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ADVANTAGES OF USING UNWEIGHTED APPROXIMATION ERROR MEASURES FOR
MODEL FIT ASSESSMENT

Dirk Lubbe
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Fit indices are highly frequently used for assessing the goodness of fit of latent variable models. Most
prominent fit indices, such as the root-mean-square error of approximation (RMSEA) or the comparative
fit index (CFI), are based on a noncentrality parameter estimate derived from the model fit statistic. While a
noncentrality parameter estimate is well suited for quantifying the amount of systematic error, the complex
weighting function involved in its calculation makes indices derived from it challenging to interpret.
Moreover, noncentrality-parameter-based fit indices yield systematically different values, depending on
the indicators’ level of measurement. For instance, RMSEA and CFI yield more favorable fit indices
for models with categorical as compared to metric variables under otherwise identical conditions. In the
present article, approaches for obtaining an approximation discrepancy estimate that is independent from
any specific weighting function are considered. From these unweighted approximation error estimates, fit
indices analogous to RMSEA and CFI are calculated and their finite sample properties are investigated
using simulation studies. The results illustrate that the new fit indices consistently estimate their true value
which, in contrast to other fit indices, is the same value for metric and categorical variables. Advantages
with respect to interpretability are discussed and cutoff criteria for the new indices are considered.
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1. Introduction

Assessing goodness of fit is an essential part of statistical modeling. Identifying systematic
error and quantifying its size are important, because if a model does not fit well, parameter
estimates may be considerably biased and, consequently, conclusions based on them may be
erroneous (Browne & Cudeck, 1992; Bollen, 1989) .

As is well known, systematic errors are common in parsimonious statistical models in the
social, educational, and behavioral sciences. Consequently, model fit is frequently evaluated using
fit indices, which help to assess the size of systematic errors and to classify whether the fit may
be considered as good, acceptable, or poor. Examples for commonly used fit indices are the
Root-Mean-Square Error of Approximation (Steiger & Lind, 1980) and the Comparative Fit
Index(CFI, Bentler, 1990).

Most fit indices are defined through test statistics, whereby the latter are frequently assumed
to follow either a central or a noncentral χ2-distribution (Yuan, 2005) . The assumption of a spe-
cific distribution is crucial for distinguishing between random (estimation) error and systematic
(approximation) error (e.g., Steiger & Lind, 1980; Steiger et al., 1985). Specifically, estimation
error is the randomdeviation of an estimate from its parameter, which depends on the specific sam-
ple. The approximation error is a fixed, nonstochastic quantity, which characterizes the systematic
deviation between true parameters and their limiting approximation by the model.
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If there is no systematic error, that is, if the model fits the data exactly, test statistic T is
assumed to asymptotically follow a central χ2-distribution, having an expected value equal to the
model’s degrees of freedom (df). If there is systematic error, T is assumed to asymptotically follow
a noncentral χ2-distribution, with E(T ) = df + λ, in which λ is the noncentrality parameter.
Because of the additive contribution of df and λ as well as the resulting increase by the latter in
case of systematic error, the noncentrality parameter is a theoretically sound misfit quantity. A
simple point estimate can be obtained as

λ̂ = T − df. (1)

While the noncentrality parameter is well suited for quantifying systematic error, its specific
value is complex to interpret. For making sense of it, the specific manner in which T is obtained
needs to be taken into account. More specifically, it needs to be considered what determines the
scaling of T and, therefore, the scaling of λ.

In the context of covariance-structuremodels, T can be obtained using the normal theorymax-
imum likelihood (ML) discrepancy (Jöreskog, 1969) , or a (weighted) least-square discrepancy,
that is

TLS = n · (s − σ̂ )′W(s − σ̂ ), (2)

in which σ̂ is a vector of model implied covariances, s is a vector of corresponding sample
covariances, and W is a weight matrix.

There are several candidates for W for which T (depending on distributional assumptions)
asymptotically follows a χ2-distribution. Under normality assumptions, the generalized least
squares (GLS) discrepancy can be used. It can be written as

W = 1/2 · D′ (S−1 ⊗ S−1
)
D,

where D is a duplicationmatrix (e.g., Browne&Arminger, 1995) and S is the variables’ covariance
matrix. This discrepancy function has the same solution as the ML discrepancy, but a different
minimum. If instead the inverted asymptotic variance-covariance-matrix of the elements of s
is inserted for W , the asymptotically distribution free (ADF) discrepancy function is obtained
(e.g., Browne, 1982). Other candidates for W , such as the identity matrix, which is used for
obtaining the unweighted least squares (ULS) discrepancy, do usually not yield an approximately
χ2-distributed statistic.

If an appropriate weighting is selected, then the expected contributions of deviations per df
asymptotically follow mutually independent normal distributions having a variance of 1.0 and
expectation μ j , with j = 1, · · · , df. If there is no systematic difference between s and σ̂ , the
expected values of μ j are 0.0. Accordingly, the square sum of expected values follows a central
χ2-distribution. In case of systematic error, that is, if μ j �= 0.0, the square sum’s expected value
is increased by λ = ∑

j μ
2
j .

An important feature of this weighting is that specific values of μ j directly depend on the
standardization of variances of random errors. In other words, the scaling of λ is determined
by sampling properties. It follows that different λ-values are obtained depending on sample size
(which can be easily controlled for) as well as the estimators’ variances.

However, why should the size of nonstochastic quantity λ depend on the expected variance
of random errors? In fact, relying on such a scaling entails potential limitations. These limitations
relate to the (i) interpretability and (i i) universality of using λ for quantifying systematic error.
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For a simple illustration of the dependency between sampling properties and the size of λ,
consider the following example. Amodel assumes a fixed correlation of zero, that is, σ̂ = 0.0. The
sample correlation’s expected value, however, is E(s) = 0.1. The specific value of λ (using Eq.
(2)), depends on sample size n as well as the specific asymptotic variance of the sample estimate.

Consider that n is either 1000 or 10, 000, and that either the variables’ product-moment
correlations (pmc) or the tetrachoric correlations (tc) are analyzed.1 The resulting estimates for
λ̂ are as follows: using pmc and n = 1000, we obtain λ̂ = 9.97, and for n = 10, 000, λ̂ = 99.97.
For tc we obtain λ̂ = 4.11 and λ̂ = 41.09 for n = 1000 and n = 10, 000 respectively.

As is well known, the impact of differing sample size on the noncentrality parameter can be
readily accounted for, dividing it by n. The RMSEA, which gives the square root of the average
noncentrality parameter per observation and degree of freedom, may be written as

RMSEA =
√√√√max

(
λ̂

n · df , 0
)

. (3)

Accordingly, irrespective of sample size, RMSEA values based on product-moment corre-
lations yield a value of roughly 0.1. However, for tc, which have larger variances, the RMSEA
is 0.064. Note that widely accepted conventions consider RMSEA values smaller than 0.05 as
indicating a good, values between 0.05 and 0.08 as an acceptable, and values larger than 0.10 as a
poor model fit (e.g., Hu & Bentler, 1998). Thus, the fit of the tc-based model would be classified
as acceptable and the fit of the pmc-based model as poor, although both models approximate the
same structure.

