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ABSTRACT

Background A challenge for single-cell genomic studies in kidney and other solid

tissues is generating a high-quality single-cell suspension that contains rare or dif-

ficult-to-dissociate cell types and is free of both RNA degradation and artifactual

transcriptional stress responses.

Methods We compared single-cell RNA sequencing (scRNA-seq) using the DropSeq

platformwith single-nucleusRNAsequencing (snRNA-seq) using sNuc-DropSeq,DroNc-

seq, and 10X Chromium platforms on adult mouse kidney. We validated snRNA-seq on

fibrotic kidney from mice 14 days after unilateral ureteral obstruction (UUO) surgery.

Results A total of 11,391 transcriptomes were generated in the comparison phase.

We identified ten clusters in the scRNA-seq dataset, but glomerular cell types were

absent, and one cluster consisted primarily of artifactual dissociation–induced stress

response genes. By contrast, snRNA-seq from all three platforms captured a diver-

sity of kidney cell types that were not represented in the scRNA-seq dataset, in-

cluding glomerular podocytes, mesangial cells, and endothelial cells. No stress

response genes were detected. Our snRNA-seq protocol yielded 20-fold more

podocytes compared with published scRNA-seq datasets (2.4% versus 0.12%, re-

spectively). Unexpectedly, single-cell and single-nucleus platforms had equivalent

gene detection sensitivity. For validation, analysis of frozen day 14 UUO kidney

revealed rare juxtaglomerular cells, novel activated proximal tubule and fibroblast

cell states, and previously unidentified tubulointerstitial signaling pathways.

Conclusions snRNA-seq achieves comparable gene detection to scRNA-seq in adult

kidney, and it also has substantial advantages, including reduced dissociation bias,

compatibility with frozen samples, elimination of dissociation-induced transcrip-

tional stress responses, and successful performance on inflamed fibrotic kidney.
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Great progress has been made recently

in characterizing the kidney in develop-

ment, homeostasis, and cancer using

single-cell RNA sequencing (scRNA-

seq).1–5 The high throughput and sen-

sitivity of scRNA-seq make it well

suited to comprehensively map cell-

state changes during disease, but three

limitations prevent wider adoption of

this transformative technology for the

analysis of kidney disease. First, current

protocols do not accurately capture all

kidney cell types, because dissociation

itself may damage sensitive cells while

at the same time, failing to release oth-

ers that are surrounded by collagenous

matrix.1 Although sampling a much

larger number of cells can partially

overcome this limitation, it may not

be feasible financially. Second, current

enzymatic and mechanical methods for

single-cell dissociation introduce

stress-induced transcriptional artifacts.

Although cold-active proteases have

mitigated this concern in easy to disso-

ciate embryonic kidney,6 this has not

been shown to work in adult or diseased

kidney. Moreover, cold-active proteases

still bias toward the selection of easily

dissociated cell types. Finally, current

approaches are incompatible with fro-

zen archival material, which compli-

cates analysis when tissue availability

is unpredictable or the diagnosis re-

quires time—such as renal biopsies.7

METHODS

Single-Cell Dissociation and

Methanol Fixation

Kidney from a C57BL/6 mouse was

minced into 1-mm pieces with a razor

blade and incubated at 37°C in enzyme
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dissociation buffer containing 250 U/ml

Liberase (Roche) and 40 U/ml DNase I.

After 10 minutes, the solution was trans-

ferred to a Miltenyi C-tube, and the

gentleMACS D1 program was run

(Miltenyi). Cells were further digested

for an additional 10 minutes with tritu-

ration, and the reaction was stopped by

adding 10% FBS. The dissociated cells

were pelleted by centrifugation (5003g

for 5 minutes), washed twice, passed

through a 35-mm strainer (Falcon),

and pelleted again by centrifugation

(5003g for 5 minutes). Cells were resus-

pended in PBS plus 1% BSA and purified

by FACS with optimal gates set for side

scatter and forward scatter. Two million

cells per kidney were collected for cell

fixation. The methanol fixation protocol

was adapted from Alles et al.8 In brief,

cells were resuspended in 200ml ice-cold

PBS; 100% MeOH (800 ml) was prechil-

led to 220°C and added to the cell

suspension dropwise. The MeOH-cell

mixture was kept on ice for 15 minutes

and then transferred to a280°C freezer.

