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Advection-Dominated Accretion: Self-Similarity and Bipolar Outflows

Ramesh Narayan and Insu Yi

Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138

Abstract

We consider axisymmetric viscous accretion flows where a fraction f of the
viscously dissipated energy is stored in the accreting gas as entropy and a fraction
1 − f is radiated. Assuming α-viscosity we obtain a two-parameter family of
self-similar solutions. Very few such exact self-consistent solutions are known for
viscous differentially rotating flows. When the parameter f is small, that is when
there is very little advection, our solutions resemble standard thin accretion disks
in many respects except that they have a hot tenuous corona above the disk. In
the opposite advection-dominated limit, when f → 1, the solutions approach
nearly spherical accretion. The gas is almost at virial temperature, rotates at
much below the Keplerian rate, and the flow is much more akin to Bondi accretion
than to disk accretion. None of the solutions have funnels.

We compare our exact self-similar solutions with approximate solutions which
had been previously obtained using a height-integrated system of equations. We
find that various dynamical variables such as the radial velocity, angular veloc-
ity and sound speed estimated from the approximate solutions agree very well
with the corresponding spherically averaged quantities in the exact solutions.
We conclude that the height-integration approximation is an excellent one for a
wide range of accretion conditions, including nearly spherical flows, provided the
equations are interpreted as spherical averages.

We find that the Bernoulli parameter is positive in all our solutions, especially
close to the rotation axis. This effect is produced by viscous transport of energy
from small to large radii and from the equator to the poles. In addition, all the
solutions are convectively unstable and the convection is especially important
near the rotation axis. For both reasons, we suggest that a bipolar outflow will
develop along the axis of these flows, fed by material from the surface layers of
the equatorial inflow.

Subject headings: accretion, accretion disks: black hole physics: hydrodynamics
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1. Introduction

In a previous paper (Narayan & Yi 1994, hereafter NY) we discussed the
potential importance of advection effects in accretion flows. We showed that, both
at very low and very high optical depths, the energy released through viscous
stresses in an accretion disk may be trapped within the accreting gas. Most of
the energy then is advected with the flow as stored entropy. Such advection-
dominated flows have been found in models of boundary layers in cataclysmic
variables at low accretion rates (Narayan & Popham 1993) and in models of
pre-main sequence stars such as the FU Orionis systems at very high accretion
rates (Popham et al 1993). Advection-dominated conditions may also occur in
the inner parts of disks around neutron stars and black holes.

In the analysis presented in NY, we integrated the flow equations in the
“vertical” direction, i.e. parallel to the rotation axis. Making the usual assump-
tions of steady state, axisymmetry, and α-viscosity, we obtained a set of ordinary
differential equations for the gas variables as a function of the cylindrical radius
R. We showed that these equations have an exact self-similar solution where all
variables have power-law dependences on R and where the Mach number is inde-
pendent of R. This solution, which had previously been discovered by Spruit et
al. (1987), has several interesting and unexpected properties. However, before we
can explore the consequences of these properties we need first to confirm that the
self-similar solution itself is real and not just an artifact of the vertical integration
of the equations.

Vertical integration is a standard approximation which has been used in
accretion disk studies from the earliest days. The physical motivation behind this
approximation is that the vertical thickness of an accretion disk is usually much
smaller than the local radius, so that the flow velocities are likely to be more or
less independent of height. It is then reasonable to expect that very little is lost by
integrating out the vertical coordinate. Unfortunately, the self-similar solutions
discovered by Spruit et al. (1987) and NY are not thin. The temperature of the
accreting gas is nearly always close to virial, and the formal vertical thickness is
comparable to the radius. This inconsistency raises serious questions concerning
the validity of the solutions and the reliability of the conclusions.

In this paper, we avoid the height-integration approximation and instead set
up exact flow equations for steady axisymmetric flow in the rθ plane. The equa-
tions we obtain are similar to those written down by Begelman & Meier (1982).
We present here numerical self-similar solutions of the equations. These solu-
tions are direct generalizations of the height-integrated solutions in NY. Rather
gratifyingly, we find that all the features of the height-integrated solution are
reproduced well in the present solutions. In fact, we even find excellent quantita-
tive agreement between the two approaches, suggesting that the height-integration
approximation may be much better than previously thought.

In §2 we write down the equations that we solve along with the boundary
conditions. Then in §3 we describe numerical results of the equations, discuss
some of the more interesting properties of the solutions, and make various com-
parisons with the previously-obtained height-integrated solutions. Finally, in §4
we discuss the implications of the results, especially for the formation of outflows.
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Appendix A compares our solutions with those obtained by Begelman & Meier
(1982), and Appendix B discusses the relationship to Bondi (1952) accretion.

2. Equations of a Steady Axisymetric Advection-Dominated Flow

We define the isothermal sound speed cs by

p = ρc2s, (2.1)

where p is the pressure and ρ is the density, and we assume that the gas has a
fixed ratio of specific heats, γ ≡ cp/cv. For convenience we define

ǫ =
5/3− γ

γ − 1
. (2.2)

We work in spherical polar coordinates rθφ, and write the three components of
velocity as vr, vθ and vφ = Ωr sin θ, where Ω is the angular velocity. The gas
accretes onto a central mass M and we define the Keplerian angular velocity
ΩK(r) by

ΩK(r) =

(

GM

r3

)1/2

. (2.3)

Assuming steady state (∂/∂t = 0) and axisymmetry (∂/∂φ = 0), the continuity
equation gives

1

r2
∂

∂r
(r2ρvr) +

1

r

∂

∂θ
(ρvθ) = 0. (2.4)

Integrating this over angle we obtain the net mass accretion rate,

Ṁ = −
∫

2πr2 sin θρvrdθ. (2.5)

We employ the usual α-prescription for the viscosity, which we write in the
following form for the kinematic coefficient of viscosity,

ν =
αc2s
ΩK

, (2.6)

where α is a constant. This form is equivalent to the assumption that ν ∼ αcsH
where H ∼ cs/ΩK is the “vertical” scale height. Note that ν is a function of
position, both because ΩK depends on r and because cs varies from point to
point. The three components of the momentum equation give (e.g., Mihalas &
Mihalas 1984)

ρ

(

vr
∂vr
∂r

−
v2φ
r

)

= −GMρ

r2
− ∂p

∂r
+

∂

∂r

[

2νρ
∂vr
∂r

− 2

3
νρ

(

2vr
r

+
∂vr
∂r

)]
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+
1

r

∂

∂θ

(

νρ

r

∂vr
∂θ

)

+
νρ

r

[

4r
∂

∂r

(vr
r

)

+
cot θ

r

∂vr
∂θ

]

,

(2.7)

ρ

(

−cot θ

r
v2φ

)

= −1

r

∂p

∂θ
+

∂

∂r

(

νρ

r

∂vr
∂θ

)

+
1

r

∂

∂θ

[

2νρvr
r

− 2νρ

3r

(

2vr
r

+
∂vr
∂r

)]

+
3νρ

r2
∂vr
∂θ

, (2.8)

ρ

(

vr
∂vφ
∂r

+
vφvr
r

)

=
∂

∂r

[

νρr
∂

∂r

(vφ
r

)

]

+
1

r

∂

∂θ

[

νρ sin θ

r

∂

∂θ

( vφ
sin θ

)

]

+
νρ

r

[

3r
∂

∂r

(vφ
r

)

+
2 cot θ sin θ

r

∂

∂θ

( vφ
sin θ

)

]

, (2.9)

while the energy equation gives

ρ

(

vr
∂e

∂r
− p

ρ2
vr

∂ρ

∂r

)

= −2fνρ

3

[

1

r2
∂

∂r

(

r2vr
)

]2

+ 2fνρ×

[

(

∂vr
∂r

)2

+ 2
(vr
r

)2

+
1

2

(

1

r

∂vr
∂θ

)2

+
1

2

(

r
∂

∂r

(vr
r

)

)2

+
1

2

(

sin θ

r

∂

∂θ

( vφ
sin θ

)

)2
]

.

