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Abstract

Forming a contract among self-interested agents
often requires complex, strategic thinking. For
instance, a self-interested agent (contractee) will
perform a task for another agent (contractor) only
when doing it is in its own interest. Therefore, to
form a successful contract, the contractor needs to
provide incentives to the contractee, such as
proposing a payment higher than the contractee’s
cost of doing the task. . '

In this paper, we focus on the contractor’s
strategic decision problem of what payment to
offer to maximize its expected utility, and propose
a method for a self-interested contractor to
determine the best payment to offer. We present a
four-step decision-making mechanism using a
stochastic Markov-process (MP) model, which
captures various factors that influence the utility
value and uncertainties associated with them. The
MP-based mechanism enables a contractor to
choose different optimal payments depending on
the payment(s) of the other contractor(s) or the
contractees’ costs of doing the task, and therefore
to receive a better profit. Our experiments
demonstrate that strategic thinking—thinking
abaut not only oneself but also the contractees and
the other competing contractors—is indeed
advantageous.

1 Introduction

In multiagent systems, contracting enables agents to
accomplish tasks they individually cannot do (Davis &
Smith 1983; Sandholm & Lesser 1995a). Forming
contracts among ‘self-interested’ agents, however,
often requires more complex, strategic thinking than
contracting among cooperative agents. For instance, a
self-interested agent (contractee) will perform a task
for another agent (contractor) only when doing it is in
its own interest, and therefore, the contractor needs to
provide incentives to the contractee, such as proposing

a payment higher than the contractee’s cost of doing
the task.

As an example, consider a multiagent system
consisting of self-interested agents who provide value-
added information services (Atkins, et al. 1995).
Assume there exists an agent (called a Task Planning
Agent) who provides a list of possible sites in the
Michigan area to observe a comet for a certain time
period. The TPA will necd information about
observatories, their equipment, weather forecast, and
50 on, and it may want to monitor any changes in the
weather forecast to provide a more accurate listing.
Since monitoring is a specialty of another type of
agent (called a Notification Agent), the TPA will buy
the monitoring service from a NA.

Since the TPA is a self-interested agent who wants
to maximize its utility (profit, in this example), it will
try to charge more for its site listing, while paying as
little as possible for the monitoring service from a NA.
The problem is the TPA cannot do that without some
strategic thinking about other competitors. If the TPA
does not consider the other TPAs who provide the
same listing service and need the same monitoring
service, its profit will likely decrease, since no user
will pay more money for the same list and no NA will
do its monitoring service for less money. Moreover,
the NA who is contracted to provide the monitoring
service may retract from its contract later (while
paying a retraction penalty) as more profitable
contracts are announced by other TPAs. Therefore, the
TPA needs to think about other self-interested agents
(both NAs and other TPAs) and about the whole
contracting process. -

As shown in the above example, the multiagent
contracting situations we are interested in have the
following properties: contractors and contractees are
self-interested; multiple contracts take place
concurrently; and retraction from a contracted task
may happen. Agents need to make strategic decisions
in such contracting situations. A contractor needs to
decide what payment to offer and to whom to make
the offer, and a potential contractee needs to decide
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whether to accept the offer(s)'. In addition, once
contracted, the contractee needs to decide which
contract(s) to retract from, if any, to receive a more
lucrative contract.

In this paper, we focus on the contractor’s decision
problem of what payment to offer to maximize its
expected utility, and present a method for a self-
interested contractor to determine the best payment.
Since we believe strategic thinking—thinking about
not only oneself but also the contractees and the other
competing contractors—is desirable, we want to let the
contractor use its knowledge about the potential
contractees and the other contractors to find the best
payment. To this end, we have developed a four-step
decision-making mechanism using a stochastic
Markov-process model. Furthermore, we have
analyzed our method, comparing it with other
methods. Our experiments demonstrate strategic
thinking is indeed advantageous.

The rest of the paper consists of the following.
Section 2 reviews some of the related work in
multiagent contracts. Section 3 defines the contractor’s
decision problem and explains why such a decision is
difficult. Section 4 describes our method based on
Markov process model, and Section 5 examines some
early experimental results. Section 6 discusses the
future research issues and concludes the paper.

2 Related Work

This section reviews research on multiagent contracts,
roughly dividing them into two: design of a global
mechanism (i.e., protocol) and design of a local
decision-making mechanism of each agent (i.c.,
strategy).

