP group (46.05 ± 6.05 %) and L-PRP + CAPE 
group (43.61 ±  5.05  %, P  >  0.999), lower in the defects 
of the L-PRP group (23.17 ± 3.54 %, P < 0.001), and the 
lowest in the defects of the control group (5.22 ± 0.71 %, 
P < 0.001) (Fig. 10b).

Immunohistochemical analysis was performed to eval-
uate the expression and distribution of OC in the defects 
after 8  weeks postoperatively. �e results demonstrated 
almost no positive staining for OC in the defects of the 
control group, limited positive staining in the defects of 
the L-PRP group and a greater amount of positive stain-
ing in the defects of the P-PRP group and L-PRP + CAPE 
group (Fig. 10a, line 2).

Immunohistochemical staining for CD31 was per-
formed to evaluate new blood vessel formation in the 
defects. Blood vessels were defined by CD31-positive 
staining and a typical round or oval structure. As shown 
in the line 3 of Fig. 10a, more blood vessels were observed 
in the defects of the P-PRP and L-PRP  +  CAPE group 
than L-PRP and the control group. Also, the quantitative 
analysis demonstrated that the number of blood vessels 
in the defects of the P-PRP and L-PRP  +  CAPE group 

were significantly higher than that of the L-PRP and con-
trol group (Fig. 10c).

Taken together, these results demonstrated that P-PRP 
had a greater capacity to promote healing process of rat 
calvarial defects compared with L-PRP. Furthermore, the 
postoperative injection of CAPE enhanced the positive 
effects of L-PRP on bone regeneration.

Discussion

�is study evaluated the in  vitro and in  vivo effects on 
bone regeneration of L-PRP and P-PRP, which had simi-
lar platelet and growth factor concentration but differed 
in leukocyte and pro-inflammatory cytokine concen-
tration. �e findings showed that in  vitro, compared 
with L-PRP, P-PRP promoted the proliferation, viability 
and migration of HBMSCs and EaHy926, together with 
tube formation of EaHy926 and osteogenic differentia-
tion of HBMSCs. �e implantation of P-PRP preproc-
essed β-TCP also yielded better histological results than 
the implantation of L-PRP preprocessed β-TCP in  vivo. 
Moreover, L-PRP treatment resulted in the activation of 
the NF-κB pathway in HBMSCs and EaHy926 in  vitro 
while the postoperative delivery of CAPE, an inhibitor of 

Fig. 6 Effects of PRPs on the osteogenic differentiation of HBMSCs. a mRNA expression of OC of HBMSCs was detected by RT-PCR after osteogenic 

differentiation induction for 14 days; b OC concentration in conditioned medium was detected by ELISA after osteogenic differentiation induction 

for 14 days; c mRNA expression of Runx2 of HBMSCs was detected by RT-PCR after osteogenic differentiation induction for 14 days; d Runx2 expres-

sion was detected by western blotting after osteogenic differentiation induction for 14 days; e alizarin red staining of HBMSCs after osteogenic dif-

ferentiation induction for 21 days; f, alizarin red staining was quantified by a colorimetric assay and the absorbance value was measured at 450 nm. 

Compared with FBS, both L-PRP and P-PRP improved the osteogenic differentiation of HBMSCs, with P-PRP showing greater effects. Bars represent 

the means and standard deviation (n = 3), and scales represent 200 μm; * indicates the statistically significant difference between PRPs and FBS 

(P < 0.05); # indicates the statistically significant difference between P-PRP and L-PRP (P < 0.05)
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NF-κB activation, enhanced the histological results of the 
implantation of L-PRP preprocessed β-TCP in vivo.