(2.10)
Anticipating the self-similarity form assumed below (eqs 2.11–2.15), we have set
vθ = 0 in the above equations. The left-hand side of equation (2.10) is the gradient
of the entropy. The right-hand side is the rate of generation of energy through
viscous dissipation, except that it is multiplied by a parameter f . This parameter
describes the fraction of the disipated energy which is advected as stored entropy,
and is therefore a measure of the degree to which the flow is advection-dominated.
A fraction (1−f) of the energy is removed through radiative losses. In principle,
f could be a function of θ, but all the results we present here correspond to the
simplest assumption, viz. f = constant.

We restrict ourselves in this paper to self-similar flows. We therefore seek a
solution of the form

ρ = r−3/2ρ(θ), (2.11)

vr =

√

GM

r
v(θ) = rΩK(r)v(θ), (2.12)

vθ = 0, (2.13)

vφ = rΩK(r)Ω(θ), (2.14)

cs = rΩK(r)cs(θ). (2.15)
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The form of the solution is obvious. The only lengthscale in the problem is r
and the only frequency is ΩK . Therefore, all velocities must scale with radius as
rΩK . Angular variations at a given radius are modeled through the dimensionless
functions v(θ), Ω(θ) and cs(θ). Given the radial scaling of vr, the scaling of

ρ is uniquely determined by the constancy of Ṁ in (2.5), and since r2ρvr is
independent of r, the continuity equation (2.4) shows that vθ = 0.

By construction, the solution (2.11) – (2.15) automatically satisfies the conti-
nuity eq. (2.4). Substituting the solution in the momentum and energy equations
we obtain the following four coupled differential equations in θ:

−1

2
v2 − sin2 θΩ2 = −1 + c2s

(

5

2
− αv + α cot θ

dv

dθ

)

+
1

ρ

d

dθ

(

αρc2s
dv

dθ

)

, (2.16)

− cos θ sin θΩ2 = −1

ρ

d

dθ
(ρc2s) +

αc2s
2

dv

dθ
+

1

ρ

d

dθ
(αc2sρv), (2.17)

1

2
sin θvΩ = −3α sin θc2sΩ

4
+

1

ρ

d

dθ

(

α sin θρc2s
dΩ

dθ

)

+ 2α cos θc2s
dΩ

dθ
,(2.18)

−3ǫ′v

2α
= 3v2 +

9

4
sin2 θΩ2 + sin2 θ

(

dΩ

dθ

)2

+

(

dv

dθ

)2

. (2.19)

Following NY, we have introduced in eq. (2.19) a quantity ǫ′ which we define by

ǫ′ =
ǫ

f
=

1

f

(

5/3− γ

γ − 1

)

, (2.20)

where f is the parameter we have already introduced in eq. (2.10).
Equations (2.16) – (2.20) constitute a sixth-order system of ordinary differen-

tial equations for the four functions v(θ), Ω(θ), cs(θ), and ρ(θ). The integral (2.5)
sets the normalization of ρ(θ) and provides one boundary condition. The remain-
ing boundary conditions are distributed between the equatorial plane, θ = π/2,
and the rotation axis, θ = 0. At θ = π/2, we have by symmetry the conditions

θ =
π

2
:

dv

dθ
=

dΩ

dθ
=

dcs
dθ

=
dρ

dθ
= 0. (2.21)

At θ = 0, we insist that the solutions be well-behaved and non-singular. This
leads to the conditions

θ = 0 :
dΩ

dθ
=

dv

dθ
=

dcs
dθ

=
dρ

dθ
= 0, v = 0. (2.22)

The last condition follows from eq. (2.19). Not all of the conditions (2.21), (2.22)
are independent. We choose a convenient subset of these conditions and solve the
differential equations (2.16)–(2.19) using a numerical relaxation technique (e.g.,
Press et al. 1992).

Under certain conditions, the sixth-order set of equations (2.16)–(2.19) re-
duces to a second-order system. We discuss this simplification in Appendix A
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and compare our work to a previous analysis of this problem by Begelman &
Meier (1982)

Technically, equation (2.19) allows two possible boundary conditions on v at
θ = 0, viz. v = 0 which is the one we have given in eq (2.22) and v = −ǫ′/2α.
We have tried to obtain rotating solutions which satisfy the second condition
and have been unable to find any. However, the boundary condition v = −ǫ′/2α
does allow a purely spherical non-rotating inflow solution which we discuss in
Appendix B. This solution is a generalization of Bondi flow to the case when
there is viscosity.

3. Results

3.1 Typical Solutions

We have obtained numerical solutions of eqs. (2.16) – (2.19) for a variety
of values of the viscosity parameter α and the thermodynamic parameter ǫ′ (de-
fined in eqs. (2.6) and (2.20)). Figure 1 shows a typical sequence of solutions
corresponding to α = 0.1 and ǫ′ = 0.1, 1, 10. These solutions may be con-
sidered either as a sequence of fully advection-dominated flows (f = 1) with
γ = 1.6061, 1.3333, 1.0606, or as flows with a fixed value of γ and with a
sequence of decreasing f or increasing cooling.

The four panels in Fig. 1 show the variation with polar angle θ of various dy-
namical quantities in the solutions. The top left panel displays the dimensionless
angular velocity Ω(θ). Rather surprisingly, we find that Ω is nearly independent
of θ in each solution, varying by only ∼ 10% from θ = 0 to θ = π/2. Radial shells
therefore rotate more-or-less rigidly, but of course there is differential rotation
between neighboring shells. The actual value of Ω varies significantly from one
solution to another, changing from Ω ∼ 0.2 at ǫ′ = 0.1 to Ω ∼ 0.9 at ǫ′ = 10.
The scaling of Ω with ǫ′ follows eq (3.2). Note that Ω ∝ (ǫ′)1/2 for ǫ′ ≪ 1. This
implies that Ω → 0 as γ → 5/3.

The top right panel shows the radial velocity profiles v(θ) of the solutions.
The velocity is zero at θ = 0 (this is a boundary condition) and maximum at
θ = π/2. We find that v is essentially independent of ǫ′ for ǫ′ ≪ 1 and varies as

v ∝ 1/
√
ǫ′ for ǫ′ ≫ 1 (see eq 3.1).

The bottom left panel shows profiles of the density ρ(θ). In the ǫ′ = 0.1
solution ρ varies by only ∼ 10% from θ = 0 to θ = π/2. The solution therefore
corresponds to a nearly spherical configuration. This is demonstrated in Figure
2 (top left) where we display isodensity contours in the meridional plane. The
resemblance of this solution to a star is striking, but of course it is not a normal
star, since it involves a steady accretion flow. In any case, it is quite clear that this
solution is very definitely not a “disk” in the usual sense. The density contrast
between ρ(0) and ρ(π/2) increases with increasing ǫ′, becoming a factor ∼ 2 at
ǫ′ = 1, and a factor ∼ 50 at ǫ′ = 10. The isodensity contours of these solutions
are shown in the top right and bottom left panels of Fig. 2. The ǫ′ = 1 solution
looks like a rotationally flattened star, while the ǫ′ = 10 solution is beginning to
resemble a standard thin disk. A value of ǫ′ = 10 normally implies a small value
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of f (unless γ is close to 1), and so the solution represents a case where there is
significant cooling. This is precisely the limit where we expect the flow to occur
in a thin disk.

The v(θ) and ρ(θ) profiles both peak at θ = π/2. Therefore, in all our
solutions the bulk of the accretion occurs along the equatorial plane, and the
accretion rate goes to zero along the rotation pole.

