
Statistical Science

2013, Vol. 28, No. 4, 487–509
DOI: 10.1214/13-STS442
© Institute of Mathematical Statistics, 2013

Advection–Dispersion Across Interfaces
Jorge M. Ramirez, Enrique A. Thomann and Edward C. Waymire

Abstract. This article concerns a systemic manifestation of small scale in-
terfacial heterogeneities in large scale quantities of interest to a variety of
diverse applications spanning the earth, biological and ecological sciences.
Beginning with formulations in terms of partial differential equations gov-
erning the conservative, advective-dispersive transport of mass concentra-
tions in divergence form, the specific interfacial heterogeneities are intro-
duced in terms of (spatial) discontinuities in the diffusion coefficient across a
lower-dimensional hypersurface. A pathway to an equivalent stochastic for-
mulation is then developed with special attention to the interfacial effects in
various functionals such as first passage times, occupation times and local
times. That an appreciable theory is achievable within a framework of ap-
plications involving one-dimensional models having piecewise constant co-
efficients greatly facilitates our goal of a gentle introduction to some rather
dramatic mathematical consequences of interfacial effects that can be used to
predict structure and to inform modeling.

Key words and phrases: Skew Brownian motion, heterogeneous dispersion,
interface, local time, occupation time, breakthrough curve, ocean upwelling,
mathematical ecology, solute transport, river network dispersion, insect dis-
persion.

1. INTRODUCTION

To set the perspective of this article, let us first con-
sider classic advection–dispersion phenomena in R

k of
a concentration of particles immersed in a fluid as de-
scribed by the following partial differential equation

for x ∈ R
k and t ≥ 0:

∂u

∂t
=

1

2
∇ ·

(

D(x)∇u(t,x)
)

− ∇ ·
(

v(x)u(t,x)
)

,(1.1)

u
(

0+,x
)

= u0(x).

Jorge M. Ramirez is Associate Professor of Mathematics,

Escuela de Matemáticas, Universidad Nacional de

Colombia Sede Medellín, Medellín, Colombia (e-mail:

jmramirezo@unalmed.edu.co). Enrique A. Thomann and

Edward C. Waymire are Professors of Mathematics,

Department of Mathematics, Oregon State University,

Corvallis, Oregon, USA (e-mail: thomann@math.

oregonstate.edu; waymire@math.oregonstate.edu).

In particular, assume that the coefficients D and v are
smooth (matrix/vector-valued) functions1 on R

k , ∇ =
∑k

j=1
∂

∂xj
. Such an equation describes the evolution of

an initial (scalar) mass concentration u0 evolving at a
temporal rate assumed to be locally controlled by spa-
tial fluxes 1

2D(x)∇u(t,x) − v(x)u(t,x). The first term
expresses Fick’s law of flux as being proportional to the
concentration gradient, and the second term being the
advection of mass by fluid velocity. Many physical as
well as biological/ecological problems take this form,
perhaps on a spatial domain G ⊆ R

k , with appropri-
ate boundary conditions, such as Dirichlet or Neumann
boundary conditions. The success of nineteenth- and
twentieth-century mathematical developments in anal-
ysis, geometry and numerical computation continues to
guide research into the 21st century. In particular, this
single linear partial differential equation has inspired a
body of mathematical research that is likely unmatched
in diversity and scope.

1Throughout this article we restrict attention to time homoge-
neous equations.
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The pervasive role of (1.1) in the development of
probability and statistical theory is therefore no sur-
prise. The recognition of the fundamental role of stan-
dard Brownian motion B = {B(t) : t ≥ 0} and the cor-
responding Itô’s stochastic calculus opened the door
to a more natural reformulation of advective-dispersive
phenomena in terms of the stochastic differential equa-
tion

dX(t) = ṽ
(

X(t)
)

dt +
√

D
(

X(t)
)

dB(t),
(1.2)

t > 0,X(0) = x,

relating the conditional distribution p(t,x,dy) of X(t)

given X(0) = x, that is, the transition probabilities, to
the fundamental solution of (1.1) via the basic semi-
group formula

u(t,x) =
∫

Rk
u0(y)p(t,x,dy).(1.3)

In (1.2),
√

D is the matrix square root of the molecular
dispersion tensor D, which augments the macroscopic
advection v via

ṽ(x) =
(

−
∑

j

1

2

∂Dji

∂xj

(x) + vi(x)

)

1≤i≤k

.(1.4)

The Markov process X so determined becomes the
probabilistic representation of the object of interest in
relation to the p.d.e. (1.1), be it physical, biological or
perhaps financial.

Not only does a stochastic framework enable new ap-
proaches to the analysis of problems related to (1.1),
but it inspires still more diverse ways in which to
model, analyze and measure naturally occurring phe-
nomena. After all, the coefficients v and D now admit
a statistical interpretation! The significance of this fact
was made manifestly clear through the observations
and measurements of Perrin (1913) in his historic de-
termination of Avogadro’s constant, following up Ein-
stein’s 1905 theory of the molecular structure of mat-
ter. In addition, new models that may be a priori less
obvious to formulate at the scale of (1.1) emerge to de-
scribe phenomena at the scale of particle trajectories as
observed in certain financial data or biological exper-
iments (see, e.g., Decamps, Goovaerts and Schoutens,
2006; Fagan, Cantrell and Cosner, 1999). Moreover, in
the context of particle trajectories, a wide variety of
sample path functionals, such as first passage times, es-
cape and occupation times, and local times also emerge
naturally in both theory and applications.

From a probabilistic perspective, the smoothness of
the coefficients in (1.1) goes a long way toward the al-
ternative view expressed through (1.2) of particle tra-
jectories being (approximately) shifts and rescalings
of a standard Brownian motion when observed locally
(infinitesimally) in time. In particular, if the coeffi-
cients are in fact constant, then the solution to (1.2)
is a Brownian motion

X(t) = x + vt +
√

DB(t), t ≥ 0,(1.5)

with drift coefficient ṽ ≡ v, and diffusion coefficient D,
whose transition probabilities p(t,x,y), assuming non-
singularity (det D 	= 0), provide the fundamental solu-
tion to

∂u

∂t
=

1

2
D�u + v · ∇u(1.6)

with Laplacian � ≡ ∇ · ∇ = ∑k
j=1

∂2

∂xj
2 , that is, dif-

ferentiation with respect to the backward variable x.
More generally, assuming sufficient smoothness of co-
efficients, (1.1) may be directly recast after relabeling x

as y, in the form of Kolmogorov’s forward equation, or
the Fokker–Planck equation as it is called in the physi-
cal sciences,

∂u

∂t
(t,y) =

1

2

∑

i,j

∂2(Dij (y)u(t,y))

∂yi ∂yj

(1.7)

−
∑

i

∂(ṽi(y)u(t,y))

∂yi

,

where ṽ already appeared in (1.4). Note that this is
merely an equivalent way in which to express the equa-
tion (1.1), with the relabeling of variables suggested
by their respective roles as backward and forward vari-
ables in the transition probabilities p(t,x, dy). On the
other hand, Kolmogorov’s backward equation, with
(1.6) as a special case, is obtained from (1.7) by in-
tegration by parts as the adjoint

∂u

∂t
(t,x) =

1

2

∑

i,j

Dij (x)
∂2u

∂xi ∂xj

(t,x)

(1.8)

+
∑

i

ṽi(x)
∂u

∂xi

(t,x).

As will be discussed as the primary point of the
present article, there are phenomena for which the
smoothness of the coefficients is untenable. The par-
ticular “nonsmoothness” of focus here can most gener-
ally be framed as a discontinuity, of otherwise (piece-
wise) continuous coefficients, on a hypersurface of
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co-dimension one. This includes discontinuities at
(0-dimensional) points in one dimension or across a
curve in two dimensions.

Advection–dispersion was framed in terms of the
k-dimensional model (1.1) in an effort to frame the
big problems for continued research. However, there
is much yet to be learned about interfacial problems
in dimensions greater than one. Perhaps surprisingly,
but indeed fortunately, the applications involving one-
dimensional processes are already extensive enough
to provide a rich source of examples with features
of both mathematical and empirical interest, espe-
cially as manifested in the behavior of the functionals
noted earlier. One may also expect that some results
in one dimension will at least partially inform higher-
dimensional problems.

Just as standard Brownian motion plays a basic, al-
beit secondary, role in constructing the Markov process
X associated with (1.1) in the case of smooth coef-
ficients via (1.2), a class of skew Brownian motions

will emerge in the construction of the Markov pro-
cesses (termed skew diffusions) associated with one-
dimensional advection–dispersion across an interface.
Skew Brownian motion B(α) = {B(α)(t) : t ≥ 0},0 <

α < 1 is a continuous semimartingale introduced by
Itô and McKean (1963). Fundamental papers on skew
Brownian motion by Harrison and Shepp (1981),
Walsh (1978), Ouknine (1990) and Le Gall (1984) are
summarized in a mathematically comprehensive sur-
vey article by Lejay (2006). Interesting fresh ideas on
some of the foundational questions about skew Brown-
ian motion continue to emerge, for example, Hairer and
Manson (2010), Prokaj (2011) and Fernholz, Ichiba
and Karatzas (2013). These provide a number of equiv-
alent ways in which to view skew Brownian motion on
which the present survey article will build. It is not our
intention to provide a mathematically comprehensive
survey of skew Brownian motion.2 Indeed, the primary
focus here is on the Markov process (skew diffusion)
associated with advection–dispersion across an inter-
face in one dimension. Our goal is to provide a simple,
focused mathematical framework of skew diffusion in
which to then illustrate rather dramatic consequences
of interfacial effects pertaining to specific physical and
biological phenomena.

Just as with the case of smooth coefficients, the anal-
ysis, in terms of both partial differential and stochas-
tic differential equations, the numeric computational

2The survey article Lejay (2006) in fact fills this need quite thor-
oughly and is recommended as follow-up to the present article.

schemes, and the statistical aspects of advection–
dispersion across an interface, relate to each other in
an interesting mathematical interplay. Accordingly, as
will be illustrated by examples, empirical observations
in this context often point to new and interesting phe-
nomena amenable to mathematical explanation or pre-
diction.

Therein lies the overarching goal of this article.
Namely, within the context of the Mathematics of
Planet Earth and International Year of Statistics 2013
initiatives, we seek to illustrate some of the mathe-
matical structure reflected in observed and predicted
large scale properties of advection–dispersion as a con-
sequence of locally defined interfacial discontinuities

of the type described above. For example, results are
described that quantify the dramatic effect of a (small
scale) point discontinuity on the behavior of occupa-
tion times of large scale regions in one dimension. This
is achieved by identification and analysis of the basic
Markov process associated with the given coefficients.
That this is in fact achievable within a framework of
one-dimensional models with piecewise constant coef-
ficients facilitates our goal of a gentle introduction to
results that are also relevant to a diverse range of appli-
cations to be described herein.