In systems consisting of self-interested agents (such
as ours), agents can hardly assume what the other
agents think and will do, except possibly their
rationality. Therefore, a system architect needs to
design a proper rule that ensures agents can
concentrate on completing the tasks with some desired
property (honesty, for example) rather than trying to
manipulate the other agents or the system in an
underhanded way. See (Rosenschein & Zlotkin 1994;
Varian 1995) for global mechanism design for self-
interested agents.

In terms of local decision-making, an agent with
strategic thinking may get a higher payoff even in a
task-oriented domain (Rosenschein & Zlotkin 1994) or
even in a competitive market with large numbers of
agents (Varian 1993). Therefore, an agent may want to
think about what the others think about what it thinks
about and so on (Gmytrasiewicz, Durfee & Wehe
1991). Or, it may model the contracting situation

! For now, we assume no counteroffer from the contractee
side.
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The multiagent contract is in essence a game played
among a set of contractors and a set of contractees, and
such settings have been studied in noncooperative
game theory and distributed AI (Rosenschein &
Zlotkin 1994; Tirole 1988). In comparison, we model
the contractor’s decision problem stochastically rather
than as a game (although the contractor does think
about the contractees and the other competing
contractors), since solving a game is hard and has
additional difficulties such as equilibrium selection.

The contracting situation we are interested in
consists of multiple, concurrent contracts, which
demands a local decision-making mechanism that
explicitly reasons about concurrent contracts and
possible retractions, but there has been little research
on such cases. Although Sandholm (Sandholm 1993)
proposes a contracting strategy under multiple
contracts, his agents do not capitalize on the
opponents’ costs or the impact of other contracts
competing in the system. Recently, he proposes a
leveled commitment protocol that allows agents to
retract from a contract by paying a penalty (Sandholm
& Lesser 1995b), but an agent’s decision-making
mechanism for such cases has not yet been developed.

3 The Contractor’s Decision Problem

We assume the agents use a simple contracting
protocol called Take-It-or-Leave-It (TILI). Under the
TILI protocol, the contractor announces the task and
its payment to potential contractees, and the potential
contractees either accept or reject the offer (no
counteroffers). Then, the contractor awards the task to
one of the contractees who has accepted the offer. The
contractee may want to retract from the contracted task
while paying a retraction penalty. Retraction happens,
for example, when the contractee finds a more
lucrative task that cannot be done along with the
contractor’s task.

Consequently, the contractor’s decision problem
under the TILI protocol is to find the payment (p) that
maximizes its expected utility (i.e., maximize, u(p)).

In principle, the contractor’s decision parameters
can be diverse, such as the payment (p), the retraction
penalty (8), and the number of agents to announce its
offer to (1)~ In this paper, however, we fix & and 7
and assume that the contractor is only interested in its
payoff. That is, the contractor’s utility function is
defined as

Ps(p) x U(Payoffs(p)) + P p) x U(Payoffd{p)),
where Py{p) denote the probability of Success (S) and

% Assuming the potential contractees are all homogeneous. If
the contractor has information about individual agents, its
decision parameter would be to whom (a subset of the
potential contractecs) to announce its offer.
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of S and F, given p.

The contractor’s payoff for a successful contract
(Payoff;) is defined as its value of the task (V) minus
the payment (p) to the contractee and minus the total
overhead of the contracting process incurred by the
contractor. At present, we are assuming that the only
significant overhead cost is in communication such
that the total communication costs (CC) are subtracted
from the payoff. In addition, any retraction penalties
(4) paid by the contractees are added. Note that
retraction from the contractor side will not happen
since its payoff will be the same no matter who it
picks. The payoff of failure (Payoff;) is minus the total
communication costs plus any retraction penalties
accrued, assuming the value of failure is 0. That is,

Payofi(p)=V - p~ CCs+ 4

Payo‘ﬂ‘i(P)= - CCF + AF'

The contractor’s decision—finding the payment with
the highest utility—is complicated because many
factors (in addition to the payment) influence the
values of Pg, and Payoffy, (and therefore the utility
value). Figure 1 depicts those factors and their impacts
on the utility value qualitatively. A black-colored link
means a positive influence, while a gray-colored link
means a negative one. For example, the payment has a
negative influence on the payoff such that a higher
payment results in a lower payoff.