Clearly, systematic variance differences between types of correlation coefficients are not
accounted for by the RMSEA—nor by any other noncentrality parameter based fit index. This
feature of fit indices, particularly their dependence on the variables’ level-of-measurement, has
been reported by several authors (e.g., Maydeu-Olivares & Joe, 2014;Monroe&Cai, 2015; Xia &
Yang, 2018; Savalei, 2021). Specifically, previous research indicates that common fit indices, such
as RMSEA, CFI and TLI (Tucker-Lewis Index), generally yield overly optimistic fit assessments
when analyzing categorical as compared to metric variables.

Obviously, the source of the systematic difference in fit indices is the weighting of discrep-
ancies, which depends on the variances of the respective type of estimate. Thus, any approach for
resolving the outlined limitation would need to address the impact of the random-error-related
weighting.

A previous approach that resolves one of the two limiting aspects of this weighting has
been proposed by Savalei (2021). While the general impact of random-error-related scaling is
left unaltered, the difference in fit indices for metric and categorical data analyses is controlled
for. Specifically, this adjustment rescales RMSEA-values pertaining to categorical data models
in a way, that they approximate the expected value that would have been obtained analyzing
metric data. This approach has the advantage that conventional cut-off criteria for the RMSEA
can be used for categorical data as well. However, the scaling related attributes with respect to
the interpretability of specific values are not addresses in this way.

Another approach, which is pursued in more detail in the following, aims to eliminate the
impact of random-error-related scaling entirely. Fit indices that yield an unweighted discrep-
ancy measure are already available. Examples are the standardized root-mean-square residual
(SRMR, Jöreskog & Sörbom, 1988) and the correlation root-mean-squared residual (CRMR,
Bollen, 1989). However, these measures do not distinguish between random and systematic error
and, therefore, overestimate their population parameters. Fortunately, this limitation has been

1For the tetrachoric correlation, we assume that variables have been dichotomized at their median.
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addressed by Maydeu-Olivares (2017), who proposed an estimation approach for the population
parameters of SRMR and CRMR. This proposal will be revisited below. A remaining limiting
property of these indices, however, is that they merely address average discrepancies irrespective
the model’s relative complexity.

The present article proposes a more general approach than the previous fit index adjustments.
Specifically, it considers ways in which a “general-purpose” unweighted approximation error
estimate can be obtained. Based on this estimate, different specific fit indices can be calculated.
In contrast to Savalei (2021), the new indices fully eliminate the random-error-related scaling,
while similarly maintaining the equality of fit indices for metric and categorical data models.
Consequently, by eliminating the specific scaling, individual fit index values have a comparably
simple interpretation that can be directly linked to the size of covariance residuals. In contrast
to the population estimates of SRMR and CRMR, as proposed by Maydeu-Olivares (2017), fit
indices that contain an unweighted approximation error offer more differentiated options for
fit assessment. Particularly, such indices can (a) be implemented into fit indices that take the
model’s complexity into account and (b) they can be used to assess absolute as well as relative fit.
Specifically, absolute fit can be assessed by modifying the RMSEA with the new approximation
error estimate, and relative fit can be considered by modifying the CFI.

2. Unweighted Approximation Error Estimate

The unweighted approximation error λu can be defined as the sum of squared discrepancies
due to approximation errors. It may be expressed as the population value of the unweighted least
square (ULS) discrepancy, that is

λu = n · (σ 0 − σ )′(σ 0 − σ ), (4)

in which σ 0 and σ are the corresponding population covariances of s and σ̂ respectively. Note
that the ULS discrepancy is merely a means to expressing the unweighted approximation error.
It is not involved in model fitting, which can be performed by an entirely different function.

It is already known from other standardized fit indices, such as SRMR and CRMR, that it
is only sensible to report a unit-weighted fit measure, if variables are scaled identically. Thus,
the following considerations assume that a model’s correlation structure is used for calculating
λu. Consequently, the unweighted approximation error equals n-times the squared deviations
between the true population correlations and their limiting approximation by the model. Note
that, similar to SRMR and CRMR, model estimation does not necessarily need to be based on
sample correlations.

Although λu may be considered as a noncentrality parameter pertaining to the ULS dis-
crepancy, it cannot be simply approximated using Eq. (1). Instead, there are two other general
approaches inwhich a suitable estimatemay be obtained. First, an adjusted estimate for the degrees
of freedom df can be calculated, which can be inserted into (1). Second, a scaling constant that
accounts for the relative amount of systematic error in relation to overall error can be used to
rescale the ULS sample discrepancy.

For implementing the first general approach, there are different options. For one, standard
theory in connection with robust adjustments of test statistics based on oversimplified least-square
estimation can be used as rationale (e.g., Muthen, 1997). Also, the upper mentioned approach of
(Maydeu-Olivares, 2017) can be adapted. While both options are closely related, they have few
distinct features.

Approach (1.1). In connection with ULS estimation, there are robust corrections available,
which can be used for obtaining a model test statistic that approximates the expected value and
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variance of the χ2-distribution for the respective df of the model ( e.g., Satorra, 1992). While this
approach is commonly used for correcting model test statistics, it can also be used to approximate
Eq. (4).

Amean-variance adjustedULS test statistic (usually abbreviated as ULSMV) can be obtained
based on an estimate of the correlation estimates’ covariance matrix � and the Jacobian matrix
containing the derivatives of model implied correlations with respect to the model parameters �.
A more detailed description of these matrices in connection with robust adjustments can be found
in Muthen (1997).

For ULS, the adjusted test statistic is calculated as

Tad j = TULS
a

,

in which

a = tr
[
U (1.1)�

]
/d∗,

with

U (1.1) = I − �
(
�′�

)−1
�′,

and

d∗ = tr
[
U (1.1)�

]2
tr

[
(U (1.1)�)2

] .

From the adjusted test statistic Tad j and degrees of freedom d∗ a noncentrality parameter
estimate can be obtained by inserting these values into Eq. (1). The unweighted discrepancy
function can then be obtained by rescaling the value using a. Simplifying the resulting expression
yields

λ̂u(1.1) = TULS − tr
[
U (1.1)�

]
. (5)

Approach (1.2). Another unweighted approximation error estimate can be obtained based
on a minor reformulation of the approach of Maydeu-Olivares (2017), which was originally
designed to approximate the population value of SRMRandCRMR.Specifically, the noncentrality
parameter estimate can be calculated as

λ̂u(1.2) = TULS − n · tr
(
�̂e

)
, (6)

in which �̂e is the variance-covariance matrix of the (correlation) residuals, that is

�̂e = U (1.2)�U ′
(1.2), (7)

with

U (1.2) = I − �
(
�′W�

)−1
�′W ,
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in which W is the weight matrix of the GLS discrepancy function and � as well as � are defined
as above.

Clearly, approaches (1.1) and (1.2) are closely related. The central difference is that approach
(1.2) additionally includes W . While this is important for estimating the correlations’ variance-
covariancematrix, the immediate impact for obtaining an appropriate estimate ofλu is not obvious.

Approaches (1.1) and (1.2) solely depend on (i) the sample correlation, (i i) an estimation
of their variance-covariance matrix, and (i i i) the parameter estimates of a model. The specific
discrepancy function used for fitting the model’s parameter estimates is only relevant for (i i i).
However, because of the equivalence between ML and GLS, approach (1.2) might be particularly
suited in connection with ML parameter estimates.