The organization of the paper is as follows: in Sec-
tion 1 skew Brownian motion and its properties are in-
troduced in a broader context of dispersion of a solute
in the presence of a so-called conservative interface

condition, that is, physical skew diffusion. This is fol-
lowed by subsequent sections to provide illustrations
of some more general (nonconservative) interface con-
ditions that arise naturally in the physical and biolog-
ical sciences, including free surface heights in ocean
upwellings, animal movement models in ecology and
dispersion in a river network. Building on these exam-
ples, a summary of complementary results and open
problems inspired by these examples is provided in the
closing section.

2. ONE-DIMENSIONAL PHYSICAL SKEW

DIFFUSION AND SKEW BROWNIAN MOTION

Building on the theme laid out in the Introduc-
tion, the Markov process to be referred to as one-
dimensional physical skew diffusion with parameters
D+ > 0, D− > 0 (v = 0) will be defined in relation
to the following continuity equation for a solute im-
mersed in fluid medium separated by a point interface
at the origin:

∂u

∂t
(t, x) =

1

2
D(x)

∂2u

∂x2 (t, x) (x 	= 0),(2.1)
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D+ ∂u

∂x

(

t,0+)

= D− ∂u

∂x

(

t,0−)

,

u
(

t,0+)

= u
(

t,0−)

, t > 0,

where

D(x) =
{

D+, if x > 0,
D−, if x ≤ 0.

(2.2)

The particular interface condition

D+ ∂u

∂x

(

t,0+)

= D− ∂u

∂x

(

t,0−)

(2.3)

ensures that the diffusive flux D(x) ∂u
∂x

(t, x) is con-
tinuous at all x ∈ R and for all t > 0. Moreover,
it yields “conservation of mass”

∫ ∞
−∞ u(t, x)dx =

∫ ∞
−∞ u(0, x)dx, t > 0, since after integration by parts,

one has
d

dt

∫ ∞

−∞
u(t, x)dx = 0.(2.4)

In particular, this interface condition makes the spa-
tial operator in (2.1) formally self-adjoint.

The simplest approach to identify the correspond-
ing physical skew diffusion process is perhaps by ex-
plicitly solving (2.1). Indeed, for any initial condition
u(0, x) = u0(x), equation (2.1) has solution u(t, y) =
∫ ∞
−∞ p∗(t, x, y)u0(x)dx where the fundamental solu-

tion p∗(t, x, y) can be simply checked to be (see
Ramirez et al., 2006)

p∗(t, x, y)
(2.5)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1√
2πD+t

[

exp
{−(y − x)2

2D+t

}

+
√

D+ −
√

D−
√

D− +
√

D+
exp

{−(y + x)2

2D+t

}]

,

x > 0, y > 0,

1√
2πD−t

[

exp
{−(y − x)2

2D−t

}

−
√

D+ −
√

D−
√

D+ +
√

D−
exp

{−(y + x)2

2D−t

}]

,

x < 0, y < 0,

2√
D+ +

√
D−

1√
2πt

· exp
{

−
(y

√
D− − x

√
D+)2

2D−D+t

}

,

x ≤ 0, y ≥ 0,

2√
D+ +

√
D−

1√
2πt

· exp
{

−
(y

√
D+ − x

√
D−)2

2D−D+t

}

,

x ≥ 0, y ≤ 0.

FIG. 1. Plots of p∗(t, x, y) for x = 1, several values of tk and

fixed D+ > D−.

See Figure 1. Observe that while

p∗(t, x, y) = p∗(t, y, x), x, y ∈ R, t > 0,(2.6)

there is nonetheless a “skewness asymmetry” around
the interface exhibited in the calculation

∫

[0,∞)
p∗(t,0, y)dy =

√
D+

√
D+ +

√
D−

.(2.7)

To prepare for the definition of skew Brownian mo-
tion, let B = {B(t) : t ≥ 0} denote standard Brown-
ian motion started at B(0) = 0, and let A = {An :n =
1,2, . . .} be an i.i.d. sequence of ±1-valued Bernoulli
random variables with α = P(An = 1), independent of
B , defined on a common probability space (�,F,P ).
Since the paths t → B(t) are continuous, the comple-
ment to the closed subset B−1({0}) is a countable dis-
joint union of (random) open intervals of [0,∞) enu-
merated as J1, J2, . . . ; see Figure 2.

DEFINITION 2.1 (α-skew Brownian motion). Let
α ∈ [0,1]. The stochastic process given by

B(α)(t) =
∞
∑

n=1

An1Jn(t)
∣

∣B(t)
∣

∣, t ≥ 0,

is referred to as skew Brownian motion with transmis-

sion parameter α starting at 0.

REMARK 2.1. The cases α = 0,1 correspond to
reflecting Brownian motion B(0) = −|B|, and B(1) =
|B| and will not be considered further.

It is not difficult to see from this definition that
skew Brownian paths inherit almost sure continuity
from that of Brownian motion B . Moreover, let Ft :=
σ {|B(s)| : 0 ≤ s ≤ t} ∨ σ {A1,A2, . . .}, therefore, Ft ⊇
σ(B(α)(s) : s ≤ t). For 0 ≤ s < t and a nonnegative,
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FIG. 2. Skew Brownian motion construction.

measurable function g, one may use the Markov prop-
erty of |B|, and the independence of |B| from the i.i.d.
sign changes A1,A2, . . . , to check that

E
{

g
(

B(α)(t)
)

|Fs

}

= E
{

g
(

B(α)(t)
)

|B(α)(s)
}

.

The Markov property of B(α) follows since Fs ⊇
σ(B(α)(u) :u ≤ s).

Using the strong Markov property for Brownian mo-
tion, Walsh (1978) calculated the transition probabili-
ties p(α)(t, x, y) for α-skew Brownian motion as given
by

p(α)(t, x, y)
(2.8)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨
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⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1√
2πt

e−(y−x)2/(2t)

+
(2α − 1)√

2πt
e−(y+x)2/(2t),

if x > 0, y > 0,

1√
2πt

e−(y−x)2/(2t)

−
(2α − 1)√

2πt
e−(y+x)2/(2t),

if x < 0, y < 0,

2α√
2πt

e−(y−x)2/(2t), if x ≤ 0, y > 0,

2(1 − α)√
2πt

e−(y−x)2/(2t), if x ≥ 0, y < 0.

Now, since a Markov process is uniquely determined
by its transition probabilities and initial distribution, it
is a simple matter to use a change of variable transfor-
mation to check that the physical skew diffusion X∗ is a
particular (rescaling) function of a skew Brownian mo-
tion with a particular transmission coefficient α = α∗.
In particular, the above may be summarized as the fol-
lowing:

THEOREM 2.1. Define the physical skew diffusion

process X∗ = {X∗(t) : t ≥ 0} by

X∗(t) = s√
D

(

B(α∗)(t)
)

,
(2.9)

t ≥ 0, α∗ =
√

D+
√

D+ +
√

D−
,

where

s√
D

(x) =
{√

D+x, if x > 0,√
D−x, if x ≤ 0.

(2.10)

Then X∗ is the diffusion on R with transition probabil-

ities given by (2.5) started at zero.

REMARK 2.2. As previously noted, the self-
adjointness property that results from the conservative
interface condition (2.3) may be viewed as a symme-
try of the transition probabilities (2.5) of the physi-
cal skew diffusion. Although one sees by inspection
that the transition probabilities (2.8) of skew Brow-
nian motion are not symmetric in the sense of (2.5),
using the strong Markov property of skew Brownian
motion,3 one has that rα(B(α)) is a martingale, where
rα(x) = αx1(−∞,0](x)+ (1−α)x1[0,∞)(x), x ∈ R; see
Walsh (1978).

REMARK 2.3. A similar, albeit somewhat more
technical, procedure may be developed for

∂u

∂t
(t, x) =

1

2
D(x)

∂2u

∂x2
(t, x)

− v
∂u

∂x
(t, x) (x 	= 0),

(2.11)

D+ ∂u

∂x

(

t,0+)

= D− ∂u

∂x

(

t,0−)

,

u
(

t,0+)

= u
(

t,0−)

, t > 0,

3One may check that for fixed y, the transition probabilities of
the skew Brownian motion are continuous in the backward vari-
able x, that is, a Feller property holds. As a consequence of this and
the sample path continuity, the strong Markov property for skew
Brownian motion also follows.
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for a constant drift v by a change of measure that con-
verts the problem into one of an elastic skew Brownian
motion; see Appuhamillage et al. (2011b) for details.

While we have perhaps traced the most direct route
from the p.d.e. model (2.1) to probability theory, sev-
eral others naturally emerge. Some of these are sum-
marized in the next section.

3. ALTERNATIVE MATHEMATICAL DESCRIPTIONS

OF PHYSICAL SKEW DIFFUSION

In this section four equivalent approaches to repre-
sent the Markov process associated with (2.1) are pro-
vided as alternatives to the construction in terms of ex-
cursions of reflected Brownian motion paths. Each of
these provides additional mathematical tools in which
to gainfully address diverse problems involving disper-
sion in the presence of the conservative interface con-
dition (2.3). We begin with perhaps the most mathe-
matically technical framework, that of Dirichlet forms,
which can be useful for existence theory and for weak
formulations used in developing numerical methods.
This subsection can certainly be skimmed on first read-
ing. The overall section progresses to the least tech-
nical framework of skew random walks and is fol-
lowed by a subsection addressing a more general class
of (nonconservative) interface conditions that will be
seen to arise naturally in certain physical, biological
and ecological dispersion contexts.

Dirichlet Forms

Below we outline the procedure leading to a semi-
group framework for X∗ via Dirichlet forms theory,
and refer the reader to the more comprehensive refer-
ences by Fukushima, Ōshima and Takeda (1994), Ma
and Röckner (1992) or the recent Chen and Fukushima
(2012).

To set up the analytical framework, let u be a solu-
tion to problem (2.1) and consider the following varia-
tional form of the evolution equation in L2(R):

∂

∂t

∫

R

u(t, x)v(x)dx

= −
∫

R

1

2
D(x)

∂u

∂x
(t, x)

∂v

∂x
(x)dx,(3.1)

v ∈ C∞
c (R).