After 7 days of storage, cells were moved

from 280°C to ice and pelleted by cen-

trifugation (20003g for 5 minutes) at

cold room. Cells were washed twice in

PBS plus 0.01% BSA, filtered through

40-mm cell strainer (pluriSelect), coun-

ted, diluted, and processed for DropSeq.

Single-Nuclei Isolation

Nuclei were isolatedwithNuclei EZ Lysis

buffer (NUC-101; Sigma-Aldrich) sup-

plemented with protease inhibitor

(5892791001; Roche) and RNase inhibitor

(N2615; Promega and AM2696; Life Tech-

nologies). Samples were cut into ,2-mm

pieces and homogenized using a Dounce

homogenizer (885302–0002; Kimble

Chase) in 2 ml of ice-cold Nuclei EZ Lysis

buffer, and they were incubated on ice for

5 minutes with an additional 2 ml of lysis

buffer. The homogenate was filtered

through a 40-mm cell strainer (43–

50040–51; pluriSelect) and then centri-

fuged at 5003g for 5 minutes at 4°C. The

pellet was resuspended and washed with

4 ml of the buffer, and then, it was incu-

bated on ice for 5 minutes. After another

centrifugation, the pellet was resuspended

in Nuclei Suspension Buffer (13 PBS,

0.07% BSA, and 0.1% RNase inhibitor),

filtered through a 20-mm cell strainer

(43–50020–50; pluriSelect), and counted.

Single-Cell DropSeq,

sNuc-DropSeq, DroNc-seq,

and sNuc-103
We used soft lithography techniques9 to

fabricate DropSeq and DroNc-seq sili-

con masters (The Institute of Materials

Science and Engineering of Washington

University in St. Louis) and cast micro-

fluidic devices with polydimethylsilox-

ane.10,11 The devices were tested using

regular DropSeq beads and DroNc-seq

beads (ChemGenes) before use. To run

DropSeq on MeOH fixed cells, we fol-

lowed the protocol developed by the

McCarroll laboratory (http://mccarroll-

lab.com/dropseq/). For sNuc-DropSeq

and DroNc-seq, we made the following

modifications from the original proto-

col. First, Ficoll PM-400 was added to

the nuclei suspension buffer rather

than the lysis buffer. Second, nuclei

were loaded at a concentration of 200

nuclei per microliter for sNuc-DropSeq

and 300 nuclei permicroliter for DroNc-

seq. Third, the flow rates were adjusted

for each inlet channel. For sNuc-DropSeq,

we used 15,000 ml/h for oil and 3000 ml/h

for beads and nuclei. For DroNc-seq, we

used 13,000 ml/h for oil and 2000 ml/h for

beads and nuclei. Fourth, the emulsionwas

kept on ice for 30 minutes to allow release

of nuclear RNA before the droplets were

broken. After these changes, the nucleus

doublet rate was maintained below 6%

according to a test run from species mix-

ing experiment. For single-nucleus 103

Chromium (sn103), we followed the

single-cell protocol provided by theman-

ufacturer (103 Genomics) to generate

high-quality cDNA libraries.

Unilateral Ureteral Obstruction

Surgery
All mouse experiments were performed

according to the animal experimental

guidelines issued by the Animal Care

and Use Committee at Washington Uni-

versity. Unilateral ureteral obstruction

(UUO) surgeries were performed on

8-week-old C57Bl6 mice as described.12

Briefly, anesthesia was achieved with

continuous evaporated isoflurane (2%)

using Anesthesia System RC2 (922100;

VetEqip) during surgery. Buprenorphine

(0.05 mg/kg), meloxicam (1 mg/kg), and

lidocaine (1%)were given subcutaneously

to achieve analgesia. After flank incision,

the right kidney was exposed and freed

from the perirenal fat tissue, and the ure-

ter was tied off at the level of the lower

pole using two 4.0 silk ties. Wounds were

closed by staples. Mice were euthanized

14 days after UUO surgery.