Approach (2). The second approach is based on the assumption that (i) sources of random
and systematic error are independent and that (i i) the test statistic’s expected value results from
the additive contribution of λ and df. If both assumptions are satisfied, then the corresponding test
statistic asymptotically follows a (non-)central χ2-distribution. It then follows that the relative
proportion of variances attributed to systematic error in relation to the total error can be expressed
as

̂ADR = λ̂

T
, (8)

which is henceforth referred to as Approximation Discrepancy Ratio (ADR). TheML discrepancy
function is a viable candidate for calculating ADR, because it yields a close approximation of
the noncentral χ2-distribution under various misspecification scenarios (e.g., Curranet al., 2002).
However, while any discrepancy function yielding the above properties is suited for obtaining T ,
in practice, the specific choice might have a considerable impact on the results, because of their
notable performance differences (e.g., Olsson et al., 2004; Shi & Maydeu-Olivares, 2020)

The result of (8) can then be used to weigh test statistic TULS, that is

λ̂u(2) = ̂ADR · TULS, (9)

which yields the proportion of TULS that is attributed to systematic error. It is important to notice,
that TULS and T (used in the calculation of ADR) originate from different discrepancy functions.
In this way, the desired scaling of TULS is combined with an appropriate measure of the relative
contribution of systematic error. It is easy to see that, if the same discrepancy function would be
used for both quantities, the trivial result λ̂ = λ̂/T · T would be obtained.

The second approach has the advantage that it is (a) computationally rather simple and (b)
that the result of any discrepancy function can be used without requiring any specific adaption,
as long as the corresponding distributional assumptions are satisfied. However, the inclusion of
the results of a second discrepancy function make this approach conceptually more complex and
it is difficult to say under which conditions the upper mentioned assumptions are met.

Considering property (b), approach (2) is similarly applicable to metric as well as categorical
data. In order to apply approaches (1.1) and (1.2) to categorical data models (for instance based
on the variables’ polychoric correlations), matrices �, �, and W need to be selected accordingly.

Another interesting feature of approach (2) is that it can be calculated retrospectively without
having the original data, as long as themodel fit test statistic aswell as the square sumof correlation
residuals are available. The size of the latter may also be inferred from the CRMR.

Although approaches (1) and (2) proceed differently, there is one direct connection. If
approach (2) is used in connection with ULSMV estimation, its yields the same result as approach
(1.1).
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New Fit Indices

Based on the unweighted approximation error, new fit indices can be calculated by substituting the
noncentrality parameter in their well-established counterparts. An unweightedRoot-Mean-Square
Error of Approximation RMSEAu can be calculated analogous to equation (3), yielding

RMSEAu =
√√√√max

(
λ̂u

n · df , 0
)

. (10)

For correlation structure models, RMSEAu yields the average absolute correlation residual due
to approximation error per df. For instance, RMSEAu = 0.05 denotes that the average absolute
correlation residual per df due to systematic error is 0.05. Clearly, this interpretation is rather
simple and intuitive as compared to that of the original RMSEA, for which the scaling of the
noncentrality parameter needs to be considered.

In order to obtain an asymptotically unbiased estimate for the population value of equation
(10), minor adjustments are required. For approaches (1.1) and (1.2) a correction constant can be
obtained as follows, which is derived using Taylor expansions of moments of functions of random
variables, which is outlined in more detail for approach (2).

For approach (1.2) Maydeu-Olivares (2017) has given the following adjustment. For a sim-
plified notation, let

FULS = TULS/n

Then, the estimate of Eq. (10) based on approach (1.2) is

RMSEAu(1.2) = 1

k(1.2)

√√√√√max

⎛
⎝ FULS − tr

(
�̂e

)

df
, 0

⎞
⎠

in which k is the correction constant, that is

k(1.2) = 1 − σ 2
F

4 · F2
ULS

,

with

σ 2
F = 2 · tr(n−1�̂e) + 4 · (s − σ̂ )′(n−1�̂e)(s − σ̂ )

The same approach can be used for approach (1.1), replacing �̂e with n−1tr
[
U (1.1)�

]
.

For approach (2), a bias corrected RMSEAu estimate can be obtained using

RMSEAu(2) = 1

k(2)

√
max

(
ADR · FULS

df
, 0

)
,
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with

k(2) = 1 − σ 2
F

8 · F2
ULS

.

The correction factor as well as standard errors of f (FULS) = RMSEAu(2) can also be
estimated using the Delta method (e.g., Wolter, 1985). Specifically, expected value and variance
are

E [ f (FULS)] = f (FULS) + f ′′(FULS)
2

σ 2
F

=
√
ADR · FULS

d
− 1

8

√
ADR

F3
ULS · d σ 2

F

=
√
ADR · FULS

d

(
1 − σ 2

F

8 · F2
ULS

)

and

Var [ f (FULS)] = [
f ′(FULS)

]2
σ 2
F

= σ 2
F · ADR

4 · FULS · d ,

given that

f ′(FULS) =
√

ADR

4 · FULS · d

and

f ′′(FULS) = −
√

ADR

16 · F3
ULS · d

RMSEA values are commonly reported together with their 90% confidence interval. Assum-
ing that the sampling distribution of the indices approximately follows a normal distribution in
large samples, the interval may be calculated as

RMSEAu ± z1−α/2 · se,

in which se is the asymptotic standard error of RMSE Au .
For approach (1.2), the asymptotic standard error proposed byMaydeu-Olivares (2017) can be

used with one minor modification, replacing the number of nonredundant covariances/correlation
with df. This yields

se(1) =
√√√√ σ 2

F

k2(1) · 4 · df · FULS
.
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For approach (2), a similar approach can be used. Carrying the 1/k(2) scaling forward, the
asymptotic standard error is otherwise identical to the square root of expression of Var [ f (FULS)],
given above, yielding

se(2) =
√√√√ σ 2

F · ADR
k2(2) · 4 · FULS · df .

An unweighted version of the Comparative Fit Index (CFI) can be obtained in a similar
manner. The CFI considers the relation between the noncentrality parameter of the fitted model
to that of a less complex base model (usually an independence model). Again, the noncentrality
parameter is replaced by λ̂u. Specifically, the CFIu may be written as

CFIu = 1 −
max

(
λ̂u, 0

)

max
(
λ̂u, λ̂B·u

) , (11)

in which λ̂B·u is the unweighted approximation error estimate for the base model. Because esti-
mates of λu are not systematically biased, no additional adjustments are required.

The interpretation of CFIu may also be considered as somewhat simpler than that pertaining
to the original CFI. Specifically, CFIu expresses the size of systematic error variance of the base
model relative to that of the fitted model. For instance, CFIu = 0.90 denotes that the squared
correlation residuals of a specific model are 90% smaller than those of the baseline model.

The present considerations are restricted to RMSEA and CFI, because they are prototypical
indices which include a noncentrality parameter estimate in their original formulation. Other
relative fit indices that use a similar expression as the CFI, such as the Tucker-Lewis Index (TLI)
or Normed Fit Index (NFI), lack this property and are, therefore, not suitable for the current
purpose.

