
Advection on Graphs

Airlie Chapman and Mehran Mesbahi

Abstract—This paper examines the dynamics of a networked,
multi-agent system operating with an advection-based coordi-
nation algorithm. Flow advection is a close relative of diffusion
whose discretized version forms the basis of the popular
consensus dynamics. We endeavor to demonstrate in this paper
that discretizing the continuous advection equation also forms
an attractive set of system dynamics for coordinated control.
The key advantage of advection-based algorithms over directed
consensus is that the sum of the states is always conserved.
This paper includes a formulation of the advection dynamics on
directed graphs and a presentation of some of its characteristics,
which are compared to the consensus dynamics. We also
provide examples of the versatility of the advection dynamics:
a formation control and sensor coverage example.

Index Terms—Advection protocol; Consensus protocol; Net-
worked control

I. INTRODUCTION

Advection is the process where a distribution is actively
transported by a flow field. A simple example of advection
is oil dropped into a body of water. If the water is still,
the oil will tend to remain concentrated, but if the water is
flowing, for example in a river, the flow will cause a change
in concentration. This paper introduces a discrete form of
the advection process for application in networked, multi-
agent systems. Here a flow field defines interactions between
agents, and inter-agent dynamics are based on the advection
process.

Advection shares many similarities to diffusion and may be
interpreted as diffusion in a flow field. A discretized form of
diffusion is the framework for consensus problems. Consen-
sus provides an effective model for distributed information-
sharing and control of networked, multi-agent systems in
settings such as multi-vehicle control, formation control,
swarming, and distributed estimation; see, for example, [1],
[2], [3], [4]. An appeal of the consensus framework is that
locally-based interaction dynamics can produce global net-
work characteristics. Further, the performance characteristics
are coupled to the underlying network structure. Advection
dynamics are similarly coupled to the network, and in certain
classes of networks, share identical dynamics with consensus.

At the heart of consensus problems is the diffusion model
[5]. For undirected consensus, where the underlying agent
interactions are Euclidean-based, the governing dynamics are
precisely the discrete version of diffusion. The two core
properties and attractions of discrete diffusion are (a) the
interpretation of a directed edge existing from agent i to
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j is that agent i can “influence” agent j and (b) the state
sum is always conserved. For directed graphs (digraphs),
where every edge from i to j does not necessarily have
a corresponding edge from j to i, generally one of these
properties has to be sacrificed. Traditionally, graph literature
[1], [6] preferentially chooses the “influence” property and
the sum conservation property only holds true for balanced
graphs, which corresponds to the “perfect” discretization of
diffusion with both conditions. In this paper, we will instead
preferentially choose the second conservation property and
sacrifice at times the “influence” property and formulate our
model accordingly. The sum conservation property has the
effect of inducing a flow through the directed edges in the
graph and in turn corresponds to the discrete version of
the advection model. Advection has been used to model the
spread of diseases [6], population migration [7], and supply
and demand in economic systems [8].

The organization of the paper is as follows. We begin by
defining advection dynamics and characterize its state matrix,
dynamics and equilibrium, with a particular focus on the
underlying graph structure. We then compare and contrast the
advection features with traditional consensus dynamics and
illustrate the strong link between them. Finally, we examine
two advection problems.

II. BACKGROUND AND MODEL

We provide a brief background on constructs and models
that will be used in this paper.

Firstly, we define the vectors 1 := [1, 1, . . . , 1]
T and 0 :=

[0, 0, . . . , 0]
T . For column vector v ∈ Rp, vi denotes the ith

element. For matrix M ∈ Rp×q , [M ]ij denotes the element
in its ith row and jth column.

The advection equation, also known as the transport equa-
tion, involves a scalar concentration u of a material affected
by a flow field ~v and is conventionally [5] given by

∂u

∂t
= −∇ · (~vu) .

Here ∇ is the divergence operator defined on a continuously
differentiable vector field F =

∑k
i=1 Uiai with basis vectors

ai and coordinate frame {x1, x2, . . . , xk} in Rk, and defined
as ∇ · F =

∑k
i=1

∂Ui

∂xi
. The flux of the advection process is

subsequently F = ~vu.
In a discrete calculus analogue of the advection equation,

we first define an interaction graph (directed and weighted)
over nodes based on the flow ~v. The flow vector ~v dictates
the interactions between nodes by defining directed edges
and edge weights. We then adopt a discretized view of the
flux ~vu through an edge i→ j as consisting of the flow wji
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prescribed by ~v at the edge modified by the concentration
xi perscribed by u at node i. The flow along edge i→ j is
consequently wijxi(t). The concentration at node i at time t
is denoted xi(t). The rate of change of the concentration of
node i is then the flow into the node minus the flow out of
the node, i.e.,

ẋi(t) = −
∑

{∀j|i→k}

wkixi(t) +
∑

{∀j|j→i}

wijxj(t). (1)

This problem is well suited to a graph theoretic analysis.
As such, we proceed by presenting some graph theory
background and rewrite the dynamics (1).

