
5438 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Advantages of Radial Basis Function Networks
for Dynamic System Design

Hao Yu, Student Member, IEEE, Tiantian Xie, Stanisław Paszczyñski, Senior Member, IEEE, and
Bogdan M. Wilamowski, Fellow, IEEE

Abstract—Radial basis function (RBF) networks have advan-
tages of easy design, good generalization, strong tolerance to input
noise, and online learning ability. The properties of RBF networks
make it very suitable to design flexible control systems. This paper
presents a review on different approaches of designing and train-
ing RBF networks. The recently developed algorithm is introduced
for designing compact RBF networks and performing efficient
training process. At last, several problems are applied to test the
main properties of RBF networks, including their generalization
ability, tolerance to input noise, and online learning ability. RBF
networks are also compared with traditional neural networks and
fuzzy inference systems.

Index Terms—Adaptive control, fuzzy inference systems, neural
networks, online learning, radial basis function (RBF) networks.

I. BACKGROUND

THE Proportional-Integral-Differential (PID) algorithm

dominates the design of controllers in industrial appli-

cations [1]–[5]. It is maturely developed and can be easily

implemented in both software and hardware. The drawback of

a PID controller is that it only works well for linear systems

which are seldom appear in the real world.

For nonlinear controller design, one method is to approxi-

mate the system linearly around equilibrium points. With this

linear approximation, in limited input range, PID algorithm can

still be applied for nonlinear controller design.

An alternative method is to compensate the system nonlinear-

ity by introducing an opposite adaptive signal, so as to linearize

the input–output relationship.

Fuzzy inference systems are often adopted for the nonlinear

compensation. Li and Lee [6] presented the dynamic fuzzy

controller combined with two synergic PID controllers to si-

multaneously control both fluid- and radiation-based cooling

mechanisms, to dissipate exhaust heat of onboard electronic

components inside spacecraft to the outer space environment.

Suetake et al. [7] implemented the fuzzy controller on a digital

Manuscript received April 6, 2011; revised June 8, 2011 and August 1, 2011;
accepted August 1, 2011. Date of publication August 15, 2011; date of current
version September 20, 2011.

H. Yu, T. Xie, and B. M. Wilamowski are with the Department of Elec-
trical and Computer Engineering, Auburn University, Auburn, AL 36849 USA
(e-mail: hzy0004@auburn.edu; tzx0004@auburn.edu; wilambm@auburn.edu).

S. Paszczyñski is with the Department of Distributed Systems, University of
Information Technology and Management, 35-959 Rzeszów, Poland (e-mail:
spaszczynski@wsiz.rzeszow.pl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2011.2164773

signal processor, used to adjust the scalar speed of three-phase

induction motor. Abiyev and Kaynak [8] presented a type 2

TSK fuzzy neural system for identification and control of time-

varying plants. The advantage of fuzzy inference systems is

that the fuzzy models can be very easily designed using the

given data set without parameter adjustment. However, the

tradeoff of the very simple design process is the accuracy of

approximation. The control surfaces (input–output relationship)

obtained by fuzzy inference systems are often very raw, which

may lead to raw control and instabilities [9]. Therefore, for

nonlinear compensation, fuzzy inference systems are often not

directly applied in the control loop, instead, they are used to

adjust the control parameters, such as proportional, integral, and

differential factors in PID control. Another main disadvantage

of fuzzy inference systems is that both the computation cost

and response time are increased exponentially proportional to

the size of inputs.

Another way of nonlinear compensation is to use neural

networks as approximator. Bhattacharya and Chakraborty [10]

designed an adaptive controller based on the “adaline” net-

work to improve the dynamic performance of a shunt-type

active power filter. Cotton et al. [11] implemented neuron-by-

neuron algorithm which is used to train arbitrarily connected

neural networks on an inexpensive microcontroller. The sys-

tem was applied to compensate the nonlinearity in forward

kinematics. Comparing with fuzzy inference systems, neural

networks can achieve more accurate approximation and re-

sponse much faster. However, because of the improper selection

network architectures and training algorithms [12], engineers

often feel frustrated on the generalization ability of neural

networks.

Like neural networks and fuzzy inference systems, radial

basis function (RBF) networks [13] were also proven to be

universal approximator [14]. Because of the simple and fixed

three-layer architecture (Fig. 1), RBF networks are much easier

to be designed and trained than neural networks. From the point

of generalization, RBF networks can respond well for patterns

which are not used for training. RBF networks have strong

tolerance to input noise, which enhances the stability of the

designed systems. Therefore, it is reasonable to consider RBF

network as a competitive method of nonlinear controller design.

Lin and Lian [15] merged RBF networks with self-organizing

fuzzy controller, to optimize the parameter selection. The hy-

brid controller was applied to manipulate an active suspension

system. Tsai et al. [16] presented an adaptive controller using

RBF networks to perform self-balancing and yaw control for a

two-wheeled self-balancing scooter.

0278-0046/$26.00 © 2011 IEEE

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5439

Fig. 1. RBF network with H RBF units and a single output unit.

Control systems become more complicated if the nonlinear

behaviors change with the time, since unpredictable observation

data may be added or removed from the previous data set. In

this case, the traditional offline design of neural networks is

not capable to satisfy the dynamical design. Instead, approxi-

mation models with online learning ability, which can handle

dynamically changing data set, become attractive. Pucci and

Cirrincione [17] developed a wind generator based on induction

machines, and the growing neural gas network was applied

in the control loop as a virtual anemometer to replace the

speed sensors. Le and Jeon [18] presented a neural network

based low-speed-damping controller implemented on FPGA,

to remove nonlinear disturbance of the stepper motor at low

speeds. Online backpropagation learning algorithm was ap-

plied to avoid identification process for network parameters.