The bottom right panel of Fig. 1 shows the variation of c2s, or equivalently
the gas temperature, with θ. In the ǫ′ = 0.1 solution, c2s is almost independent
of θ, and the pressure p = ρc2s too is independent of θ. In this solution, the ro-
tation is highly sub-Keplerian and so hydrostatic equilibrium requires primarily
a balance between gravity and the pressue gradient. Since gravity acts in the
radial direction, the pressure gradient too is almost radial. The ǫ′ = 1 and espe-
cially the ǫ′ = 10 solutions have larger temperature and pressure variations with
θ and have non-radial pressure gradients. This is to be expected given the more
rapid rotation of these solutions and the increasing importance of centrifugal
acceleration.

An interesting feature of the large ǫ′ solutions is worth emphasizing. As
already mentioned, these solutions have efficient cooling and therefore resemble
thin disks. Nevertheless, in all cases there is a low density corona above the disk
which is at nearly virial temperature. This is illustrated by the ǫ′ = 10 solution
in Fig. 1. The hottest temperature is achieved at the rotation poles, θ = 0, π.

In addition to the above examples with α = 0.1, we have calculated a number
of solutions with other values of α. For α ≪ 1, v scales as α, but except for this,
solutions with the same ǫ′ but with different values of α are virtually indistin-
guishable from one another. There are more significant variations when α exceeds
unity. However, such large values of α are probably unlikely (e.g. Narayan, Loeb
& Kumar 1994, Hawley, Gammie & Balbus 1994), and we have not explored this
region of parameter space.

In the advection-dominated limit, where ǫ′ ≪ 1, our solutions have very
simple scalings, viz. v ∼ −α, Ω ∼ (ǫ′)1/2, cs ∼ 1. These scalings arise as follows.
Since the cooling is inefficient, all the viscous energy is stored in the accreting
gas, and this means that the thermal velocities approach virial speeds, i.e cs ∼ 1.
Comparing the various terms in eq (2.18) we see that v has to scale as −αc2s . This
gives v ∼ −α for a virial gas. The physical reason for the scaling is that the radial
velocity in an accretion flow is determined primarily by the rate at which angular
momentum is removed from the gas and this depends on the viscosity coefficient ν.
In the α prescription (eq 2.6), we have ν ∼ α in scaled units and this therefore
implies v ∼ −α. Finally, the scaling of Ω arises through the energy equation
(2.19). The left-hand side of this equation is the product of the radial gradient
of the entropy and the radial velocity, and therefore represents the steady state
rate of change of entropy of a parcel of accreting gas. Recall that our solutions are
by construction self-similar with ρ ∝ r−3/2 and p ∝ r−5/2. If γ is exactly equal
to 5/3, then a flow with these radial dependences is automatically isentropic.
However, for γ 6= 5/3, there is an entropy gradient in the flow such that the
entropy increases inwards whenever γ < 5/3, i.e. ǫ′ > 0. This means that the
entropy of each accreting gas element increases with time at a rate proportional
to ǫ′. The entropy has to be generated of course by the viscous energy dissipation,
described by the four terms in the right of eq (2.19). Usually, the dissipation is
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dominated by the two terms proportional to Ω2 amd (dΩ/dθ)2 which arise from
the rφ and φz components of the shear stress. Thus the dissipation is proportional
to Ω2. In order to achieve self-consistency, the magnitude of Ω in the self-similar
solution is adjusted such that the dissipated energy exactly matches the energy
that is required to maintain the self-similar entropy gradient. Since the latter is
proportional to ǫ′ and since v ∼ −α, we thus see from (2.19) that we require
Ω ∼ (ǫ′)1/2. This is exactly what we see in our numerical solutions.

A somewhat interesting feature of eq (2.19) is that even when Ω → 0,
the right hand side still remains non-zero. This is because of the terms v2 and
(dv/dθ)2, the first of which is the viscous dissipation arising purely from the ge-
ometric convergence of the flow due to the spherical geometry, while the second
represents the rz component of the shear stress. These two terms imply a certain
minimum level of viscous dissipation even in a very slowly rotating flow. This
dissipation will of course cause the entropy to increase inwards, and by the argu-
ments given above we see that ǫ′ has to be greater than a certain minimum value.
Indeed, we have discovered from our numerical experiments that self-similar so-
lutions exist only for ǫ′ >

∼ Cα2, where C is a constant of order unity. The limit
is exactly of the form we expect from eq (2.19). Thus for large values of α, the
parameter γ needs to deviate significantly from 5/3 and/or f needs to be quite
different from unity in order to have a self-similar flow. On a related point, we
note that there is a second branch of solutions which corresponds to non-rotating
purely spherical accretion. These solutions are quite distinct from the Ω → 0
limit of the rotating solutions discussed here and are in fact closely related to
Bondi (1952) spherical accretion. We discuss these solutions in Appendix B.

In addition to the solutions described so far, we have found (for somewhat
large values of ǫ′/α2) other solutions where Ω reverses sign one or more times
as a function of θ. These higher-order solutions come in two parities. Solutions
with even parity have an even number of nodes in Ω(θ) between θ = 0 and
θ = π. These solutions satisfy the boundary conditions (2.22) at the equator,
and have rotation profiles which are symmetric between the two hemispheres.
The lower right panel of Fig. 2 shows isodensity contours of one such solution
with two nodes where the flow down the two poles rotates in one sense while
the flow in the equatorial plane rotates with the opposite sense. Solutions with
odd parity have an odd number of nodes, and the rotation profiles in the two
hemispheres are reversed with respect to each other. These solutions satisfy the
boundary condition Ω = 0 at θ = π/2. We do not expect any of these higher-
order solutions to be relevant except in rare cases where the initially infalling gas
happens to have reversals in the sign of the angular momentum as a function
of θ. In the rest of the paper we restrict ourselves to the nodeless fundamental
solutions.

The results described so far correspond to the particular form of viscosity
given in eq. (2.6). To check how sensitive the results are to the viscosity pre-
scription, we obtained solutions corresponding to a second law. By dimensional
analysis we see that self-similarity is possible only if ν scales with radius as r1/2.
Therefore, as our alternate prescription we used ν = αcsr. We found that the
solutions with this viscosity law are very similar to those described above. There-
fore, none of our results are special to the particular viscosity prescription we
have adopted.
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3.2. Comparison with Height-Integrated Solutions

One of the primary aims of this study was to check the validity of the
height-integrated approximation for advection-dominated flows. As we have seen,
accretion flows become very nearly spherical when they are advection-dominated
(f → 1). From this it might appear that the height-integrated approximation,
which is based on a disk-like picture of the flow, would be particularly inappro-
priate in this limit. We investigate the issue quantitatively.

Spruit et al. (1987) and NY showed that the height-integrated equations
have the following analytical self-similar solution,

(v)h = −(5 + 2ǫ′)
g(α, ǫ′)

3α
≈ − 3α

(5 + 2ǫ′)
, (3.1)

(Ω)h =

[

2ǫ′(5 + 2ǫ′)g(α, ǫ′)

9α2

]1/2

≈
[

2ǫ′

5 + 2ǫ′

]1/2

, (3.2)

(c2s)h =
2(5 + 2ǫ′)

9

g(α, ǫ′)

α2
≈ 2

5 + 2ǫ′
, (3.3)

where the second relation in each equation refers to the limit α ≪ 1, and the
subscript h is to remind us that these expressions correspond to the height-
integrated approximation. The function g(α, ǫ′) is given by

g(α, ǫ′) ≡
[

1 +
18α2

(5 + 2ǫ′)2

]1/2

− 1. (3.4)

We now take the exact solutions calculated in this paper and extract from
them three fiducial values each of v, Ω and c2s. First, we consider the values of
the variables at the mid-plane, θ = π/2; we refer to these values as (v)m, (Ω)m
and (c2s)m. As our second estimate, we compute spherically-averaged values, e.g.

