
REVIEW ARTICLE OPEN

Advantages of targeting the tumor immune microenvironment

over blocking immune checkpoint in cancer immunotherapy
Tianyu Tang1,2,3,4, Xing Huang 1,2,3,4, Gang Zhang1,2,3,4, Zhengtao Hong1,2,3,4, Xueli Bai1,2,3,4 and Tingbo Liang1,2,3,4

Despite great success in cancer immunotherapy, immune checkpoint-targeting drugs are not the most popular weapon in the

armory of cancer therapy. Accumulating evidence suggests that the tumor immune microenvironment plays a critical role in anti-

cancer immunity, which may result in immune checkpoint blockade therapy being ineffective, in addition to other novel

immunotherapies in cancer patients. In the present review, we discuss the deficiencies of current cancer immunotherapies. More

importantly, we highlight the critical role of tumor immune microenvironment regulators in tumor immune surveillance,

immunological evasion, and the potential for their further translation into clinical practice. Based on their general targetability in

clinical therapy, we believe that tumor immune microenvironment regulators are promising cancer immunotherapeutic targets.

Targeting the tumor immune microenvironment, alone or in combination with immune checkpoint-targeting drugs, might benefit

cancer patients in the future.

Signal Transduction and Targeted Therapy            (2021) 6:72 ; https://doi.org/10.1038/s41392-020-00449-4

INTRODUCTION
To date, immune checkpoint (ICP)-targeting drugs, such as anti-
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-
programmed cell death protein 1 (PD-1), and anti-PD-1 ligand 1
(PD-L1), have displayed considerable success in a number of
cancer immunotherapies,1–4 including melanoma, lung cancer,
and other commonly diagnosed cancers. Accordingly, ICP
blockade-based therapeutic strategies have been championed in
cancer research and therapy, often in the name of patient benefit.
Currently, for patients with advanced head and neck squamous
cell carcinoma, non-small cell lung cancer (NSCLC, squamous and
non-squamous carcinoma), melanoma, urothelial and kidney
cancers, Merkel cell carcinoma, refractory Hodgkin lymphoma,
microsatellite instability-high colorectal cancer, gastric cancer, and
hepatocellular carcinoma, therapeutic ICP blockade has become a
part of the standard of care. Clinical trials have been initiated to
investigate their efficacy for the treatment of additional malignant
diseases.5–9 However, increasing numbers of studies have shown
that the positive response rate among patients receiving immune
checkpoint-targeting drugs remains quite low, an issue that
remains to be solved.10,11 Previous studies have demonstrated
that in the majority of the cases, clinical benefit is commonly
prevented by acquired resistance to the tumor and primary tumor
refractoriness to the ICP-targeting drugs.12 Furthermore, clinical
decisions to use these drugs, especially dual CTLA-4 and PD-1
blockade, should consider their potential to induce high-grade
immune-related adverse events. Thus, the clinical practice of
checkpoint-targeting therapy remains problematic.
Increasing evidence strongly suggests that the tumor immune

microenvironment (TIME) plays a more significant role than ICPs in

tumor immune surveillance and immunological evasion.13–15

Many multiple factors co-contribute to anti-cancer immunity,
and ICPs are just one weapon used by tumors to resist attack from
the immune system.16 Therefore, further improvements are
required for therapeutic precision to limit the side-effects of
therapies that are based on targeting ICPs, in addition to other
cancer therapies that are both relevant or not. In the present
review, we aim to provide new insights into current cancer
immunotherapy and reveal potential antitumor immunological
targets in the TIME that overcome immunotherapeutic resistance
in clinical applications. We highlight the significance and super-
iority of targeting TIME regulators in anti-cancer immunotherapy.
Furthermore, we discuss the potential and feasibility of combined
treatments to boost a controllable anti-cancer immune response.

LESSONS LEARNED FROM IMMUNE CHECKPOINT-TARGETING
CANCER THERAPY
Drugs that target ICPs, including but not limited to anti-CTLA-4
and anti-PD-1/PD-L1, significantly improve the prognosis of
advanced cancer patients. However, an increasing number of
recent reports have provided contrary but convincing evidence
of non-negligible defects in ICP-targeting strategies, which might
have negative consequences for their therapeutic efficacy.17–22

Generally, the efficacy of ICP therapy is restricted by three major
factors: (1) burden of tumor mutation, (2) PD-L1 expression level,
and (3) pre-existing T-cell infiltration. In fact, with the exception of
melanoma,23 Merkel cell carcinoma,24 and Hodgkin disease,25 the
response rate to ICP monotherapy remains low in several specific
malignancies, including pancreatic cancer, cholangiocarcinoma,
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and gastric cancer.26–28 In these cases, the objective response rate
ranges from 15 to 25%, with limited survival benefit.6,29–34 In
addition, concerns over safety-related problems have arisen in
multiple cancer therapies, restricting the widespread use of ICP
blockade.35,36 ICPs not only affect cross-talk between the immune
system and a tumor, acting as a gatekeeper toward anti-cancer
immunity, they also function within the immune system, serving
as a vital mechanism to maintain immunological homeostasis.35

Consequently, the toxicity of ICP-targeting drugs differs from that
of conventional chemotherapies, targeted small molecule inhibi-
tors, or even traditional therapeutic monoclonal antibodies.36