Xia et al. [19] introduced a fuzzy controller combined with an

online learning neural network identifier, to perform dynamic

decoupling control of permanent-magnet spherical motor.

Cai et al. [20] proposed a hybrid controller using fuzzy logic

and RBF networks, for intelligent cruise control of semiau-

tonomous vehicles. The network parameters are adjusted online

via gradient-based algorithm. Orlowska-Kowalska et al. [21]

developed an adaptive speed controller based on a fuzzy neural

network model with online parameter tuning ability. The neu-

rofuzzy controller is applied for speed estimation, so as to

remove mechanical speed sensors in the two-mass induction

motor drive.

The recently developed error correction (ErrCor) algorithm

with online training ability is introduced to design compact

RBF networks. The very efficient improved second-order gra-

dient algorithm is described for parameter adjustment in RBF

networks. By comparing with neural networks and fuzzy infer-

ence systems, the paper is purposed to present the advantages

of RBF networks for dynamic system design.

The paper is organized as follow. In Section II of the pa-

per, the fundamentals of RBF networks are introduced briefly.

Section III presents the relationships between RBF networks,

neural networks, and fuzzy inference systems. Section IV in-

troduces the ErrCor algorithm, as a hierarchical method of

constructing the hidden layer of RBF networks. Section V

derives the second-order gradient method for training RBF

networks. Section VI gives experiments to test the properties

of RBF networks, comparing with neural networks and fuzzy

inference systems; experiments also prove the online behaviors

of RBF networks.

II. FUNDAMENTALS OF RBF NETWORKS

Fig. 1 shows the three-layer architecture of the RBF network

consisting of I inputs, H RBF units, and a single output unit.

Notice that, for problems with multiple outputs, they can be

analyzed as the combination of several subproblems, each of

which has a single output unit.

Applying the data set xp = {xp,1, xp,2, xp,3, . . . , xp,i, . . . ,

xp,I}, the basic computations of the RBF network in Fig. 1

consist of three steps:

1) Input Layer Computation: At the input layer, each input

xp,i is scaled by the input weights ui,h which presents the

weight connection between the ith input and RBF unit h

yp,h,i = xp,iui,h (1)

where vector yp,h = {yp,h,1, yp,h,2 . . . yp,h,i . . . yp,h,I} is the

scaled inputs. h is the index of RBF units, from 1 to H; i is the

index of inputs, from 1 to I; p is the index of training patterns,

from 1 to P . In simplest approach, all the input weights u are

set as “1.”

2) Hidden Layer Computation: The output of RBF unit h is

calculated by

ϕh(xp) = exp

(

−
‖yp,h − ch‖

2

σh

)

(2)

where ϕh(•) is the activation function of RBF unit h. ch and

σh are the center and width, respectively, which are the key

properties to describe the RBF unit h. ‖ • ‖ represents the

computation of Euclidean norm of two vectors.

3) Output Layer Computation: The network output for pat-

tern xp is calculated as the sum of weighted outputs from RBF

units

op =
H

∑

h=1

ϕh(xp)wh + w0 (3)

Where: wh represents the weight value on the connection

between RBF unit h and network output. w0 is the bias weight.

III. RELATIONSHIPS BETWEEN RBF NETWORKS, NEURAL

NETWORKS, AND FUZZY INFERENCE SYSTEMS

A. RBF Networks and Neural Networks

Because of the similar layer-by-layer topology, it is of-

ten considered that RBF networks belong to multilayer per-

ceptron (MLP) networks. It was proved that RBF networks

can be implemented by MLP networks with increased input

dimensions [22].

Except the similarity of network topologies, RBF networks

and MLP networks have different properties. First, RBF net-

works are simpler than MLP networks which usually have

more complex architectures. Second, RBF networks are often

easier to be trained than MLP networks because of the simple

5440 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Fig. 2. Different classification mechanisms for pattern classification in two-dimension space. (a) RBF network. (b) Separation result of RBF network. (b) MLP
network. (c) Separation result of MLP network.

and fixed three-layer architecture. Third, RBF networks act

as local approximation networks and the network outputs are

determined by specified hidden units in certain local receptive

fields, while MLP networks work globally and the network

outputs are decides by all the neurons. Fourth, it is essential to

set correct initial states for RBF networks, while MLP networks

use randomly generated parameters initially. Last and most

importantly, the mechanisms of classification for RBF networks

and MLP networks are different: RBF clusters are separated

by hyper spheres, while in neural networks, arbitrarily shaped

hyper surfaces are used for separation. In the simple two-

dimension case as shown in Fig. 2, the RBF network in Fig. 2(a)

separates the four clusters by circles or ellipses [Fig. 2(b)],

while the neural network in Fig. 2(c) does the separation by

lines [Fig. 2(d)].

B. RBF Networks and Fuzzy Inference Systems

The original design of RBF networks was somehow similar

to TSK fuzzy inference systems [23], as shown in Fig. 3.

• Both models have weighted sum or weighted average as

network outputs

• The number of hidden units of RBF networks can be the

same as the number of IF-THEN fuzzy rules in fuzzy

inference systems

• The receptive filed functions of RBF networks perform the

similar mapping like the membership functions do in fuzzy

inference systems

Fig. 3. Similar architectures of fuzzy inference systems and RBF networks.
(a) TSK fuzzy system. (b) RBF networks.

Like fuzzy inference systems, the original RBF networks can

be directly designed based on a given data set.