Bioinformatic Analyses

Bioinformatic analyses are in Supple-

mental Material.

Data Availability

All relevant data have been deposited in

Gene Expression Omnibus under acces-

sion number GSE119531 and the RBK

consortium database fully accessible at

https://doi.org/10.25548/14-4KG6. A

searchable database, including gene

expression projected onto the t-distributed

stochastic neighbor embedding (tSNE)

diagrams, is also available at http://

humphreyslab.com/SingleCell/.

RESULTS AND DISCUSSION

We isolated single cells from 8-week-old

mouse kidney, purified by FACS to elim-

inate cell debris, fixed in methanol,

stored at 280°C for 1 week, and then,

Significance Statement

Massively parallel single-cell RNA sequenc-
ing technologies provide powerful new
possibilities to understand cell complexity,
but which platform is best suited to study
adult kidney in health and disease is un-
defined. The authors report that single-
nucleusRNAsequencingoffers comparable
gene expression quantitation (despite re-
duced mRNA in the nucleus compared with
the whole cell) as well as substantial
advantages over single-cell RNA sequenc-
ing. These include representation of rare or
fragile kidney cell types, the ability to use
archival frozen samples, elimination of dis-
sociation-induced transcriptional stress re-
sponses, and successful performance on
inflamed fibrotic kidney. This work will guide
future efforts to build a comprehensive sin-
gle-cell atlasofhealthyanddiseasedkidneys.
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Figure 1. Single nucleus RNA sequencing performs equivalent to or better than single cell RNA sequencing as long as intronic reads are
mapped. (A) Reads mapped to exonic, intronic, and intergenic regions according to the platform. (B) Average number of reads per cell
(nRead), average number of unique genes per cell (nGene), and average percentage of mitochondrial reads per cell across platforms and
according to usingexonic readsonlyor exonic and intronic reads. (C) Percentageof nonzero readsper cell across all techniqueson thebasis
of exonic reads alone or exonic and intronic reads. (D) Mapped reads to a gene plot30 using different platforms. Single-cell DropSeq
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performed DropSeq. Additionally, we

modified a nuclear isolation protocol11

for kidney, prepared nuclear suspen-

sions (Supplemental Figure 1) from

snap-frozen kidney that had been stored

for 1 week at 280°C, and performed

single-nucleus RNA sequencing (snRNA-

seq). A total of 11,391 transcriptomes were

generated. Figure 1A shows that, for

single-cell DropSeq (scDropSeq), a ma-

jority of mapped reads were exonic,

whereas for single-nucleus DropSeq

(snDropSeq), DroNc-seq, and sn103, a

majority of reads where intronic. The av-

erage number of mapped reads was simi-

lar across platforms but only if both exon

and intron reads were included (Figure

1B). Surprisingly, the average number of

genes detected per cell was also compara-

ble across all four platforms as long as

we used both mapped exon and intron

reads, although nuclei contain substan-

tially less mRNA than whole cells (Figure

1B). Because mitochondria are cytosolic,

we only detected mitochondrial tran-

scripts using scDropSeq, where they

made up 24%of all scDropSeq genes (Fig-

ure 1B). After subtracting mitochondrial

genes, all three single-nucleus techniques

actually achieved superior per cell gene

detection than scDropSeq. The impor-

tance of mapping both exonic and in-

tronic reads for improved quality of the

snRNA-seq datasets is illustrated by the

improvement in the percentage of non-

zero reads across all three platforms (Fig-

ure 1C). At lower mapped read depths,

both scDropSeq and DroNc-seq detected

10%–25% more unique genes per cell

than snDropSeq or sn103 ; however,

the difference narrowed at higher read

depths (Figure 1D).

We compared unsupervised clustering

results using a matched set of epithelial

cell and nucleus transcriptomes.