The associated process is obtained by identifying a
semigroup generated by the bilinear form

E(u, v) =
∫

R

1

2
D(x)

∂u

∂x
(x)

∂v

∂x
(x)dx,

(3.2)
u, v ∈ C∞

c (R),

in some Hilbert space. For the case of D given by (2.1),
standard considerations show that E is “closable” on
L2(R), namely, it extends to a closed bilinear form
(also denoted by E) on L2(R) with domain Dom(E) =
H 1(R), the Sobolev space of L2 functions whose gen-
eralized derivatives are also square integrable func-
tions. Here, “closed” means that E(u,u) ≥ 0 for all
u ∈ Dom(E) and that Dom(E) = H 1(R) is a Hilbert
space with the inner product E1(u, v) := E(u, v) +
(u, v)L2(R). The bilinear form (E,Dom(E)) is “coer-
cive” since E(u, v)2 ≤ E1(u,u)E1(v, v) and a “Dirich-
let form” since

E(u,u) ≤ E
(

u+ ∧ 1, u+ ∧ 1
)

(3.3)
for all u, v ∈ Dom(E).

Finally, (E,Dom(E)) is “regular” since Dom(E) ∩
Cc(R) is dense in Dom(E) with respect to the norm
u �→ E(u,u)1/2. For such a form, there exists a unique
closed, negative definite, linear operator (A,Dom(A))

that satisfies the resolvent conditions of the Hille–
Yosida theorem for generating the appropriate semi-
group; namely, (λ − A)(Dom(A)) = L2(R), λ > 0.
This operator is given by

Dom(A) ⊂ Dom(E) and

E(u, v) = (−Au, v)(3.4)

for all u ∈ Dom(A), v ∈ Dom(E).

Integration by parts on (3.2) yields

Af =
1

2
D

∂2f

∂x2 ,

Dom(A)
(3.5)

=
{

f ∈ H 1(R) ∩ H 2(

R
+)

∩ H 2(

R
−)

:

D+ ∂f

∂x

(

0+)

= D− ∂f

∂x

(

0−)

}

,

where H 2(R±) denote the respective Sobolev spaces
for twice (generalized) differentiable functions on R

±.
The operator (A,Dom(A)) is the infinitesimal gen-
erator of a strongly continuous contraction semigroup
{Tt : t ≥ 0} on L2(R) which is also sub-Markovian
since (E,Dom(E)) satisfies the Dirichlet form property
(3.3). Note also that the conservative interface condi-
tion is encoded in Dom(A) and makes the operator
A self-adjoint. The family of transition probabilities
p∗(t, ·, ·), t > 0 are recovered from the semigroup via,
for bounded A ∈ B(R),

p∗(t, x,A) = Tt1A(x).(3.6)
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Since for f ∈ Dom(A), the unique solution in
C([0,∞)) ∩ Dom(A) to ∂u

∂t
= Au, u(0, x) = f (x) is

u(t, x) =
∫

R
p∗(t, x,dy)f (y) with p∗ given in (2.5),

then Ttf =
∫

R
p∗(t, ·, y)f (y)dy almost everywhere

for any f ∈ L2(R) ∩ L∞(R). The process X∗ there-
fore has transition probabilities given by (2.5).

Feller’s Natural Scale and Lévy’s Time Change of

Brownian Motion

In this subsection we outline the procedure leading
to the characterization of X∗ via Feller’s natural scale
and Lévy’s time change of Brownian motion, and refer
the reader to the more general references Revuz and
Yor (1999), Karatzas and Shreve (1988), Bhattacharya
and Waymire (2009) and others.

Let a < x < b be arbitrary. The scale measure s∗ of
X∗ is the unique (up to a multiplicative constant) mea-
sure that satisfies

Px

(

τ ∗
(a,b) = H ∗

b

)

=
s∗((a, x))

s∗((a, b))
,(3.7)

where H ∗
b := inf{t ≥ 0 :X∗(t) = b} denotes the hitting

time of b, and τ ∗
(a,b) := inf{t ≥ 0 :X∗(t) ∈ {a, b}} is the

escape time from the interval (a, b) for X∗(0) ∈ (a, b).
The speed measure m∗ of X∗ is the unique Radon mea-
sure on Borel subsets of R such that

Exτ
∗
(a,b) =

∫ b

a
Ga,b(x, y)m∗(dy),(3.8)

where the so-called Green’s function G of X∗ is given
by

Ga,b(x, y) =
s∗((x ∧ y, a))s∗((b, x ∨ y))

s∗((a, b))
.(3.9)

The process X∗ has speed and scale measures with
piecewise constant density. Let m∗(dx) = m′

∗(x)dx,
s∗(dx) = s′

∗(x)dx with

m′
∗(x) = m−

∗ 1(−∞,0)(x) + m+
∗ 1(0,∞)(x),

(3.10)
s′
∗(x) = s−

∗ 1(−∞,0)(x) + s+
∗ 1(0,∞)(x).

To determine the constants, let (A,Dom(A)) denote
the restriction of the operator (A,Dom(A)) in (3.5) to
the space of bounded continuous functions:

Af = 1

2
D

∂2f

∂x2
,

Dom(A)
(3.11)

=
{

f ∈ Cb(R) ∩ C2(

R
+)

∩ C2(

R
−)

:

D+ ∂f

∂x

(

0+)

= D− ∂f

∂x

(

0−)

}

.

Then (A,Dom(A)) is also given by

Af =
d

dm∗

d

ds∗
f,

(3.12)

Dom(A) =
{

f ∈ Cb(R) :
df

ds∗
is continuous

}

,

where df
ds∗

= df
dx

dx
ds∗

= df
dx

/ds∗
dx

. Matching the expres-
sions for A above, one arrives at

s+
∗ =

c

D+ , s−
∗ =

c

D− , m+
∗ = m−

∗ =
2

c
,(3.13)

where c is any positive constant which we set equal to
one for convenience.

Within this framework (see Revuz and Yor, 1999,
page 310) one has the following:

THEOREM 3.1. Physical skew diffusion X∗ with

D given by (2.1) is the unique Feller process on R

with speed and scale measures m∗(dx) = m′
∗(x)dx,

s∗(dx) = s′
∗(x)dx with densities given by

m′
∗(x) = 2,

(3.14)

s′
∗(x) =

1

D− 1(−∞,0)(x) +
1

D+ 1(0,∞)(x).

To see the propagation of local interface effects on
the global features within this framework, let a > 0 and
0 < ε < a, and use (3.7), (3.8) to obtain

Eaτ
∗
(a−ε,a+ε) =

ε2

D+ ,

(3.15)

Pa

(

τ ∗
(a−ε,a+ε) = H ∗

a−ε

)

=
1

2

as expected, since starting at a, X∗ must behave like
a diffusion process with diffusion coefficient D+ up to
the hitting time H0 > τ(a−ε,a+ε). On the other hand, for
the process starting at the interface at x = 0, the effects
of the heterogeneity are depicted by

E0τ
∗
(−ε,ε) =

2ε2

D+ + D− ,

(3.16)

P0
(

τ ∗
(−ε,ε) = H ∗

−ε

)

=
D−

D+ + D− .

Namely, the interface x = 0 “skews” the process, mak-
ing it more likely to exit the symmetric interval (−ε, ε)

through the endpoint with highest diffusion coefficient
value.

For a path-wise representation of the process X∗ one
may proceed by Lévy’s time change of Brownian mo-
tion as follows. Let B = {B(t) : t ≥ 0} denote canoni-
cal standard Brownian motion on (�,F, {Px}x∈R) and
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consider the following additive functional

φ(r) =
∫ r

0

1

2

m′
∗(B(t))

s′
∗(B(t))

dt, r ≥ 0.(3.17)

Let T be the inverse of φ, T (t) = inf{s ≥ 0 :φ(s) = t},
then the process X∗ has the following representation:

X∗(t) = s−1
∗

(

B
(

T (t)
))

, t ≥ 0,(3.18)

where s−1
∗ denotes the inverse of the function x �→

s∗((0, x)), s−1
∗ (x) = D(x)x.

The representation obtained in (3.18) can be simpli-
fied further in order to write X∗ as a function of a con-
tinuous martingale. Consider the time-change Y(t) =
B(T (t)), where

T (t) =
∫ T (t)

0
2

s′
∗(B(r))

m′
∗(B(r))

dφ(r)

(3.19)

=
∫ t

0
2

s′
∗(Y (ρ))

m′
∗(Y (ρ))

dρ

and, therefore, the quadratic variation of Y is 〈Y 〉(t) =
T (t). But since φ(r) is continuous, increasing and fi-
nite, then so is T . Therefore (see Karatzas and Shreve,
1988, Theorem 4.2), there exists a probability space
(�̃, F̃, {P̃x}x∈R) extending (�,F, {Px}x∈R) and with
a Brownian motion B̃ defined such that

Y(t) =
∫ t

0
Z(r)dB̃(r),

(3.20)

T (t) = 〈Y 〉(t) =
∫ t

0
Z2(r)dr, P̃-a.s.

for some measurable adapted process Z. It follows
from (3.20) that Z(t) = [2s′

∗(Y (t))/m′
∗(Y (t))]1/2. So

one arrives at the following representation in terms of
the martingale Y :

X∗(t) = D
(

Y(t)
)

Y(t),
(3.21)

Y(t) =
∫ t

0

1√
D(Y(r))

dB̃(r).

Stochastic Calculus and Local Time

The representation of X∗ in (3.21) again makes it
evident that whenever the process is away from the in-
terface, the trajectories of X∗ can be obtained by sim-
ply re-scaling those of Brownian motion by the square
root of the appropriate diffusion coefficient. However,
it does not reveal the behavior of X∗ at x = 0 and, in
particular, the skewness property (3.16). This property
must be produced by the effect of the jump in the value
of the diffusion coefficient over the trajectories, during
the “time” a particle occupies the interface. In order to

quantify this effect then, one is naturally led to consider
the properties of the local time of X∗.

We now briefly give some necessary background
on the theory of local time for continuous semi-
martingales. The reader is referred to Revuz and Yor
(1999) for the general theory followed here. Given
a continuous semimartingale X(t) = M(t) + V (t),
where M is a martingale and V is an increasing pro-
cess, we define its local time process LX via

∣

∣X(t) − a
∣

∣ =
∣

∣X(0) − a
∣

∣

+
∫ t

0
sign−

(

X(s) − a
)

dX(s)(3.22)

+ LX(t, a)

with the convention sign− = 1(0,∞) − 1(−∞,0]. What
we are calling local time in this paper is sometimes
referred to in the literature as right local time since it
satisfies almost surely

LX(t, a) = lim
ε↓0

1

ε

∫ t

0
1[a,a+ε)

(

X(r)
)

d〈X〉(r).(3.23)

The function (t, a) �→ LX(t, a) can be taken continu-
ous in t and cadlag in a and its jumps are given by

LX(t, a) − LX(

t, a−)

= 2
∫ t

0
1{a}

(

X(s)
)

dX(s)(3.24)

= 2
∫ t

0
1{a}

(

X(s)
)

dV (s).