As shown in Figure 1, the payoff will be higher if
the contractor values the task higher, all else being
equal. The probability of success would be higher if
the potential contractees’ costs of doing the task are
lower. The total capability (TC) is the total cost that a
contractee can take on per each time unit. Therefore, if
TC is higher, retraction happens less often and thus the
probability of success increases.

example, the contractor will prefer a higher retraction
penalty for its task, since (1) once the task with a
higher penalty is contracted, it is less likely to be
retracted, and (2) even when retracted, the payoff
(penalty collected by the contractor) will be higher.
However, a higher retraction penalty may prevent the
potential contractees from accepting its offer in the
first place, which decreases the probability of success.
Similarly, if the contractor offers a higher payment, it
is more likely to be accepted (and therefore the
probability of success would increase), but the payoff
will decrease.

In addition, there are uncertainties associated with
the factors. Some factors, such as the potential
contractees’ costs of doing the task, may be known to
the contractor only probabilistically, and in such cases,
the impact of the costs can be modeled only
stochastically.

To find the best payment to offer, therefore, the
contractor necds to model not only the payment but
also other factors and their tradeoffs. In the following
section, we present a method that captures those
factors and their impacts on the utility value by
stochastically modeling the future contracting process.

4 Mechanism: MP-based Modeling

We have developed a four-step mechanism for the
contractor to compute the probabilities and payoffs,
and therefore to find the best payment.

Step 1: Modeling the contracting process

The contractor can model various contracting
processes using absorbing Markov chains with a set of

Contractee's | [Contractee's
total capabili

Retraction
Paent penal

‘@ ~-$#m  Negative influence

Number of ts
to make an :?f:;

€O Intermediate factors
-8 Positive influence

Figure 1: The factors that influence the utility value
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Figure 2: The MP model of the two-task contract with unit-time state transition

transient states and two absorbing states (S and F). An
example of a contracting process model is shown in
Figure 2.

Figure 2 depicts the case where there are two tasks
in the system (7, is the contractor’s task and T, is
another contractor’s task being contracted) and where
every state transition takes one time unit. The J, A, C,
S, F represent Initial, Announced, Contracted, Success,
and Failure states, respectively. Note that we
distinguish the state where a task is contracted (C)
from the state where a task is successfully completed
(S). The state D (done) is used to represent both S and
F states of T,, because the contractor of T, does not
care about the result of T,, and because it is generally a
good idea to keep the number of states small.

When the contractor starts contracting T, it can be
in any of the {14, 13, 12, 11} states; in general, the
contractor can assign probabilities of being the initial
state to those states. From the initial states, the process
goes to the announced states, {10, 9, 8, 7}.

From {10, 9, 8, 7}, where T, is being announced,
the process may go to state 1 (F) if no agent accepts
the offer, or go to the contracted state {6, 5, 4, 3} as
long as at least one agent accepts the offer. In this
paper, we assume the contractor models the
contractees as aggressive. An aggressive contractee is
one who expects none of its bids will be awarded to
itself (i.e., the probability of getting awarded is 0), and
therefore accepts every contractor’s offer as long as its
cost for doing the task is less than the proposed
payment’. So, if no agent accepts the offer, the
contractor will not re-try the contract (since it ki.ows
there is no contractee who can do its task). That is, no
transition from the announced states to the initial states
(for re-contract) happens.

From the contracted states {6, 5, 4, 3}, the process
goes to the success state (state 2) unless a retraction of
T, happens at state 4. The contractor does not care

3 As noted in (Sandholm 1993), the aggressive contractee is
an approximation when there are many contractees.
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about whether T, is retracted as long as T, is
successfully finished.

Note that states 10, 6, and 5 will not be reached from
the initial states; they are drawn for completeness. If a
new task is introduced during the contracting process,
however, those states can be reached.

Step 2: Computing the transition probabilities

The contractor defines the transition probabilities
between the MP states by modeling the contractees’
decisions at the announced state (whether to accept the
offer) and at the contracted states (whether to retract
the task(s)). The transition probability from state i to
state j, P, is computed from the factors identified in
the previous section, such as the payment (p), the
retraction penalty (8), the contractees’ costs of doing
the task, their total capabilities (T'C), the number of
other tasks being contracted, and their payments.

As an example, let’s compute the transition
probability from state 13 to state 8, P,; . The transition
happens when T} is announced from its initial state and
T, is contracted from its announced state. That is,

P35 = P(announced,) X P(contracted,),
where P(announced,) is 1 (since the transition from /
to A always happens), and P(contracted,) is the
probability of T, being contracted. Let f;(c) be the
probability density function (PDF) of potential
contractee i’s cost of doing T,. Then, P(contracted,)
can be computed as follows.