While specific values of RMSEAu and CFIu have a simple interpretation that can be directly
connected to the absolute or squared correlation residuals, it is not obvious which values might
indicate a good, acceptable or poor fit. There are two option for identifying suitable cutoff values
for the new indices. First, by expert consensus based on empirical examples, which is the approach
with which cutoff values for most fit indices have been established (e.g., Hu & Bentler, 1998).
Second, by comparing established and new indices. If they are in a relatively simple relation,
this may provide sufficient information to establish suitable cutoffs. While the first approach is
beyond the scope of this article, the second approach will be pursued in the next section using
simulation studies.

To assist with the calculation of the new indices, the supplementary materials to this
article contain a data example (’example_data.txt’) as well as the corresponding R-code
(’R_example.pdf’) for calculating RMSEAu and CFIu based on approaches (1.1), (1.2), and (2).
The data is metric and contains 4 variables and 1000 cases. The corresponding analysis assumes
one latent variable. The R-code can be also used for evaluating other data sets and models. For
more information, see the instructions in the materials.

Simulation Study

For investigating the properties of the new indices, a simulation study was conducted considering
a set of varying confirmatory factor model structures. These simulations pursue the goals to
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demonstrate (i) that accurate estimates of λu can be obtained in finite samples, (i i) that fit indices
based on the new measure yield identical values for models based on metric and dichotomous
variables for identical model structures, and (i i i) to identify suitable cutoff values for RMSEAu

and CFIu by comparing them to their noncentrality-parameter-based counterparts.

Method

Data were generated based on population correlation matrices �0 for a given q-factorial model
structure. These matrices were calculated from predefined p × q matrices of item loadings K , a
q × q matrix � of factor inter-correlations, and a p × p diagonal matrix � of residuals, that is

�0 = K�K ′ + �.

Factor loadings were chosen in a way that population correlation matrix �0 yielded a pre-
defined ULS-discrepancy from the best approximating correlation matrix implied by the model.
Specifically, loadings were chosen in a way that the true approximation discrepancies yielded pre-
defined target values for each of the simulation settings. This was achieved by numerical optimiza-
tion, iteratively optimizing the population model discrepancy with respect to the fit indices’ target
values based on the model parameters using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm as implemented in the optim-procedure in R. Two target value settings were consid-
ered: (i) RMSEAu = 0.05; CFIu = 0.95 and (i i) RMSEAu = 0.05; CFIu = 0.99.

The source of systematic error was the qth latent variable, which, in addition to the first
q − 1 latent variables, was considered for generating the data, whereas the analysis model only
considered the structure of the first q − 1 latent variables. For introducing additional variability
to the way in which systematic misfit was generated, two different types of loading patterns were
used for the qth latent variable.

For the first type, the qth latent variable had loadings on the first and last indicator pertaining
to each of the prior q∗ = q − 1 latent variables. For instance, for a three-factorial model structure
with overall p = 8 variables, the loading matrix would be

K =
⎛
⎝
k11 k21 k31 k41 0 0 0 0
0 0 0 0 k52 k62 k72 k82
k∗
13 0 0 k∗

43 k∗
53 0 0 k∗

83

⎞
⎠

′
.

For the second type, the qth latent variable had positive loadings on the first half of the indicators
pertaining to each of the prior q∗ latent variables, and negative loadings on the second half.
Consequently, the three-factorial structure with p = 8 variables would be

K =
⎛
⎝
k11 k21 k31 k41 0 0 0 0
0 0 0 0 k52 k62 k27 k82
k∗
13 k∗

23 −k∗
33 −k∗

43 k∗
53 k∗

63 −k∗
73 −k∗

83

⎞
⎠

′
.

The two loading patterns are henceforth referred to as misfit type I and misfit type II.
For the first q∗ latent variables, loadings adhered to a simple structure, that is, each variable

had loadings on one latent variable only. For simplicity, loadings on the first q∗ latent variables
had identical loadings k. Similarly, loadings on the qth latent variable had identical values k∗.
Correlations between the first q∗ factors were set to 0.3 by default. The qth latent variable was
assumed independent from the remaining q − 1 latent variables.
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Table 1.
True loadings for the population models for the different model settings.

q∗ p Misfit type I Misfit type II

CFIu = .95 CFIu = .99 CFIu = .95 CFIu = .99

k k∗ k k∗ k k∗ k k∗

1 8 .588 .216 .883 .216 .339 .760 .866 .412
12 .584 .211 .874 .211 .423 .529 .840 .379

2 8 .537 .217 .807 .216 .519 .525 .797 .517
12 .532 .213 .798 .213 .312 .758 .780 .431
18 .521 .205 .777 .205 .413 .485 .743 .384

3 12 .449 .213 .674 .213 .435 .643 .666 .638
18 .436 .207 .653 .207 .415 .524 .640 .516

Altogether, 56 model settings were considered. In addition to misfit type and target values
for RMSEAu and CFIu , the number of variables p, the number of latent variables q∗, and sample
size n were varied. Specifically, the combinations of p = 8, 12, and 18 and q∗ = 1, 2 and 3 were
considered, omitting the combinations of q∗ = 1 and p = 18 as well as q∗ = 3 and p = 8.
Sample sizes were n = 250 and 1000. The specific values for k and k∗ for the different model
settings, rounded to three decimal places, are given in Table 1.

For each of the 56 settings, 1000 data sets were sampled from a multivariate normal dis-
tribution based on corresponding correlation matrices �0. These correlation matrices were then
analyzed using confirmatory factor analyses based on ML and ULSMV estimation. For compar-
ing fit indices between metric and dichotomous variables, additional dichotomized data sets were
generated from the existing data by splitting metric variables at their mean. The dichotomized
data were analyzed based on their tetrachoric correlation matrices using ULSMV.2

For the analyses based on ML estimation, all approximation error estimates were calculated
using approach (1.1), (1.2), and (2). For the ULSMV analyses, only approaches (1.1) and (1.2)
were included, because of the equivalence of (1.1) and (2) under this specific condition. Finally,
RMSEAu and CFIu based on the different approaches, as well as their noncentrality-parameter-
based counterparts were calculated for each model and averaged within simulation settings.

Results Results pertaining to models using ML and ULSMV estimation are presented separately.
First, the results of metric data analyses with ML estimation are considered. Tables 2 and 3 give
RMSEAu estimates as well as the coverage probabilities of the corresponding 90%-confidence
intervals based on the different approaches for misfit type I and II respectively. Clearly, the
average estimates of RMSEAu are very close to their target values of 0.05 irrespective of the
estimation approach. This holds true across all simulation settings, implying that the unweighted
approximation error estimate performs well if calculated based on multivariate normal indicators
and the ML test statistic. For sample sizes of n = 1000 deviations of the average estimate from
the target value are seldom larger than ±0.001.

While neither type of misfit, nor the complexity of the model appears to have a distinct impact
on the accuracy of average values, approach (2) has a tendency to overestimate the true RMSEAu

value in conditions in which the true CFIu value is 0.99. These are also the conditions, in which
average loadings are distinctly higher than for CFIu = 0.95 (see also Table 1). In such conditions,

2It would have been also viable to analyze the dichotomized data using ML. The present option have been selected
based on conceptual proximity and a compromise of relevance and conciseness.
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Table 2.
Average RMSEAu and RMSEA values as well as 90%-CI coverages of ML confirmatory factor models based on 1000
replications per cell. (Misfit Type I).