Since Whitman advocated for the first time that PRP 
might be a potent source of autologous growth factors 
in 1997 [45], efforts have been devoted to evaluate the 
effects of PRP on bone regeneration. Numerous animal 
models have demonstrated the positive effects of PRP 
on promoting bone regeneration in calvarial defects [46, 
47], mandibular defects [48, 49], tibia defects [18, 50] 
and femoral defects [51, 52]. Moreover, clinical studies 
implied that the use of PRP might represent a promis-
ing alterative for autologous bone graft in the treatment 
of bone defects [53] and nonunion [54], as well as in dis-
traction osteogenesis [55]. As a result, PRP has attracted 
increasing clinical interest in the field of orthopaedic 

surgery, as well as many other medical fields, and the 
market for PRP is expected to worth $126 millions by 
2016 [7].

�e rationale behind the PRP therapy arises from the 
growth factors released from platelet α-granules, and 
therefore, PRP is usually activated before application 
for degranulation of platelets. Bovine thrombin is often 
used to activate platelets, causing them to release 70  % 
of stored growth factors within 10 min and nearly 100 % 
within 1  h [56]. However, exogenous bovine thrombin 
may lead to complications associated with the formation 
of antibodies against human coagulation proteins, and 
result in an immune-mediated coagulopathy [57]. Moreo-
ver, bovine thrombin might impair the osteoconductivity 
of materials used in orthopaedic surgery [58]. To obviate 

Fig. 7 L-PRP induced activation of NF-κB in cells in vitro. Western blotting was performed to analyze expression of NF-κB p65 in the nucleus of 

HBMSCs (a) and EaHy926 (b); RT-PCR was conducted to detect mRNA expression of COX-2 and iNOS of HBMSCs (c) and EaHy926 (d); ELISA and 

Griess reaction were performed to determine PGE2 and NO production, respectively, of HBMSCs (e) and EaHy926 (f). Bars represent the means and 

standard deviation (n = 5); * indicates the statistically significant difference between PRPs and FBS (P < 0.05); # indicates the statistically significant 

difference between P-PRP and L-PRP (P < 0.05)
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the risks associated with thrombin, methods to activate 
PRP that do not rely on thrombin have been explored. 
CaCl2 is a well-accepted platelet activator and has been 
used extensively [29, 30, 59]. It has been demonstrated 

that addition of CaCl2 generates the clotting mecha-
nism to activate the platelets in PRP and stimulates the 
formation of native thrombin to mimick the physiologi-
cal clotting process and enable a more sustained release 

Fig. 8 Micro-CT evaluation of bone regeneration in rat calvarial defects after 8 weeks postoperatively. a Top, bottom and cross-sectional views of the 

reconstructed images; b, c BMD (b) and BV/TV (c) of the regenerated bone in the defects. Bars represent the means and standard deviation (n = 10), 

and scales represent 200 μm; * indicates the statistically significant difference compared with the control group (P < 0.05); # indicates the statistically 

significant difference compared with the L-PRP group (P < 0.05)
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Fig. 9 Fluorochrome-labeling of new bone formation and mineralization in the defects. a Column 1 (yellow) shows the deposition of tetracycline 

at week 2, column 2 (red) shows the deposition of alizarin red at week 4, column 3 (green) shows the deposition of calcein at week 6, column 4 

represents the merged images of the three fluorochromes for the same group, and column 5 represents the merged images of the three fluoro-

chromes with a plain CLSM image for the same group; b the percentages of three fluorochrome areas in the defects. Bars represent the means and 

standard deviation (n = 10); * indicates the statistically significant difference compared with the control group (P < 0.05); # indicates the statistically 

significant difference compared with the L-PRP group (P < 0.05)
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Fig. 10 HE staining and immunohistochemical staining in the defects after 8 weeks postoperatively. a line 1, HE staining of new bone formation 

(red area) in the defects; line 2, the immunohistochemical staining of OC showed that there was almost no positive staining for OC in the control 

group, a limited amount in the L-PRP group, and a greater amount in the L-PRP + CAPE and P-PRP group; line 3, the immunohistochemical stain-

ing of CD31 showed that there were more new vessels, which were defined by positive CD31 staining and the typical round or oval structure (red 

arrows), in P-PRP and L-PRP + CAPE group than in the L-PRP and the control group (line 3); b quantitative analysis of the HE staining; c quantitative 

analysis of the CD31 staining. Bars represent the means and standard deviation (n = 10), and scales represent 200 μm; * indicates the statistically 

significant difference compared with the control group (P < 0.05); # indicates the statistically significant difference compared with the L-PRP group 