In particular, if X = M is a local martingale, then
(t, a) �→ LX(t, a) can be taken bi-continuous.

The following basic formulae encompass the most
significant properties of local time:

Itô–Tanaka formula. If f is a difference of convex
functions and f ′

− denotes its left derivative, then

f
(

X(t)
)

= f
(

X(0)
)

+
∫ t

0
f ′

−
(

X(s)
)

dX(s)

(3.25)

+
1

2

∫

R

LX(t, x)f ′′(dx).

Occupation times formula. For any positive Borel—
measurable function F ,

∫ t

0
F

(

X(s)
)

d〈X〉(s) =
∫

R

F(x)LX(t, x)dx.(3.26)

Left-side local time. If X is a continuous semi-
martingale, then almost surely

LX(

t, a−)

= lim
ε↓0

1

ε

∫ t

0
1(a−ε,a)

(

X(r)
)

d〈X〉(r).(3.27)
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As a first step consider the representation of X∗

in (3.21) as a nonsmooth function of the martin-
gale Y . Applying the Itô–Tanaka formula to the func-
tion f (x) = s−1

∗ (x) = xD(x) and using the representa-
tion (3.21) of Y in terms of a Brownian motion B , one
gets

X∗(t) =
∫ t

0
D

(

Y(r)
)

dY(r) + 1

2

(

D+ − D−)

LY (t,0)

=
∫ t

0

√

D
(

X∗(r)
)

dB(r)

+
1

2

(

D+ − D−)

LY (t,0).

The local time of Y can be related to the local time
L∗ of X∗ using (3.23). Note first that 〈X∗〉(r) =
D2(X(r))〈Y 〉(r) for r ≥ 0, then write

LY (t, a)

= lim
ε↓0

1

ε

∫ t

0
1[0,ε)

(

Y(r)
)

d〈Y 〉(r)
(3.28)

= lim
ε↓0

1

(D+)2ε

∫ t

0
1[0,D+ε)

(

X(r)
)

d〈X〉(r)

=
1

D+ L∗(t,0).

We have arrived at the following representation of X∗.

THEOREM 3.2. For a given X(0), and on any fil-

tered probability space carrying a Brownian motion B ,
physical skew diffusion X∗ is the unique strong solu-

tion to the following stochastic differential equation:

X(t) = X(0) +
∫ t

0

√

D
(

X(r)
)

dB(r)

(3.29)

+
(D+ − D−)

2D+ LX(t,0).

Equation (3.29) is a stochastic differential equation
in terms of the local time of the unknown process.
Le Gall (1984) studied the problem of existence and
uniqueness of solutions for equations of this type and
proved Theorem 3.2. In fact, he considered a larger set
of equations which we review here for its relevance
with regard to more general solute transport problems.
For the sake of consistency with other parts of the
present paper, we summarize his analysis in terms of
the right local time defined in (3.22), in place of the
symmetric local time used in Le Gall (1984).

Consider a finite signed measure ν such that
ν({x}) < 1 for all x ∈ R, and let νc be its continu-
ous part. Also, let ϕ be a right-continuous function

of bounded variation that is also strictly positive and
bounded away from zero. Le Gall (1984) considered
the following equation:

X(t) = X(0) +
∫ t

0
ϕ

(

X(r)
)

dB(r)

(3.30)

+
1

2

∫

R

LX(t, x)ν(dx).

In the case of equation (3.29), ϕ =
√

D and ν =
D+−D−

D+ δ0, in particular, νc ≡ 0. The key to the anal-
ysis is to relate equation (3.30) to a stochastic differen-
tial equation without a local time term. In fact, Le Gall
(1984) shows that if fν is a right-continuous function
satisfying

fν

(

x−)

ν(dx) + f ′
ν(dx) = 0, x ∈ R,(3.31)

and Fν(x) =
∫ x
−∞ fν(y)dy, then a process X is a solu-

tion to (3.30) if and only

Y(t) = Fν

(

X(t)
)

satisfies
(3.32)

Y(t) =
∫ t

0
fν

(

X(r)
)

ϕ
(

X(r)
)

dB(r).

Moreover, it is easy to show that the function fν is
given by

fν(x) = exp
(

−νc((−∞, x]
))

∏

y≤x

(

1 − ν
(

{y}
))

.(3.33)

Not surprisingly, when this procedure is applied to
equation (3.29), one gets fν = 1/D and recovers prob-
lem (3.21). The existence and uniqueness of strong
solutions to (3.29) follows then from the correspond-
ing result for (3.21) which was established in Nakao
(1972), and recently generalized substantially in Prokaj
(2011) and Fernholz, Ichiba and Karatzas (2013).

It is important to note that the representation (3.29)
gives the decomposition of the continuous semi-
martingale X∗ as the sum of a continuous local mar-
tingale and an increasing process. It follows that the
local time of X∗ is not continuous at x = 0. In fact, by
(3.24), we can compute

L∗(t,0)

L∗(t,0−)
=

D+

D− , t ≥ 0.(3.34)

This, however, cannot be interpreted as skew diffusion
“spending more time” on either side of the interface. To
see this, we can use the alternative definitions (3.23),
(3.27) of right and left local time. For X∗, (3.29) gives
the quadratic variation 〈X∗〉(t) =

∫ t
0 D(X(r))dr . In

particular, the ratio between the time a particle spends
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just above the interface x = 0 up to time t and the time
it spends just below that interface is

lim
ε↓0

∫ t
0 1[0,ε)(X

∗(r))dr
∫ t

0 1(−ε,0](X∗(r))dr

= lim
ε↓0

(
∫ t

0 1[0,ε)(X
∗(r))d〈X∗〉(r))/D+

(
∫ t

0 1(−ε,0](X∗(r))d〈X∗〉(r))/D− = 1,(3.35)

t ≥ 0.

We will return to such matters in the context of appli-
cations.

Discrete and Numerical Approximations

Skew random walk is a natural discretization of skew
Brownian motion defined as follows.

DEFINITION 3.1. The α-skew random walk is a
discrete Markov chain {Yn :n = 0,1,2, . . .} on the in-
tegers Z having transition probabilities

p
(α)
ij =

⎧

⎪

⎨

⎪

⎩

1
2 , if i 	= 0, j = i ± 1,
α, if i = 0, j = 1,
1 − α, if i = 0, j = −1.

Convergence of the distribution at a fixed time point
was first announced in Harrison and Shepp (1981),
where they indicated a “fourth moment proof” along
the lines of that given for a simple symmetric random
walk (i.e., α = 1/2) based on convergence of finite-
dimensional distributions. However, proving tightness
is quite laborious and tricky due to the lack of inde-
pendence of the increments. A full proof was given
in Brooks and Chacon (1983). The remainder of this
section describes an approach based on the Skorokhod
embedding method within this more specialized frame-
work. A more general functional central limit theorem
is given in Cherny, Shiryaev and Yor (2002).

LEMMA 3.1 (Discrete excursion representation).
Let S = {Sn :n = 0,1, . . .} be a simple symmetric ran-

dom walk starting at 0, and let J̃π1, J̃π2, . . . denote an

enumeration of the excursions of S away from zero for

a fixed but arbitrary permutation π of the natural num-

bers. In particular, |Sn| > 0 if n ∈ J̃πk
. Define

S
(α)
0 = 0, S(α)

n =
∞
∑

k=1

1
J̃πk

(n)Ãk|Sn|, n ≥ 1,

where Ã1, Ã2, . . . is an i.i.d. sequence of Bernoulli ±1-

random variables, independent of S, with P(Ã1 = 1) =
α. Then S(α) is distributed as an α-skew random walk.

Define the polygonal random function S(α,n) on
[0,1] as follows:

S(α,n)(t) :=
S

(α)
k−1√
n

−
S

(α)
k − S

(α)
k−1√

n

(

t −
k − 1

n

)

,

(3.36)

t ∈
[

k − 1

n
,
k

n

]

,1 ≤ k ≤ n.

That is, S(α,n)(t) = S
(α)
k√
n

at points t = k
n

(0 ≤ k ≤ n),

and t �→ S(α,n)(t) is linearly interpolated between the
endpoints of each interval [ k−1

n
, k

n
].

Let us recall that by an application of the Sko-
rokhod embedding theorem (e.g., see Bhattacharya and
Waymire, 2007), there is a sequence of times T1 <

T2 < · · · and a Brownian motion {B(t) : t ≥ 0} such that
B(T1) has a symmetric Bernoulli ±1-distribution, and
B(Ti+1) − B(Ti) (i ≥ 0) are i.i.d. with a symmetric
±1-distribution. Moreover, Ti+1 − Ti (i ≥ 0) are i.i.d.
with mean one. With this one may check the following:

LEMMA 3.2. The discrete parameter stochastic

process S̃
(α)
0 = 0, S̃

(α)
m := B(α)(Tm), m = 1,2, . . . , is

distributed as an α-skew random walk.

Now it is a rather straightforward exercise to prove
the following theorem as an application of the Sko-
rokhod embedding theorem, similar to that for weak
convergence of the simple random walk to Brownian
motion found in Bhattacharya and Waymire (2007) and
many other references.

THEOREM 3.3. S(α,n) converges in distribution to

the α-skew Brownian motion B(α) as n → ∞.

Since the rescaling function is continuous, it follows
that the rescaled skew random walks converge in distri-
bution to the physical skew diffusion. That is, recalling
the definition of s√

D
at (2.10), one has the following:

COROLLARY 3.1. The (polygonal) random walks

X∗
n, n ≥ 1, defined by

X∗
n(t) = s√

D

(

S̃(α∗,n)(t)
)

, t ≥ 0, n = 1,2, . . . ,

converge weakly to the physical skew diffusion process

X∗ on C[0,∞).