Target q∗ p n Appr. (1.1) Appr. (1.2) Appr. (2) Orig.

value Est. CIC Est. CIC Est. CIC Est.

RMSEAu = .05; CFIu = .95 1 8 250 .048 .822 .046 .827 .047 .674 .052
1000 .050 .885 .050 .886 .049 .824 .056

12 250 .049 .817 .047 .830 .045 .678 .053
1000 .050 .854 .050 .856 .048 .804 .053

2 8 250 .049 .820 .046 .829 .050 .726 .057
1000 .050 .902 .050 .904 .050 .878 .061

12 250 .050 .817 .048 .829 .049 .746 .058
1000 .050 .890 .050 .899 .050 .870 .059

18 250 .050 .801 .047 .822 .047 .718 .054
1000 .050 .863 .050 .873 .049 .824 .054

3 12 250 .050 .822 .047 .837 .051 .791 .062
1000 .050 .887 .050 .893 .051 .875 .063

18 250 .051 .784 .048 .821 .050 .762 .059
1000 .050 .879 .050 .890 .050 .870 .059

RMSEAu = .05; CFIu = .99 1 8 250 .050 .849 .048 .863 .047 .760 .075
1000 .050 .887 .050 .891 .049 .855 .077

12 250 .050 .839 .048 .859 .046 .744 .074
1000 .050 .858 .050 .863 .049 .830 .074

2 8 250 .052 .892 .049 .906 .056 .878 .104
1000 .050 .918 .050 .925 .052 .909 .106

12 250 .051 .861 .049 .880 .054 .875 .104
1000 .050 .908 .050 .921 .051 .899 .104

18 250 .051 .833 .048 .852 .052 .888 .095
1000 .050 .867 .050 .880 .051 .875 .095

3 12 250 .051 .861 .048 .883 .056 .855 .146
1000 .051 .889 .050 .908 .052 .878 .147

18 250 .052 .826 .048 .874 .054 .849 .136
1000 .050 .895 .050 .908 .051 .913 .136

Est.: RMSEA estimate and CIC: 90%-confidence interval coverage pertaining to the respective approach;
Orig. Est.: unadjusted RMSEA.

inwhich reproduced correlations are large, absolute deviations between sample andmodel implied
correlations are more strongly weighted by typical discrepancy functions. Accordingly, because
ADR-estimates are obtained based on the ML discrepancy function, this might have caused this
slight overestimation.

Comparing values of the original RMSEA, it becomes obvious that they do not directly
compare to RMSEAu . For more complex models, as well as higher loadings, typical RMSEA
values clearly exceed RMSEAu values. Particularly, in simulation settings with CFIu = 0.99,
this trend can be observed. The reason for this is obvious. Because the elements of �0 are
comparably more extreme than in these settings, standard errors are smaller, and the scaling of the
corresponding (weighted) discrepancy is relatively increased. Thus, the noncentrality parameter
as well as the RMSEA are increased accordingly.

The coverage probabilities of the 90%-confidence interval (CIC) are adequate. Particularly, if
n = 1000, results are close to 90%. For smaller sample sizes, CICs remain somewhat below their
target. Also, confidence intervals coverages pertaining to approaches (1.1) and (1.2) are somewhat
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Table 3.
Average RMSEAu and RMSEA values as well as 90%-CI coverages of ML confirmatory factor models based on 1000
replications per cell. (Misfit Type II).

Target q∗ p n Appr. (1.1) Appr. (1.2) Appr. (2) Orig.

value Est. CIC Est. CIC Est. CIC Est.

RMSEAu = .05; CFIu = .95 1 8 250 .049 .844 .048 .851 .050 .756 .059
1000 .050 .897 .050 .901 .050 .860 .061

12 250 .050 .875 .049 .885 .052 .806 .068
1000 .050 .929 .050 .932 .051 .906 .068

2 8 250 .049 .827 .046 .833 .048 .691 .050
1000 .050 .900 .050 .906 .049 .840 .053

12 250 .050 .826 .047 .849 .049 .746 .057
1000 .050 .895 .050 .904 .050 .865 .058

18 250 .050 .808 .047 .831 .050 .799 .060
1000 .050 .877 .050 .898 .050 .868 .060

3 12 250 .051 .847 .048 .866 .047 .730 .054
1000 .051 .905 .050 .913 .049 .858 .054

18 250 .051 .790 .047 .824 .049 .777 .058
1000 .051 .881 .050 .900 .050 .875 .057

RMSEAu = .05; CFIu = .99 1 8 250 .050 .890 .048 .904 .051 .862 .091
1000 .050 .920 .050 .923 .050 .910 .092

12 250 .050 .919 .048 .927 .053 .906 .113
1000 .050 .954 .050 .959 .051 .936 .112

2 8 250 .053 .871 .048 .900 .053 .879 .086
1000 .051 .922 .050 .927 .051 .925 .087

12 250 .052 .888 .048 .903 .054 .914 .105
1000 .051 .929 .050 .943 .051 .936 .105

18 250 .051 .869 .046 .881 .056 .908 .124
1000 .051 .956 .049 .964 .052 .940 .124

3 12 250 .053 .881 .047 .893 .054 .953 .109
1000 .051 .932 .050 .949 .051 .940 .109

18 250 .053 .858 .045 .865 .055 .966 .132
1000 .051 .948 .049 .951 .052 .966 .132

Est.: RMSEA estimate and CIC: 90%-confidence interval coverage pertaining to the respective approach;
Orig. Est.: unadjusted RMSEA.

closer to 90% than those of approach (2). For bias type II andCFIu = 0.99, all confidence intervals
are somewhat too wide for n = 1000, irrespective of the condition.

Table 4 gives theCFIu estimates based on the different approaches for themetric data analyses
withML estimation. Similar to the RMSEAu estimates, values are consistently close to their target
value.

Comparing the original CFI with CFIu , the former is continuously smaller. For settings in
which CFIu = 0.99, this difference in size increases as the number of latent variables is increased,
whereby CFI-values become consistently smaller with increasing model complexity. This dif-
ference is also likely connected to the different average correlation sizes within the respective
conditions.

Despite the difference in average value, the corresponding unweighted and noncentrality-
parameter-based indices measure very similar aspects of misspecification. This can be verified
by the substantial correlations between RMSEAu and RMSEA (mean= 0.918; range= 0.598 :
0.991) as well as those between CFIu and CFI (mean= 0.913; range= 0.553 : 0.989) within
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Table 4.
Average CFI u and CFI values of ML confirmatory factor models based on 1000 replications per cell.

Target q∗ p n Misfit type I Misfit type II

value (1.1) (1.2) (2) Orig. (1.1) (1.2) (2) Orig.