• The number of RBF units is equal to the number of

patterns or clusters

• Each pattern is applied as the center of related RBF unit

• No training process is required

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5441

With this approach, RBF networks can be considered as di-

rect replacement of TSK fuzzy inference systems with Gaussian

membership functions. In both TSK fuzzy inference systems

and RBF networks, better approximation accuracy can be ob-

tained if systems are tuned with learning process. Similarities

between RBF networks and fuzzy inference systems were pre-

sented in literatures: Roger and Sun [24] proved the equivalence

between RBF networks and fuzzy inference systems; Jin and

Sendhoff [25] proposed a method to extract interpretable fuzzy

rules from RBF networks; Li and Hori [26] developed an

algorithm using RBF networks to interpret the fuzzy rules.

C. Improved RBF Networks

To design more compact and efficient RBF networks, the

approach described above was further improved by several

methods of RBF network constructions. Moody and Darken

[27] applied self-organized selection to determine the centers

and widths of receptive fields. Wu and Chow [28] proposed

an extended self-organizing map to optimize the number of

RBF units. Chen et al. [29] presented an orthogonal least

square (LS) algorithm to evaluate the optimal number of hidden

units. Hwang and Bang [30] constructed the hidden layer

of RBF networks by an improved adaptive pattern classifier.

Orr [31] introduced a regularized forward selection method,

as the combination of forward subset selection and zero-order

regularization, to select the centers of RBF networks.

Further improvements were possible by introducing learning

algorithms to adjust parameters of RBF networks. The simplest

learning algorithm is the linear LS method, which works only

for output weights adjusting and performs poorly for nonlinear

cases. Iterative regression [32] and singular value decomposi-

tion [33] enhance the nonlinear performance of output layer.

Based on gradient decent concept, lots of methods [34], [35]

have developed to perform “deeper” training on RBF networks

because, besides output weights, more parameters, such as

centers and widths of RBF units, are adjusted during the learn-

ing process. First-order gradient methods have very limited

search ability and take a long time for convergence. Kalman

filter training algorithm provides similar performance with first-

order gradient descent method, but it significantly improves the

training speed [36]. Genetic algorithm [37] is very robust for

training RBF networks. Since it performs global search, genetic

algorithm does not suffer from local minima problem, but it

is very time and computation expensive, particularly when the

search space is huge.

In conclusion, the design of RBF networks consists of two

important parts: (1) network construction; (2) parameter ad-

justment. In the following two sections, we will introduce our

recently developed ErrCor algorithm for network construction

and improved second-order (ISO) algorithm for parameter

adjustment.

IV. RBF NETWORK CONSTRUCTION

Like other nonlinear networks, RBF networks face the same

controversy to choose the number of RBF units: too few RBF

units cannot get acceptable approximations, while too many

Fig. 4. Desired surface.

RBF units lead to expensive computation and may cause over-

fitting problem [9], [12], [38]. In this section, we will introduce

a recently developed ErrCor method, purposed to find proper

size of RBF networks and initial centers of RBF units. Then,

two examples are presented to test the efficiency of ErrCor

algorithm by comparing with other algorithms.

A. Error Correction Algorithm

To illustrate the basic idea of the ErrCor algorithm, let us

have an example to approximate the simple surface shown in

Fig. 4, obtained by

z(x, y) = sin x + cos y. (4)

As shown in Fig. 4, there are three main peaks and valleys

in the surface. Considering the peak shape of the output of

RBF unit with kernel function (2), at least three RBF units are

required for approximation. In the following steps, let us build

the RBF network from scratch using the ErrCor algorithm.

1) Consider the initial outputs of the RBF network as 0. In

this case, Fig. 4 not only presents the desired surface, but

also describes the error surface between desired outputs

and actual outputs. By going through the data set of

current error surface in Fig. 4, the lowest valley marked

as point A can be found.

2) Add the first RBF unit and set its initial center as the

coordinate of point A. Initial width and weight are “1,”

as shown in Fig. 8(a).

3) Train the RBF network until convergence [Fig. 8(b)].

Fig. 5 shows the approximation result of the network with

one RBF unit. By comparing with the error surface in

Fig. 5(b), one may notice that the lowest valley in Fig. 4

(point A) is eliminated.

4) Go through the data set of error surface in Fig. 5(b) and

find the location of the lowest valley marked as point B.

5) Add the second RBF unit and set its initial center equal

to the coordinate of point B; also using “1” as its initial

width and weight. Keep the rest of the RBF network

the same as it was constructed in step 3), as shown in

Fig. 8(c).

5442 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Fig. 5. Approximation results with 1 RBF unit. (a) Approximated surface. (b) Error surface.

Fig. 6. Approximation results with 2 RBF units. (a) Approximated surface. (b) Error surface.

Fig. 7. Approximation results with 3 RBF units. (a) Approximated surface. (b) Error surface.

6) Train the increased RBF network until convergence

[Fig. 8(d)]. Fig. 6 presents the approximation result.

Again, the lowest valley in the previous error surface

[point B in Fig. 5(b)] has disappeared.

7) Repeat the process from steps 4) to 6), the lowest valley in

current error surface [point C in Fig. 6(b)] is corrected, by

adding the third RBF unit. The result is shown in Fig. 7.

Fig. 8 shows the building process of RBF networks, based on

the procedure described in step 1) to step 7).

One may notice that the ErrCor algorithm described from

steps 1) to 7) can find the locations of the three peaks and

valleys in the desired surface in Fig. 4 with 3 RBF units.

More accurate results can be obtained by furthering the ErrCor

computation above with more RBF units.

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5443

Fig. 8. Network constructions according to the procedure described from step
1) to step 7): (a) step 2); (b) step 3); (c) step 5); (d) step 6); (e) and (f) step 7).
Blue RBF unit is newly added and initialed by ErrCor algorithm. All the input
weights are set as “1” and not adjusted during learning process.