The convergence of the discretized process opens the
door to numerical simulation schemes. Two important
alternatives to numerical methods are naturally sug-
gested, namely, numerical solutions to the p.d.e. (2.1)
and/or numerical solutions to the stochastic equation
(3.29). The self-adjoint character of the conservative
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interface conditions singles out the numerical treat-
ment of the equations in each of its formulations (2.1)
or (3.29). For example, standard off-the-shelf finite dif-
ference methods provide numerical solutions to (2.1)
for the conservative interface condition. Similarly, in
spite of the presence of the local time term in (3.29),
an Euler/Muruyama method was designed by Martinez
and Talay (2012) that preserves the order of conver-
gence of the Euler method when the coefficients of
the s.d.e. are smooth. They exploit the fact that in the
case of the conservative interface condition there is a
one-to-one piecewise linear transformation of the pro-
cess that, with the aid of the Itô–Tanaka lemma, elim-
inates the local time term. As will be emphasized in
the next section and in subsequent examples to follow,
the conservative interface condition is only one of in-
finitely many other possibilities of interest to applica-
tions that require new approaches to numerical simu-
lations of both the p.d.e. and s.d.e. Recently, in Lejay
and Pichot (2012), Étoré and Martinez (2013) and in
Bokil et al. (2013), new numerical methods, including
both stochastic and deterministic schemes, are devel-
oped that apply to these more general interface condi-
tions and restore the order of convergence previously
available for the more restrictive case of the conserva-
tive interface.

General Interface Conditions

The particular form of the interface condition (2.3)
arises naturally in the case of solute transport as con-
tinuity of flux is imposed. However, as will be seen
for applications outside solute transport, the following
more general problem is also of interest:

∂u

∂t
=

1

2
D

∂2u

∂x2 ,

λ
∂u

∂x

(

t,0+)

= (1 − λ)
∂u

∂x

(

t,0−)

,(3.37)

u
(

t,0+)

= u
(

t,0−)

, t > 0,

for some 0 < λ < 1. The Markov process associated
with problem (3.37) can be found using any of the tech-
niques described in this section (see Appuhamillage
et al., 2011a, 2011b). In fact, skew Brownian motion
plays an important role here as provided by the follow-
ing extension of Theorem 2.1

THEOREM 3.4. The Markov process associated

with problem (3.37) is

X(t) = s√
D

(

B(α)(t)
)

,
(3.38)

t ≥ 0, α = α(λ) = λ
√

D−

λ
√

D− + (1 − λ)
√

D+
,

where s√
D

is given in (2.10).

DEFINITION 3.2. We refer to the Markov process
associated to problem (3.37) as skew diffusion. In the
special case of the conservative interface condition for
(2.1), we refer to X ≡ X∗ as the physical skew diffu-
sion.

Ouknine (1990) characterizes skew diffusion pro-
cesses as solutions to a particular family of stochas-
tic differential equations of the form (3.30). In partic-
ular, applying Tanaka’s formula gives that the process
X = s√

D
(B(α)) is a strong solution to

X(t) = X(0) +
∫ t

0

√

D
(

X(r)
)

dB(r)

(3.39)

+
α
√

D+ − (1 − α)
√

D−

2α
√

D+
LX(t,0).

The next theorem follows:

THEOREM 3.5. Let γ < 1, then the strong solution

to

X(t) = X(0) +
∫ t

0

√

D
(

X(r)
)

dB(r)

(3.40)
+

γ

2
LX(t,0)

is given by X = s√
D

(B(α)) with

α =
√

D−
√

D− +
√

D+(1 − γ )
.(3.41)

Note that matching the formulae for α in (3.38) and
(3.41) gives

λ =
1

(2 − γ )
∈ (0,1),(3.42)

which expresses the discontinuities at the interface of
∂u
∂x

in relation to those of the local time of the process.
Finally, as one can easily check by matching the op-

erators in (3.37) with the characterization of the in-
finitesimal operator in (3.12), the family of skew dif-
fusion processes coincides with the class of Markov
processes with scale and speed measures having piece-
wise constant densities.

THEOREM 3.6. Let X be a regular diffusion pro-

cess with speed measure m and scale measure s having

densities

m′(x) = m−
1(−∞,0](x) + m+

1(0,∞)(x),
(3.43)

s′(x) = s−
1(−∞,0](x) + s+

1(0,∞)(x)



498 J. M. RAMIREZ, E. A. THOMANN AND E. C. WAYMIRE

for some m+,m−, s+, s− > 0. Then X is given by

X = s√
D

(

B(α))

(3.44)

with D = 2

m′s′ , α =
√

m+s−
√

m−s+ +
√

m+s−
.

While there is no denying the importance of the con-
servative interface condition in many physical appli-
cations, a primary goal of the present article is to il-
lustrate both the ubiquity and special effects of more
general interface conditions. This is especially relevant
to certain biological and ecological applications where
awareness of such effects might help to guide the de-
termination of an appropriate interface condition. For
example, in the following section, we introduce no-
tions of natural occupation time and natural local time

for the processes arising in this more general class of
models. These are modifications of the more standard
mathematical definitions of occupation and local time
to adapt to the physical units of the model, that is, so
that occupation time is in the units of time, for exam-
ple. An interesting consequence is that continuity and
ordering properties of these quantities can be obtained
that illustrate the effect of a particular interface con-
dition in the context of modeling ecological and nat-
ural processes, for example, in relation to modeling
advection–dispersion of insect populations as consid-
ered in Cantrell and Cosner (2003), Okubo and Levin
(2001).

4. APPLICATIONS IN THE PHYSICAL AND

BIOLOGICAL SCIENCES

In this section several different areas of application
are described. It is in this section that the Mathematics
of Planet Earth theme is most clearly illustrated. Each
application area involves a distinct manifestation of an
interface effect.

It is fitting to first note that the general interface con-
ditions introduced in (3.37) from a mathematical per-
spective already arise naturally in a class of physical
problems involving heat conduction in heterogeneous
media as follows. As treated, for example, in the classi-
cal reference Carslaw and Jaeger (1988), the equation
of conservation of thermal energy in a thin rod com-
posed of two semi-infinite rods with heat capacity ρ±

and heat conductivity κ±, respectively, is given by

ρ± ∂u

∂t
= κ± ∂2u

∂x2(4.1)

with interface condition at x = 0, given by

u
(

t,0+)

= u
(

t,0−)

,
(4.2)

κ+ ∂u

∂x

(

t,0+)

= κ− ∂u

∂x

(

t,0−)

.

In the notation used in this paper, D± = κ±

ρ± . The fact
that the interface condition only depends on the heat
conductivity coefficient leads to the interface condition

λ
∂u

∂x

(

t,0+)

= (1 − λ)
∂u

∂x

(

t,0−)

,(4.3)

where λ = κ+/(κ+ + κ−).
The further collection of examples provided below

indicate various other contexts from biological, en-
vironmental and physical sciences in which the gen-
eral interface conditions may arise. We begin, how-
ever, with a return to an example of solute transport in
porous media for the first two illustrations of the the-
ory. In particular, the condition (2.3) applies at the in-
terfaces.

Heterogeneous Taylor–Aris Dispersion and

Averaging Effects

Taylor–Aris dispersion is well known throughout the
physical and biological sciences for its role in provid-
ing the effective rate of spread of a solute immersed
in a homogeneous fluid flow as given by (1.1) in the
case of Poisseuille flow directed along the horizontal
axis of a cylindrical tube G = [0,∞) × G in terms of
the tube radius R of the cross section G, the molec-

ular diffusion coefficient D and the maximum flow v0
(or cross-sectional average v0/4) of the parabolic flow
profile.4 In the case v0 = 0 the dispersion coincides
with molecular diffusion, and when D = 0 the disper-
sion of solute is aligned with the parabolic profile of
the flow. The relative contributions of these combined
effects (D > 0, v0 > 0) are captured time asymptot-
ically in Taylor’s remarkable insights, leading to the
celebrated formula for an effective dispersion rate

D̄ = 2D +
R2v2

0

96D
.(4.4)

4Motivated by considerations of the stability of a viscous liq-
uid to two-dimensional disturbances in a porous medium, Wooding
(1960) adapted their analysis to obtain the corresponding formula
for dispersion of a solute in a unidirectional parabolic flow between
two parallel planes separated by a distance R. The geometry will
effect the constants appearing in the formulae for effective disper-
sion rates in ways that are made clear by the general theorem of
Bhattacharya and Gupta (1984).
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Although originally developed by Taylor (1953) and
refined by Aris (1956) using perturbation methods of
partial differential equations, this was subsequently
shown to be a manifestation of the central limit the-
orem for a concentration of Brownian motion particles
advected by the flow in Bhattacharya and Gupta (1984)
for the case of Lipshitz continuous dispersion and drift
coefficients. In this context, the effective dispersion co-
efficient is a time-asymptotic variance parameter for
the distribution of the position of an immersed particle.
In the presence of heterogeneity, as is currently known,
it had been loosely anticipated that the effective disper-
sion would be modified by “averaging;” for example,
see Gelhar and Axness (1983). In this section we will
see that as a result of an interface effect, the effective
rate involves both arithmetic and harmonic averaging.

Consider (1.1) in a cylindrical domain G = R × G

with a cross-section G ⊂ R
d , which is a closed interval

in the case d = 1, or a bounded region with a smooth
boundary if d = 2. Suppose the drift v is parallel to
the x1-axis and the diffusivity is a diagonal matrix de-
pending only on the transverse variables. Namely, for
d = 2, v = (v1,0,0) and D = diag(D1,D2,D3) with
v1 = v1(x2, x3) and Di = Di(x2, x3) being positive and
bounded away from zero, i = 1,2,3. Let c(t,x) be a
solution, and consider its cross-sectional average,

C(t, x) :=
∫ ∫

G
c(t, x, x2, x3)dx2 dx3.(4.5)

If X(t) = (X1(t),X2(t),X3(t)), t > 0 is the diffusion
process associated with the p.d.e. solved by c, then
C(t, ·) represents the (nonnormalized) marginal dis-
tribution of the longitudinal coordinate X1(t) for an
initial uniform distribution of the transverse coordi-
nates (X2(t),X3(t)) on G. The Taylor–Aris problem
involves homogenized parameters v̄, D̄ such that on
large space–time scales λx, λ2t , the weak limit

C̃(t, x)dx := lim
λ→∞

C
(

λ2t, λx + v̄λ2t
)

λdx(4.6)

provides a centered solution

C̄(t, x) = C̃(t, x − v̄t)

to the homogenized partial differential equation,

∂ C̄

∂t
=

1

2
D̄

∂2C̄

∂x2
− v̄

∂ C̄

∂x
, t ≥ 0, x ∈ R.(4.7)

The homogenized parameters v̄, D̄ are in fact the re-
sult of an ergodic theorem for the transverse Markov
process with reflecting boundary; see (4.10). The fol-
lowing extension of Bhattacharya and Gupta (1984)
can be obtained for the case of a layered medium

with piecewise continuous coefficients; see Ramirez
et al. (2006) where the original idea of Bhattacharya
and Gupta (1984) to view the problem in accordance
with (4.6) as a functional central limit theorem for
{X1(λ

2t) − v̄λ2t}/λ as λ → ∞ is shown to carry over
to piecewise continuous coefficients as well.