Using the tubular epithelial cells common

toour scDropSeqandDroNc-seqdatasets,

we selected the 1469 best-matching cell-

nucleus pairs by calculating dropout

weighted Pearson correlations as de-

scribed.13 Using exonic reads alone,

we could identify only four clusters

from the DroNc-seq dataset, whereas

the scDropSeq dataset yielded seven

clusters (Figure 1, E and F). The inclu-

sion of introns improved DroNc-seq

clusters to six cell types but did not change

the number of clusters for scDropSeq

(Figure 1, G and H). Although scDropSeq

yielded onemore cluster than DroNc-seq,

this was an artifact cluster expressing

stress response genes induced during dis-

sociation. Including intronic reads im-

proved cluster cohesion (the average

within cluster coclustering) and separa-

tion (the average coclustering difference

with the nearest cluster) for DroNc-seq

but not scDropSeq (Figure 1, I and J).13

Ambient mRNA released during tis-

sue dissociation can contaminate

scRNA-seq data. For example, highly ex-

pressed genes (for example, Slc34a1)

from the highly abundant proximal tu-

bule can be detected in all cell clusters in a

recent dataset2 (Supplemental Figure

2A). We found similar tubular contami-

nation across platforms in our data, al-

though the degree of contamination was

somewhat reduced in snRNA-seq com-

pared with scRNA-seq (Supplemental

Figure 2, B–E).

Weused integrated analysis to identify

conserved cell types generated using dif-

ferent platforms (scRNA-seq and

snRNA-seq techniques) after batch cor-

rection with aligned canonical correla-

tion analysis.14 We identified 13 clusters
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Figure 1. Continued.

(scDropSeq) andDroNc-seq showanadvantage in the low- (10,000mapped readsper cell) tomiddle-range (20,000mapped readsper cell)
sequencing depths. (E) The t-distributed stochastic neighbor embedding (tSNE) plot of 1469 epithelial cells from the DroNc-seq dataset
on the basis of mapped exonic reads alone. (F) tSNE of 1469 matched epithelial cells from the scDropSeq dataset (also on the basis of
exonic reads alone). (G) Improved clustering from 1469 epithelial cells from the DroNc-seq dataset using exonic plus intronic reads. (H)
Few changes in clustering of 1469 matched epithelial cells from the scDropSeq dataset using exonic plus intronic reads. Cluster cohesion
(average within-cluster coclustering) and separation (difference between within-cluster coclustering and maximum between-cluster co-
clustering)13 plotted for (I) nuclei and (J) cells. Gene expression quantification, including introns, increases cohesion and separation of
nuclei but not cell clusters. CD-PC, collecting duct-principal cell; DCT, distal convoluted tubule; LH, loop of Henle; PT, proximal tubule.
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in the combined dataset, including po-

docytes, endothelial cells and mesan-

gium, nine tubule clusters, and one

macrophage cluster (Figure 2, A and B,

Supplemental Material). Comparison of

this dataset with three other recent kid-

ney RNA sequencing datasets confirmed

our cluster annotations (Supplemental

Figure 3).2,3,15 Projecting the source of

each cell onto the tSNE revealed the

relative contribution of each plat-

form to each cluster (Figure 2C). All

three nuclear approaches had much

better sensitivity to detect podocytes,

endothelial cells, and intercalated cells

(Figure 2D). In fact, when the scDropSeq

data were clustered separately, there were

no independent podocyte or endothelial

cell clusters at all, whereas all three single-

nucleus platforms identified these cell

types (Supplemental Figure 4). We com-

bined podocyte frequencies obtained

from our scDropSeq as well as those

from Park et al.2 and compared them

with the frequencies observed in our

snRNA-seq datasets. This revealed 20-fold

more podocytes from snRNA-seq com-

pared with scRNA-seq (2.4% versus

0.12%; P=0.02) (Figure 2E).