(P < 0.05)
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of growth factors [60, 61]. As a result, CaCl2 activation 
has also gained popularity in clinical practice [26], and 
we also used CaCl2 to activate PRP formulations in this 
study. An alternative activator recently reported is type I 
collagen. Fufa et  al. reported that activation with type I 
collagen was equally effective as thrombin in stimulating 
the release of PDGF-AB and VEGF [62]. In the further 
study by the same group, Harrison et  al. reported that 
collagen might be more effective than thrombin activa-
tion, as thrombin activated platelets to release growth 
factors immediately while collagen resulted in a gradual 
accumulation of growth factors [63]. As type I collagen is 
the most abundant protein found in humans and is likely 
to be exposed in the environment of PRP application, 
further study is needed to determine whether preactiva-
tion of PRP is necessary.

PDGF-AB, TGF-β1, and VEGF have been detected con-
sistently in PRP [7, 8]. PDGF-AB is a potent chemokine 
and regulator of cell proliferation and extracellular 
matrix deposition [15, 64] while TGF-β1 is involved in 
cell proliferation and apoptosis, as well as extracellu-
lar matrix deposition [65, 66]. Moreover, PDGF-AB and 
TGF-β1 have been shown to promote bone regenera-
tion through enhanced osteogenesis [9, 10]. VEGF is an 
important stimulus for angiogenesis, which is important 
for new bone formation [12, 67]. Although IGF has also 
been detected consistently in PRP and demonstrated 
to have beneficial effects on cell proliferation and bone 
matrix synthesis [66], exercise and nutritional status, 
which are hard to control in volunteers, may affect IGF 
concentration in the whole blood and therefore in PRP 
[68]. �erefore, IGF was excluded from the analysis, 
and PDGF-AB, TGF-β1, and VEGF concentrations were 
selected to characterize L-PRP and P-PRP used in the 
current study together with platelet concentration. Our 
findings showed that the L-PRP and P-PRP used in the 
current study contained similar concentrations of plate-
lets and growth factors. Additionally, we found positive 
correlations between platelet and growth factors concen-
tration. �ese findings imply that it is platelets, rather 
than leukocytes, that are the major source of growth fac-
tors in PRP, and leukocyte-depletion may have no influ-
ence on the presence of concentration of growth factors 
in PRP, which is believed to be the basis of PRP therapy.

Interestingly, the in  vitro and in  vivo studies revealed 
that the similar levels of platelets and growth factors in 
L-PRP and P-PRP did not result in similar therapeutic 
effects and P-PRP was shown to be more effective than 
L-PRP. �e possible reason for this phenomenon may 
be the concentration of leukocytes and pro-inflamma-
tory cytokines. Our findings support other studies dem-
onstrating that leukocytes in L-PRP provide increased 
IL-1β and TNF-α [69]. IL-1β and TNF-α are recognised 

as primary cytokines for inflammation and the effects 
of inflammation on bone regeneration are biphasic. 
Although an inflammatory response is required to initi-
ate bone regeneration, excessive inflammation delays or 
inhibits it through inhibited osteogenesis and enhanced 
osteoclastogenesis [70, 71]. Also, inordinate inflamma-
tion may facilitate adipogenesis to impair osteogenesis 
[72] and in addition, may also lead to endothelial dys-
function to inhibit the proliferation, viability, migration, 
and angiogenesis of endothelial cells [73–75]. Studies 
demonstrating that anti-inflammatory drugs enhance 
bone regeneration also provide substantial proof for the 
harmful effects of excessive inflammation on bone regen-
eration [76, 77]. Hence, the increased pro-inflammatory 
cytokines released from the leukocytes in L-PRP may 
induce an inflammatory environment which overwhelms 
or counters the beneficial effects of the growth factors 
resulting in the inferior effects on bone regeneration 
observed here of L-PRP compared with P-PRP.