〈v〉θ =

∫ π/2

0
v(θ)ρ(θ)dθ

∫ π/2

0
ρ(θ)dθ

, (3.5)

with 〈Ω〉θ and 〈c2s〉θ defined similarly. Finally, we compute z-averaged values,
which correspond to cylindrical averages parallel to the rotation axis. In this
case, we define the averages according to

〈v〉z =

∫∞

0
v(z) sin(θ)ρ(z)dz
∫∞

0
ρ(z)dz

, (3.6)

〈Ω〉z =

∫∞

0
Ω(z)ρ(z)dz
∫∞

0
ρ(z)dz

, (3.7)
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〈c2s〉z =

∫∞

0
c2s(z)ρ(z)dz
∫∞

0
ρ(z)dz

. (3.8)

Figure 3 compares these three fiducial values of v, Ω and c2s from the exact
solutions with the corresponding height-integrated values, (v)h, (Ω)h, (c

2

s)h, for
a range of ǫ′ extending from ǫ′ = 10−2 to 102. The results correspond to small
values of α <

∼ 0.1; in this regime, Ω and c2s are independent of α while v is simply
proportional to α.

When ǫ′ ≫ 1, we are in the cooling-dominated regime where the flow resem-
bles standard thin disk accretion. In this limit, we expect height-integration to be
quite accurate, and indeed we do find that the height-integrated estimates (v)h,
(Ω)h, (c

2

s)h agree well with all three estimates obtained from the exact numeri-
cal solutions. The only discrepancy is between (c2s)h and (c2s)m, but this can be
understood. These solutions have coronae as discussed in §3.1, and naturally the
midplane value of c2s is smaller than either the spherical average or the z-average.

When ǫ′ falls below unity the flow becomes quite spherical, and we would ex-
pect height-integration to be less valid. As expected, we find that the z-averaged
values of v, Ω and c2s differ significantly from the height-integrated estimates.
For instance, at ǫ′ = 10−2, we find 〈v〉z = 0.32(v)h, 〈Ω〉z = 0.42(Ω)h, 〈c2s〉z =
0.46(c2s)h. Thus, height-integration leads to fairly large errors at the level of fac-
tors ∼ 2–3.

However, Fig. 3 reveals a surprise, viz. that the height-integrated estimates
agree very well with both the midplane values and the spherically-averaged values
of the exact solutions. For instance, at ǫ′ = 10−2, we find (v)m = 1.28(v)h,
(Ω)m = 1.13(Ω)h, (c

2

s)m = 1.00(c2s)h for the midplane values, and 〈v〉θ = 0.82(v)h,
〈Ω〉θ = 1.09(Ω)h, 〈c2s〉θ = 1.00(c2s)h for the spherical averages. The spherical
averages show particularly good agreement with the height-integrated estimates
over the entire range of ǫ′ from 0 to infinity, with no error exceeding 20%.

This result suggests that one should interpret the height-integrated equations,
not as averages over cylindrical height z, but rather as averages over spherical
polar angle θ at a fixed r. Once this is done, height-integration is a good approxi-
mation even for nearly spherical flows. The height-integrated equations, especially
in the form of the so-called “slim disk” equations (Abramowicz et al. 1988), have
become popular in recent years for modeling the dynamics of accretion flows. Un-
til now, it has not been clear exactly how slim a disk has to be in order for the
equations to be valid, and also exactly what kind of an average the solutions
represent. Based on the results presented here, we suggest that the slim disk
equations may be applied virtually to any accretion flow around a point mass,
however non-slim the flow may be, and that the results should be interpreted as
spherical averages rather than as z-averages. We caution, however, that this sug-
gestion is based on the properties of a very special class of self-similar solutions,
and needs to be tested on non-self-similar flows.

3.3. The Bernoulli Parameter

The Bernoulli parameter Be, defined as the sum of the kinetic energy, the
potential energy and the enthalpy of the accreting gas, is of interest in accretion
flows because it measures the likelihood that outflows or winds may originate
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spontaneously (NY). An adiabatic flow has a constant Be along streamlines. If
Be is positive for any of the accreting gas, then this gas can potentially reach
infinity with a net positive kinetic energy.

Let us normalize Be in our self-similar solutions by the square of the local
free-fall speed, vff = ΩKr, and consider the dimensionless parameter

b ≡ Be

Ω2

Kr2
=

1

2
v2 +

1

2
(Ω sin θ)2 − 1 +

γ

γ − 1
c2s. (3.9)

The parameter b is a function of θ but independent of r. In NY we showed
that the Bernoulli parameter is positive in height-integrated advection-dominated
flows, and suggested that this may explain the frequent occurrence of outflows
and winds in many accretion systems. However, because the result was obtained
through the height-integrated equations, it had to be treated with caution. We
now consider the behavior of b in the exact self-similar solutions obtained in this
paper.

Fig. 4 shows b(θ) for a sequence of solutions. All the solutions have the
same ǫ = 0.333 (γ = 1.5), but the advection-domination parameter f varies over
the range f = 1, 0.446, 0.33, 0.033, 0.0033, 0.0011, which means that ǫ′ =
0.33, 0.75, 1, 10, 100, 300. We confirm the basic result of NY that advection-
dominated flows have positive b. Furthermore, we see that for f > 0.446, b(θ) > 0
at all θ. This means that for flows that are so highly advection-dominated, the
entire gas has positive Bernoulli parameter. Even in the limit of extreme cooling
(f → 0), there is always some gas near the rotation axis (θ → 0) which has a
positive b. The reason for this is the corona which we mentioned in §3.1. Even
though the disk cools efficiently and is geometrically thin, it still has a hot virial
corona above it and this region of the flow can acquire a positive b especially
close to the rotation axis.

These results make the connection between accretion and outflows much
stronger than we suspected based only on the height-integrated work of NY.
A case can be made now that perhaps all accretion flows, whether advection-
dominated or cooling-dominated, are capable of producing outflows. The main
difference between the two kinds of flow may be only a quantitative one, viz. the
former probably produce more powerful outflows than the latter. Also, it would
appear that outflows will prefer to form along the rotation axis, since this is
where b is most positive in all cases. A bipolar morphology is thus natural. The
argument is made even stronger by the results on convection discussed in the
next section.

It is important to emphasize that the positivity of b does not imply a violation
of energy conservation. In viscous accretion flows, the energy content of a parcel
of gas is modified by viscous transport of energy from one radius to another and
from one θ to another. Let us consider only the radial flux for simplicity. The
radial flux of energy transported by viscosity is equal to the quantity (the radial

angular momentum flux) × (the angular velocity) ∼ Ṁv2φ. This energy flux is
directed outward and has a negative divergence. Therefore, it deposits energy at
each radius. For a given Ṁ , the rate of deposition of energy is maximum in the
case of a standard thin accretion disk, where vφ = ΩKr. However, because these
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disks also cool efficiently, the deposited energy does not produce an enhancement
of b (in fact, b = −0.5), but rather leads to an enhancement of the locally radiated
flux. This explains the well-known result that the radiative flux emerging from
a thin disk (except near the inner edge) is three times larger than the rate at
which gravitational energy is released locally (e.g. Frank, King & Raine 1989). As
the parameter f increases and the flow becomes more advection-dominated, the
viscous energy flux actually decreases in magnitude because vφ becomes smaller
than ΩKr. However, because the cooling is also less efficient, a larger fraction of
the energy is retained by the gas and therefore, paradoxically, b actually becomes
larger. As we have seen, when f exceeds a critical value, b can actually become
positive over the entire flow.