A weighted directed graph G = (V,E,W ) is defined by a
node set V with cardinality n, an edge set E comprised of
pairs of nodes with cardinality m, and a weight set W with
cardinality m, where information flows from node vi to vj if
(i, j) ∈ E with edge weight wji ∈ W . An undirected graph
occurs when (i, j) ∈ E implies (j, i) ∈ E and wji = wij .
The weighted out-degree and in-degree of node i is di =∑

(i,k)∈E wki and d̃i =
∑

(j,i)∈E wij , respectively. A graph
is called balanced if di = d̃i for all i ∈ V . The number of
out-degree edges of node i is denoted by δi. The out-degree
matrix ∆out(G) ∈ Rn×n is a diagonal matrix with di at
entry (i, i). The in-degree matrix ∆in(G) ∈ Rn×n is similarly
defined with d̃i at entry (i, i). The adjacency matrix A(G)
is an n × n matrix with [A(G)]ij = wij when (vj , vi) ∈ E
and [A(G)]ij = 0 otherwise. The in-degree and out-degree
Laplacian are defined as Lout(G) = ∆out(G) − A(G) and
Lin(G) = ∆in(G)−A(G), respectively.

We can now rewrite our dynamics (1) using these graph
concepts with the flow ~v generating the graph G (~v) =
(V,E (~v) ,W (~v)) as

ẋi(t) = −dixi(t) +
∑

(j,i)∈E

wijxj(t). (2)

For brevity, we will denote the graph as G = (V,E,W ). The
advection dynamics can therefore be written as

ẋ(t) = −Lout(G)x(t). (3)

We now proceed to examine system characteristics of the ad-
vection dynamics and compare them with consensus dynam-
ics. Specifically, we compare invariance properties, equilib-
rium, and flow and stochastic interpretations of the dynamics
where G contains a rooted branching. A road map of these
features are depicted in Figure 1.

III. ADVECTION PROPERTIES

We will now proceed to examine some of the characteris-
tics of advection and compare them with the more familiar
consensus dynamics. The node dynamics for consensus are

ẋi(t) =
∑

(j,i)∈E

wij (xj(t)− xi(t)) (4)

= −d̃ixi(t) +
∑

(j,i)∈E

wijxj(t).

Figure 1. Relationship between rooted out-branching consensus, rooted
in-branching advection and rooted in/out-branching balanced consensus (in
the discretization sense - “perfect” diffusion - exhibiting properties of both
consensus and advection).

In compact form, the consensus dynamics are

ẋ(t) = −Lin(G)x(t). (5)

The first significant difference between the advection and
consensus dynamics is the sum conservation property of
advection, stated in the following proposition, which is
generally not a property of directed consensus.

Proposition 1. The advection dynamics (3) are (state) sum
conservative, i.e.,

∑n
i=1 xi(t) =

∑n
i=1 xi(0) for all time t.

Proof: Directly from (2),

n∑
i=1

ẋi(t) =

n∑
i=1

− ∑
(i,k)∈E

wkixi(t) +
∑

(j,i)∈E

wijxj(t)


=

∑
(j,i)∈E

(−wijxi(t) + wijxi(t)) = 0.

Therefore,
∑n
i=1 x(t) is always conserved.

An alternate interpretation of the sum conservation prop-
erty is that the mean of the states is always constant.
Consensus also conserves a weighted sum of the initial states.
This feature will be stated later in Proposition 9.

Another difference between these dynamics is that for
consensus the interaction mechanics between neighboring
agents where the dynamics of agent i can only “influence”
agent j directly if there is an edge (i, j) in the graph G. This
is generally not the case for advection. The advantage of
this “influence” property means that the consensus dynamics
are only based on relative states between neighboring agents
as represented in (4); an absolute reference frame is not re-
quired. Consequently, the consensus dynamics can be driven
by sensors that can only measure relative states, e.g., if xi is
the position of agent i, distance sensors mounted on agent i
can measure the relative position to agent j as xj − xi. For
advection, unless di = d̃i, the dynamics of agent i can not
be represented as purely a sum of relative states and so agent
i must have knowledge of its state in a global frame.