We quantitated differential gene de-

tection in cells versus nuclei and asked

how this might influence interpretation

of results.16 Following a recently de-

scribed analytic approach,13 we found

that a majority of expressed genes

(9588; 71.4%) showed similar detection

(,20% difference) in nuclei and cells,

whereas only 452 genes (3.4%) were de-

tected in at least 25% more cells than
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nuclei, and 266 genes (2.0%) were de-

tected in at least 25% more nuclei than

cells (Figure 3A). Similarly, only 5.0%

(676 genes) of detected genes were ex-

pressed more highly in cells than in nu-

clei (fold change .1.5; adjusted P value

,0.05), and 863 genes (6.4%) were ex-

pressed more highly in nuclei than in

cells (Figure 3B). Examples of genes en-

riched in the scDropSeq dataset included

mitochondrial and ribosomal genes as

well as genes in the heat shock pathway

(Figure 3C). Surprisingly, nucleus-

enriched genes included many genes

that drive cell identity, such as solute car-

riers and transcription factors, consistent

with a recent report from the brain.13 We

could also detect long noncoding RNAs

preferentially in nucleus compared with

whole cell (Figure 3D).16

We next asked whether these differ-

ences might alter cell classification

using a recently published mouse glo-

merular single-cell atlas generated using

DropSeq.3 We extracted podocytes, en-

dothelial cells, and mesangial cells (650

cells total) from our snDropSeq and

DroNc-seq datasets and used a random

forest model to choose the 650 best-

matching cells from the glomerular cell

atlas.17 The combined datasets clustered

into three distinct cell types (Figure 3E,

Supplemental Figures 5) with equivalent

contributions to each from the cell

and nucleus datasets (Figure 3F). Using

MetaNeighbor, we validated that each

glomerular cell type identified by

scDropSeq had a very high area under

the receiver operator characteristic curve

score for the corresponding cell type

identified by snDropSeq and very low

area under the receiver operator charac-

teristic curve scores for the other two cell

types (Figure 3G).18 This indicates that

our snRNA-seq dataset replicates cell

classification with a high degree of con-

fidence, despite differences in abundance

of some genes in nuclei versus whole cell.
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Stress response genes are induced

during proteolytic tissue dissociation at

37°C.6 In our scDropSeq dataset, an en-

tirely new cluster was formed on the

basis of stress response genes (Figure 3,

H and I). Nuclear dissociation is carried

out on ice, preventing new gene tran-

scription. We could detect abundant

stress response gene expression in all

cells from the mouse glomerular atlas,

which was absent from data generated

by snDropSeq (Figure 3J, Supplemental

Figure 7). Comparison of differential

gene expression among glomerular cell

types showed that mitochondrial genes,

heat shock genes, and genes associated

with apoptosis were detected in scDrop-

Seq data but absent from snDropSeq

data (Figure 3K).

We validated our snRNA-seq protocol

on fibrotic and inflamed UUO day 14

kidney; 6147 single-nucleus transcrip-

tomes were generated on the sn103

platform, with an average of 763 unique

genes and 1206 unique molecular iden-

tifiers per nucleus. Unsupervised analy-

sis identified 17 unique cell clusters by

tSNE (Figure 4A, Supplemental Mate-

rial). These included two novel proximal

tubule populations, one of which was

characterized by a strong proliferative

gene signature (Figure 4B); therefore,

we annotated this cluster as proliferating

proximal tubule cells. It also expressed

injury markers, including Havcr1 and

Vcam1 (Figure 4C). The other novel

proximal tubule cluster was not cycling

but expressed a strong cell movement

transcriptional signature. We annotated

this as a dedifferentiated proximal tubule

cluster. Intriguingly, this cluster ex-

pressed some injury markers (Vcam1)