The θ component of the viscous stress causes angular redistribution of the
energy at a given r. The direction of this flux is such as to enhance b at the
poles relative to the equator. The result is that the pole always has a positive b
even in the limit of small f .

The self-similar solution is very special in that it has an infinite source of
energy at r = 0 which can be transported outward by viscosity. This explains
how the entire solution can have a positive b. If we consider a non-infinite flow
which is terminated at a finite inner radius ri, then for radii close to ri the viscous
energy flux will be less than the self-similar value. The gas near the inner edge
will therefore have negative b. However, once we are reasonably far from the inner
edge (say r > few × ri), the self-similar value of b will be achieved and beyond
this radius the flow will be indistinguishable from the self-similar form. Overall,
the deficit of b near the inner edge will compensate for the positive b elsewhere,
ensuring that energy is conserved globally.

3.4. Convection

In NY, we showed that advection-dominated flows have entropy increasing
inwards and therefore that these flows are intrinsically unstable to convective in-
stabilities. This point was made earlier by Begelman & Meier (1982). We discuss
here the role of convection in the solutions described in this paper.

The left-hand side of eq (2.19) is proportional to vTds/dr, where ds/dr is
the radial derivative of the entropy. Since v is negative and the right-hand side
of eq (2.19) is positive (it consists only of dissipation terms), we see that ds/dr is
negative at all θ, and therefore that the flow is convectively unstable at all angles.
In any simple theory of convection we expect the convective flux to be parallel to
the local pressure gradient since this is the direction associated with the buoyancy
force. (In principle, the flux could be in a different direction in a rotating flow
because of anisotropic transport, but we ignore this complication.) We have seen
earlier that whenever the flow is advection-dominated (f → 1, ǫ′ <

∼ 1) the flow is
nearly spherical and the pressure gradient is almost radial. Therefore, we expect
convection to act primarily in the radial direction. This is very different from
the vertical convection which is usually discussed in the context of thin accretion
disks (e.g. Ryu & Goodman 1992).
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When there is convection we can expect it to have a back reaction on the
basic flow. To estimate the magnitude of the effect, let us rewrite the energy
equation (2.19) with the convective contribution included:

−3ǫ

2

ρvrc
2

s

r
= −∇·Fc+

fαρc2s
ΩK

[

3v2r
r2

+
1

r2

(

dvr
dθ

)2

+
9

4
sin2 θΩ2 + sin2 θ

(

dΩ

dθ

)2
]

.

(3.10)
Here Fc is the convective energy flux, and ρ, vr, Ω, cs refer to the physical
variables and not the scaled functions defined in eqs (2.11)–(2.15). The term on
the left of eq (3.10) is the divergence of the advected entropy flux, ρTv · ∇s,
which we refer to as the “advection term.” The first term on the right is the net
deposition of energy due to the inflow of convective energy flux into the gas —
the “convection term” — and the second term is the energy deposition due to
viscous dissipation (reduced by our usual factor f).

To estimate the magnitude of the convection term, we note that we expect
the convective flux to be proportional to the entropy gradient with some effective
diffusion constant Kc. Further, we may write Kc approximately in a form similar
to the α-prescription for viscosity. Thus, we have

Fc ≈ −KcρT (∇s · r̂)r̂ ≈ −αcc
2

s

ΩK
ρT (∇s · r̂)r̂, (3.11)

where we have assumed that Fc is parallel to the unit radial vecotr r̂ because
the pressure gradient is primarily radial. Since ∇s · r̂ is negative we see that
the convective flux flows outwards. In an advection-dominated self-similar flow
c2s

<
∼ 2Ω2

Kr2/5 (see eq 3.3), and Fc is proportional to r−3. Therefore, the con-
vection term becomes

−∇ ·Fc =
Fc

r
<
∼

3

5
αcǫρc

2

sΩK . (3.12)

We see that this term has the same form as the advection term on the left of
equation (3.10). We can therefore compare the two terms directly. Figure 5 shows
the ratio of the convection and advection terms for one of our advection-dominated
solutions, assuming αc = α/2. The shape of the curve may be understood as
follows. For small ǫ′, the radial velocity v is given quite accurately by

v(θ) ≈ −3

4
α sin2 θΩKr. (3.14)

Therefore, we expect
Convection

Advection
≈ 8

15 sin2 θ

αc

α
. (3.15)

The ratio is smallest in the equatorial plane (θ → π/2) and diverges towards the
rotation axis (θ → 0, π).

On general grounds, we would argue that αc cannot exceed α. The reason is
that α, which describes the viscous transport of angular momentum, is expected
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to have contributions from many sources of viscosity such as magnetic stresses,
convection, and other fluid instabilities. Convective energy transport on the other
hand depends only on the strength of the convection. We therefore expect 0 ≤
αc ≤ α, with the upper equality being achieved only in the limit of massively
efficient convection with no source of viscous stress other than convection. In
fact, if magnetic stresses always saturate at equipartition (e.g. Gammie, Hawley
& Balbus 1994), then the inequality becomes 0 ≤ αc ≤ α/2.

Figure 5 and eq (3.15) show that for a wide range of θ, the convection term is
smaller than the advection term, so that convection has only a moderate effect on
the flow. To see this in more detail, we take the convection term to the left-hand
side of eq (3.10) and combine it with the advection term (NY). This gives

Advection− Convection =
3ǫ

2

ρvc2s
r

(

1− 8

15 sin2 θ

αc

α

)

. (3.16)

With this modification, eq (2.19) continues to be valid except that we have to
rewrite ǫ′ as

ǫ′ =
ǫ

f

(

1− 8

15 sin2 θ

αc

α

)

. (3.17)

The new factor in parentheses modifies the value of ǫ′. So long as this factor is
positive, it has only a minor effect on the solution. The value of ǫ′ is reduced (in
an angle-dependent way because of the sin2 θ) and the flow becomes effectively
more advection-dominated. The overall structure of the flow, however, remains
basically unchanged. Since the convection term is smaller than the advection
term, the timescale on which convection changes the entropy profile is longer
than the advection timescale, and there is just not enough time for convection
to have a large effect.

There is however a critical angle θcrit, whose value is given by eq (3.16),

θcrit ≈ sin−1

[

(

8αc

15α

)1/2
]

, (3.18)

below which convection dominates over advection. This means that for θ < θcrit
the flow is strongly modified. Indeed, at these angles, convection will overwhelm
the advection and the whole self-similar flow will break down. At these angles, we
expect that convection will rapidly transfer entropy outwards. Since the Bernoulli
constant is positive at these angles (see §3.3) the gas at large radius will acquire
a great deal of positive energy and in all likelihood will flow out supersonically.

We thus have a plausible scenario for the formation of bipolar outflows. Our
qualitative picture is that the accretion occurs primarily in a thick equatorial belt
with θcrit < θ < π−θcrit. Over this zone the solution is almost of the self-similar
form described in this paper, and although it is convective the convection has
only a minor effect on the parameters of the flow. However, for θ < θcrit and
θ > π − θcrit, the convection becomes strong enough to transfer energy outward
and to disrupt the self-similar accretion. This gas has a positive Bernoulli constant
(§3.3), and therefore very likely will be driven out in an outflow. Of course, we
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still don’t have a self-consistent description of the outflow region, since all we have
shown is that our self-similar advection-dominated solution is violently unstable
in the region around the rotation axis. Nevertheless, we feel that our picture is
plausible and that some outflows at least may well be generated in this manner.

