
Memoirs of the Faculty of Engineering ,Okayama UniversitY,Vol.27, No. 1, pp.93~ 105, November 1992

Advection Dispersion by Eulerian
Lagrangian Finite Element Method

Makoto NISHIGAKI*, Teddy SUDINDA **, Tomoyuki HISHIYA ***, Ichiro KOHNO*

(Received September 30 , 1992)

SYNOPSIS

In this paper the author will be describe phenomena of advection dispersion in

subsurface flow by using Eulerian Lagrangian Finite Element Method. Where Finite

Element Method with Galerkin formulation and weigthed residual method is used to

solve seepage and advection dispersion equation. The problem of one dimensional

and two dimensional rectangular wave are analyzed in this papet And the result of

numerical analyses will be compared with analytical solutions. The numerical results

showed the very good agreement with the analytical solutions.

1. INTRODUCTION

Recently, allot of ground water contaminant problems are discussed to estimate the behaviors of these

problems, numerical methods have been used as powerful technics. Generall); there are three numerical

methods to solve problems of ground water contaminant. that is Lagrangian method, Eulerian method and

Eulerian-Lagrangian method. The typical Lagrangian method is Particle Tracking Method, when we apply

this method to practical problem, we need lot of memory of computet Eulerian method is very popular

method to solve advection dispersion problem. But in this case of high seepage advection velocity and we

have to divide very small mesh size. So there is a limitation to solving practical this kind problem by using

Eulerian method The Eulerian Lagrangian method is the most useful method to estimate the advection

dispersion problem. The previous researcher such as S P Neuman (1980) presented this method, where

numerical scheme for advection dispersion equation conjugate space time grid is used. It is used two grid

that is advection grid and dispersion dispersion grid. Both grids are fixed in space and have distinct spatial

and temporal increment [1]. Afterwards, S.P Neuman and S. Shorek (1982) presented Eulerian Lagrangian

method for advection and dispersion problem. Where the advection-dispersion problem can be solved
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independently at each time step, this new approach is called Method of Reverse Streaklines, or

Conventional Method of Continuous Particle Tracking [2]. The residual dispersion problem can be treated

by Eulerian Finite Element Method. Then S P Neuman (1984) discussed Adaptive Eulerian Lagrangian

Finite Element Method for advection dispersion problem as this method is based on the composition of

concentration field in two part, one advective and one dispersive, in rigorous manner that does not leave

room for ambiguity [3]. And then R.Cady and S.P Neuman (1988) presented three dimensional adaptive

Eulerian Lagrangian Finite Element Method[4], in this method there is a little difference with S.P

Neuman previous method published in 1984. They were developed into three dimensional domain, but

unsaturated condition and density dependent phenomena is not considered. In this paper the Eulerian

Lagrangian Finite Element analysis will be extend to the saturated-unsaturated seepage problem and density

dependent problem. Furthermore, the result of numerical analysis will be discussed.

2. GOVERNING EQUATION

The governing equation the water movement in saturated-unsaturated with density dependent is derived

in the form :

pf.y.8 . ac + (ex.Ss + Cs(8» all' _~ (kiP) (8) a~ + ki3.kr (8) pr) = 0 ...... (1)
p at at aXl aXl

Where:

pf density of fresh water ; t = time ; ex = 0 for unsaturated condition

y = bulk density ; tp =pressure head ; ex =I for saturated condition

Cs(8) = specific capacity; kiP)= saturated hydraulic conductivity tensor

pr = p/pf = relative fluid density ; kr = relative hydraulic conductivity

Ss = specific storage coefficient; Cs = moisture capacity; p = pf (1 + y C) = fluid density

The initial and boundary condition of the problem take the form

tp ( xi , t) = tpo ( xi ) .. (2)

tp ( xi , t) = tpO ( xi,t) (3)