B. Comparison With Other Algorithms

To illustrate the efficiency of the ErrCor algorithm for

RBF network construction, let us have two examples to make

comparison between different algorithms for designing RBF

networks. The training process used in the two examples will

be discussed in the next section.

The first example is aimed to solve the Boston Housing

problem [39]. The problem consists of 506 observations. In

the experiment, for each trial, 481 observations are randomly

selected (without duplication) as training data and the remain-

ing 25 observations are used to test the trained RBF networks.

The training/testing results are averaged by ten trials. In this

example, the proposed ErrCor algorithm is compared with an-

other hierarchical growing/pruning strategy (GGAP algorithm)

for network construction presented in a well-cited paper [40].

In addition, other three algorithms, MRAN algorithm [41],

RANEKF algorithm [42], and RAN algorithm [43], are also

taken into comparison.

Fig. 9 presents the average training/testing root mean square

errors, as the increasing of the number of RBF units.

From Fig. 9, one may notice that ErrCor algorithm can reach

the better training/testing accuracy with much less number RBF

units than other four algorithms.

The second example is the two-spiral classification problem,

which is purposed to separate the two groups of twisted points

(blue star points and red circle points) as shown in Fig. 10(a).

Fig. 9. Relationship between training/testing root mean square errors and the
number of RBF units.

With ErrCor algorithm, to reach the training average sum

square error, 0.0001, at least 30 RBF units are required for

network construction, and the classification result is presented

in Fig. 10(b).

In addition to the ErrCor algorithm, the experimental results

of other three algorithms are extracted from literature [44]–[46]

for comparison, as presented in Table I.

With the comparison results of the two examples, it is rea-

sonable to recommend the proposed ErrCor algorithm as a very

efficient algorithm for design compact RBF networks.

V. LEARNING ALGORITHMS

In this section, we will introduce a newly developed ISO al-

gorithm, which is capable of adjusting not only output weights

w, widths σ, and centers c, but also the input weights u, as

shown in Fig. 1.

By incorporating the second-order computation procedure

presented in [47], the update rule of the ISO algorithm is

∆k+1 = ∆k − (Qk + µkI)
−1gk (5)

where k is the index of iteration, ∆ is the parameter vector, µ

is the combination coefficient, I is the identity matrix, Q is the

quasi Hessian matrix, and g is the gradient vector.

Quasi Hessian matrix Q is calculated as the sum of sub-

matrices qp

Q =

P
∑

p=1

qp (6)

where submatrix qp is calculated by

qp = jTp jp (7)

where jp is the Jacobian row calculated as

jp =

[

∂ep

∂∆1

∂ep

∂∆2

. . .
∂ep

∂∆n

· · ·
∂ep

∂∆N

]

(8)

where n is the index of parameters, from 1 to N , where N is

the number of parameters. ep is the error calculated by

ep = dp − op (9)

5444 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Fig. 10. Two-spiral problem (a) and the generalization result (b) obtained by the ErrCor algorithm with 30 RBF units.

TABLE I
COMPARISON OF NETWORK SIZES REQUIRED FOR SOLVING TWO-SPIRAL

PROBLEM USING DIFFERENT ALGORITHMS

where d is the desired outputs obtained from data set and o is

the actual output calculated by (3).

Gradient vector g is calculated as the sum of subvectors ηp

g =

P
∑

p=1

ηp (10)

where subgradient vector ηp is calculated by

ηp = jTp ep. (11)

Considering the four types of parameters, including input

weights u, output weights w, centers c, and widths σ, the

elements of Jacobian row jp in (8) can be rewritten as

jp =

[

∂ep

∂ui,h

· · ·
∂ep

∂w0

· · ·
∂ep

∂wh

· · ·
∂ep

∂ch,i

· · ·
∂ep

∂σh

]

. (12)

By combining (1)–(3) and (9), and using the differential

chain rule, elements of Jacobian row jp are calculated by

∂ep

∂ui,h

=
2whϕh(xp)xp,i(xp,iui,h − ch,i)

σh

(13)

∂ep

∂w0

= −1 (14)

∂ep

∂wh

= −ϕh(xp) (15)

∂ep

∂ch,i

= −
2whϕh(xp)(xp,iui,h − ch,i)

σh

(16)

∂ep

∂σh

= −
whϕh(xp)‖xp × uh − ch‖

2

σ2
h

. (17)

With (13)–(17), all the Jacobian row elements in (12) for

pattern p can be obtained. Then, the related sub quasi Hessian

matrix qp and subgradient vector ηp can be computed by (7)

and (11), respectively.

Being different from traditional Levenberg Marquardt algo-

rithm [48], the ISO algorithm does not require Jacobian matrix

storage and multiplication. All elements of quasi Hessian ma-

trix Q and gradient vector g are computed directly using (6)

and (10). This computation routine can be applied to handle

problems with basically unlimited number of training patterns.

VI. EXPERIMENTAL RESULTS

To design the dynamic systems with good performance, it is

important to choose the network models with:

• Good generalization ability: the generalization ability

evaluates the quality of responses to the new patterns

which are not used for system design. For a given network

model, as the increasing of network size, the generaliza-

tion ability often becomes better firstly; when the network

size reaches certain point, the generalization ability gets

saturated or unpredictably worse [12].

• Strong tolerance to input noise: in really system design,

input signals are often not completely clean; instead, they

consist of original signals and noises. The tolerance to in-

put noise represents the difference of responses when both

original signals and noised signals are applied as inputs.

The stronger the tolerance is, the smaller the difference

will be.