CFIu = .95 1 8 250 .954 .950 .952 .904 .952 .944 .950 .889
1000 .950 .951 .950 .904 .951 .949 .951 .889

12 250 .953 .951 .951 .888 .952 .938 .949 .832
1000 .951 .952 .951 .891 .950 .947 .950 .835

2 8 250 .955 .944 .951 .906 .956 .954 .953 .927
1000 .951 .948 .950 .904 .952 .953 .952 .927

12 250 .954 .946 .950 .891 .955 .947 .950 .893
1000 .951 .949 .950 .892 .951 .949 .950 .894

18 250 .954 .950 .950 .882 .955 .944 .950 .858
1000 .950 .951 .950 .884 .951 .949 .950 .862

3 12 250 .955 .944 .950 .888 .954 .950 .948 .908
1000 .951 .948 .950 .888 .951 .951 .949 .911

18 250 .952 .944 .947 .875 .954 .947 .948 .878
1000 .951 .949 .950 .880 .951 .950 .949 .883

CFIu = .99 1 8 250 .990 .990 .990 .953 .990 .989 .990 .935
1000 .990 .990 .990 .954 .990 .990 .990 .936

12 250 .991 .991 .990 .940 .991 .988 .990 .874
1000 .990 .990 .990 .941 .990 .989 .990 .876

2 8 250 .990 .987 .989 .941 .991 .988 .989 .958
1000 .990 .989 .990 .940 .990 .989 .990 .959

12 250 .990 .988 .990 .924 .991 .988 .989 .923
1000 .990 .989 .990 .925 .990 .989 .990 .923

18 250 .991 .989 .990 .915 .992 .987 .990 .862
1000 .990 .990 .990 .915 .990 .989 .990 .863

3 12 250 .991 .987 .989 .892 .991 .988 .989 .936
1000 .990 .989 .990 .892 .990 .989 .990 .937

18 250 .990 .988 .989 .877 .992 .988 .989 .883
1000 .990 .989 .990 .878 .990 .989 .990 .883

Orig.: unadjusted CFI.

the individual simulation conditions. Note that all indices within conditions have the same target
values and, therefore, decreased estimate variances lead to smaller correlations if the sample is
large and the model has many parameters.

Second, the simulation results pertaining to the ULSMV analyses for metric as well as
dichotomous variables are considered. The underlying model structures were fully identical for
the two variable types respectively. Adjustments were performed using approach (1.1) and (1.2).

Tables 5 and 6 give RMSEAu and RMSEA for the ULSMV analyses for each of the data
settings separated for misfit type I and II respectively. Results pertaining to CFIu and CFI are
contained in Table 7.

Similar to the ML analyses, RMSEAu and CFIu consistently approach their respective target
values of 0.05 and 0.95/0.99 across conditions. This holds equally true for metric as well as
dichotomous data. Although there are descriptive differences between approaches (1.1) and (1.2.)
within singular condition, there are no notable differences in average performance.

If the sample size is n = 1000, deviations from the true values only rarely exceed ±0.001
for metric data and ±0.002 for dichotomous data. However, if the sample size is small and if
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Table 5.
Average RMSEAu and RMSEA values as well as 90%-CI coverages of ULSMV confirmatory factor models based on
1000 replications per cell. (Misfit Type I).

q∗ p n Metric Dichotomous

Target (1.1) (1.2) orig. (1.1) (1.2) orig.
value Est. CIC Est. CIC Est. Est. CIC Est. CIC Est.

RMSEAu = .05; CFIu = .95 1 8 250 .047 .832 .048 .819 .054 .054 .691 .043 .705 .029
1000 .050 .880 .050 .876 .059 .049 .723 .050 .863 .035

12 250 .048 .841 .049 .825 .055 .049 .541 .047 .625 .031
1000 .050 .872 .050 .868 .059 .049 .707 .050 .822 .035

2 8 250 .045 .824 .048 .815 .050 .056 .700 .038 .881 .028
1000 .050 .895 .050 .888 .055 .048 .708 .048 .856 .033

12 250 .047 .813 .050 .786 .051 .048 .546 .042 .545 .030
1000 .050 .889 .050 .883 .054 .049 .717 .049 .844 .034

18 250 .047 .833 .050 .791 .048 .044 .464 .045 .409 .029
1000 .050 .890 .050 .880 .051 .048 .720 .049 .825 .033

3 12 250 .045 .820 .049 .784 .051 .048 .543 .039 .522 .030
1000 .049 .894 .050 .881 .055 .048 .727 .048 .836 .034

18 250 .047 .820 .050 .765 .048 .044 .448 .042 .344 .029
1000 .049 .870 .050 .848 .052 .048 .687 .048 .800 .033

RMSEAu = .05; CFIu = .99 1 8 250 .048 .871 .050 .848 .079 .051 .703 .045 .687 .038
1000 .050 .882 .050 .878 .083 .049 .778 .050 .880 .044

12 250 .048 .858 .050 .829 .080 .047 .604 .049 .605 .042
1000 .050 .886 .050 .877 .085 .049 .772 .050 .832 .045

2 8 250 .047 .898 .050 .877 .065 .051 .700 .040 .723 .034
1000 .050 .914 .050 .900 .068 .048 .776 .048 .887 .038

12 250 .048 .888 .051 .835 .063 .044 .584 .043 .589 .034
1000 .050 .908 .050 .895 .064 .047 .774 .049 .868 .037

18 250 .047 .893 .050 .820 .057 .040 .540 .044 .362 .032
1000 .049 .901 .050 .886 .059 .045 .739 .049 .833 .035

3 12 250 .046 .896 .050 .808 .073 .044 .615 .041 .559 .038
1000 .049 .909 .050 .881 .075 .047 .807 .048 .873 .040

18 250 .047 .889 .050 .786 .065 .040 .589 .044 .292 .035
1000 .049 .895 .050 .868 .067 .046 .789 .049 .838 .038

Est.: RMSEA estimate and CIC: 90%-confidence interval coverage pertaining to the respective approach;
Orig. Est.: unadjusted RMSEA.

many factors are modeled based on comparably few variables, fit indices have a notable bias. In
these cases, RMSEAu values are underestimated and CFIu values are overestimated. Specifically,
RMSEAu underestimated its target value by up to 0.010 points and CFIu are increased by up to
0.013 points if the target value is 0.95 and 0.003 points if the target value is 0.99. Interestingly,
these effects do not differ in strength between metric and dichotomous data analyses.

The deviations from the target value in small samples do most likely not result from a specific
property of the new fit indices. This may be inferred from the strong differences of the original
RMSEA and CFI between different sample sizes within otherwise identical conditions, which are
similar in size to the target value deviations for n = 250.

While there are no strong differences between metric and dichotomous data models with
respect to average value of the new indices, differences between confidence interval coverages
are more pronounced. Coverages pertaining to the metric data models are reasonably close to
their target of 90% if n = 1000. For n = 250 there are some individual conditions (misfit type
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Table 6.
Average RMSEAu and RMSEA values as well as 90%-CI coverages of ULSMV confirmatory factor models based on
1000 replications per cell. (Misfit Type II).

q∗ p n Metric Dichotomous

Target (1.1) (1.2) orig. (1.1) (1.2) orig.
value Est. CIC Est. CIC Est. Est. CIC Est. CIC Est.