P(A') = Probability agent i accepts the payment p of 7,
(i.e., probability agent i’s cost of doing T, is less than p)
= [ fi(c)dc .
P(no_contract,) = Probability no agent accepts 7,
=(I1-P(A')) x(I-P(A?)) x... x(1-P(A*))
= I(1-P(A)).
P(contracted,) = Probability at least one agent accepts 7,
= I — P(no_contract,)

When multiple tasks are being contracted to a single
contractee, retraction (transition from the contracted



state to the initial state) may happen. The transition
from state 4 to 11 (i.e., retraction of T; when both tasks
are contracted) happens when the following three
conditions are met:

(1) Both tasks are awarded to the same contractee
when they are contracted;

(2) The agent cannot perform both tasks (i.e., total
capability is violated); and

(3) It decides to retract T, (i.e., the payoff of T, is
higher).

Due to space limitations, we do not describe how
the contractor computes the probabilities of (1), (2),
and (3), and therefore the probability of retraction. The
detailed explanation can be found in (Park, Durfee &
Birmingham 1996).

Step 3: Computing the probabilities and
payoffs of success and failure

Having the MP model and its transition probabilities,
the contractor can compute the probabilities and
payoffs of S and F,

Before continuing, let’s define the transition
probability matrix and the fundamental matrix.

The transition probability matrix, P, denotes the
matrix of transition probabilities. Figure 3-(a) shows
the canonical representation of a MP consisting of (s)
transient states and (r) absorbing states: / is an (rxr)
identity matrix (each absorbing state transitions to
itself); O consists entirely of 0’s (an absorbing state
never transitions to a transient state); Q is an (sxs)
submatrix which captures the transitions only among
the transient states; and R is an (sxr) matrix which
represents the transitions from transient to absorbing
states. Figure 3-(b) shows the canonical representation
of the transition probability matrix of Figure 2. We let
T be the set of transient states and let T7< be the set of
absorbing states (i.e., S and F).

L 2 3 e
s @ LN 1 1. 0 O 0
I O o * 2112 g
P= e, 0 1
i Q ® :

\ / w_0 0 .
-~ ”~
(a) Canonical representation of P (b) Canonical form of Figure 2
Figure 3: The transition probability matrix

In Markov process theory, the matrix (I - Q) is called
‘the fundamental matrix, M, and the (i,j)-th element of
the fundamental matrix, 44, means the average number
of visits to transient state j starting from state i before
the process enters any absorbing state (Bhat 1972).
The fundamental matrix is very important, since it is
used when computing the probabilities and payoffs of
S and F as follows.

First, let f;; be the probability that the process
starting in transient state i ends up in absorbing state j.
If the starting state is state 14 in Figure 2, for example,
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the probabilities of reaching S and F are f,,, and f,,,,
respectively.

Starting from state i, the process enters absorbing
state j in one or more steps. If the transition happens
on a single step, the probability f; is P Otherwise, the
process may move either to another absorbing state (in
which case it is impossible to reach j), or to a transient
state k. In the latter case, we have f, Hence,

Jo=Py+ Zier Pufy,
which can be written in matrix form as

F=R+ QF,
and thus

F=(I-Q)'R =MR.

Therefore, the probabilities of S and F of a contract
can be computed using the fundamental matrix (M)
and the submatrix (R) of the original transition
probability matrix.

Second, to compute the payoffs of S and F, we need
(—CCs+Ag) and (-CCr+A;). We first need to compute
U, and P (u,” and P"), where u,® is the
number of visits to state i starting from the initial state,
say 0, before the process enters S; and P/ is the
conditional transition probability from i to j when the
process ends up in S.

Those values can be computed by creating two new
Markov chains (P and P**’) from the original matrix
P, each of which has one absorbing state, S and F,
respectively. From P, we can obtain P, and
compute the new fundamental matrix M (and
therefore u,/”). P,/ and p1," are computed similarly.

Now, let @; of the reward matrix £2 be a reward
associated with each transition { — j, which can be
either the minus communication cost (~cc;), or the
minus communication cost plus the retraction penalty
(~cc; + 9).

Then, Zmr.r") p_vm ‘@, is the average reward of the
one-step state transition from state / when the process
ends up in S. Multiplying it by u,/*, we compute the
one-step reward accrued from state { when the process
ends up in S. Adding this value for every transient
state i, we compute the total reward of S. That is, the
total reward of S (-CC; + A;) can be computed as
follows. .