• Online learning ability: the online process is an opposite

concept of traditional offline design. For offline design,

the whole systems have to be redesigned from scratch

when new data set are introduced. Differently, for online

process, the systems can be updated based on the previous

design parameters: if the previous data set are not impor-

tant any more (in some time various systems), only the

new data set take part in system updating; otherwise, the

whole data set should be considered (in the experiment C

followed).

Three problems are applied to test the abilities of RBF

networks from the point of the three requirements above for

dynamic system design. In all the problems, ErrCor algorithm

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5445

Fig. 11. Peak surface with different number of points. (a) 10 × 10 points. (b) 100 × 100 points.

Fig. 12. Approximation results of three methods: for FCC networks,
x-coordinate is the number of hidden neurons; for fuzzy inference systems,
x-coordinate is equal to 20, as the number of membership functions; for RBF
networks, x-coordinate is the number of RBF units.

combined with the ISO computation is applied for constructing

and training RBF networks.

A. Generalization Ability

Peak problem comes from the MATLAB function peaks.

The surface in Fig. 11(a) consists of 10 × 10 points. The

purpose of peak problem is to use the 100 point in Fig. 11(a)

to approximate the surface with 100 × 100 points in the same

range [Fig. 11(b)].

For traditional neural networks, fully connected cascade

(FCC) networks [49] and neuron-by-neuron algorithm [50] are

applied to training. For each neural network topology, the train-

ing process is repeated for 10 times with randomly generated

initial weights, and the results are obtained as the average values

of the ten trials. For fuzzy inference systems, TSK architecture

[23] and ten triangular membership functions in each direction

(20 totally) are used for the approximation. Fig. 12 presents the

approximation results of the three methods. Notice that there is

no training process for fuzzy systems.

Fig. 13. Approximation result of fully connected cascade (FCC) neural
network with 20 bipolar sigmoidal activation functions: ETrain = 1.920×
10
−10 and ETest = 2.922× 10

−3.

Based on the experimental results presented in Fig. 12, there

could be several observations as follows.

1) As the increase of hidden units, the training errors of both

FCC networks and RBF networks are decreasing.

2) As the increase of hidden units, the testing errors of both

FCC networks and RBF network are decreasing at first,

and then get saturated. It is possible that, for a single

trial, the generalization ability of FCC networks is better

than RBF networks (Figs. 13 and 14), but for the average

results shown in Fig. 12, the generalization ability of FCC

networks is worse than RBF networks.

3) The TSK fuzzy architecture gets the smallest error for

fitting the sampling points, but it requires 20 membership

functions, and its generalization result is worse than both

FCC networks and RBF networks with much less number

of hidden units (Fig. 15).

Figs. 13–15, respectively show the generalization results of

FCC networks (best one in ten trials), RBF networks, and TSK

fuzzy systems, each of which has 20 activation/membership

functions.

One may conclude that RBF networks get the much more

stable generalization ability than traditional neural networks

and better generalization than TSK fuzzy systems.

5446 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Fig. 14. Approximation result of RBF network with 20 RBF units: ETrain =

2.241× 10
−10 and ETest = 3.271× 10

−3.

Fig. 15. Approximation result of TSK fuzzy system with ten member-
ship functions in each direction (20 totally): ETrain = 1.688× 10

−30 and
ETest = 1.761× 10

−1.

B. Input Noise Rejection

Character image recognition problem is applied to test the

input noise rejection ability of both RBF networks and tra-

ditional neural networks. As shown in Fig. 16, there are ten

character images from “K” to “T” in each of the eight columns.

Each character image consists of 8 × 7 = 56 pixels which are

normalized in Jet degree between −1 to 1 (−1 for blue and

1 for red). The first column (from left) is the original character

image data without noise and used as training patterns; while

the remaining 7 seven columns are noised and used as testing

patterns. The strength of noise is calculated by

NPi = P0 + i × δ (18)

where P0 is the original character image data in the 1st column

(from left); NPi is the image data with ith level noise and i is

the noise level from 1 to 7, related with the noised images from

the second column to the eighth column (left to right) in Fig. 16.

δ is the randomly generated noise between [−0.5, 0.5].

Fig. 16. Character images with different noise levels from 0 to 7 in left-to-
right order (one data set in 100 groups).

In this experiment, both traditional networks and RBF net-

works will be built based on the training patterns (first column),

and then tested by noised patterns (from second column to

eighth column). For each noise level, the testing will be re-

peated for 100 times with randomly regenerated noise.

Using traditional neural networks, the MLP network, 56-10,

is applied for training. Table II below shows the testing results

of the trained MLP network. One may notice that incorrect

recognition happens when images with second level noise are

tested.

The RBF network used for solving this problem consists

of ten RBF units with initial centers corresponding to the ten

images without noise (first column), respectively. After training

process, noised images are applied to test the trained RBF

network. The performance of trained RBF network is shown in

Table III below. One may notice that recognition error appears

when fourth level noised patterns are tested.

Fig. 17 shows the average success rates of two types of net-

work architectures in the character image recognition problem.

One may notice that RBF networks (red solid line) perform

more robust and have better input noise rejection ability than

traditional neural networks (blue dash line).

C. Online Training

For problems where training data change dynamically, online

training is necessary. Algorithm has the online training ability

if it is designed hierarchically. In the experiment, the online

updating of the designed RBF networks for new patterns is

illustrated by the forward kinematics problem [51].

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5447

TABLE II
SUCCESS RATES OF THE TRAINED MLP NETWORK FOR CHARACTER IMAGE RECOGNITION

TABLE III
SUCCESS RATES OF THE TRAINED RBF NETWORK FOR CHARACTER IMAGE RECOGNITION

Fig. 17. Average recognition success rates of the trained MLP network and
RBF network under different levels of noised inputs.