Non-specific activation of immune responses via ICP blockade can
lead to immune-related adverse events (irAEs).36–40 The incidence
of all grades of irAE is reported to range from 15 to 90%, and the
frequency of severe irAEs requiring immunosuppression and
withdrawal from immunotherapy is estimated to be between 0.5
and 13%.41 Disordered infiltration of immune cells in normal skin,
and gastrointestinal, hepatic, thyroid, renal, pulmonary, muscu-
loskeletal, and pituitary tissues has been reported in cancer
patients receiving ICP-targeted therapies.42,43 These irAEs can lead
to treatment interruption and even multiple organ failure.
Unfortunately, the pathophysiology of irAEs resulting from ICP
blockade is not yet fully understood. Even using dosage-
decreasing countermeasures, complete prevention of such toxicity

is unachievable in the short-term, which represents a significant
challenge to ICP-centric immunotherapy. Thus, ICP-targeting
inhibition should be precisely controlled to avoid potentially
severe autoimmune disorders or infectious diseases in clinical
practice.

MULTIPLE IMMUNOSUPPRESSIVE TUMOR
MICROENVIRONMENTS DOMINATE CANCER
IMMUNOTHERAPEUTIC EFFICACY
As described earlier, in addition to ICPs, TIME largely determines
the therapeutic efficacy of cancer immunological treatments.
Several hallmarks of immunosuppressive tumor microenviron-
ment and their influence on current cancer immunotherapy can
be summarized as follows (Fig. 1).

Heterogeneity of constitution
It has been demonstrated that a variety of cells are recruited to
the TIME during the development of a tumor. The composition of
the heterogeneous TIME is extremely complex, containing a
variety of immunosuppressive cells, including tumor cells, cancer-
associated fibroblasts (CAFs), vascular endothelial cells, suppres-
sive myeloid cells, regulatory T (Treg) cells, and regulatory B cells
(Fig. 2). Each cell type in a suppressive TIME contributes to its
promotion and maintenance. The immunoregulatory potential of
stromal cells has recently received increased attention. These cells
have been demonstrated to suppress the immune system by
inhibiting the trafficking and function of T cells by both direct and
indirect mechanisms.44 Furthermore, as will be discussed, the
molecular deregulation in endothelial cells also plays a critical
role in the inhibition of T-cell trafficking and induction of
T-cell apoptosis. Myeloid subsets, including tumor-associated
macrophages, monocytes and granulocytes, constitute the hetero-
geneous components of the TIME and have strong immunosup-
pressive potential.45 These cells inhibit the antitumor activity of
T cells and natural killer (NK) cells using a variety of mechanisms,
leading to resistance to immunotherapy.46,47 Mounting evidence
demonstrates that the recruitment and activation of myeloid
subsets are associated with tumor progression, recurrence, and
negative clinical outcome. Treg cells play a critical role in the
maintenance of immune homeostasis by inhibiting abnormal/
excessive immune responses. However, previous studies have
demonstrated that Treg cells promote tumor development and
progression by inhibiting antitumor immunity. The underlying
suppressive mechanisms include: inhibition of costimulatory
signals mediated via CD80 and CD86 expressed by dendritic cells,
secretion of inhibitory cytokines, metabolic modulation of
tryptophan and adenosine, and direct killing of effector T cells.48

Regulatory B cells were also found to be involved in the
development and maintenance of immunological tolerance by
producing chemokines such as IL-10, IL-35, and transforming

Fig. 1 Hallmarks of an immunosuppressive tumor microenvironment.
Six hallmarks, including heterogeneity of constitution, lack of tumor
antigen, defect of antigen-presenting cell, impairment of T-cell
infiltration, activation of an immunosuppressive signaling pathway,
and enhancement of immunosuppressive metabolism co-contribute
to an immunosuppressive tumor microenvironment

Fig. 2 Construction of TIME. During tumorigenesis and progression, a variety of cells, including but not limited to macrophage, DC,
neutrophil, B cell, T cell, and CAF, are recruited to the surrounding microenvironment of tumor cells, co-constituting the TIME together with
the ECM in addition to other elements
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growth factor β (TGFβ). Considering the heterogeneity of the
TIME, application of ICP inhibitors is perhaps not sufficient to
maximize the benefit of immunotherapy, and the use of tumor
biomarkers involved in the maintenance of an immunosuppres-
sive microenvironment should also be considered to achieve
better outcomes and safety. In a proportion of patients at least,
the observed response of ICP inhibitors may result from the
capacity of these therapies to simultaneously reshape the TIME.
However, rather than identifying immunotherapies as ineffective,
the observed resistance may indicate that both the influence and
stimulation of factors in the TIME cannot meet the minimum
requirements for reinvigorating the immune system. Therefore, it
is timely to incorporate ICP inhibitors into more effective
combination therapies.