Figure 5 shows that for αc = α/2, we have θcrit ∼ 33o. The outflow region
is therefore not very wide. Moreover, the amount of mass involved in the outflow
region is quite small. Let us assume that the mass outflow rate Ṁout is equal to
the mass accretion rate in the original self-similar solution for θ < θcrit. While
the density ρ is essentially independent of θ in an advection-dominated flow, the
accretion velocity varies as v ∝ sin2 θ (eq 3.14) and is very small in the region

around the axis. From our numerical solution we calculate that Ṁout ∼ 0.017Ṁ
for αc = α/2. Therefore, only a small fraction of the accreting mass participates

in the outflow. Indeed this estimate of ˙Mout is probably too high since it assumes
that the original self-similar flow has been set up in the polar regions and is then
turned round into an outflow. In practice we imagine that the outflow will clear
out two conical regions and that the mass for the outflow will be supplied by
pressure gradients in the upper layers of the equatorial inflow. The mass outflow
rate will then be even smaller than our estimate.

In any case, the important point is that, in the very nature of the flow,
the mass in the outflow region acquires the most positive energy (or Bernoulli
constant) at the expense of the rest of the accreting material. It is therefore
ejected with a speed comparable to the free fall speed at the radius from which
the outflow originates. The most energetic ejected material will have a speed at
infinity comparable to the virial speed at the surface of the accreting star.

4. Summary and Discussion

The main aim of this investigation was to obtain axisymmetric self-similar
advection-dominated flow solutions in three dimensions without using the height-
averaging approximation. We have succeeded in this enterprise. The solutions we
have presented are obtained by numerically solving a general sixth-order system
of differential equations, where the only serious approximation we have made is
the use of an isotropic α viscosity. To our knowledge, these solutions are one of
the very few fully self-consistent, axisymmetric, rotating steady state flows known
with non-trivial viscous interactions. Related previous work has been published
by Begelman & Meier (1982), Liang (1988) and Henriksen & Valls-Gabaud (1994).
However, some of these other solutions have unphysical boundaries where the as-
sumptions break down, whereas our solutions describe fully consistent equilibrium
flows which fill the entire rθ plane.

Our solutions span a two-parameter family labeled by the viscosity parameter
α (see eq. 2.6 for the definition) and a thermodynamic parameter ǫ′ (eq. 2.20).
The latter is a function of the ratio of specific heats γ of the accreting gas and the
fraction f of the dissipated energy which is advected with the gas. For a given
α, solutions with large values of ǫ′ behave like standard thin disks, as might
be expected since these solutions correspond to f → 0 and so advect very little
energy. In the opposite advection-dominated limit, which corresponds to f → 1
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or ǫ′ < 1, our solutions describe nearly spherical flows which rotate at much
below the Keplerian rate. These advection-dominated solutions have very similar
properties to the approximate solutions derived in NY.

We emphasize that the solutions we find are not the usual tori with steep
funnels that are normally considered when “thick accretion disks” are discussed
(e.g. Begelman & Meier 1982, Frank et al. 1992). Our solutions are much more
like slowly rotating stars, except that they are not static but involve viscously-
driven settling flows. The question now arises: do our equations permit solutions
with empty funnels, as described by Begelman & Meier (1982)? As we discuss
in the Appendix, this must be considered an open question at this time.

We have compared the numerical three-dimensional solutions of this paper
with the approximate two-dimensional height-integrated solutions described by
Spruit et al. (1987) and NY. Because some of our solutions are nearly spherical,
we might expect the height-integrated solutions to be in error by quite large fac-
tors. Instead, we find that the height-integrated solutions agree very well (errors
< 20%) with spherically-averaged quantities from the exact numerical solutions.
This is very encouraging since it means that simple height-integrated equations
such as the “slim disk” equations (Abramowicz et al. 1988) may be valid over a
much wider range of conditions than suspected before. The result also clarifies
how to interpret the height-integrated equations. One should consider these equa-
tions to represent the properties of spherically-averaged quantities in the accretion
flow (averages over spherical polar angle θ at fixed spherical radius r) rather than
of vertically averaged quantities (averages over vertical height z at fixed cylin-
drical radius R). This interpretation is, however, based on a very special class of
solutions and should be checked on less special flows.

Advection-dominated accretion flows have a very unique feature in that they
are characterized by positive values of the Bernoulli parameter b (eq 3.9). This re-
sult was discovered by NY using the height-integrated equations, and is confirmed
here with more exact calculations. We interpret a positive Bernoulli parameter
as an indication that the accreting gas may be able spontaneously to generate
winds and outflows. In some of our highly advection-dominated solutions we find
that the entire accreting gas has a positive b (e.g. the solutions with f ≥ 0.446 in
Fig. 4). These flows may be particularly susceptible to violent outflows. Rather
surprisingly, even solutions with efficient cooling (f → 0) have hot low density
coronae with positive b. This might mean that even regular thin accretion disks
may always be accompanied by advection-dominated coronae which can drive low-
density winds. Further, both in the advection-dominated and cooling-dominated
limits, b is maximally positive along the rotation axis. This suggests that when-
ever there is an outflow, it is likely to have a generic bipolar morphology.

Another interesting property of advection-dominated flows is that they are al-
ways convectively unstable, as was noted originally by Begelman & Meier (1982).
Because advection-dominated flows have almost spherical isobars, we argue that
the convection will occur almost purely in the radial direction. This is very dif-
ferent from the “vertical convection” which has been studied in the context of
thin accretion disks (e.g. Ryu & Goodman 1992).

Convection in advection-dominated flows may be a source of turbulent vis-
cosity. Although viscosity is required in order to have any accretion at all, for
long it was unclear what the source of the viscosity in accretion disks may be
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since no linear hydrodynamic instability could be identified in Keplerian disks.
With the recent work of Balbus & Hawley (1991), interest therefore shifted to
magnetic stresses generated through an MHD instability. The only model that
we are aware of that explains accretion disk viscosity through a purely hydrody-
namic model is that of Dubrulle (1992) who uses a finite amplitude instability.
This model, however, results in a very small α ≪ 1. The convective instability
which we identify in our advection-dominated flows is a true linear instability.
Furthermore, if the flow is self-similar, then the convection also will automatically
be self-similar, and this means that the convective viscosity will necessarily have a
form similar to the α-scaling given in eq. (2.6). Our models are thus rather close
to being perfectly self-consistent in the sense that the viscosity is not imposed in
an ad hoc manner but could, if necessary, itself be determined self-consistently
from an instability in the flow.

By comparing the convective time scale with the advective time scale, we
find that for most regions of our solutions, convection acts only as a moderate
perturbation which changes the parameters of the flow by a modest amount
but does not destroy the overall structure of the flow. However, for a range of
angles around the rotation axis, θ < θcrit ∼ 30o, the convection is capable of
overwhelming the advection and may transport entropy outwards more rapidly
than it can be carried in by accretion. Since this region of the flow is also the
zone with the largest Bernoulli parameter, we suggest that the violent convection
and the positive b will together act to reverse the local accretion flow into a
bipolar outflow. The speed of the ejected material at infinity will be of order the
free-fall speed at the radius of origination of the material. We imagine that the
outflow will be fed by surface material from the equatorial inflowing gas.

We feel that this scenario is a plausible and generic mechanism to produce
outflows. For the mechanism to work, we require the outflowing material to re-
main adiabatic and to retain its Bernoulli parameter long enough to be accelerated
beyond the escape velocity. Given this requirement, we suggest that an outflow
can be created merely with viscous and convective redistribution of energy in
the manner we have described, without any additional agencies. Hydrodynamic
models of outflows have been discussed before by Eggum, Coroniti & Katz (1988),
Liang (1988) and Henriksen & Valls-Gabaud (1994). In the former two papers,
the outflow is accelerated by radiation pressure, while magnetic stresses appear
to play a role in the last work. Radiation and magnetic fields doubtless help, but
we suggest that outflows are possible even without them.