Fig. 18. Tow-link planar manipulator.

The forward kinematics problem is purposed to simulate

the movement of robot’s end effectors and locate the position

when joint angles changes. Fig. 18 shows the two-link planar

manipulator.

As shown in Fig. 18, for 2-D forward kinematics problem,

the coordinates of end effector are calculated by

x =L1 cos α + L2 cos(α + β) (19)

y =L1 sin α + L2 sin(α + β) (20)

where (x, y) is the coordinate of the end effector marked in the

Fig. 18. α and β are joint angles. L1 and L2 are the lengths

of arms. In this experiment, let us set L1 = L2 = 1 and all

training/testing data are generated by (20).

To emphasize the online learning ability of RBF networks,

the experiment is organized in two steps: (1) Generate 49

training patterns and 961 testing patterns, with parameters α

and β uniformly distributed in range [0, 3]; (2) Extend the

range of parameters α and β from [0, 3] to [0, 6], so that 120

new training patterns and 2760 testing patterns are generated

(uniformly distributed) and combined with the original training

patterns and testing patterns, respectively.

All the training and testing patterns are visualized in

Figs. 19 and 20 below. Only y-dimension is considered in the

experiment.

First, by applying the ErrCor algorithm, the training/testing

average sum square error trajectories of step 1 are obtained as

shown in Fig. 21.

From Fig. 21, it can be seen that, when the number of RBF

units increases to 3 (point C in Fig. 21), the RBF network can

reach the desired accuracy approximation, 0.01.

For the step (2) of the experiment, two training procedures

are performed. The one is the online training process, starting

from the trained network with 3 RBF units in step (1), marked

as point C in Fig. 21; the other is the offline training process,

starting from scratch. The error trajectories of both online and

offline training processes are presented in Fig. 22.

5448 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

Fig. 19. Forward kinematics, step (1). (a) Training data set, 49 points. (b) Testing data set, 961 points. Parameters α and β are uniformly distributed in
range [0, 3].

Fig. 20. Forward kinematics, step (2). (a) Training data set, 169 points. (b) Testing data set, 3721 points. Parameters α and β are uniformly distributed in
range [0, 6].

Fig. 21. Step (1): error trajectories as the increase of RBF units. The marked
point C is the convergent result of step (1) and the trained RBF network at this
point will be used as the initial condition of step (2) for online training.

As the experimental results shown in Fig. 22, it can be

noticed that, for step (2), the online training process works

quite well, and it reaches the desired accuracy (0.01) when the

fifth RBF unit is added (point A in Fig. 22). For the offline

Fig. 22. Step (2): blue circles and stars present the error trajectories of the
online training process, while red squares and marks show the error trajectories
of the offline training process.

training process, 8 RBF units are required for convergence

(point B in Fig. 22). Notice that, even though totally 8 RBF

units are required for both training procedures, the special

YU et al.: ADVANTAGES OF RADIAL BASIS FUNCTION NETWORKS FOR DYNAMIC SYSTEM DESIGN 5449

TABLE IV
COMPARISON OF NEURAL NETWORKS, RBF NETWORKS,

AND FUZZY INFERENCE SYSTEMS

online expertise makes the ErrCor algorithm quite suitable for

building dynamic systems [18]–[21].

VII. CONCLUSION

For nonlinear compensation in dynamic systems, networks

should have good generalization ability and strong tolerance

to input noise. Furthermore, according to the study on the

recent literatures, the online learning behavior is attracting more

and more attentions in designing time-variant adaptive control

systems. The paper is aimed to recommend RBF networks for

dynamic system design, by comparing with traditional neural

networks and fuzzy inference systems.

In this paper, the recently developed ErrCor algorithm was

introduced as a robust method to build very compact RBF

networks. Combining with the ISO computation, the design

procedure becomes more efficient.

Based on the comparison in Section III and experimental

results in Section VI, Table IV concludes the properties of

neural networks, fuzzy inference systems, and RBF networks.

With the advantages of easy design, stable and good gen-

eralization ability, good tolerance to input noise, and online

learning ability, RBF networks are strongly recommended as

an efficient and reliable way of designing dynamic systems.

The ErrCor algorithm is implemented in the training tool

which can be downloaded freely from the following website:

http://www.eng.auburn.edu/~wilambm/nnt/index.htm.

REFERENCES

[1] R. J. Wai, J. D. Lee, and K. L. Chuang, “Real-time PID control strategy
for Maglev transportation system via particle swarm optimization,” IEEE

Trans. Ind. Electron., vol. 58, no. 2, pp. 629–646, Feb. 2011.
[2] M. A. S. K. Khan and M. A. Rahman, “Implementation of a wavelet-

based MRPID controller for benchmark thermal system,” IEEE Trans.

Ind. Electron., vol. 57, no. 12, pp. 4160–4169, Dec. 2010.
[3] R. Muszynski and J. Deskur, “Damping of torsional vibrations in high-

dynamic industrial drives,” IEEE Trans. Ind. Electron., vol. 57, no. 2,
pp. 544–552, Feb. 2010.

[4] K. Kiyong, P. Rao, and J. A. Burnworth, “Self-tuning of the PID controller
for a digital excitation control system,” IEEE Trans. Ind. Appl., vol. 46,
no. 4, pp. 1518–1524, Jul./Aug. 2010.

[5] A. Cuenca, J. Salt, A. Sala, and R. Piza, “A delay-dependent dual-rate PID
controller over an ethernet network,” IEEE Trans. Ind. Informat., vol. 7,
no. 1, pp. 18–29, Feb. 2011.