Lack of tumor antigen
There are three principal categories of tumor antigen: tumor-
specific antigens, tumor germline antigens and tumor-associated
antigens. For the majority of malignancies without viral etiology,
tumor-specific antigens are formed solely by tumor-specific gene
mutations. Cancer germline antigens are expressed in tumor
tissues but silent in most normal tissues except in trophoblastic
and male germline cells. Tumor-associated antigens are normally
expressed at low levels in normal tissues, but at high levels in
tumor cells. These antigens are important for the differentiation of
cancer cells from normal cells by the immune system. However,
compared with the non-mutated self-antigens with incomplete
T-cell tolerance, mutated neoantigens are believed to be
significantly more relevant to antitumor immune function. Tumor
mutational load is used to quantify the number of mutations per
coding region of the tumor genome. It is reasonable to believe
that tumors with a high mutational load tend to express a greater
number of tumor-specific antigens. Previous studies have shown
that a high tumor mutational load is associated with a favorable
immune response in patients who received ICP therapy. By
analyzing the mutation profiles of 336 patients who received ICP
blockade therapy, Chen et al. demonstrated that high neoantigen
quality was associated with prolonged survival when receiving
immunotherapy (log-rank test, P= 0.009).49 Eliezer et al. reported
that nonsynonymous mutational load was significantly associated
with the clinical benefit of ipilimumab therapy for melanoma
(P= 0.0076; Mann–Whitney test).50 In patients with NSCLC, Rizvi
reported that patients with a low nonsynonymous mutation
burden suffered a lower objective response rate and shorter
progression-free survival.51 These observations confirmed the
hypothesis that neoantigens, caused by nonsynonymous muta-
tions, are critical for the tumor response to ICP therapy. However,
a previous report indicated that cancer cells develop particular
mechanisms to avoid being eliminated after recognition by the
immune system, which is termed immune cancer immunoediting.
These mechanisms include reducing the expression of the most
immunogenic antigen and loss of the mutation that results in an
immunogenic neoantigen.52 In tumors with a low mutational load,
the lack of sufficient neoantigens could lead to a state of low
immunogenicity, which would eventually result in T-cell exclusion.
In addition, cancer antigens can undergo direct modification such
as glycosylation or cleavage by extracellular matrix metalloprotei-
nases to avoid recognition by the immune system.53–56 These
events can cause both primary and acquired resistance to ICP
therapy in different cancers, ultimately resulting in unsuccessful
treatment.

Defect of antigen-presenting cell
While direct presentation of antigens by tumor cells in the context
of MHC-I molecules plays an important role in the activation of an
antitumor immune response, cross-presentation by professional
antigen-presenting cells (APCs), especially dendritic cells (DCs), is
the foundation of the “cancer immunity cycle.” DCs have been

identified as remarkably capable cytotoxic T-cell stimulators that
prolong the survival of cancer patients.57,58 Roberts et al.59

reported that CD103+ DCs are the dominant cell type responsible
for tumor antigen cross-presentation. All such effects require CCR7
and high CCR7 expression levels in melanoma were found to be
significantly related to T-cell infiltration and better clinical
outcomes in patients. Spranger et al.60 investigated the underlying
mechanism of immune resistance in tumors using a tumor model
resembling cold tumors (lack of tumor T-cell infiltration) in
humans. Their results indicate that tumor infiltrating CD103+

DCs played an important role in T-cell trafficking by producing
C-X-C motif chemokine ligand 9/10 (CXCL9/10). However, the
tumor-mediated suppressive microenvironment modulates DCs
and suppresses their ability through a variety of mechanisms that
eventually lead to tumor immune escape. A variety of TIME factors
have demonstrated to negatively impact DCs.61 Tumor-derived
interleukin-6 (IL-6) and macrophage colony-stimulating factor
were found to be responsible for switching the differentiation of
CD34+ progenitors from DCs to monocytes, which lack APC
function.62 Tumor-derived IL-10 has also been shown to be
responsible for DC dysfunction by inhibition of DC maturation that
impairs their antigen presentation capacity.63 Other factors,
including matrix metalloproteinase 2 and thymic stromal lympho-
poietin were found to skew T-cell differentiation by modulating
DC function.64,65 The β-catenin signaling pathway has also been
shown to be responsible for DC dysfunction. The tumor-derived
Wnt5a ligand significantly increases the expression and activity of
indoleamine 2,3-dioxygenase-1 (IDO1) in DCs via the β-catenin
pathway, leading to promotion of Treg differentiation.66 Hong
et al.67 reported that DC-specific deletion of β-catenin in mice
markedly enhanced antitumor immune response and delayed
tumor growth. Considering all these mechanisms may contribute
to primary and acquired resistance to immunotherapy as
insufficient antigen presentation may lead to T-cell anergy and
restriction of antitumor immunity, it is logical to combine DC-
therapy and ICBs to achieve synergistic effects and improve the
clinical response.

Impairment of T-cell infiltration
Tumor infiltrating CD8+ T cells play a critical role in the response
to immunotherapy. It was hypothesized that the activity of ICP
therapy relied mostly on pre-existing CD8+ T-cell infiltration.68 For
example, Tumeh et al.69 investigated 46 patients with advanced
melanoma who received anti-PD-1 therapy. Pretreatment samples
obtained from the patients displayed a higher CD8+ cell density at
the invasive tumor margin in patients who experienced a tumor
response. In an investigation of anti-PD-1/ anti-PD-L1 therapy in
32 patients with melanoma, Eroglu et al.23 reported a higher
baseline T-cell density in patients with prolonged survival
(P= 0.002). However, T-cell infiltration of tumors can be inhibited
by a variety of immunosuppressive mechanisms. Firstly, T-cell
trafficking can be influenced by the heterogeneity of perfusion
and oxygen levels across the regions of the tumor caused by
abnormalities in tumor neovasculature. In addition, the adhesion
process can also be modulated in tumors to exclude antitumor
T cells. The downregulation of intercellular adhesion molecule 1/2,
vascular cell adhesion molecule 1 and overexpression of the
endothelin B receptor on endothelial cells were also shown to be
associated with the absence of infiltrating T cells.70–72 In ovarian
cancer, silencing of CXCL9 and CXCL10 expression in tumor cells
via an epigenetic mechanism inhibited T-cell infiltration.73