RMSEAu = .05; CFIu = .95 1 8 250 .048 .895 .050 .872 .080 .055 .709 .044 .670 .029
1000 .050 .920 .050 .909 .083 .049 .731 .049 .874 .034

12 250 .048 .905 .050 .864 .081 .048 .546 .047 .662 .032
1000 .050 .905 .050 .883 .085 .049 .752 .050 .862 .036

2 8 250 .045 .892 .050 .830 .066 .056 .701 .036 .850 .029
1000 .049 .905 .050 .882 .068 .048 .682 .046 .808 .034

12 250 .046 .872 .050 .809 .063 .048 .562 .039 .548 .029
1000 .049 .919 .050 .891 .065 .049 .722 .049 .834 .034

18 250 .044 .868 .050 .700 .058 .044 .471 .044 .376 .030
1000 .049 .906 .050 .852 .060 .048 .705 .049 .812 .033

3 12 250 .043 .883 .050 .738 .073 .047 .553 .032 .396 .030
1000 .048 .894 .050 .829 .075 .049 .689 .047 .792 .035

18 250 .041 .876 .050 .548 .066 .043 .465 .039 .333 .029
1000 .048 .929 .050 .814 .069 .048 .728 .048 .828 .034

RMSEAu = .05; CFIu = .99 1 8 250 .051 .692 .047 .694 .039 .051 .703 .045 .687 .038
1000 .049 .780 .050 .864 .044 .049 .778 .050 .880 .044

12 250 .047 .618 .050 .597 .042 .047 .604 .049 .605 .042
1000 .049 .805 .050 .852 .045 .049 .772 .050 .832 .045

2 8 250 .052 .698 .040 .790 .034 .051 .700 .040 .723 .034
1000 .048 .780 .048 .871 .038 .048 .776 .048 .887 .038

12 250 .044 .608 .042 .557 .034 .044 .584 .043 .589 .034
1000 .047 .772 .049 .862 .038 .047 .774 .049 .868 .037

18 250 .040 .574 .045 .358 .033 .040 .540 .044 .362 .032
1000 .045 .756 .049 .832 .035 .045 .739 .049 .833 .035

3 12 250 .045 .634 .040 .499 .037 .044 .615 .041 .559 .038
1000 .047 .791 .048 .853 .041 .047 .807 .048 .873 .040

18 250 .041 .687 .043 .375 .035 .040 .589 .044 .292 .035
1000 .046 .772 .049 .823 .038 .046 .789 .049 .838 .038

Est.: RMSEA estimate and CIC: 90%-confidence interval coverage pertaining to the respective approach;
Orig. Est.: unadjusted RMSEA.

II, p=18, CFIu = 0.99) in which CIC pertaining to approach (1.2) are very poor. This may be
explained in part by the biased estimates in the respective conditions.

The CIC pertaining to the dichotomous data models perform reasonably well for approach
(1.2) if n = 1000. However, confidence intervals pertaining to approach (1.1) and, even more
notable, CICs in samples with n = 250 are too small across conditions. Again, part of this
can be attributed the moderate estimation bias in small samples. Nevertheless, reliable RMSEAu

confidence intervals for dichotomous data models are only obtained using approach (1.2) in larger
samples.

Because dichotomous data were obtained directly from the metric data within single repli-
cations of the simulation study, correlations of fit indices based on the two types of data can be
considered. Specifically, the average correlation between fit indices for metric and dichotomous
data models was 0.999 for RMESAu and CFIu across conditions and adjustment approaches.
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Table 7.
Average CFI u and CFI values of ULSMV confirmatory factor models based on 1000 replications per cell.

q∗ p n Misfit type I Misfit type II

Target Metric Dichotomous Metric Dichotomous
value (1.1) (1.2) Orig. (1.1) (1.2) Orig. (1.1) (1.2) Orig. (1.1) (1.2) Orig.

CFIu = .95 1 8 250 .953 .951 .902 .953 .958 .928 .954 .951 .902 .953 .958 .928
1000 .950 .950 .903 .949 .950 .933 .950 .950 .903 .949 .951 .934

12 250 .953 .951 .886 .949 .951 .926 .953 .950 .884 .949 .950 .925
1000 .950 .950 .883 .950 .950 .929 .951 .950 .883 .949 .950 .928

2 8 250 .956 .953 .918 .955 .967 .934 .957 .954 .915 .954 .963 .932
1000 .951 .950 .918 .951 .953 .939 .953 .953 .918 .953 .954 .941

12 250 .953 .950 .904 .952 .959 .933 .956 .951 .903 .954 .963 .934
1000 .951 .950 .907 .951 .952 .936 .951 .950 .902 .950 .952 .934

18 250 .955 .951 .896 .956 .957 .933 .956 .951 .892 .956 .958 .932
1000 .951 .950 .894 .953 .952 .933 .951 .950 .889 .953 .952 .932

3 12 250 .958 .953 .905 .953 .964 .933 .958 .952 .899 .954 .973 .934
1000 .952 .951 .904 .951 .954 .935 .952 .951 .898 .951 .953 .933

18 250 .956 .951 .895 .956 .960 .932 .958 .951 .891 .957 .965 .933
1000 .951 .950 .893 .953 .953 .932 .951 .950 .886 .952 .953 .930

CFIu = .99 1 8 250 .990 .990 .925 .990 .990 .980 .991 .990 .925 .990 .990 .979
1000 .990 .990 .923 .990 .990 .980 .990 .990 .922 .990 .990 .980

12 250 .991 .990 .888 .990 .989 .976 .991 .990 .886 .990 .989 .976
1000 .990 .990 .878 .990 .990 .976 .990 .990 .877 .990 .990 .976

2 8 250 .991 .990 .954 .990 .992 .981 .992 .990 .953 .990 .993 .981
1000 .990 .990 .954 .991 .991 .983 .990 .990 .953 .990 .991 .983

12 250 .991 .990 .936 .992 .991 .980 .991 .990 .935 .992 .992 .980
1000 .990 .990 .937 .991 .990 .980 .990 .990 .934 .991 .990 .979

18 250 .991 .990 .922 .993 .991 .978 .992 .990 .919 .993 .991 .977
1000 .990 .990 .919 .992 .990 .977 .990 .990 .916 .992 .990 .976

3 12 250 .991 .990 .919 .991 .992 .975 .993 .990 .918 .991 .993 .976
1000 .990 .990 .918 .991 .991 .975 .991 .990 .917 .991 .991 .975

18 250 .991 .990 .901 .992 .992 .972 .993 .990 .898 .992 .992 .972
1000 .990 .990 .900 .991 .990 .970 .991 .990 .894 .991 .990 .970

Orig.: unadjusted CFI.

Thus, not only do they approach the same target value, they are also similarly sensitive to the
respective discrepancies.

As was expected, conventional noncentrality-parameter-based fit indices differ strongly
between metric and dichotomous data. Specifically, RMSEA values for models based on dichoto-
mous indicators are consistently smaller (by at least 0.020 points) than those obtained from
metric variable models, which matches previous results of Monroe and Cai (2015) and Xia and
Yang (2018). Also, CFI values from dichotomous data models are continuously larger than those
obtained from metric data models. Thus, despite the identical model structures, fit assessments
based on different variable typeswould lead to different conclusions using conventional fit indices.
Interestingly, while RMSEA and CFI differ between metric and dichotomous data, they are vir-
tually identical for analyses based on ML and ULSMV within corresponding conditions.