THEOREM 4.1 (A generalized Taylor–Aris for-
mula for piecewise continuous coefficients). Assume

d = 2. Let π(dx2 dx3) be the uniform probability mea-

sure on G, and let h be a solution in L2(G,π) to the

boundary value problem
{∇ · (D2,3∇h) = v1 − v̄, (x2, x3) ∈ G,

(D2,3∇h) · n0 = 0, (x2, x3) ∈ ∂G,
(4.8)

where n0 denotes the outward normal vector of G and

D2,3 = diag(D2,D3). Then, for any t > 0, x ∈ R, and

Borel measurable A ⊆R with |∂A| = 0,

lim
λ→∞

∫

A
C

(

λ2t, λx + v̄λ2t
)

λdx

(4.9)
=

∫

A
C̄(t, x + v̄t)dx

with homogenized parameters

v̄ =
∫ ∫

G
vπ(dx2 dx3),

(4.10)
D̄ =

∫ ∫

G

{

D1 + (D2,3∇h) · ∇h
}

π(dx2 dx3).

In the case d = 1, D2,3 is the scalar D2 which is
piecewise constant, and we obtain (see Figure 3) the
following corollary.

COROLLARY 4.1 (A generalized Taylor–Aris for-
mula with piecewise constant coefficients). Assume

d = 1, G = [a, b], and D has the form

D = D(x2) =
M
∑

k=−m

D(k)
1[lk,lk+1)(x2),

FIG. 3. Two-dimensional advection dispersion through a lay-

ered medium. In the ongoing notation, d = 1, G = [a, b],
G =R× [a, b].
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D(k) =
[

D
(k)
1 0

0 D
(k)
2

]

,

where a = l−m < l−m+1 < · · · < lM < lM+1 = b is a

collection of interfaces partitioning [a, b]. If D
(k)
1 > 0

and D
(k)
2 > 0 for all k, then the limit (4.9) of Theo-

rem 4.1 holds with homogenized diffusion coefficient

D̄ =
M
∑

k=−m

{

D
(k)
1

lk+1 − lk

b − a

(4.11)

+
1

D
(k)
2

∫ lk+1

lk

g(y)2π(dy)

}

,

where g is given by

g(y) =
∫ y

a

(

v1(x2) − v̄
)

π(dx2).(4.12)

Thus, the first term of the effective dispersion rate
(4.4) is replaced by a (weighted) arithmetic average,
while the second term involves a (weighted) harmonic
mean. In particular, for G = [−R,R] with a single in-
terface at 0 separating media with diffusion coefficient
D+ and D−, respectively, and a parabolic velocity pro-
file v1(x2) = v0(1 − (x2/R)2), the formula is

D = Da +
4v2

0R2

945Dh

,(4.13)

where

Da =
D+ + D−

2
, Dh =

1

1/D+ + 1/D− .(4.14)

Physical Skew Diffusion and Stochastic Ordering

of Breakthrough Curves

The topic addressed in this subsection was originally
initiated as a result of observations resulting from labo-
ratory experiments designed to empirically test and un-
derstand advection–dispersion in the presence of sharp
interfaces, for example, experiments by Kuo et al.
(1999), Hoteit et al. (2002) and Berkowitz et al. (2009).
Such laboratory experiments have been rather sophisti-
cated in the use of layers of sands and/or glass beads of
different granularities and modern measurement tech-
nology. The specific interest is in the effect of the inter-
face condition on so-called breakthrough curves, mea-
suring the time required for an injected concentration
at one location to appear at another. The basic phe-
nomenon of interest to us here is captured by the fol-
lowing:

Question. Suppose that a dilute solute is injected at
a point y units to the left of an interface at the origin

FIG. 4. Interfacial schematic.

and retrieved at a point y units to the right of the in-
terface. Let D− denote the (constant) dispersion coef-
ficient to the left of the origin and D+ that to the right,
with, say, D− < D+ (see Figure 4). Conversely, sup-
pose the solute is injected at a point y units to the right
of the interface and retrieved at a point y units to the
left. In which of these two symmetric arrangements will

the immersed solute most rapidly break through at the

opposite end?
The following results indicate that the question

above can be answered by investigating the asymme-
tries in the hitting times of skew Brownian motion and
skew diffusion.

LEMMA 4.1. Fix y ≥ 0 and let H
(α)
y = inf{t ≥

0 :B(α)(t) = y}. If 0 < α < 1/2, then

P−y

(

H (α)
y > t

)

<
α

1 − α
Py

(

H
(α)
−y > t

)

< Py

(

H
(α)
−y > t

)

, t > 0.

Recall that rescaling space by the respective diffu-
sivities symmetrizes the transition probabilities when
α = α∗, that is, for physical skew diffusion X∗(t) =
s√

D
(B(α∗)(t)). The following stochastic ordering of

first passage times for physical skew diffusion pro-
vides a simple probabilistic basis for the symmetries
and asymmetries predicted in experiments cited above.
The proof is by a coupling and relies on an interest-
ing balance between the specific conservative transmis-
sion parameter α∗, as well as the respective scalings on
either side of the interface; see Appuhamillage et al.
(2011a, 2011b) for details.

THEOREM 4.2. Let H ∗
y = inf{t ≥ 0 :X∗(t) = y}.

Then, for y > 0 and D− < D+,

P−y

(

H ∗
y > t

)

≤
√

D−
√

D+
Py

(

H ∗
−y > t

)

< Py

(

H ∗
−y > t

)

, t ≥ 0.

To gain an alternative perspective on this phenom-
ena, one may compute and compare the concentration
curves as a function t → u(t, y) and t → u(t,−y) for
a point injection at the interface; see Appuhamillage
et al. (2011a, 2011b).
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Interfacial Effects on Natural Residence and Local

Times of Skew Diffusions

Within the ecology literature there is a recognition
of the role of interfaces in “directing” movement from
one habitat to another (e.g., see Fagan, Cantrell and
Cosner, 1999; Cantrell and Cosner, 2003, page 112,
and numerous references therein, as well as Okubo and
Levin, 2001, page 265). The main point of the example
described here is to highlight a natural role of noncon-
servative interfacial conditions in the models involving
insect dispersal. Specifically, we will examine the ef-
fect of the interface on functionals such as residence
times.

Fender’s Blue butterfly provides a specific example
that has been analyzed fairly extensively in both field
experiments as well as mathematics. Fender’s Blue is
an endangered species of butterfly found in the Pacific
Northwestern United States. The primary habitat patch
is Kinkaid’s Lupin flower.

Ecologists have focused substantial fieldwork efforts
in examining the way in which organisms respond to
habitat edges and the relationship to residence times
in Lupin patches; see Schultz and Crone (2001). Suffi-
ciently long residence (occupation) times are required
for pollination, eggs, larvae and ultimate sustainabil-
ity of the population. Empirical evidence points to a
skewness in random walk models for butterfly move-
ment at the path boundaries that have led to “biased
random walk” and skew Brownian motion models in
Schultz and Crone (2001), Cantrell and Cosner (2003),
Okubo and Levin (2001), Fagan, Cantrell and Cosner
(1999), Ovaskainen and Cornell (2003). The determi-
nation of proper interface conditions is primarily a sta-
tistical problem in such applications. However, as illus-
trated below, the role of local interfacial conditions is
reflected in the behavior of residence times in ways that
may be useful to the identification of interface condi-
tions. In the framework of one-dimensional advection–
dispersion one is therefore lead to consider the inter-
face conditions (3.37) generalizing the conservative in-
terface condition (2.3).

Note that λ = 0, λ = 1 correspond to reflection at the
interface, while λ = D+

D++D− is the conservative inter-
face condition (2.3) that gives rise to the process X∗.
In particular, at the extremes the residence times of
the positive half-line are obviously quite distinct. The
following result interpolates between these extremes.
The proof exploits the basic property of skew Brown-
ian motion noted at the outset in (2.7), and essentially
that

P0
(

B(α)(t) > 0
)

= α, t > 0.(4.15)

This is easily checked from the definition and, intu-
itively, reflects the property that the excursion interval
Jn(t) of |B| containing t results in a [An(t) = +1] coin
flip with probability α.

The following theorem involves a modification of the
usual mathematical definition of occupation time, for
example, as given in standard references such as Revuz
and Yor (1999), in that integration is with respect to the
Lebesgue measure in place of quadratic variation. We
refer to this modification as natural occupation time.

DEFINITION 4.1. Let X be a continuous semi-
martingale. The natural occupation time of a Borel set
A by X in time [0, t] is defined by

Ŵ̃X(A, t) =
∫ t

0
1A

(

X(s)
)

ds.

One may note that this modification puts occupation
time in the natural units of “time,” while mathematical
local time is in units of (area) “spatial length squared.”
As such, natural occupation time seems to be the more
appropriate representation of residence time measure-
ments, and we use it here for identifying regularities
and properties of interest to the applications. Mathe-
matical occupation time, on the other hand, has impor-
tant roles to play in other theoretical contexts.

THEOREM 4.3. Let X(α(λ)) denote skew diffu-

sion defined in (3.38) for the dispersion coefficients

D+,D− and interface parameter λ. Denote natural

occupation time processes by

Ŵ̃+
λ (t) =

∫ t

0
1(0,∞)

(

X(α(λ))(s)
)

ds, t ≥ 0.

Similarly, let Ŵ̃−
λ (t) = t − Ŵ̃+

λ (t), t ≥ 0. Then,

E
(

Ŵ̃+
λ (t)

)

> E
(

Ŵ̃−
λ (t)

)

, t > 0,

if and only if

λ >

√
D+

√
D+ +

√
D−

with equality when λ =
√

D+√
D++

√
D− .

It is noteworthy, therefore, that under the conserva-
tive interface condition more time is spent in the more
volatile habitat, making such models questionable for
many ecological contexts involving animal dispersion.

The conservative interface condition can also be
characterized as the unique interface condition that
gives the continuity of an analogous natural local time

defined as follows.
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DEFINITION 4.2. Let X be a continuous semi-
martingale. The natural local time at a L̃X(t, a) =
1
2(L̃X,+(t, a) + L̃X,−(t, a)) of X is defined by

L̃X,+(t, a) = lim
ε↓0

1

ε

∫ t

0
1[a,a+ε)

(

X(s)
)

ds

and

L̃X,−(t, a) = lim
ε↓0

1

ε

∫ t

0
1(a−ε,a)

(

X(s)
)

ds,

provided that the indicated limits exist almost surely.

With this definition, one has that

Ŵ̃X(A, t) =
∫

A
L̃X(t,da)(4.16)

in complete analogy with the standard relation be-
tween local time and occupation time defined using the
quadratic variation of the process X.