Furthermore, further evidence of the involvement of pro-
inflammatory chemokines in the inhibition of T-cell infiltration
was provided by the observation that intratumoral reactive
nitrogen species produced by suppressive myeloid cells were
able to induce CCL2 chemokine nitration and hinder T-cell
migration and infiltration. Moreover, tumors rely on other
components for T-cell exhaustion. For example, the tumor stroma,
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including CAFs, can suppress T-cell activation and inhibit T-cell
infiltration. Furthermore, an in vivo model indicated that the
reduction of collagen enhanced T-cell infiltration, suggesting that
the density of extracellular matrix is associated with the ability of
T cells to migrate.74

Activation of immunosuppressive signaling pathway
Tumor cells are associated with molecular alterations, including,
but not limited to, mutations of Kirsten rat sarcoma viral oncogene
(Kras), focal adhesion kinase (FAK), and Janus kinase 1/2 (JAK1/2),
which directly influence the TIME and immune function. As a
signature event of tumor development, Kras mutations are
common in a variety of malignancies and play an important role
in the development and maintenance of the TIME, in addition to
controlling tumor metabolism.75 Tumor cells with Kras mutations
in vivo were found to induce granulocyte-monocyte colony-
stimulating factor, promoting the accumulation of suppressive
myeloid cells and Treg cells, leading to T-cell exhaustion.76 In a
Kras-driven mouse model, KrasG12D upregulated Hedgehog
signaling and activated the inflammatory pathway in autochtho-
nous pancreatic tumors, which promoted the development and
maintenance of a fibroinflammatory stroma resulting in T-cell
exhaustion.77 In addition, FAK was also identified as a critical
regulator of the TIME. In squamous cell carcinoma, nuclear FAK
promotes tumor growth and T-cell exhaustion by inducing CCL5
to recruit Treg cells.78 FAK has also been shown to negatively
regulate T-cell receptor-mediated signaling by influencing the
recruitment of C-terminal Src kinase members following TCR
activation in T cells.79 Preclinical data have shown that the FAK
inhibitor VS-4718 reduced tumor fibrosis, decreased the number
of myeloid-derived suppressor cells and prolonged survival in a
mouse model.80 Moreover, when experiencing immune attack,
cytotoxic T lymphocytes release interferon gamma (IFNγ) into the
TIME, which further activates signal transducers and activators of
transcription-related signaling pathways in cancer cells, in turn
upregulating PD-L1 expression that suppresses the immune

attack.81–84 Acquired PD-1 blockade resistance in melanoma was
found to correlate with JAK1 and JAK2 loss-of-function mutations.
Such mutations blocked IFNγ signaling, resulting in insensitivity to
its antiproliferative effects on cancer cells.85 These altered
signaling pathways play a critical role in maintaining an
immunosuppressive microenvironment, presenting a major obsta-
cle for cancer immunotherapy.

Enhancement of immunosuppressive metabolism
The desmoplastic response and elevated energy production rate
of tumors create a hypoxic and low-nutrient extracellular
environment, which is unfavorable for the survival of both tumor
cells and immune cells. However, compared with immune cells,
tumor cells have extraordinary metabolic plasticity, which facil-
itates their adaptation to and survival in harsh conditions, further
depriving immune cells of nutrients critical for proliferation and
function (Fig. 3). It has been demonstrated that metabolic
alterations play an important role in the maintenance of an
immunosuppressive environment.86 Glucose is a predominant fuel
source in proliferating cells. The Warburg effect, which represents
the metabolic switch from cellular respiration to anaerobic
glycolysis, is a hallmark of tumor metabolism. Previous studies
have shown that tumors undergo metabolic reprogramming to
compete for this vital, but limited nutrient source. The hypoxic
conditions and oncogenic molecules in tumor cells cause
upregulation of the expression of the receptor for glucose
internalization, GLUT1, in addition to other genes of metabo-
lism.87,88 As a result, tumors undergoing immune reprogramming
with increased import-receptor expression outcompete immune
cells for glucose. Previous studies have shown that GLUT1
overexpression was associated with T-cell exhaustion in a variety
of malignancies.89,90 T cells also undergo metabolic switching to
adapt to conditions of limited glucose availability. Interestingly,
while Glut1 deficiency was found to impair effector T-cell
expansion and function, Treg cells, in contrast, appeared
functionally unaffected in vivo.91 However, Glut1 deficiency

Fig. 3 Metabolic regulation of tumor microenvironment for T-cell energy. The high rate of aerobic glycolysis in tumor cells and CAFs deprives
immune cells of nutrients that are critical for their physiological function, meanwhile causing increased lactate production, which leads to
tumor microenvironment acidification and immunosuppression
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impairs the antitumor response of CD8+ T cells. GLUT1-lo T cells
exhibited decreased effector phenotype acquisition, reduced
proliferation, and impaired infiltration within both hypoxic and
normoxic conditions.92 High rates of aerobic glycolysis also cause
increased lactate production, which leads to tumor microenviron-
ment acidification. Lactate production is associated with metas-
tasis, angiogenesis and immunosuppression. Excessive lactate
induces NK cell apoptosis by decreasing the intracellular pH,
resulting in NK cell depletion in colorectal liver metastasis.93 Lactic
acid also suppresses the proliferation of CTLs and impairs their
cytokine production capability, which is recovered in lactic acid-
free medium.94 The growth of tumors with reduced lactate
production is substantially slower than that of control tumors and
is accompanied by increased infiltration of IFNγ-producing T and
NK cells in vivo.95 Elevated catabolism of the amino acids
tryptophan and arginine is an additional hallmark of the TIME in
a variety of malignancies.96 IDO, tryptophan 2,3-dioxygenase
(TDO) and arginase play essential roles in tryptophan and arginine
catabolism and regulate T-cell immunity in an inflamed TIME.97–100