Deriving cutoff values for RMSEAu and CFIu by comparing them to their traditional counter-
parts is only possible to a limited extent, because of their non-constant relation across simulation
conditions. Particularly if the target value of CFIu is 0.99, this non-constant relation is most pro-
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nounced. Nevertheless, because RMSEAu does not differ strongly from the RMSEA, although
the former yields somewhat smaller values, similar cutoff conventions, as suggested by Hu and
Bentler (1999), may be viable. For CFIu , which always exceeds the CFI, a value of 0.99 may
relate sufficiently to an CFI value of 0.95. However, it may be more advisable to refine cutoff
criteria based on empirical experience, similar to the initial determination of cutoffs pertaining to
RMSEA and CFI, rather than to restrict to relying on an analogy that only partly applies.

Another perspective for identifying a suitable cut-off value may be to simulate metric data
with predefined target values for the original RMSEA and CFI. In this way, cut-off values for the
new indices can be specifically linked to their established counterparts. A table containing the
expected values of the new fit indices based on target values on RMSEA = 0.05 and CFI = 0.05
(for present simulation conditions) is contained in the supplementary materials of this article.

Discussion

In the present article, unweighted approximation error estimates have been developed to resolve
the scaling related limitations of noncentrality-parameter-basedfit assessments. These unweighted
estimates were inserted as replacements of conventional noncentrality parameter estimates in the
established fit indices RMSEA and CFI. As was demonstrated, the modified indices have a simple
interpretation with respect to correlation residuals due to systematic error. In addition, the new
indices yield identical values for latent variable models based on metric and dichotomous vari-
ables. Clearly, these two properties make them viable alternatives or additions to their established
counterparts. Moreover, the impact of different discrepancy functions on typical fit index values,
which has recently been reported by Shi and Maydeu-Olivares (2020), does not affect the new
indices, because any scaling information specific to parameter estimation is eliminated.

The finite sample performance of the new fit indices was evaluated using simulation studies.
Metric data was analyzed using ML and ULSMV, whereas analyses of dichotomous data were
only performed using ULSMV. Of course other estimators could have been used for model fitting.
For instance, it would have been similarly viable to analyze categorical data with ML or any
other least square discrepancy. In future studies it might be interesting to investigate a more
comprehensive selection of model estimation approaches.

For all simulation settings, the new fit indices (i) closely and consistently approached their
target values and (i i) yielded virtually identical values for metric and dichotomous variables. For
metric data models in combination with ML estimation, the match between fit index estimate and
target value may be considered as completely satisfactory to recommend them for empirical appli-
cations already for sample size of n = 250. When using ULSMV, the small sample performance
was limited in some conditions. However, for a sample size of n = 1000, fit index estimates were
similarly accurate on average for analyses based on metric as well as dichotomous data.

Comparing the different approaches for obtaining a point estimate of the unweighted approx-
imation error, there were only marginal and mostly nonsystematic differences. In conditions with
ML estimation, approaches (1.1) and (2) had a slight tendency to overestimate and approach (1.2)
to underestimate the indices. For ULSMV estimation with dichotomous data, estimates based on
approach (1.1) were on average (but not across all conditions) slightly more accurate. Overall, for
obtaining a point estimate, all approach may be considered as equally suited.

With respect to confidence interval coverage, analyses based on metric data yielded satis-
factory results, with some exceptions. Particularly ML estimation in combination with fit indices
based on approaches (1.1) and (1.2) worked generally well, whereas confidence intervals for
approach (2) were slightly too narrow on average. For ULSMV analyses with metric data,
approaches (1.1) and (1.2) work comparably well. However, for misfit type II and q∗ ≥ 2 and
p ≥ 12 there was a surprising decline in CIC.
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For dichotomous data analyses, confidence intervals were uniformly too narrow. While for
n = 1000 the impact may be considered as moderate to small, for smaller samples and complex
models, coverages were poor. In such cases it might be advisable to consider implementing a
bootstrapping approach (e.g., Zhang & Savalei, 2016).

Clearly, while the indices as well as CIC appear to consistently approach their target values,
there is some bias in small samples in combination with complex analyses. However, this is not
specific to the new indices, which can be concluded from the identical deviations of RMSEA and
CFI depending on sample size. In addition, similar results pertaining to CIC are also typical (e.g.,
Savalei, 2021; Zhang & Savalei, 2016).

The partially worse performance of fit indices in connection with ULSMV estimation is not
entirely unexpected.One reason for thismight be the limited adherence of theULSMV test statistic
to a noncentral χ2-distribution under misspecification. In general, least-square based discrepancy
functions have shown to perform slightly worse under some conditions than ML (e.g., Olsson
et al. 2004). Also, the ULSMV-adjustment might have limitations under some aspects of model
misspecification, because it is based on theorems of Box (1954) on the sum of least squares, which
assume deviations to have expectations of zero. However, for now these considerations are mere
conjectures.

For the established, noncentrality-parameter-based versions of RMSEA and CFI, results of
Monroe and Cai (2015) and Xia and Yang (2018) were replicated, demonstrating that these fit
indices yield different conclusions depending on the variables’ level-of-measurement for identical
model structures. Specifically, RMSEA and CFI based on dichotomous data models continuously
suggested a better model fit than those pertaining to metric data models. Thus, the universality of
cutoff values pertaining to conventional fit indices is questionable.

Because of the different scaling, RMSEA and RMSEAu as well as CFI and CFIu yielded
different values on average as well as across simulation study conditions. Because the conven-
tional noncentrality parameter weighs the same absolute residuals more strongly for comparably
larger correlations, the RMSEA becomes larger relative to RMSEAu as the average correlation
size increases. Whether this property may be considered as an advantage or disadvantage is not
obvious. While from the perspective of random deviations, identical absolute differences in larger
parameters are more meaningful, this does not necessarily mean that the same perspective is
sensible for considering systematic deviations.

With respect to sensitivity to detectmisfit, the consistently large correlations betweenRMSEA
andCFIwith the corresponding new indicesRMSEAu andCFIu suggest that the latter differentiate
similarlywell. Consequently, it appears natural that discriminability results of previous large-scale
fit index comparisons (e.g., Hu & Bentler, 1998; 1999) should similarly apply to RMSEAu and
CFIu .

Although the primary objective of the present article is the introduction of the unweighted
approximation error estimate as a suitable basis for fit index development, rather than a compre-
hensive evaluation of new fit indices, potential cutoff values for RMSEAu and CFIu may already
be considered. While comparing the new and the original indices did not provide a simple ratio-
nale which cutoff values should be preferred, at least some conclusions may be drawn. As was
outlined at the end of the results section, a sensible cutoff value for RMSEAu might be similar
to that of the original RMSEA, that is, 0.05 for models with a good fit. For CFIu a cutoff value
of 0.99 appears recommendable, because of its match to a CFI of 0.95 for models with smaller
numbers of variables. However, the results also suggest that it might be useful to consider both new
indices simultaneously. Specifically, while in case of CFIu = 0.95, RMSEAu = 0, 05 appears to
have a close relation to a similarly sized RMSEA, a slightly decreased RMSEAu-value would be
expected in cases of CFIu = 0.99.

While, I consider the present cutoff recommendations as sufficient for now, they need to be
considered as preliminary. Because the new indices are intended as measures in their own right,
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having their own specific interpretations, more extensive evaluations, such as those conducted
by Hu and Bentler (1998) and Hu and Bentler (1999), would certainly be a sensible (or even
necessary) pursuit of future research.
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