Recall that in the particular case of skew Brownian
motion, the quadratic variation is simply 〈B(α)〉(t) = t .
Therefore, the “symmetric local time” 1

2(L(X(t, a) +
LX(t, a−)) [see Revuz and Yor, 1999 and equation
(3.27)] agrees with the natural local time just defined.
Moreover, the following relations among one-sided
and symmetric local times at 0 are known; for exam-
ple, see Ouknine (1990):

2αL̃B(α),+(t,0) = L̃B(α)

(t,0),
(4.17)

2(1 − α)L̃B(α),−(t,0) = L̃B(α)

(t,0).

In particular, the symmetric (natural) local time is con-
tinuous if and only if α = 1/2.

The next theorem, a version of which was originally
developed in Appuhamillage et al. (2012), extends the
continuity of natural local time to the more general
framework of the present paper. While the purpose here
is not to explore the generality for which natural local
time exists among all continuous semimartingales, ac-
cording to the following theorem it does exist for skew
diffusion. Moreover, continuity has a special signifi-
cance for the determination of parameters.

THEOREM 4.4. Let X(α(λ)) be the skew diffusion

process with parameters D±, λ. Then the natural lo-

cal time of X(α(λ)) at 0 is continuous if and only if

λ = D+

D++D− , that is, if and only if α(λ) = α∗ and, thus,

X(α∗) is the physical skew diffusion.

Thus, while at the macroscale of deterministic par-
ticle concentrations the determination of the transmis-
sion parameter α∗ may be viewed as a consequence
of the continuity of flux at the interface, at the scale of
stochastic particle motions, it is determined by a condi-
tion of continuity of natural local time at the interface.

Dispersion of Organisms in River Networks

River networks are known to control the flux of wa-
ter and sediment over most landscapes on the planet
earth. Moreover, transport of water, organisms, sed-
iment, nutrients and contaminants on river networks
plays a central role in modern hydrology and ecol-
ogy. River networks constitute, in particular, funda-
mental ecosystems whose populations are dependent
upon the interconnectivity and heterogeneity of the dif-
ferent reaches that form the network (Fagan, 2002).

Mathematically, river networks are modeled as di-
rected binary graphs. A long tradition of research in
hydrology and geomorphology has narrowed the class
of graphs observed in natural river basins, the rela-
tionships between physical variables involved in trans-
port and the topological properties of such networks;
for example, see Rodriguez-Iturbe and Rinaldo (2001),
Peckham (1995), Barndorff-Nielsen (1998) and refer-
ences therein. It is therefore natural to extend the linear
advection–diffusion (2.1) to a binary graph in an effort
to advance the understanding of the relationship be-
tween network topology, physical properties of rivers
and dispersal of organisms.

The first steps toward an extension of skew Brownian
motion to an infinite star-shaped graph was introduced
by Walsh (1978) as a natural mathematical extension
of skew Brownian motion on R. A general theory of
advection–diffusion processes on arbitrary graphs was
subsequently initiated by Freidlin and Wentzell (1993).

To fix ideas in the context of river networks, consider
a connected binary directed tree graph Ŵ as depicted in
Figure 5. Each edge e models a stream reach of length
le between two junctions and is assumed to be isomor-
phic to the interval [0, le]. Also, each edge e has associ-
ated strictly positive parameters ve, Ae and De, denot-
ing the mean water velocity, cross-sectional area and
diffusion coefficient of the organisms in that reach. The
endpoints x = 0 and x = le correspond to the down-
stream and upstream nodes, respectively. The set of
nodes in Ŵ can be divided into three subsets: the single-
ton root node φ, the set I (Ŵ) of internal nodes connect-
ing three edges, and the set U(Ŵ) of upstream nodes n

of “tributary edges” or “leaves” of Ŵ.
Considering the spatio-temporal evolution of the

density of suspended organisms in Ŵ, and imposing
conservation of mass throughout, one arrives at the fol-
lowing extension of (2.1) to the network:

∂ue

∂t
= 1

2
De

∂2ue

∂x2
− ve

∂ue

∂x
,

(4.18)
x ∈ [0, le], e ∈ Ŵ,
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FIG. 5. Schematic of a river network Ŵ with root node φ. The inset shows three edges connected at an internal node n representing the

junction where two tributaries merge to form a new channel.

where ue denotes the restriction of the function u to
edge e. Only functions that are continuous on each
edge of Ŵ and twice continuously differentiable on the
interior of each edge are considered. For an internal
node where edges e1, e2 join to form edge e0, the ap-
propriate extension of (2.3) reads

Ae0De0
∂ue0

∂x
(t, le0)

(4.19)

= Ae1De1
∂ue1

∂x
(t,0) + Ae2De2

∂ue2

∂x
(t,0).

Here, we also have assumed that water discharge
is conserved at river junctions, namely, Ae1ve1 +
Ae2ve2 = Ae0ve0.

Several different behaviors can be prescribed at the
boundary nodes of Ŵ. In particular, following Speirs
and Gurney (2001), Lutscher, Pachepsky and Lewis
(2005), Lutscher, Lewis and McCauley (2006), one
may consider an ecological scenario where organisms
do not leave the network through channel sources, and
an abrupt change of flow conditions occur at φ that re-
moves organisms from Ŵ, for example, a waterfall, a
fast flowing river, a lake, the ocean or human distur-
bances. This can be coded mathematically by requiring

u(t, φ) = 0,
(4.20)

∂u

∂x
(t, n) = 0, n ∈ U(Ŵ), t ≥ 0.

As shown in Freidlin and Sheu (2000), Freidlin and
Wentzell (1993), the spatial operator on the left-hand
side of (4.18) along with conditions (4.19, 4.20) is
the infinitesimal generator of a Feller Markov pro-
cess X = {X(t), t ≥ 0} on Ŵ with continuous sample

paths that can be written as X(t) = (x(t), e(t)) with
e(t) being the edge the process occupies at time t , and
x(t) ∈ [0, le(t)], t ≥ 0. Moreover, one has the analogous
representation to (3.29): there exists a one-dimensional
Brownian motion B and an increasing process L such
that

dx(t) =
√

De(t) dB(t) − ve(t) dt + dL(t),(4.21)

where L only increases when x(t) = 0. The three-way
heterogeneity at internal nodes has a skewing effect on
the sample paths analogous to property (3.16) of skew
diffusion: let H x

ε = inf{t ≥ 0 :x(t) = ε} and n denote
the node connecting edges e0, e1, e2, then

lim
ε→0+

P
(

e
(

H x
ε

)

= ei|X(0) = n
)

=
AeiDei

Ae0De0 + Ae1De1 + Ae2De2
,(4.22)

i = 0,1,2.

An important contribution of advection–diffusion
models in riverine ecology revolves about the classi-
cal “drift paradox,” whereby it was observed in Müller
(1954) that although individual organisms in streams
are subject to downstream drift, the average location
of the population is not observed to move downstream
over time, and thereby persists. In this regard, Speirs
and Gurney (2001), Lutscher, Pachepsky and Lewis
(2005), Lutscher, Lewis and McCauley (2006) obtain
conditions on the channel length, drift velocity and
population dynamics under which the population as a
whole can persist along a single channel assuming that
the movement of individuals is given by an advection–
diffusion process of the form (1.2). Results of this type
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define resolutions of the drift paradox that can be use-
ful to managers of ecological preserves.

Ecological persistence problems on river networks
involve models in which individuals move within Ŵ via
a jump process: an organism initially located at y ∈ Ŵ

jumps to the position X(τσ ), where τσ is an exponen-
tially distributed random variable that represents the
time the individual spends dispersing within the water
column. The resulting dispersal kernel, as it is known
in the ecological literature, is therefore given by

k(y, x) = Py

(

X(τσ ) ∈ dx
)

=
∫ ∞

0
σe−σ tp(t, y, x)dt,(4.23)

x, y ∈ Ŵ,

where p(t, y, x) are the transition probability densi-
ties of X, the fundamental solution to problem (4.18),
(4.19) and (4.20).

In the solutions noted above by Speirs and Gur-
ney (2001), Lutscher, Pachepsky and Lewis (2005),
Lutscher, Lewis and McCauley (2006), the evolution
of the population u in the single channel [0, l] is as-
sumed to be given by5

∂u

∂t
(t, x) = ru(t, x) − λu(t, x)

(4.24)

+
∫ l

0
λk(y, x)u(t, y)dy,

where r > 0 is the net population growth rate6 and λ is
the jump rate. Of course, in the case of a single channel
there is not an interface and the model for p(t, y, x)

is simply Brownian motion with drift v and diffusion
coefficient D.7 Persistence is defined by instability of
the solution u = 0 to (4.24).

An extension from the interval [0, l] to tree networks
Ŵ was developed in Ramirez (2012b), wherein the
dispersal kernel (4.23) is explicitly solved. Moreover,
Ramirez (2012b) permits nontrivial events of upstream
migration, which are proposed in Speirs and Gurney

5Although Lutscher, Pachepsky and Lewis (2005) view (4.24) as
“derived” from a regime-switching model, the argument is flawed.
On the other hand, one may simply view (4.24) as a distinct pop-
ulation model. Felder and Waymire (2013) have recently shown,
however, that the conditions on the parameters for persistence for
the regime-switching model differ from those for (4.24).

6More general dynamics are considered, however, the results de-
pend on the linear form in (4.24).

7Speirs and Gurney (2001), Lutscher, Lewis and McCauley
(2006) permit more general models for p(t, y, x), although the
Brownian motion model is a primary example.

(2001) to be the key to explaining the drift paradox.
In particular, Ramirez (2012a) provides bounds on the
minimum net growth rate r of individuals required for
persistence of the population evolution in Ŵ via the dis-
persal kernel (4.23).

Coastal Upwelling, Fisheries and Continuity of

Natural Local Time

Night satellite images of the earth show a striking
concentration of fishing flotillas exploiting the ocean
bounty off the coast of southern South America be-
tween approximately latitude 40 and 50 degrees south.
This activity takes place in a narrow strip that follows
the continental shelf break of South America where the
cold nutrient rich waters of the Malvinas current reach
the surface of the Atlantic Ocean in a process described
as upwelling (see Figure 6). A mathematical model that
approximately describes the location of the upwelling
is given by the arrested topographic wave equation.
Obtained under various simplifying assumptions, such
as hydrostatic approximation and geostrophic balance,
the equations determine the ocean-free surface eleva-
tion η(x, y) as the solution of

∂η

∂y
= −

r

f

1

h(x)

∂2η

∂x2 .(4.25)

Here x is the distance from the shore, y is the along-
shore coordinate, r > 0 is the bottom friction, f < 0
is the Coriolis parameter and h(x) is the derivative of
the depth of the ocean at x. As part of the derivation of
the equation, the orientation of the along-shore axis y

is determined by the direction of motion of the current;

FIG. 6. Phytoplankton bloom in Malvinas/Falklands current

off the Atlantic coast of southern South America. Provided by

the SeaWiFS Project, NASA/Goddard Space Flight Center and

ORBIMAGE.
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see Matano and Palma (2008) and references within.
As a consequence, (4.25) can be thought of as a diffu-
sion equation where y plays the role of time.