but not others (Havcr1), and also, it ex-

pressed many secreted proinflammatory

cytokines, including the macrophage

chemoattractant Ccl2,19 the macro-

phage proliferative cytokine Il34,20 and

the neutrophil chemoattractants Cxcl1

and Cxcl2.21 Differential gene expres-

sion between these two novel proximal

tubule cell states showed that the prolif-

erating cluster was dominated by cell

cycle gene ontology terms, whereas the

dedifferentiated cluster was character-

ized primarily by regulation of cell

movement (Supplemental Figure 7). As

an example, the rhoGEF Dock10 was en-

riched in the dedifferentiated cluster

(Figure 4D), and this gene regulates cell

morphogenesis via the Cdc42 pathway.22

We could detect rare juxtaglomerular

apparatus cells on the basis of expression

of Ren1 as well as the endothelin A

receptor (Figure 4E). Intriguingly, juxta-

glomerular apparatus cells also ex-

pressed Hopx, a marker of adult stem

cells in the intestine, brain, and hair fol-

licle.23–25 Renin lineage cells have been

proposed to serve as podocyte progen-

tors.26We also identified two distinct ac-

tivated fibroblast populations. One of

these expressed mannose receptor 2,

which binds and internalizes collagen

and attenuates renal fibrosis (Figure

4E).27 The other activated fibroblast

cell type expressed tenascin C, which

has been recently identified as an extra-

cellular matrix glycoprotein that pro-

motes renal fibrosis.28 Both of these

cell types expressed a-smooth muscle

actin, suggesting that they are distinct

subsets of renal myofibroblasts.29

Finally, we analyzed receptor-ligand

pairs in a cell-specific manner to illus-

trate how snRNA-seq can reveal unex-

pected intercellular communication

pathways. We uncovered known (Bmp6,

Pdgfd, and Spp1) and novel (Sema3c,

Sema6a,Gpc, andSlit3) signaling relation-

ships (Figure 4F). Figure 4G summarizes

these fibrotic kidney tubulointerstitial

crosstalk pathways.

In summary, snRNA-seq provides re-

duced dissociation bias and equivalent

gene detection compared with scRNA-

seq. This is important, because single-cell

transcriptomics is costly—minimizing cell

number while maximizing cell representa-

tion will reduce expenses. We show that,

although snRNA-seq enriches for a smaller

proportion (,7%) of different genes than

scRNA-seq, many of these are either mito-

chondrial or artifactual stress response

genes, and cell identification is not im-

paired. Finally, we have used our snRNA-

seqprotocol on an inflamedfibrotic kidney

to illustrate novel cell states and a rare cell

type, and with our intercellular communi-

cation map, we take an initial step in

addressing a major challenge for kidney

single-cell technologies: to synthesize these

rich datasets with spatial information.
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Figure 4. snRNA-seq of day 14 unilateral ureteral obstruction (UUO) kidney identifies rare cell types and and intercellular communication
networks. (A, inset) Periodic acid–Schiff stain of UUO kidney showing dilated and cast-filled tubules and expanded and fibrotic interstitium. (A)
The t-distributed stochastic neighbor embedding (tSNE) shows17 separate cell clusters. (B) Projectionof cell cycle state onto the tSNE, revealing
limited proliferation primarily in the proliferating proximal tubule cluster. (C) Violin plot showing cluster-specific gene expression. (D) Dock10
expression through the proximal tubule but enriched within the dedifferentiating proximal tubule cluster. (E) Three stromal clusters could be
identified, including juxtaglomerular apparatus cells expressing Endra and the stem cell marker Hopx. Immunohistochemistry images are from
the Human Protein Atlas (https://www.proteinatlas.org/). (F) Cell-specific ligand-receptor analysis reveals intercellular signaling pathways. (G)
Known and new intercellular signaling within the tubulintersitial compartment as revealed by this snRNA-seq analysis. Act., activating; CD-PC,
collectingduct-principal cell; CNT, connecting tubule;DCT,distal convoluted tubule;Dediff., dedifferentiated;DL+ tAL, descending limb+ thin
ascending limb; EC, endothelial cell; Fib., fibroblast; IC, intercalated cell; JGA, juxtaglomerular apparatus; MF, macrophage; PC, principal cell;
Pod, podocyte; Prolif, proliferating; PT, proximal tubule; TAL, thick ascending limb; UMI, unique molecular identifier.
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