The metabolism of tryptophan and arginine impairs effector T-cell
function and promotes the production of Tregs cells, suppressing
immunity in the TIME.101–103

COMBINED TIME-TARGETED THERAPY AND ICP INHIBITOR
TREATMENT
There is increasing evidence that demonstrates that the TIME
plays a critical role in tumor immune surveillance and immuno-
logical evasion.13–15 Of the many multiple factors that contribute
to anti-cancer immunity, ICPs are just one weapon utilized by
tumors to counter attacks from the immune system.16 In contrast,
as the battlefield on which the tumor and immune system meet,
the TIME has an inestimable influence on the final outcome of
cancer immunotherapy. Therefore, combined ICP inhibitors (ICIs)
and TIME-targeting therapies is a logical strategy to maximize
stimulation of an antitumor immune response (Fig. 4).

Neoantigen-based therapy
Accumulating evidence demonstrates that mutational burden is
associated with enhanced antitumor immune response. Therefore,
oncologists have attempted to stimulate a neoantigen-specific T-cell
response using a variety of approaches. Previous studies have shown
that vaccination with a neoantigen incorporating mutant epitopes
identified through genomics and bioinformatics induces tumor
rejection in a mouse model, providing a theoretical foundation for
further neoantigen-based treatment strategies.104–106 In general,

there are three principal strategies for neoantigen-based therapy. In
the first treatment strategy, after identification through genomic
sequencing, the neo-peptide most likely to induce the strongest
immune response is delivered to patients with or without optimal
immune adjuvants.107,108 In glioblastoma, the immunogenic antigen
was reported to elicit a sustained central memory T-cell response and
increased effector T-cell infiltration.108,109 Furthermore, complete
tumor regression was achieved in melanoma patients through the
combination of neoantigen-based therapy with ICI.110 The second
treatment strategy uses an messenger RNA (mRNA) vaccine. While
completely avoiding any possible unwanted modification of patient
cells, the mRNA demonstrated satisfactory treatment outcomes in
melanoma.111 When combined with ICI, a third of patients mounted
a complete response after vaccination, resulting in sustained
progression-free survival.111 The third neoantigen-based therapy
focuses on DCs. Firstly, DCs are extracted from the patient and co-
incubated with personalized neo-peptides and the corresponding
cytokines. The activated DCs are then expanded in vitro and injected
back into the patient. The first-generation dendritic vaccination
without in vitro stimulation resulted in poor clinical outcomes, with a
3% tumor response rate.112 The second-generation dendritic
vaccination, which included additional maturation of the DCs
in vitro, resulted in an increased response rate of 8–15%.112 In
2010, the FDA approved Sipuleucel-T as the sole DC-vaccination
therapy for prostate cancer.113–115 In a multicenter phase III trial,
Sipuleucel-T treatment resulted in a 4.1-month improvement in the
median survival in metastatic castration-resistant prostate can-
cer.113,116 The preclinical data also demonstrated that the DC-
vaccination therapy combined with ICIs improved CD8+ T-cell
infiltration of the tumor and survival in vivo.117–119 In addition, a
retrospective study indicated that in stage III melanoma patients, a
considerable number of those who experienced disease progression
after DC-vaccination therapy responded to CTLA-4-targeting by use
of ipilimumab.120 In a phase II study, the response rate was 38% in
stage III/IV melanoma patients following administration of ipilimu-
mab combined with DC-vaccination therapy.121 These results suggest
that the combination of ICIs with DC-vaccination therapy has a
promising future.

Immunogenic cell death induction
Over the past 10 years, mounting evidence has suggested that
inducing cancer cell death to activate the immune system is an
effective method of anti-cancer immunotherapy.122–124 It is well-
known that different stimuli activate multiple pathways of
cancer cell death, such as apoptosis, necroptosis, autophagy,
ferroptosis, and pyroptotic cell death.125–127 From an

Fig. 4 Development and progression of cancer immunotherapeutic strategies. The first-generation of cancer immunotherapy, including but
not limited to immunostimulatory cytokines, aimed to generally activate the immune system, so as to promote a concomitant antitumor
response. The second-generation of cancer immunotherapy, including but not limited to ICP inhibitors, ICD inducers and CAR-T cells, aimed to
block specific immunosuppressive molecules, induce specific cellular processes, or target-specific tumor cells, so as to cause a relatively
manageable antitumor response. The third generation of cancer immunotherapy, including but not limited to the co-targeting of ICP and
TIME, aimed to jointly inhibit multiple aspects of negative immune regulation, so as to mount an effective and safe antitumor response
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immunological perspective, immunogenic cell death (ICD) is the
cause of an adaptive immune response elicited by cell-
associated antigens released from dead cells.122,126,128 It has
been verified that the molecular properties of ICD largely
overlap with TIME regulators. Exposure of calreticulin (CALR, an
“eat me” signal), secretion of adenosine triphosphate (ATP, a
“come to me” signal), release of high mobility group box 1
(HMGB1, an “activate you” signal), autocrine production of type I
interferon (IFN I, a “stimulate you” signal), and export of annexin
A1 (a “find me” signal) from dying cancer cells have been
identified as the five key hallmarks of the process of ICD.129