Note that we do not at this time have a truly self-consistent description of
the outflow. By insisting on self-similarity and a constant Ṁ at all radii, we are
forced to set vθ = 0, and because of this our solutions do not have the option of
diverting any of the accreting mass into an outflow. The condition of constant
Ṁ is relaxed by some other authors (e.g. Liang 1988, Henriksen & Valls-Gabaud
1994), and they do find solutions with outflows. It is not clear, however, whether
their outflows are driven by the same mechanism that we suggest. It would be of
interest to reformulate our problem with a non-constant Ṁ to investigate whether
or not self-similar outflows are possible with these equations.

The principal characteristic of an advection-dominated accretion flow is that
most of the dissipated energy is stored within the gas. This can happen at
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very low accretion rates when the gas density is so low that cooling through
bremsstrahlung is inhibited. Such an effect was seen in detailed numerical models
of boundary layers in cataclysmic variables (Narayan & Popham 1993). Alterna-
tively, advection-domination may occur when the accretion rate is extremely high.
In this case, the optical depth of the flow becomes so large that the radiation is
unable to escape in less than a flow time. Popham et al. (1993) found that this
may happen in FU Orionis systems. Advection-domination has been considered
also in disks around supermassive black holes. Rees et al. (1982) discussed ion
tori at very low accretion rates, while Begelman (1978) discussed radiation trap-

ping at very high Ṁ where the photon diffusion time scale becomes longer than
the radial inflow time scale (or advection time scale).

If advection-dominated conditions are present over a sufficiently wide range
of radius in an accreting source, then we may expect the flow to approximate the
self-similar solutions discussed here (cf, Fig. 1 in NY). The various properties of
these solutions then become relevant. To summarize:
1. The flow is definitely not disk-like in morphology. In fact, the closest analog
to our solutions in the accretion literature is Bondi (1952) spherical accretion.
However, our flows differ in important ways from the Bondi problem. The gas
in our solutions does rotate, it has non-trivial viscous interactions through which
angular momentum is transported outward, and it has energy dissipation just as
in ordinary accretion disks.
2. The angular velocity is significantly sub-Keplerian and this may have important
implications for the spin-up of accreting stars. Stars which spin up through an
advection-dominated mode of accretion are likely to reach a steady state with a
rotation rate much below the “break-up limit.” This may be one solution to the
angular momentum problem which is discussed frequently in the context of star
formation.
3. The radial accretion velocity is typically high in advection-dominated flows.
Roughly, the velocity scales as v ∼ αcs. In a cooling-dominated disk, cs ≪ vff ,
where vff is the free-fall velocity, and so v ≪ vff . However, advection-dominated
flows have cs ∼ vff and so for a reasonable α ∼ 0.1, we find v ∼ 0.1vff .
4. The Bernoulli parameter is positive over most of the flow (except the regions
very close to the inner edge), and there is also likely to be violent convection
especially close to the rotation axis. A fairly substantial bipolar outflow is quite
likely under these conditions provided only that the material can remain adiabatic
during the acceleration phase of the outflow.
5. The convective motions will transport both energy and angular momentum
and will be a source of viscosity. This has the advantage that, even if for some
reason the Balbus & Hawley (1991) instability were to be ineffective, convective
viscosity can still keep the accretion going.
6. By definition, advection-dominated accretion systems are under-luminous rel-
ative to the mass accretion rate. This is because the energy is carried along with
the accreting gas as heat instead of being radiated. If the accreting object is a
regular star, this energy must finally be radiated from the star and will be seen
as stellar emission. However, if the accretor is a black hole, then most of the ac-
cretion energy can disappear through the horizon. It would be very misleading to
estimate the mass accretion rate of such a system from the observed luminosity.

18



7. The spectrum of an advection-dominated flow is likely to be quite different from
that of a cooling-dominated accretion disk. If the flow is in the low Ṁ optically
thin limit, then the temperature of the emitted radiation will be close to virial
and the spectrum will be unusually hard. This appears to be the situation in
cataclysmic variable boundary layers for Ṁ <

∼ 10−9.5M⊙yr
−1 (Narayan & Popham

1993). In the opposite radiation-trapped limit at high Ṁ , the photosphere will
be much farther out than usual and the spectrum will be unusually soft. This is
apparently the case in FU Orionis systems (Popham et al. 1993). Similar effects
must be present in accreting neutron star and black hole systems, but this remains
to be investigated.

We conclude with a final speculative comment on accretion disk coronae.
An interesting feature of our solutions in the limit of large ǫ′ (efficient cooling)
is that they have low density hot gas on top of an equatorial thin disk (see
the ǫ′ = 10 solution in Fig. 1). The hot gas resembles the ad hoc coronae that
various researchers have invoked in models of accretion disks. We speculate (i)
that coronae are a natural and inevitable feature of any thin disk, (ii) that such
coronae are best described as advection-dominated flows rather than as static
atmospheres, and (iii) that these coronae will themselves have outflows for the
reasons discussed in this paper, though with much smaller mass loss rates than in
fully advection-dominated flows. Whenever a disk plus corona structure is formed,
the accreting material must be divided in some self-consistent manner between
the thin cool disk and the thick hot corona. One possibility is that the corona
always has just enough mass in it to be marginally advection-dominated, i.e. to
have fcorona ∼ 1/2. Detailed calculations with radiative transfer are needed to
confirm whether such a model will be self-consistent.
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APPENDIX A: Comparison with Begelman and Meier (1982)

Begelman & Meier (1982, hereafter BM) considered a problem very similar
to the one described in this paper, and it is useful to compare the two approaches.
BM restricted their attention to a radiation-dominated accretion flow which is
fully advection-dominated. In the language of this paper, their model corresponds
to the particular case, γ = 4/3, ǫ′ = ǫ = 1. They considered however a more
general viscosity model than we did, viz.

ν ∝ pα
′

ρβ
′

rγ
′

g(θ), (A1)

where α′, β′, γ′ are three arbitrary exponents. g(θ) is a general function of
θ, though in actual practice, BM set g(θ) = constant in their calculations. By
imposing additional requirements like self-similarity, BM restricted their viscosity
model to satisfy

β′ = −α′, 1 + α′ − γ′ = 1/2, (A2)

so that they had effectively a one-parameter family of viscosity models parametrized
by α′. Our model of viscosity, eq. (2.6), corresponds to the particular choice,

α′ = 1, β′ = −1, γ′ = 3/2, (A3)

and is one member of this family. We have also carried out a few calculations
with another model corresponding to α′ = 1/2, β′ = −1/2, γ′ = 1.

Starting with the basic equations (2.7) – (2.10) which we have written in
sec. 2, BM assumed that

vr, vθ ≪ vφ, (A4)

and derived the following second-order differential equation for Ω(θ),

(1− sin2 θΩ2)

(

Ω′′ + 3 cot θΩ′ − 3

4
Ω

)

=
µ sin2 θΩ

2(µ+ 4)

(

9

4
Ω2 + Ω12

)

−2(β′ + 1) sin2 θΩ′2 − (γ′ + 3β′ + 4) cos θ sin θΩ2Ω′. (A5)

The parameter µ is the radial exponent of the pressure, p ∝ rµ. For self-similar
solutions, µ = −5/2. Notice that eq. (A5) is only a second-order differential
equation, whereas the system of equations we derived in this paper is sixth-order.
The simplification arises because of the assumption vr ≪ vφ (eq. A4).