[6] Y. Z. Li and K. M. Lee, “Thermohydraulic dynamics and fuzzy coordi-
nation control of a microchannel cooling network for space electronics,”
IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 700–708, Feb. 2011.

[7] M. Suetake, I. N. Silva, and A. Goedtel, “Embedded DSP-based compact
fuzzy system and its application for induction-motor V/f speed control,”
IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 750–760, Mar. 2011.

[8] R. H. Abiyev and O. Kaynak, “Type 2 fuzzy neural structure for identi-
fication and control of time-varying plants,” IEEE Trans. Ind. Electron.,
vol. 57, no. 12, pp. 4147–4159, Dec. 2010.

[9] B. M. Wilamowski, “Human factor and computational intelligence limi-
tations in resilient control systems,” in Proc. 3rd ISRCS, Idaho Falls, ID,
Aug. 10–12, 2011, pp. 5–11.

[10] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with
enhanced performance using ANN-based predictive and adaptive con-
trollers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421–428,
Feb. 2011.

[11] N. Cotton and B. M. Wilamowski, “Compensation of nonlinearities using
neural networks implemented on inexpensive microcontrollers,” IEEE

Trans. Ind. Electron., vol. 58, no. 3, pp. 733–740, Mar. 2011.
[12] B. M. Wilamowski, “Neural network architectures and learning

algorithms: How not to be frustrated with neural networks,” IEEE Ind.

Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.
[13] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned

processing units,” Neural Comput., vol. 1, no. 2, pp. 281–294, Jun. 1989.
[14] J. Park and I. W. Sandberg, “Universal approximation using radial-

basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
Jun. 1991.

[15] J. Lin and R. J. Lian, “Intelligent control of active suspension systems,”
IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 618–628, Feb. 2011.

[16] C. C. Tsai, H. C. Huang, and S. C. Lin, “Adaptive neural network control
of a self-balancing two-wheeled scooter,” IEEE Trans. Ind. Electron.,
vol. 57, no. 4, pp. 1420–1428, Apr. 2010.

[17] M. Pucci and M. Cirrincione, “Neural MPPT control of wind generators
with induction machines without speed sensors,” IEEE Trans. Ind. Elec-

tron., vol. 58, no. 1, pp. 37–47, Jan. 2011.
[18] Q. N. Le and J. W. Jeon, “Neural-network-based low-speed-damping

controller for stepper motor with an FPGA,” IEEE Trans. Ind. Electron.,
vol. 57, no. 9, pp. 3167–3180, Sep. 2010.

[19] C. Xia, C. Guo, and T. Shi, “A neural-network-identifier and fuzzy-
controller-based algorithm for dynamic decoupling control of permanent-
magnet spherical motor,” IEEE Trans. Ind. Electron., vol. 57, no. 8,
pp. 2868–2878, Aug. 2010.

[20] L. Cai, A. B. Rad, and W. L. Chan, “An intelligent longitudinal controller
for application in semiautonomous vehicles,” IEEE Trans. Ind. Electron.,
vol. 57, no. 4, pp. 1487–1497, Apr. 2010.

[21] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, “Adaptive sliding-
mode neuro-fuzzy control of the two-mass induction motor drive without
mechanical sensors,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 553–
564, Feb. 2010.

[22] B. M. Wilamowski and R. C. Jaeger, “Implementation of RBF type
networks by MLP networks,” in Proc. IEEE Int. Conf. Neural Netw.,
Washington, DC, Jun. 3–6, 1996, pp. 1670–1675.

[23] T. T. Xie, H. Yu, and B. M. Wilamowski, “Replacing fuzzy systems with
neural networks,” in Proc. IEEE HSI Conf., Rzeszow, Poland, May 13–15,
2010, pp. 189–193.

[24] J. S. Roger and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systems,” IEEE Trans. Neural

Netw., vol. 4, no. 1, pp. 156–159, Jan. 1993.
[25] Y. Jin and B. Sendhoff, “Extracting interpretable fuzzy rules from RBF

networks,” Neural Process. Lett., vol. 17, no. 2, pp. 149–164, Apr. 2003.
[26] W. Li and Y. Hori, “An algorithm for extracting fuzzy rules based on RBF

neural network,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1269–
1276, Jun. 2006.

[27] J. Moody and C. J. Darken, “Learning with localized receptive fields,” in
Proc. Connectionist Models Summer School, D. Touretzky, G. Hinton, and
T. Sejnowski, Eds., 1988, pp. 133–142.

[28] S. Wu and T. W. S. Chow, “Induction machine fault detection using
SOM-based RBF neural networks,” IEEE Trans. Ind. Electron., vol. 51,
no. 1, pp. 183–194, Feb. 2004.

[29] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learn-
ing algorithm for radial basis function networks,” IEEE Trans. Neural

Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.
[30] Y. S. Hwang and S. Y. Bang, “An efficient method to construct a radial

basis function neural network classifier,” Neural Netw., vol. 10, no. 8,
pp. 1495–1503, Nov. 1997.

[31] M. J. L. Orr, “Regularization in the selection of radial basis function
centers,” Neural Comput., vol. 7, no. 3, pp. 606–623, May 1995.

5450 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 12, DECEMBER 2011

[32] B. M. Wilamowski, “Modified EBP algorithm with instant training
of the hidden layer,” in Proc. IEEE IECON, New Orleans, LA, Nov. 9–14,
1997, pp. 1097–1101.