Following the initiation of ICD, secreted ATP favors the
recruitment and activation of APCs by P2RY2 and P2RX7.130

Exported annexin A1 then guides the homing and juxtaposition
of APCs to the dying cells by FPR1.131 Subsequently, exposed
CALR promotes the engulfment of dying cells and antigen
uptake by LRP1.132 Furthermore, released HMGB1 stimulates the
synthesis of pro-inflammatory factors, maturation of APCs and
presentation of tumor antigens by TLR4.133 Finally, autonomous
IFN I increases secretion of CXCL10 and recruitment of T cells to
exert antitumor effects.134,135 Of note, such hallmarks of ICD can
be triggered by multiple cellular stress conditions, including ER
stress-induced CALR exposure, autophagy-induced ATP secre-
tion, secondary necrosis-engendered HMGB1 and annexin A1
release, and stimulation of autonomous IFN I production by
infectious pathogens.130,135–141 Hence, widely applicable indu-
cers of ER stress, autophagy, necroptosis or viral mimicry are
now employed as activators of ICD.142–149

Increasing preclinical and clinical evidence has revealed that a
conventional chemotherapy-induced immune response is prin-
cipally dependent on the induction of ICD.142,143,150,151 Indeed,
pharmacological or genetic suppression of ICD effectors greatly
diminishes the curative effects of anthracycline-based immuno-
genic chemotherapy.133,134,152–157 The core phenotypes and
mechanisms of immunogenic chemotherapy are highly consis-
tent, at least in anthracycline-treated breast cancer, oxaliplatin-
treated colorectal cancer, bortezomib-treated multiple mye-
loma, and imatinib-treated gastrointestinal stromal cancer, in
spite of slight differences in tissue-specificity or drug-precise
pharmacological action.131,158–162 However, since there are also
considerable shortcomings associated with the induction of ICD
for cancer therapy, the combination of ICD inducers and ICP-
targeting drugs may be an optimal counterplan to assist cancer
patients in the future.4,144,163–165 For instance, ICD is triggered in
combination with a number of undesirable immunosuppressive
effects, particularly in anthracycline-based immunogenic che-
motherapy,166 while bona fide immune interventions can, in
certain circumstances, improve treatment efficacy to some
extent. In addition, to neutralize the immunosuppressive effects
and maximize the immunostimulatory function of anti-cancer
drugs, the chemotherapeutic drug gemcitabine has been
combined with ipilimumab in preclinical models,167 and the
BRAF inhibitor dabrafenib and the MEK inhibitor trametinib
have also been used in combination with various ICP-targeting
agents in experimental studies.168 More excitingly, the CDK
inhibitor dinaciclib has recently been confirmed to induce ICD
and enhance anti-PD-1-mediated tumor suppression in an
immunocompetent mouse model.169 Furthermore, local che-
motherapy synergized with CTLA-4 inhibition has been shown
to boost an immune response in mice and patients with
advanced melanoma.170 Several clinical trials have been
launched to evaluate the clinical profile of the synergistic
response of combination therapy with ICD inducers and ICP
blockers (Table 1). This strategy can, at least in principle,
mediate direct destruction of a fraction of cancer cells, while
stimulating short-term immune clearance of the remainder,
while also maintaining long-lasting immune memory to prevent
disease recurrence.

Oncolytic viruses
Over recent years, oncolytic viruses (OVs) have attracted
significant attention as a promising antitumor therapy based on
their capacity for preferential replication in tumor cells, causing
lysis and thus transforming a cold immunosuppressive tumor into
one which is inflamed.171,172 OVs promote an antitumor immune
response via a variety of mechanisms. Firstly, direct killing of
tumoral cells through activation of different cytocidal programs,
including apoptosis, autophagy, necroptosis, and pyroptosis leads
to dissemination of a wide repertoire of both progeny virions and
cellular tumor-associated antigens/neoantigens into the micro-
environment.171–173 In addition, lysed tumor cells disseminate
additional danger-associated molecular patterns and viral
pathogen-associated molecular patterns (PAMPs), which induce
an inflammatory immune response.171–173 The PAMPs consist of
viral RNA, DNA, or proteins that are sensed by pattern recognition
receptors expressed by DCs. As a result of pattern recognition
receptor engagement, activated DCs produce cytokines that are
pro-inflammatory (e.g., TNF-α and IL-12) and antiviral (IFN I: IFN-α
and IFN-β), all of which contribute to tumor antigen cross-
presentation and cytotoxic T-cell priming.171–173 Furthermore, OV-
mediated cancer cell death is characterized by the exposure and/
or release of danger-associated molecular patterns, including ATP,
HMGB1, and CALR, which represent the classical hallmarks of
ICD.171–174 Last but not least, the sensing of PAMPs by tumor cells
triggers an IFN I response, which eventually promotes both NK cell
and cytotoxic T-cell antitumor responses.172,173,175 In 2015, T-VEC
was approved by the FDA as the first oncolytic virus for advanced
melanoma therapy.176 In a phase III randomized clinical trial
(OPTiM) conducted in 436 patients with stage IIIB to IV melanoma,
the response rate was significantly higher in those with T-VEC than
subcutaneous administration of granulocyte-monocyte colony-
stimulating factor alone, demonstrating the capability of T-VEC to
boost an antitumor immune response.177 Based on these results, a
clinical trial combining T-VEC and ipilimumab was conducted in
198 patients with advanced melanoma.178 This approach resulted
in a significantly increased response rate and prolonged survival
compared with the administration of ipilimumab alone.178 The
combination of ICIs and OVs represents a rational design
methodology for immunotherapy. As immunologically “cold”
tumors with low mutational burden and inhibited immune cell
infiltration may not respond to ICIs, direct oncolysis mediated by
armed virotherapy will generate tumor antigens, danger-
associated molecular patterns, and PAMPs to prime a T-cell
response and reshape the TIME. Thus, this approach has the
potential to overcome the primary or adaptive resistance to ICI
monotherapies experienced in the clinic (Table 1).