—cceb 3 5, B,

ieT Jair.r€)

The reward of F (-CCy + A;) can be computed in a
similar way.
~CCr+A; = 2(#.'.?- P> Pa"’-a’.-.-) T

ieT Jar.r€y

Step 4: Finding the optimal payment

When the probabilities and payoffs of S and F are
ready, finding the best payment is an optimization
problem (Gill, Murray & Wright 1981). At present, we
use a simple generate-and-test: we generate the utility

values for various values of p, and choose the p with
the highest expected utility. We are currently
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Figure 4: Payoffs of the MP_TPA and the Simple_TPA

investigating an appropriate optimization technique for
Step 4.

In this section, we have explained the method used
by a contractor to determine the best payment to offer.
The contractor uses its information about the
contractees and the other contracts when constructing
the MP model and its transition probabilities, and
using the MP model, it computes the probabilities and
payoffs of a contract, and thus the optimal payment.

The MP model is able to capture various factors that
influence the utility value and uncertainties associated
with them (in steps 1 & 2). In addition, we have
developed a theoretically-sound method for computing
the probabilities and payoffs from the MP model (in
step 3).

5 Analysis: Advantages of MP Modeling

The MP-modeling method is based on the hypothesis
that strategic thinking about the potential contractees
and the other competing contractors is desirable. In our
experiments, we demonstrate that this hypothesis is
correct.

Let us return to the digital library’s example
contractors and contractees identified in Section 1,
where a contractor might be a task-planning agent
(TPA) that needs help monitoring weather changes,
and a contractee could be a notification agent (NA) that
can provide such a service. Our experimental setting
has three potential contractees (NA!, NA%, NA’). These
contractees incur cost in providing a monitoring
service, and are limited in the number of monitoring
tasks they can each perform. This limitation is
captured in a total capability (7C) constraint such that
each NA cannot perform tasks whose total costs are
higher than its total capability.

We assume that the contractees’ actual costs are
unknown to the contractors, but an informed
contractor estimates the costs with a probability
density function (PDF). For our experiments, the PDF
of agent i’s cost for doing task j, f'(c;), are given by

. 1t 5<¢,s11
iy 18 1 .
rie) {0 otherwise
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And the total capabilities (7C) of all three NAs are set
to 12, which means a NA usually cannot perform two
monitoring tasks at the same time.

With this setting in mind, we first establish that the
MP-modeling method is better than a simple static
strategy. To do this, we compare two contractors, the
contractor with the MP-modeling method (called
MP_TPA) and the contractor that does not think about
the potential contractees nor the other contractor
(Simple_TPA), each of whom has one task to be
contracted (T, and T, respectively).

The Simple_TPA has a static decision-making
mechanism: it offers to pay its value minus minimum
communication cost minus some constant (i.e., p=V
— min_CC - g). So, it will receive at most € as its
payoff when its task (T,) is successfully completed,
less than € when retraction has happened during the
contracting process®, and a negative payoff when the
contract fails. We call ¢ the maximum profit of the
Simple_TPA.

To empirically compare the MP-based method with
the simple strategy, we have randomly generated 100
sets of test inputs (for values and costs of 7, and T)),
and run each with various Simple_TPAs with different
£. The values of T, and 7, are randomly selected from
between the contractees’ lowest possible cost (5, in our
setting) and some maximum value (20, in our setting).

As shown in Figure 4, the total payoff of the
MP_TPA increases over time more rapidly than that of
a Simple_TPA. When the maximum profit (&) of a
Simple_TPA is higher, the payoff of the Simple_TPA
increases, but when & becomes too high (9, for
example), the payoff decreases. The decrease in the -
payoff comes from missed contracting opportunities
because a Simple_TPA with a higher & offers lower
payment, and thus fewer contractees will accept the
offer.

It is not surprising that MP_TPAs make better
decisions than the Simple_TPAs, given that those
decisions are more informed. Recall that there are two

* As defined in Section 3, when retraction happens, the
contractor receives a retraction penalty but incurs additional
communication cost. For our experiments, the penalty (+1) is
set to be less than the additional communication cost (-2).
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reasoning: considering what payments potential
contractees might find acceptable (using the PDF of
their costs), and considering how competition with
other contractors might impact the outcome. A
question arises as to whether both of these
considerations are critical to the success of MP_TPAs.

To answer this question, our second experiments
replace the Simple_TPA with an Avg_TPA, which uses
the same PDF as the MP_TPA in considering the
payments that potential contractees might accept, but
does not consider the impact of the (in this case, one)
other competing contract(s), and therefore ignores the
possibility of retraction. The Avg_TPA, in other words,
uses a Markov-process model for a single task.