- kr.(8) (kiP) ~~ + ki3. pr) = Vn (xi, t) ...... (4)
vXl

Vn = darcy velocity of normal direction

The Governing Equation Advection Dispersion for the Analysis of Contaminant Transport

ac _ A.R QpC*R.,. - V.(D.V.C) - Vs.V.C --. C +-- ...... (5)
vt p p.8



...... (10)
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p'
R = (1 + 11 . Kd) ...... (6)

Where:

C concentration; D = dispersion coefficient; n = porosity

Vs real velocity; p = fluid density; QpC* = source; e = moisture content

A = radio active coefficient; p = fluid density; QpC* = source

p = bulk density of the solid; Kd = infiltration coefficient

In cartesian coordinate the dispersion tensor can be written in the form (Bear 1972) [6]:

Dll =aLVI VI + aT V3V3 + "-T (7)IV! M "fIl ••••••

D12 = Dz 1 = ( aL - ar )VM'3 ...... (8)

Where:

aL = longitudinal dispersivity

aT = tranversal dispersivit

am = diffusion coefficient

VI = real velocity in y direction; V3 = real velocity in x direction; IVI = real velocity absolute

T = tortuosity

Advection Dispersion Equation with Eulerian Lagrangian Finite Element Method

.d. = ~ + V.V
dt at R

95

We can rewrite in Eq.(5) in Lagrangian form as

diC V.V.C A R
R'~dt--R-) = V.(D.V.C) - V.V.C -po C - q

QpC*
Where q = source term (-q =--)

p.e

...... (11)

Afterwards in Eq (11) , left side of second part and right side of second part yield and we obtain in the form

R.ddC = V.(D.VC) - A.R . C - q
t p

...... (12)

Then Neuman introduces an expression of C as the sum of two functions [2],[3]
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C ( X , t) = C (X , t) + C(X , t) (13)

Where C = Concentration of Advection

C= Concentration of Dispersion

C satisfies the homogeneous differential equation

R ~ = _RA.C- (14). dt p ......

In the Condition the advection problem, Eq. (14) can be solved for C independent of C .
Subtracting Eq.(14) from Eq.(12) leads to residual dispersion problem for C, defined by

R.[ddC - ddC ] = V.(D.V.C) _RA.(C_C)+q ...... (15)
t t p

3. NUMERICAL APPROACH

In the present work, an iterative Galerkin Finite Element Method is used to solve equation of transient

seepage in saturated-unsaturated porous medium (Eq. (1» and Eulerian Lagrangian Finite Element is used

to solve equation advection dispersion (Eq. (5». The method was implemented using quadrilateral Galerkin

Finite Element of relative ease of transforming from the global coordinate system into the local coordinate

system. This transformation is needed to evaluate interpolation that relies upon the finite element basis

function for particle locations.

3.1 NUMERICAL APPROACH OF SEEPAGE IN SATURATED UNSATURATED POROUS

MEDIA

By adapting Galerkin Finite Element Method to Eq (1), we obtained matrix differential equation such

as follow

atpm aCmAnmtpm + Fnm at + Xnm at - On -Bn 0 ...... '(16)

Where:

Anm = {aaNn. aaNm . kijS . kr (8) dV ...... (17))v Xi Xj

Fnm = 1Nn . Nm. (a . Ss + Cs. (8) ) dV ...... (18)

1 pLy. 8
Xnm = Nn . Nm . -p-. dV

v

...... (19)



On =1ni . Nn • Vd. dS
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...... (20)
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Bn = faa~~ . (kijS . Kr (6). pr ).dV ......(21)

3.2 NUMERICAL APPROACH OF ADVECTION-DISPERSION IN POROUS MEDIA

The advection problem is generally solved by Single Step Reverse Particle Tracking (SRPT) combined

with the solution of Eq.(14) over time step. And Forward Particle Tracking (FWPT) is used in the vicinity

of steep concentration front to define the concentration field and residual dispersion problem is solved to

obtaine the nodal concentration at the end of the time step by using finite element of fixed grid.

CN(x,t) is used to approximated C(x,y) and is defined as

C ( x , t) = CN( x , t) = L Cn ( t )'~n ( X )
n

...... (22)

Where N = the total number of nodes in the finite element grid

Cn = the concentration at node n.