Cytokine therapy
Cytokines released by various cell types in the TIME in response to
cellular stress conditions play a critical role in modulating the
influx and expansion of leukocytes. The secreted cytokines enable
the rapid propagation of immune signaling in a complex yet
efficient manner, and thus can generate a potent and coordinated
immune response to target antigens.179 The growing interest in
harnessing cytokines in the TIME to boost antitumor immunity has
been accompanied by intensified efforts to characterize cytokines
and exploit their vast signaling networks to develop cancer
treatments.179,180 As a result, numerous clinical trials have been
conducted to investigate the potential antitumor activity of a
number of recombinant cytokines. IL-2 was approved as the first
immunotherapy for patients with advanced renal cell carcinoma
and metastatic melanoma,181 followed by the approval of IFN-α
for renal cell leukemia, non-Hodgkin lymphoma and mela-
noma.179,180 However, these cytokine strategies failed to live up
to expectations raised by the results obtained in preclinical
models, with clinical investigations revealing the narrow ther-
apeutic windows and modest antitumor efficacy of such
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treatments, thus limiting their clinical application as a mono-
therapy for cancer patients.172,174,182 Second-generation, IL-2-
based compounds developed with improved pharmacodynamic
properties have displayed promising response rates when
combined with ICP therapy.183,184 In a single-arm, phase I dose-
escalation trial, bempegaldesleukin, a CD122-preferential IL-2
pathway agonist, was evaluated in combination with nivolumab
in 38 patients with advanced solid tumors (melanoma, renal cell
carcinoma, and NSCLC). The total objective response rate was
59.5% (22/37), with seven complete responses (18.9%), in patients
with poor prognostic risk factors for response to PD-1/PD-L1
blockade, demonstrating promising therapeutic potential of this
novel generation of IL-2 targeted therapy (Table 1).184

IL-12 is mainly produced by activated antigen-presenting cells
bridging the innate and adaptive immune systems. In preclinical
models, the combination of IL-12 and chemotherapy eliminated
intratumoral Treg cells and induced the appearance of inflamma-
tory myeloid cells in xenograft mouse models.185 However, in early
clinical trials, because of the short half-life of the recombinant
protein, high and multiple doses were usually required, which
induced dose-related adverse events.186 In a phase II clinical trial,
electroporation of Intratumoral Tavo (plasmid encoding IL-12) was
well tolerated and demonstrated strong antitumor activity, which
led to a systemic immune response in advanced melanoma
patients.187 Granulocyte-macrophage colony-stimulating factor
(GM-CSF) is a cytokine that promotes the expansion and activation
of dendritic cells for antigen presentation, and activates T- and
B-lymphocyte functions. In phase 3 adjuvant trials for melanoma
and lymphoma, systemic administration of GM-CSF demonstrated
antitumor effects.188 However, previous reports have also shown
that GM-CSF may have negative effects on an immune response
as it may induce accumulation of MDSCs, which promote
tumor growth. In a phase III clinical trial, the ipilimumab plus
sargramostim (GM-SCF) group achieved superior overall and
progression-free survival outcomes than ipilimumab alone in
patients with metastatic melanoma.189 Generally, cytokines are
promising and complex TIME targets. The cytokine-based therapy
may help overcome the primary and acquired resistance of ICBs
and maximize the clinical benefit in a wide range of patients due
to its capacity to promote immune cell infiltration and activation
of the lymphocyte fraction.

Antiangiogenic therapy
As a hallmark of TIME in a variety of malignancies, the vascular
abnormalities of tumors are significantly correlated with immune
suppression and tumor cell evasion. Vascular endothelial growth
factor (VEGF) and angiopoietin (ANG2) play important roles in
regulating tumor angiogenesis. Firstly, VEGF promotes immuno-
suppression as poor perfusion results in abnormal vascular
restricted drug delivery and immune cells infiltration. Moreover,
hypoxia and the low pH tumor microenvironment modulate the
activity of immune cells. In addition, VEGF and ANG2 can also alter
the expression levels of adhesion molecules on endothelial cells
that impair the trafficking of immune cells from vessels to TIME.190

Furthermore, increased VEGF and ANG2 also result in the
recruitment and proliferation of immunosuppressive cells, includ-
ing but not limited to Treg cells, MDSCs, and TAMs.
Antiangiogenic therapy is among the most promising treat-

ments for a variety of malignancies due to its ability to induce
durable tumor regression by starving the tumor of blood and
nutrient supplies. In addition to its ability to suppress sprouting
angiogenesis and delay tumor growth, previous studies have
shown that administration of antiangiogenic drugs also leads to
tumoral vascular normalization, including upregulation of the
leukocyte adhesion molecules (intercellular adhesion molecule 1
and vascular cell adhesion molecule 1), as well as enhancement of
blood perfusion and oxygen levels in the TIME. These changes
result in increased T-cell infiltration and eventually convert anTa
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immunosuppressive microenvironment into one, which is immu-
nosupportive.191–193 Therefore, a number of scientists have
suggested that the use of ICBs during the window of “vascular
normalization” may result in superior clinical outcomes. In a
preclinical breast cancer model, targeting the tumor vasculature
resulted in a more homogeneous distribution of functional tumor
vessels.194 In addition, administration of a low dose of an antibody
targeting VEGFR2 converted tumor-associated macrophages from
an immune suppressive M2-like phenotype toward an immune
stimulatory M1-like phenotype that can boost CD4+ and CD8+