The main features of the upwelling process are ob-
tained by considering a bottom topography in which
the slope h(x) is piecewise constant, h± with a dis-
continuity at the continental shelf brake x = l. At the
“interface” the conservation of mass transport by the
current leads to the conditions

η
(

l−, y
)

= η
(

l+, y
)

,
(4.26)

∂η

∂x

(

l−, y
)

= ∂η

∂x

(

l+, y
)

.

This equation corresponds to (3.37) with

D± = −
r

f h± , λ = 1/2.

While the conservative interface conditions (2.3) are
ubiquitous in the hydrological literature, the conditions
(4.26) are mathematically natural. If one follows the
general theory of time changes in the context of mar-
tingale problems as presented in Stroock and Varadhan
(2006), the interface conditions of the arrested topo-
graphic wave are the ones that can obtained by a di-
rect application of this theory. Indeed, with the time
change τ(t) =

∫ t
0

1
D(w(s))

ds one obtains that X(t) =
B(τ(t)), t ≥ 0, is the Markov process corresponding to
the problem (4.25) with interface condition (4.26). Al-
ternatively, one can obtain X(t) = s√

D
(Bα#

(t)), t ≥ 0,

where α# =
√

D−/(
√

D+ +
√

D−).

5. COMPLEMENTARY RESULTS AND OPEN

PROBLEMS

The main goal of this article has been to develop ba-
sic pathways to the frontiers of advection–dispersion
research in the presence of interfacial effects from
a probabilistic point of view. The example of one-
dimensional processes with point interfaces is rich
enough to provide realistic illustrations of the diverse
effects on quantities arising in the applied sciences
and engineering, however, it falls far short of a gen-
eral mathematical framework. In addition, even in the
one-dimensional context, the examples were selected
to highlight various significant interfacial effects, but
without an attempt to be comprehensive. However, the
relative consequences of these effects do not seem to
be widely recognized in the science literature in terms
of the specification of the interfacial condition. As
a result, the conservative interface condition is often
adopted as the default consideration.

In this section we indicate some related results and
open problems at the frontiers of research in this gen-
eral area of advection–dispersion.

An alternative approach has also been partially de-
veloped by Portenko (1990), also see Aryasova and
Portenko (2008), in the context of pdes whose co-
efficients may be generalized functions. Specifically,
Aryasova and Portenko (2008) permits singular drift
terms but requires smooth dispersion coefficients.
A somewhat heuristic development of ideas along these
lines in the context of dispersion in porous media was
explored in LaBolle, Quastel and Fogg (1998) and
LaBolle et al. (2000) that may also provide effective
approaches to problems of this type. Certainly this
provides an intriguing mathematical framework to ex-
plore, especially for problems in higher dimensions.

The definitions pertaining to breakthrough curves
have various not necessarily equivalent formulations
in the science and engineering literature. While first
passage time is of obvious probabilistic interest, in
the presence of advection the time profile of the
flux-averaged concentration at a point is also some-
times adopted. The flux-averaged concentration is ex-
pressed in terms of the spatial derivatives of u(t, x);
see Appuhamillage et al. (2010). For the case of a dis-
continuous medium, this means that the concentration
at the interface depends upon the derivatives on both
the left and the right at the interface. However, these
gradients evolve differently in the coarse and fine me-
dia. This means that, at the interface, the gradients of
the concentration do depend upon the configuration
(fine-to-coarse versus coarse-to-fine), and this depen-
dency essentially breaks the symmetry that can be ob-
served for the breakthrough curve of the resident con-
centration. This provides an alternative response to the
fine-to-coarse vs. coarse-to-fine breakthrough curves,
as this is explicitly computable in the presence of ad-
vection (see Appuhamillage et al., 2010, 2011b). The
determination of the corresponding first passage times
is unsolved in this generality. However, Appuhamillage
and Sheldon (2012) recently computed an explicit ex-
pression for the density of the first passage time of
skew Brownian motion.

The numerical methods by Martinez and Talay
(2012) and Bokil et al. (2013) are more generally valid
for piecewise continuous in place of piecewise con-
stant diffusion coefficients. However, the methods are
exclusively for the one-dimensional problems. The cor-
responding problems in a higher dimension are largely
untreated. Similarly, as suggested by the examples,
in many applications of biological interest in which
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the conservative interface condition is inappropriate,
the determination of the proper interface condition in-
volves statistical inference. The papers by Brillinger
et al. (2002) and Brillinger (2003) provide some per-
spective on statistical inference for stochastic differen-
tial equations with smooth coefficients with ecological
applications that might be expanded to this context.
The upwelling example treated here is also a resource
for possible explanation of migratory patterns being
monitored by ocean ecologists in the context of oceanic
flow properties; for example, see Acha et al. (2004).

The three theorems presented in Section 3 illustrate
different approaches to deal with the effects of dis-
continuities of coefficients in the model equations. As
problems in earth, physical and social sciences present
situations in which abrupt changes in the parameters
are more common, there is a need to develop an un-
derstanding from diverse points of view of the effect
of these discontinuities in easily observable (macro-
scopic) quantities, as well as in refined, local properties
of the processes involved. The results in Section 4 illus-
trate some of these effects in local time and occupation
time as well as in the sustainability of ecosystems.

As remarked in previous sections, the tools that have
been developed so far apply to one-dimensional prob-
lems, or problems on networks that preserve a one-
dimensional structure along its branches. An outstand-
ing open problem is to develop a more comprehen-
sive approach to problems with discontinuities across
hypersurfaces in several space dimensions. In this di-
rection, Peskir (2007) obtains an extension of the Itô–
Tanaka formula to the case where discontinuities occur
across the graph of a function. This result, however,
does not apply to the case when discontinuities occur,
for example, across the surface of a sphere and severely
limits its applicability since in many problems of in-
terest, the discontinuities occur across the boundary
of bounded sets. Two cases have been investigated in
this regard: Decamps, Goovaerts and Schoutens (2006)
constructs a skew Bessel process from its scale and
speed measures and proves that such a process is the
radial component of a “generalized diffusion process”
(in the language of Portenko (1990)) with a drift term
concentrated on the boundary of a sphere. Second, the
family of planar diffusions with rank-dependent diffu-
sion coefficients, thoroughly studied in Fernholz et al.
(2013), Fernholz, Ichiba and Karatzas (2013), include
the case of a diffusion process in R

2 with discontinu-
ous diffusion coefficient along the line x = y.

While full generalization of skew diffusion to prob-
lems in dimension greater than one is yet to be com-

pleted, some progress has been made for heteroge-
neous diffusion on graphs, as seen, for example, in
Section 4 in the context of river networks. Addition-
ally, for strong-swimming species whose movements
are not dependent on the water velocity, Gutierrez et al.
(2012) have used analysis on the operator in (4.18) with
ve = 0 for all edges to study the time required to eradi-
cate invasive species in a river network.

At a more foundational level, Hairer and Manson
(2010) obtain a one-dimensional skew diffusion as a
limit in the diffusive scale of solutions of stochastic
differential equations with a periodic drift coefficient
outside an interval centered at the origin. In the limit
the diffusion coefficients are determined in a classical
manner, while the skewness is characterized in terms
of a Zvonkin type transform of the drift. Moreover,
in Hairer and Manson (2011) a similar limit is ana-
lyzed for a stochastic differential equation with peri-
odic drift in all directions outside a finite region cen-
tered on a hyperplane in R

k . The limiting diffusion
has an infinitesimal generator with discontinuous co-
efficients for which the diffusion coefficient is classi-
cally determined. In turn, the domain of the genera-
tor determining the interface conditions is character-
ized through relations on the normal derivatives from
both sides of the hyperplane and tangential derivatives.
Such results illustrate the promise of a rich mathemat-
ical theory as research on interfacial effects goes for-
ward.

A perhaps intermediate step between skew diffu-
sion and diffusion on graphs is the case of problem
(2.1) with a piecewise diffusion coefficient taking more
than two or an infinite number of values. Namely, one
might consider, as in Corollary 4.1, a one-dimensional
medium with multiple interfaces. Define

D(x) =
∑

k∈Z
D(k)

1(xk,xk+1)(x),(5.1)

where {xk :k ∈ Z} is a sequence of real numbers with
no accumulation points and {D(k) :k ∈ Z} are positive
numbers uniformly bounded away from zero. The flux
continuity condition (2.3) extends to the multiple inter-
face case as D(k−1)f ′(x−

k ) = D(k)f ′(x+
k ), k ∈ Z. The

associated process is denoted by X∗
M and is referred to

as “multiple skew diffusion.”
Using a framework very similar to that presented in

Section 3, Ramirez (2011) characterizes X∗
M in terms

of a process exhibiting skewness of paths at several
points: “multiple skew Brownian motion.” More pre-
cisely, let α = {αk :k ∈ Z} be a sequence with αk ∈
(0, 1

2) ∪ (1
2 ,1) and consider interfaces {yk :k ∈ Z} with
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no accumulation points. The process Bα is defined as
the Feller process with generator Aαf = 1

2f ′′ acting
on functions f ∈ Cb(R) that are twice continuously
differentiable inside each (yk, yk+1) and that satisfy
αkf

′(y+
k ) = (1 − αk)f

′(y−
k ) for all k ∈ Z. Not surpris-

ingly, “multiple skew diffusion” is given by

X∗
M(t) = s√

D

(

Bα
∗
(t)

)

,(5.2)

where s√
D

denotes here the continuous piecewise lin-

ear function with s√
D

(0) = 0 and s′√
D

(x) = D(k) for

x ∈ (xk, xk+1), and Bα
∗

is multiple skew Brownian
motion with interfaces {s−1√

D
(xk) :k ∈ Z} and skewness

sequence

αk =
√

Dk√
Dk +

√
Dk−1

, k ∈ Z.(5.3)

Processes of the form X∗
M can be used in the context

of transport within layered media, as exemplified in
Figure 3. In particular, Ramirez (2011) analyzes such a
process to determine the asymptotic behavior of parti-
cles undergoing advection–diffusion on a periodic infi-
nite layered medium composed of two phases: a matrix
of slow diffusive transport with periodic cracks where
fast diffusion dominates.
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