~ = finite element basis function for node n.

3.2.1 SINGLE REVERSE PARTICLE TRACKING METHOD

Consider a fictitious particle that moves from a location KXn at 4c to a new location ~+ I at f<+ I

which coincides with node n. Its initial location is then given by

...... (23)

The final C value of the same particle upon reaching node n, C~+t. is obtained by solving Eq.(14)

analytically over At.

...... (24)

3.2.2 CONTINUOUS FORWARD PARTICLE TRACKING METHOD

Steep concentration fronts are tracked with the aid of particle cloud that covers the fronts until their

gradient dissipate. A particle p moves from its initial location at f< , X~, to a new location

...... (25)
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at tk +1 where the integration is performed by the same method as in Eq.(23). If the particle concentration at

rc is C~ ,its concentration at tk +1 is in analogy to Eq.(24)

...... (26)

3.2.3 RESIDUAL DISPERSION BY FINITE ELEMENT

By applying the Galerkin method to Eq.(15), we obtained matrix differential equation such as follow

~ ~ . - 2-Wnm - -Wnm + Gnm • Cm + H nm Cm + (Cn - Cn )Ln +Un = 0 ...... ( 7)
ot ot

Where:

H nm = Lnj Vj ~n ~m ds

...... (28)

...... (29)

...... (30)

...... (31)

...... (32)

In the equation (31), we can approximated in the form :

Ln = ARf ..LNn dv (33)
Pe

v

where Pe = density of element

3.2.4 INTEGRATION OVER TIME

To integrate matrix differential Eq.(16), the time domain is discretized into sequence of fmite intervals,

Ll t, and the time derivatives of ~ and Cn are replaced by Finite Differences. And by the approximated

difference partial, Eq. (16) can be written as follow
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Fk+1/2 Ck+l C k Fk +1I2
(-!ll2!- + W.A~;'1I2) lp~+l = Q~+l _ B~+112 _ m - m X~~112 + (~- (1 - w) A~;'1I2) lp~ ...• (34)
~tk ~t ~f
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In this case w is depend on the scheme integration

Where w = 112 =central difference

w = I = backward difference

And also matrix differential Eq.(27), can be written in the matrix differential partial, this equation can be

written i the matrix differential equation in the form :

1 -k+ I
(4tn + - Wnn ) Cn - Unn

at
...... (35)

In analyzing for advection-dispersion matrix differential equation, we used backward difference, so matrix

differential equation (27) can be shown such as the above equation.

At the beginning of each time step, these are predicted by linear extrapolation according to

k
lpk+ 1/2 _ tpk + ~ t (. tpk _ tpk-l ) (·36)·

n - n .1< 1 n n ......
2~ r'-

The resulting set of simultaneous equation is solved by Gaus Elimination method. At each iteration, the
k+1 k+1/2

most recent values oftpn are used to obtaine an improved value of 'Pn from

tp~+1/2 = 112 (tp~ + tp~+ 1 ) ...... (37)

And the next step, the matrix differential equation for residual dispersion is written such as in Eq.(35), we

will obtained the value for concentration each node and time step.

4. PROGRAMING

The program consists of over 16000 lines of fortran 77 code, this code includes 161 subroutines or

function sub programs.The main program component of the code found in the Elus 90 files, consists of

dimensioning parameters to allocate space for the many variables that occur throughout the program and to

define number of permanent files and temporary files used in the program. The major of the code is

depicted in the general flow diagram shown as Fig.l.

Input data model is divided 22 types and the using of each types depends on the model that will be

analyzed.The program consists of three kinds of model analyses, that is perpendicular analyses, plane

surface analyses and axissimetry analyses. In particular, the program is used Eulerian-Lagrangian Finite

Element Method to analyses Advection-Dispersion Problem. In general processes of calculation

Eulerian-Lagrangian method is follow: the seepage equation by using Galerkin Finite Element method and

weighted residual method will be shaped matrix equation of integral, and we call the lump mass

integration. And the coordinate system will be transferred from global coordinate to local coordinate with

using the Isoparametric elements. The problem of transferring coordinate will be solved with integral gaus

legendre, so we will obtain the equation matrix consisted of number that is possible to calculate all the

coefficient matrix. From this calculation we will obtained the pressure head for each node. The calculation
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of matrix is used Gaus Elimination Method.