[33] Z. Hong, “Algebraic feature extraction of image for recognition,” Pattern

Recognit., vol. 24, no. 3, pp. 211–219, 1991.
[34] E. S. Chng, S. Chen, and B. Mulgrew, “Gradient radial basis function

networks for nonlinear and nonstationary time series prediction,” IEEE

Trans. Neural Netw., vol. 7, no. 1, pp. 190–194, Jan. 1996.
[35] N. B. Karayiannis, “Reformulated radial basis neural networks trained by

gradient descent,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 657–671,
May 1999.

[36] D. Simon, “Training radial basis neural networks with the extended
Kalman filter,” Neurocomputing, vol. 48, no. 1–4, pp. 455–475, Oct. 2002.

[37] B. A. Whitehead and T. D. Choate, “Cooperative-competitive genetic
evolution of radial basis function centers and widths for time series pre-
diction,” IEEE Trans. Neural Netw., vol. 7, no. 4, pp. 869–880, Jul. 1996.

[38] B. M. Wilamowski and H. Yu, “Neural network learning without back-
propgation,” IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793–1803,
Nov. 2010.

[39] C. Blake and C. Merz, UCI Repository of Machine Learning Databases,
Dept. Inform. Comput. Sci., Univ. California, Irvine, 1998.

[40] G. B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient se-
quential learning algorithm for growing and pruning RBF (GAP-RBF)
networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 6,
pp. 2284–2292, Dec. 2004.

[41] N. Sundararajan, P. Saratchandran, and Y. W. Li, Radial Basis Function

Neural Networks With Sequential Learning: MRAN and Its Applications.
Singapore: World Scientific, 1999.

[42] V. Kadirkamanathan and M. Niranjan, “A function estimation approach to
sequential learning with neural networks,” Neural Comput., vol. 5, no. 6,
pp. 954–975, Nov. 1993.

[43] J. Platt, “A resource-allocating network for function interpolation,” Neural

Comput., vol. 3, no. 2, pp. 213–225, Jun. 1991.
[44] N. Chaiyaratana and A. M. S. Zalzala, “Evolving hybrid RBF-MLP

networks using combined genetic/unsupervised/supervised learning,” in
Proc. UKACC Int. Conf. Control, Swansea, U.K., Sep. 1–4, 1998, vol. 1,
pp. 330–335.

[45] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial ba-
sis function neural networks,” IEEE Trans. Neural Netw., vol. 8, no. 5,
pp. 1177–1183, Sep. 1997.

[46] R. Neruda and P. Kudová, “Learning methods for radial basis function
networks,” Future Gener. Comput. Syst., vol. 21, no. 7, pp. 1131–1142,
Jul. 2005.

[47] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930–
937, Jun. 2010.

[48] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989–
993, Nov. 1994.

[49] H. Yu and B. M. Wilamowski, “Efficient and reliable training of neural
networks,” in Proc. IEEE HSI Conf., Catania, Italy, May 21–23, 2009,
pp. 109–115.

[50] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Comput-
ing gradient vector and Jacobian matrix in arbitrarily connected neural
networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[51] A. Malinowski and H. Yu, “Comparison of embedded system design for
industrial applications,” IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 244–
254, May 2011.

Hao Yu (S’10) received the M.S. degree in electrical
engineering from Huazhong University of Science
and Technology, Wuhan, China, in 2006. He is cur-
rently working toward the Ph.D. degree in electrical
engineering at Auburn University, Auburn, AL.

He is a Research Assistant in the Department
of Electrical and Computer Engineering, Auburn
University. His current research interests include
computational intelligence, neural networks, and
computer-aided design.

Mr. Yu serves as a Reviewer for the IEEE TRANS-
ACTIONS ON INDUSTRIAL ELECTRONICS and IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS.

Tiantian Xie received the Ph.D. degree in microelec-
tronics and solid-state electronics from Huazhong
University of Science and Technology, Wuhan,
China, in 2009. She is currently working toward
the Ph.D. degree in electrical engineering at Auburn
University, Auburn, AL.

She is a Research Assistant in the Department of
Electrical and Computer Engineering, Auburn Uni-
versity. Her research interests include computational
intelligence and piezoelectrical and pyroelectrical
materials.

Stanisław Paszczyñski (SM’05) received the M.S.,
Ph.D., and D.Sc. degrees in electronics from Warsaw
University of Technology, Warsaw, Poland, in 1972,
1979, and 1991, respectively.

In 1985, he joined the Microelectronics Institute,
Catholic University of Leuven, Leuven, Belgium.
From 1989 to 1991, he was a Visiting Assistant
Professor in the Science Department, University of
Texas, San Antonio. From 1992 to 1999, he was
a Professor in the Electrical Engineering Depart-
ment, Rzeszów University of Technology, Rzeszów,

Poland. He is currently an Associate Professor in the Department of Distributed
Systems, University of Information Technology and Management, Rzeszów,
where he works on network traffic analysis and modeling, as well as on agent
technology use in network throughput increase.

Bogdan M. Wilamowski (SM’83–F’00) received
the M.S. degree in computer engineering in 1966,
the Ph.D. degree in neural computing in 1970,
and the Dr. habil. degree in integrated circuit design
in 1977.

He was with Gdansk University of Technol-
ogy, Gdansk, Poland; University of Information
Technology and Management, Rzeszow, Poland;
Auburn University, Auburn, AL; University of
Arizona, Tucson; University of Wyoming, Laramie;
and the University of Idaho, Moscow. He is currently

the Director of the Alabama Micro/Nano Science and Technology Center,
Auburn University.

Dr. Wilamowski was the Vice President of the IEEE Computational Intelli-
gence Society (2000–2004) and the President of the IEEE Industrial Electronics
Society (2004–2005). He served as an Associate Editor for numerous journals.
He was the Editor-in-Chief of the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS from 2007 to 2010, and he currently serves as the Editor-in-
Chief of IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.