�e NF-κB pathway is intimately involved in the reg-
ulation of inflammatory responses. Activation of the 
NF-κB pathway has been shown to be responsible for the 
harmful effects of IL-1β and TNF-α on tissue regenera-
tion [72, 73, 75, 78, 79], however, the effects of increased 
levels of these cytokines in L-PRP on NF-κB have not 
been evaluated. IL-1β and TNF-α activate NF-κB path-
way via the canonical pathway which involves the nuclear 
translocation of NF-κB heterodimers [80, 81]. �e trans-
located NF-κB heterodimers then upregulate the expres-
sion of downstream inflammation-related genes (COX-2 
and iNOS) and the synthesis of their product (PGE2 and 
NO). Similar to the biphasic effects of inflammation on 
bone regeneration, regulated PGE2 and NO produc-
tion are also needed in the bone regeneration, possi-
bly because that PGE2 and NO may be required in the 
immunosuppression by MSCs, which may have beneficial 
effects on tissue repair [82], and excessive production of 
PGE2 and NO may have harmful effects on bone regen-
eration through inhibited osteogenesis and angiogenesis 
[72, 73, 75, 83]. �erefore, protein expression of NF-κB 
p65 in the nucleus, mRNA expression of COX-2 and 
iNOS, and production of PGE2 and NO were analyzed 
to evaluate the effects of PRP treatments on the NF-κB 
pathway. We found that L-PRP treatment induced the 
activation of NF-κB in HBMSCs and EaHy926 through 
the canonical pathway, upregulated COX-2 and iNOS 
mRNA expression, production of PGE2 and NO. Moreo-
ver, the in  vivo studies showed that the use of CAPE, a 
specific inhibitor of NF-κB activation, improved the 
in vivo effects of L-PRP treatment on bone regeneration. 
Hence, the activation of NF-κB pathway may play a role 
in the inferior effects of L-PRP compared with P-PRP on 
bone regeneration.
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In clinical practice, the inferior effects of L-PRP to 
P-PRP are also reflected in post-injection reactions. A 
randomized control trial comparing the effects of L-PRP 
and P-PRP on osteoarthritis demonstrated that L-PRP 
produced more pain and swelling reaction than P-PRP 
[26]. It is well established that excessive inflammation is 
involved in pain reaction [84]. Also, inhibitors of COX-2 
have been used widely in pain relief [85] and the inhibi-
tion of NF-κB activation has been proved to be a novel 
drug target for pain relief [86]. Hence, NF-κB activation 
may also play a role in the increased incidence of pain 
reaction after L-PRP treatment and the use of P-PRP in 
the treatment of bone defects may not only represent 
a more effective approach to promote bone regenera-
tion, but also represent a safer approach to avoid adverse 
events compared with the use of L-PRP.

�e major limitation of this study is that the rat calva-
rial defects model used does not allow the assessment 
of the biological response of the implanted material to 
a physiological biomechanical loading, which may influ-
ence bone regeneration strongly [87]. Hence, further 
studies using bone defects models on anatomical load-
bearing locations, such as mandible, distal femur and 
proximal tibia, of larger animals are needed to evaluate 
the findings of the current study.

Conclusions

Although L-PRP promoted bone regeneration by the 
enhanced proliferation, viability, migration of cells 
in  vitro and angiogenesis and osteogenesis in  vitro and 
in vivo, leukocytes in L-PRP may produce harmful effects 
through the activation of NF-κB and lead to the inferior 
effects of L-PRP compared with P-PRP. �erefore, P-PRP 
may be more suitable for bone regeneration, and the 
combined use of P-PRP and β-TCP may represent a safe, 
simple, and effective alternative option for autogenous 
bone graft in the treatment of bone defects.
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