In the next processes with the similar method that

explained above, by using Eulerian Lagrangian Finite

Element Method we will obtaine concentration for

each nodal point The subroutine in the program

generally is divided into four classifications:

The first classification, to read variation of input data

that used for processes calculation, for example

coefficient of permeability, coefficient of dispersion,

to generate of node point and element and to read

boundary and initial condition,we will approximate

the model. The second classification, to calculate

seepage matrix which was formed from each

element, we will obtain the pressure head of each

point The third classification, to calculate clarey

velocity for each element and with the correlation of

shape function, we will obtain the real velocity. The

final classification, from the real velocity by using

Eulerian Lagrangian Method,we will obtaine the

concentration each nodal point.

Fig.l Flow Chart of Advection-Dispersion

5. COMPARISON OF ANALYTICAL AND NUMERICAL RESULT

To illustrate some of the problems with particular treatment of advection dispersion, simple examples of

one and two dimensional will be solved by the various Peclet number (Pe = V UD), and Courant number

(Cr =V TIL). Where V =magnitude of velocity, L =characteristic length, T =time step and D =dispersion

coefficient. Afterward the results will be compared with analytical solutions.

5.1 ANALYTICAL AND NUMERICAL SOLUTION OF ONE DIMENSIONAL CASE

5.1.1 ANALYTICAL SOLUTION

...... (38) ~
J.le:u

In this case, we will approximate the one dimensional dispersion problem in a nonsteady state and uniform

velocity field over infinite one dimensional region by

OC Dx 02C _ Vx oC on a ~ x ~ x~

ot ox2 ox

subject to

C (x, 0) 0.0

C (0, t) = 1.0
C (x~, t) 0.0

...... (39) Fig.2 Boundary conditions and initial condition
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Analytically solution to this case is [21,[31

C(X,t) 0.5 .{ erfc ( x - Vx .t ) + exp ( Vx . X) erfc ( x + Vx . t )}
14Dx.t Dx 14Dx.t

...... (40)

5.1.2 MODEL AND RESULT OF NUMERICAL ANALYSIS

The finite element consists of 50 rectangular Table. 1 Parameter values for one dimensional

elements and 102 nodes point. Fig.2 shown the

boundary and initial condition. All the parameters for Ca", Po C> Vx(nVSC(') at (!lC(') .6.x(w) D(m2I!ICC) RW,P

the one dimensional problem can be seen in table 1. In I-I 0.25 0.1 0.05 0.1 0.05 O.oI
1-2 0.25 o.oJ 0,05 0.01 0.05 O.oJ 0

this case we used various Pe number and Cr number. 1-3 025 0.1 0.05 0.1 0.05 0.01 63
1-4 0.25 O.oJ 0.05 o.oJ 0.05 0.01 63

The results of numerical analysis for various Pe 2·1 5.0 5.0 1000.0 0.0001 0.02 4.0 0

2-2 5.0 0.5 1000.0 oo1סס.0 0.02 4.0 0

number can be shown in Fig 3, Fig 4 and Fig 5, in 2-3 5.0 5.0 1000.0 0.0001 0.02 4,0 63

2·4 5.0 0.5 JOOO.o oo1סס.0 0.02 4.0 63

these figure, solid lines are analytical solutions. 3-1 20.0 5.0 1000.0 0.0001 om 1.0 0

3-2 20.0 0.5 1000.0 OO1סס.0 0.02 1.0 0
3-3 20.0 5.0 1000.0 0.0001 om 1.0 63

3-4 20.0 0.5 1000.0 oo1סס.0 0.02 1.0 63
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Fig. 3 Comparison of analytical and numerical solutions for low Pe number
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Fig.4 Comparison of analytical and numerical solutions for middle Pe number
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5.2 ANALYTICAL AND NUMERICAL SOLUTION OF TWO DIMENSIONAL CASE

5.2.1 ANALYTICAL SOLUTION

Partial Differential equation for two dimensional problem can be shown as follow

02C 02C oC oC OC
Dx - + Dy - - Vx - - Vy - = - (41)

ox2 oy2 ox oy ot

Initial and boundary condition are as follow

C( 0) 10when xc-asxsxc+ax, y, =.