It is straightforward to derive an equation similar to (A5) starting with our
equations (2.16) – (2.19). As discussed in the paper, our solutions have v ∼ α.
Therefore the condition v ≪ vφ is equivalent to the assumption α ≪ 1. In fact,
all we need is α2 ≪ 1. Under this condition, we can neglect all terms involving
v2 and αv in eqs. (2.16), (2.17) and (2.19). Eq. (2.16) then gives

c2s =
2

5
(1− sin2 θΩ2), (A6)

20



while (2.17) gives
d

dθ
(ρc2s) = cos θ sin θρΩ2. (A7)

Eliminating v between (2.18) and (2.19) and substituting (A6) and (A7) we then
find

(1− sin2 θΩ2)(Ω′′ + 3 cot θΩ′ − 3

4
Ω) = − 5

6ǫ′
sin2 θΩ

(

9

4
Ω2 +Ω′2

)

−5

2
cos θ sin θΩ2Ω′. (A8)

This is exactly equivalent to eq. (A5) provided we set ǫ′ = 1 (radiation-dominated,
full advection) and β′ = −1, γ′ = 3/2 (eq A3), µ = −5/2. We thus find perfect
agreement between our equations and those of BM so long as α2, v2 ≪ 1.

All the solutions we have presented in this paper have α = 0.1 or smaller,
so that α2 ≪ 1. Furthermore, all of our solutions have well-behaved non-singular
v(θ) and satisfy v2 ≪ 1 at all θ. Therefore, although our solutions were obtained
by solving the exact sixth-order equations (2.16) – (2.19), they do in fact satisfy
BM’s second-order equation (A5) very accurately. These solutions seem to have
been missed by BM.

The solutions that BM described in their paper correspond to flows which
extend from the equatorial plane at θ = π/2 to a free surface at θ = θF , inside
of which is an empty funnel. A somewhat disturbing feature of their solutions
is that the radial velocity v diverges at θ = θF . The divergence arises because
the ram pressure term v2/2 and the poloidal viscous term (d/dθ)(αdv/dθ) in eq.
(2.16), which would normally control the divergence, were eliminated through the
assumption vr ≪ vφ. A divergent solution is of course not compatible with the
original assumption v ≪ 1, and this implies an inconsistency in the solutions.
Another odd feature of the BM solutions is that for fixed values of the parameters
(ǫ′, α, α′, β′, γ′, µ), they find a continuous family of self-similar solutions, with
a continuously tunable funnel opening angle θF . We find this infinity of solutions
somewhat disturbing and worry that perhaps a boundary condition at the free
surface may have been missed. We note that in our calculations, when we fix α
and ǫ′, we find a unique fundamental solution. (We do have the curious higher-
order solutions described in §3.1, where Ω(θ) has one or more nodes, but these
solutions still form only a discrete set, not the continuous family that BM find.)

We feel that it is important to search for solutions with empty funnels and free
surfaces using the full sixth-order set of equations (2.16) – (2.19). The numerical
methods which we have employed in the calculations described in this paper are
incapable of finding such solutions. It is therefore a completely open question
whether or not such solutions exist. Tori and empty funnels have been much
discussed in accretion astrophysics, expecially in the context of AGN (see Frank,
King & Raine 1992 for a review). However, except for the work of BM, there have
been no self-consistent dynamical models of such flows which include viscosity
fully. In our opinion this is an important problem.

21



APPENDIX B: Non-Rotating Spherical Inflow

In addition to the rotating solutions which are the main focus of the paper,
the self-similar equations (2.16)–(2.19) allow a second non-rotating spherically
symmetric branch of solutions which is closely related to the Bondi (1952) prob-
lem. To derive this solution we set Ω = 0 and d/dθ = 0. Equations (2.17) and
(2.18) then immediately drop out. Equation (2.19) gives

−3ǫ′v

2α
= 3v2, (B1)

which has two solutions for v. One of these is v = 0, which is the condition
satisfied at θ = 0 by all the rotating solutions described in the paper. For spherical
inflow, we consider the second possibility, namely

v = − ǫ′

2α
. (B2)

Substituting this in eq (2.16), we then solve for the sound speed, to obtain

c2s =
2− ǫ′2/4α2

5− ǫ′
. (B3)

Equations (B2), (B3) coupled with the self-similar scalings completely describe
this branch of solutions. We see that these solutions are allowed whenever |ǫ′| <
2
√
2α (or ǫ′ < 5 if α is large). Thus, a self-similar form of spherical accretion is

possible so long as |γ − 5/3| <
∼ α.

Note that in pure Bondi (1952) spherical flow, a self-similar form of accretion
or outflow is allowed only for a single value of γ, viz. γ = 5/3. In contrast, we
find that self-similarity is possible in the present problem for a range of values
of γ. The additional freedom arises because we have viscosity. Even though the
flow is not rotating, it still has a velocity divergence and this gives rise to the
viscous dissipation term 3v2 in the right of eq (B1). When γ 6= 5/3, self-similarity
requires a radial gradient in the entropy (as discussed in §3.1). The solution feeds
this gradient by tuning the magnitude of v so as to supply the required energy
input through viscous dissipation.

The other interesting feature is that we can have either self-similar spherical
inflow or outflow, depending on the sign of ǫ′ (eq B2). Since viscosity is always
a source of energy, the entropy has to increase in the direction of the flow.
For γ < 5/3, the entropy increases inward in the self-similar solution, and so the
motion is also inwards, i.e. we have accretion. However, for γ > 5/3, the solution
corresponds to entropy increasing outward. In this case, therefore, our solution
corresponds to a spherical self-similar wind.

Note that the spherical solutions described here may be either subsonic or
supersonic. For ǫ′ close to zero, v ≪ cs, and we have subsonic conditions. How-
ever, as |ǫ′| → 2

√
2α, the radial velocity increases and the sound speed decreases

and we can have supersonic flows.
As a final comment, we recall that the rotating solutions described in the

main text of the paper exist only for ǫ′ > Cα2 where C is a constant of order
unity (§3.1). On the other hand, the spherical solutions described here exist for

ǫ′ < 2
√
2α. Thus, for Cα2 < ǫ′ < 2

√
2α both solution branches are allowed. What

is the relationship between the two solutions? Which solution will an actual flow
prefer? Perhaps the answer is determined by the initial conditions of the flow,
especially the angular momentum of the accreting gas.
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Figure Captions

Figure 1. Self-similar solutions corresponding to α = 0.1, ǫ′ = 0.1, 1, 10. Top left:
angular velocity Ω as a function of polar angle θ. Top right: radial velocity v.
Bottom left: density ρ. Bottom right: square of the sound speed, c2s.

Figure 2. Isodensity contours in the meridional plane for four solutions. The top
two panels and the bottom left panel correspond to the solutions shown in Figure
1. The bottom right panel shows a solution in which Ω reverses sign twice (see
text).

Figure 3. Comparison of the exact solutions of this paper with the height- inte-
grated solutions of NY. The solid lines correspond to the height-integrated solu-
tions; the dotted lines correspond to spherical averages (cf eq. 3.5); the dashed
lines correspond to cylindrical z-averages (eqs. 3.6–3.8); and the long-dashed lines
correspond to midplane values. The height-integrated values agree remarkably
well with the spherical averages for all values of ǫ′.

Figure 4. Dimensionless Bernoulli parameter b as a function of the spherical polar
angle θ for self-similar solutions with α = 0.1, ǫ = 0.333 (i.e. γ = 1.5), and from
bottom to top, ǫ′ = 300, 100, 10, 1, 0.75, 0.33 (i.e. f = 0.0011, 0.0033, 0.033,
0.33, 0.4465, 1). Note that the Bernoulli parameter is always positive close to
the rotation axis, and is positive at all θ for ǫ′ < 0.75 (i.e. f > 0.446).

Figure 5. The ratio between the convection term and advection term in the energy
equation, shown as a function of θ, for a solution with α = 0.01, αc = 0.005,
ǫ = 0.01, f = 1. For all θ > θcrit = 33o, the convection term is smaller than the
advection term and self-similar advection-dominated accretion is possible. For
θ < θcrit, convection dominates over advection and we speculate that convection
will initiate a bipolar outflow in this region of the flow. Note from Fig. 4 that this
region has the most positive Bernoulli parameter and is therefore most susceptible
to being ejected.
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