Running 1000 runs to compare the total payoff of
the MP_TPA with that of the Avg_TPA, using the same
settings as before, we once again see that the MP_TPA
achieves a higher total payoff, as shown in Figure 5.
However, the difference in the profits of two
contractors is much smaller than that of the MP_TPA
and the Simple_TPA.

Of interest is that experiments with a relatively
small test sample (e.g., 100 runs) sometimes result in a
higher cumulative payoff for the Avg_TPA. We are
investigating the conditions under which this happens,
which may be used in developing an approximated
MP-based mechanism.

Totat accumutated payoff

0 200 400 @00 800 1000
Figure 5: Payoffs of the MP_TPA and the Avg_TPA

Now that we have established the fact that MP-models
capture both expectations about the contractees and
about competing contractors, and that MP_TPAs thus
achieve higher profit than our other sample
contractors, another question arises. Did MP_TPAs

at the expense of the less informed contractors) or at
the expense of the contractees?

We use Figure 6 to form an initial answer to this
question. Figure 6 shows the total payoff of the
MP_TPA, the Simple_TPA (or the Avg_TPA), the sum
of the payoffs of all the contractees (NAs), and the
total payoff of the overall system for 100 runs each,

From Figure 6, we can make statements about the
overall system performance. First, the overall system’s
payoff decreases with the Simple_TPA with higher
maximum profit (&) because of the missed contracting
opportunities. Second, the overall system’s payoff is
higher when the contractors are more intelligent,
because contracts are made more often and because
when a contract is made, the Avg_TPA gets much
higher payoff compared to the Simple_TPAs. That is,
if we ignore the deliberation cost, having smart
contractors increases the system’s overall performance
under the take-it-or-leave-it (TILI) protocol. In
economical terms, smart contractors have extracted the
surplus from the situation.

In terms of relative performance, we see that the
increase in the payoff to the Simple_TPA or the
Avg_TPA, if any, comes at the expense of the
contractees (and not at the expense of the MP_TPA).
And the payoff of the MP_TPA stays stable no matter
which contractor it competes with. We account for this
by the TILI protocol we are using, which leaves little
choice to the contractees in improving their payoffs.
As noted in (Varian 1995), the TILI protocol is better
for maximizing the contractor’s revenue when the
margin between the values and the contractees’ costs
is higher. In our experiments, the contractees’ costs are
usually significantly lower than the value of the task
(and the payment), and therefore using the TILI
protocol enables the contractors gain profits at the
expense of the contractees.

The above experiments demonstrate that the
contractor who thinks about the other contractees and
the competing contractors receives a higher payoff. In
addition, we show that under the TILI protocol, the
contractors get more profit at the expense of the
contractees.

700 —

600 —— -

500 - - — |BMP_TPA
400 B Simple_TPA

300
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100
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Figure 6: The payoffs of the MP_TPA, the Simple_TPA, and the NAs

Park

265



So far, when comparing the MP-based method with
others, we treat the deliberation cost as zero, which is
not true in many cases. When deliberation takes time,
the total payoff of the MP-based method will decrease.
We are currently developing experiments where we
can take deliberation cost into account. We expect the
payoff difference to decrease as the deliberation cost
increases, since the Simple_TPA (or the Avg_TPA)
may be able to contract and finish more tasks while the
MP_TPA is deliberating. Also of interest is the payoff
per task; the payoff per task of the MP_TPA may
remain higher than that of the Simple_TPA.

6 Discussion

In this paper, we have defined the contractor’s
decision problem, and proposed a method by which
the contractor can find an optimal payment to offer.
The contractor finds the best payment by strategically
thinking about the contractees, the other competing
contracts, and the contracting overhead (e.g.,
communication cost).

Our MP-based mechanism has introduced several
new concepts and combined them with existing ones.
For example, the MP-based model of the contracting
process is new, while the interdependencies among
multiple, concurrent contracts are re-defined using
retraction and the total capability constraint of the
contractees.

Our early results are promising. The MP-based
mechanism can capture various factors that influence
the utility value and uncertainties associated with
them, and the contractor is able to choose different
optimal payments depending on those factors. The
experiments demonstrate that strategic thinking using
MP modeling in general provides a better profit over a
static decision or over a decision without modeling
competing contractors.

At present, many research issues need further
investigation. We are looking for an optimization
technique for Step 4, and developing various MP
models depending on the number of competing tasks
or different amounts of information a contractor has.
We are also investigating approximating some
computations in the MP-based mechanism to minimize
its deliberation cost.
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