Yc - b s Y s Yc + b

103

C ( x , y , 0) = 0.0 otherwise

C(..oo,y,t) = C(oo,y,t) = C(x,-OO,t)

Analytically Solution to this case is [3],[5]

C ( x , 00 , t) = 0.0

C ( x t) = 0.25 [ erf {a - ( x - Xc ) + Vx . t } + erf {a + ( x - Xc ) - Vx . t }]
,y, "'4Dx.t "'4DX.t

[erf {b - ( Y- Yc ) + Vy . t } + erf {b + ( Y- Yc ) - Vy . t }]
14 Dy . t 14 Dy . t

5.2.2 MODEL AND RESULT OF NUMERICAL ANALYSIS

...... (42)

Table.2 Parameter for two dimensional model

Fig. 6 Boundary conditions for two dimension

For this example, the elements consists of 2000

elements and 2121 nodal points and the informations

of parameter values for two dimensional model are

shown in Table. 2. The boundary condition is shown

in Fig.6. In this case, a rectangular wave dispersion

phenomena was calculated in an uniform velocity

field over an infinite domain at relatively low Peclet

numbers, the background concentration is zero and

the wave has an initial concentration of one. It is

centered at (Xc,Yc) = (0.15,0.00) and a = 0.05 m,

b= 0.008 m. Size of mesh has a length of 0.04 m

parallel to the x - coordinate and 0.01 m parallel y 

coordinate. And the results of numerical analysis are

shown in Fig.7 and Fig.8. These figures shown the

behavior of concentration in the section through the

wave center parallel to the x direction and y direction

at six concecutive times.
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Parameter C8!lC~ 1 Case· 2

Pc <xl 10.0 10.0

Pc (y) I.. I..
Cr(x) 5.45 5.45

Cr(y) 0.545 0.545
Vx(mfscc) 1000 1000

\y (mloec) 40 40

.6.t(!ICC) oo545סס.0 0.0000545

.6. x (m) O.Ql om
dy(m) 0.004 0.004

Dx(m2Isec) 1.0 1.0
Dy(m2!IlCC) 0.1 0.1

FWP 0 329
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C~1.0 c=o.o
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(a). Case 1 (Pe(x)=1O,Cr(x)=5.45,FWP=O) (b). Case 2 (Pe(x)=1O,Cr(x)=5.45,FWP=329)

Fig.7 Comparison of analytical and numerical solutions for x-eoordinate
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(c). Case 1 ( Pe(y)=1.6,Cr(y)=O.545,FWP=O)

Y - COORDINATE (m)

(d). Case 2 (Pe(y)=1.6,Cr(y)=O.545,FWP=329)

Fig.8 Comparison of analytical and numerical solutions for y-eoordinate

6. CONCLUSION

In this paper the numerical analysis by Eulerian Lagrangian Finite Element method have been shown.

And also basic theory of saturated and unsaturated seepage flow and the Eulerian Lagrangian Finite Element

Method have combined. From the result of calculation, it become appear that the Eulerian Lagrangian Finite

Element Method is appropriate to solve the advection dispersion problem. This is caused that in the

Eulerian-Lagrangian method the advection dispersion problem with initial and boundary condition can be

formally decomposed into pure advection and residual dispersion. And from the result of one dimensional

case, we obtained that when Pe is small, dispersion dominates and equation is parabolic in characteristic,

and on the contrary when Pe is large, advection dominates and equation changes to hyperbolic. Then the

effect of forward particle to the result of calculation become obvious. This method strongly influences to

the steep concentration front.
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