T-cell tumor infiltration.194 Moreover, preclinical data indicated
that immunotherapy combined with anti-VEGF antibody resulted
in a significant increase in treatment efficacy compared with
immunotherapy alone.191,195 The results of a phase III trial
demonstrated the benefit of such combination treatment for
patients with advanced-stage renal cell carcinoma (RCC).196 In
HCC, a phase III trial showed that atezolizumab combined with
bevacizumab resulted in better overall and progression-free
survival outcomes than sorafenib.197 In other clinic trials,
combining antiangiogenic therapy with ICIs has displayed
promising antitumor activity with an acceptable safety profile in
patients with gastric cancer, melanoma, and non-small-cell lung
cancer (Table 1).175,198–201 These results from both preclinical and
retrospective clinical studies have demonstrated that vascular
normalization induced by targeting the VEGF pathway improved
the effectiveness of ICBs. However, over time, a tumor may again
switch back to a hypoxic environment and escape from this
combination therapy. The underlying mechanism remains incom-
pletely understood and there is still an urgent need to optimize
the dosage, duration, and sequence of administration of ICBs and
antiangiogenic agents for this combination treatment.

Targeting CAFs and the extracellular matrix
CAFs and the extracellular matrix play critical roles in the
development and maintenance of an immunosuppressive micro-
environment. Firstly, CAFs have been shown to recruit Treg cells,
MDSCs and TAMs into tumor environment in varying malignan-
cies, which promote the formation of an immunosuppressive
milieu.202–204 In addition, accumulating evidence also suggests
that CAFs may reprogram infiltrated immune cells toward a
tumor-promoting function205,206 (Table 2). Moreover, the exces-
sive deposition of collagen due to activation of CAFs may result in

formation of scar-like tissue, especially in pancreatic cancer, which
may be utilized by tumor cells as a physical barrier to prevent
T-cell infiltration into a tumor.207 Therefore, co-targeting CAFs may
improve the efficacy of immunotherapy due to its role in TIME.
However, depilation of either FAP+ or α-SMA+ cell populations has
resulted in severe systematic problems in preclinical models,
suggesting that these fibroblasts have important physical function
as both FAP and α-SMA are not expressed exclusively in CAFs.
Therefore, targeting the signaling pathway critical for CAF
activation may be more realistic. The TGFβ signaling pathway
has been shown to play an important role in the proliferation and
activation of CAFs and the suppression of CD8+ T-cell recruitment
to the tumor in addition to inhibition of their function.208

Inhibition of the TGFβ signaling pathway in CAFs has been found
to result in reduced collagen I secretion, resulting in reduced
extracellular matrix stiffness.209 Previous studies have shown that
tumor resistance to ICP-targeting therapy was associated with a
TGFβ signaling signature in fibroblasts.208,210 Combining
TGFβ-blockade with anti-PD-L1 antibodies has reduced TGFβ
signaling in stromal cells, facilitated T-cell infiltration, and
provoked vigorous antitumor immunity and tumor regression in
a mouse model.210 Fibroblast activation protein-positive CAFs are
the primary source of CXCL12 in pancreatic cancer. Combining
CXCL12-targeted therapy with anti-PD-L1 immunotherapy was
shown to result in a synergistic effect in pancreatic cancer.211

Effective stromal modulation was also demonstrated by the
administration of a polymeric micelle-based nano-formulation
encoding liver Hedgehog inhibitor and a chemotherapy drug
(M-CPA/PTX). This combination modulated the pancreatic cancer
stroma by increasing intratumoral vascular density. When ICP
blockade and an anti-PD-1 antibody was included in this
combination, it promoted tumor infiltration of cytotoxic CD8+

T cells that prolonged survival in a mouse model of pancreatic
cancer.212 Taken together, CAF has become an attractive target for
combination immunotherapy due to its essential role in mediating
TIME. However, current targeting therapy seems a double-edged
sword as neither these targeted molecules nor cytokines can
be exclusively attributed to CAFs. Highly advanced nanoparticle
delivering systems or other approaches may help solve these
problems, which only the future will reveal.

CONCLUSIONS
In conclusion, TIME regulators are promising cancer immunother-
apeutic targets, particularly for solid tumors. Of note, TIME is an
interesting but largely unexploited field. So far, there is less clinical
evidence for a TIME-targeted approach compared with antibodies
against PD-1/PD-L1 or CTLA-4. Many studies of the TIME are based
on preclinical mouse models or quite small patient cohorts.
Studies of larger patient cohorts have mostly investigated
melanoma. In other words, the presented literature does not
sufficiently establish that the TIME is the major explanation for the
failure of cancer immunotherapy in humans or that new drugs
modulating TIME could overcome this limitation. To further solve
the complexity of TIME (including the heterogeneity of tumors),
investigations across different patient populations and cancer
types at both single cellular and molecular levels may provide
practicable and precise solutions for wider clinical application,
particularly for improvements in the therapeutic efficacy of
targeting TIME regulators in addition to its combination with
immune checkpoint inhibitors.
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