We hope to demonstrate that for some applications the cost
of maintaining an absolute frame is minimal and worth the
benefits of conservation exhibited by the advection dynamics.
The first noteworthy application is for information networks
where an agent’s information state is communicated between
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agents, e.g., a wireless sensor network where xi is the ith
sensor’s state and agent j transmits its state to agent i if
(i, j) ∈ E. Provided agent i knows its weighted “influence”
on its neighbors di, no further information is required for
the advection dynamics. The advection dynamics also has
an extension to heterogeneous networks with more complex
agents, able to sense their own state, selecting arbitrary out-
degree edge weights, and simpler agents without global state
and/or di knowledge, selecting weights such that d̃i = di.
It will be shown in the following proposition that if the
graph is balanced, then advection dynamics is the same as
consensus dynamics. For unbalanced graphs, there can be as
many as n−2 agents in the network with advection dynamics
identical to consensus dynamics requiring only relative state
measurements, with only the remaining two agents with non-
identical advection dynamics requiring knowledge of their
state in a global frame.

Proposition 2. The advection dynamics (3) and consensus
dynamics (5) are identical for all initial x(0) if and only if
the underlying graph G is balanced.

Proof: The dynamics are identical for all initial x(0)
if and only if Lin(G) = Lout(G), if and only if ∆in(G) −
A(G) = ∆out(G)−A(G), if and only if ∆in(G) = ∆out(G),
if and only if di = d̃i for all i, j ∈ V , i.e., G is balanced.

An interpretation of advection over balanced graphs is
that the flow divergence at each node is always zero which
reduces the dynamics to diffusion. A consequence of Propo-
sition 2 is that one can consider balanced graphs as the
“perfect” discretization of the diffusion dynamics with both
the sum conservation and the “influence” property.

Out-degree Laplacian
Many of the properties of consensus dynamics (5) are

well understood and it is useful to relate them to advection
dynamics (3) using their respective state matrices Lin(G) and
Lout(G). We proceed to accomplish this by using the notion
of a reverse graph Gr = (V,Er,W r) formed by reversing
the edges of a graph G = (V,E,W ), i.e., (i, j) ∈ E with
wji ∈ W ⇐⇒ (j, i) ∈ Er with wij ∈ W r. We then have
the following proposition:

Proposition 3. For a graph G and corresponding reverse
graph Gr, Lout(G) = Lin(Gr)T .

Proof: Directly from the definition of the reverse graph,
we note that the out-degree of node i in G is the in-
degree of node i in Gr, consequently ∆in(G) = ∆out(Gr).
Further, [A(G)]ij = wij = [A(Gr)]ji, so A(G) = A(Gr)T .
Therefore, noting that ∆in(G) is a symmetric matrix,
Lout(G) = ∆out(G) − A(G) = ∆in(Gr) − A(Gr)T =
(∆in(Gr)−A(Gr))T = Lin(Gr)T .

Using Proposition 3, we adapt existing properties of
Lin(G) to properties of Lout (G). Let us define a classifi-
cations of graphs which we use in subsequent propositions.

Definition 1. A graph G is a rooted branching if
(1) it does not contain a directed cycle and
(2) it has a node vr (root) such that

(a) for every other node v ∈ G there is a directed path from
vr to v, in which case it is called a rooted out-branching or

(b) for every other node v ∈ G there is a directed path
from v to vr, in which case it is a rooted in-branching.

We now state some known properties of Lin(G) and
equivalent properties of Lout(G) for the cases where G
contains a rooted out-branching, rooted in branching, and/or
when G is balanced. Let Lin(G) = PinJin (Λin)P−1in be the
Jordan decomposition of Lin(G), Pin a nonsingular matrix
with normalized columns, and Λin the eigenvalues of Lin(G).
Similarly, Lout(G) = PoutJout (Λout)P

−1
out .

Proposition 4. [6], [9] The matrix Lin(G) exhibits the
following properties relating to G:
(a) if G contains a rooted out-branching then

(i) rankLin(G) = n− 1 with Lin(G)1 = 0 and

(ii) Jin (Λ) =


0 · · · 0
... Jin (λ2)

...
. . . 0

0 · · · 0 Jin (λm)

, where

Re (λi) > 0, and Jin (λi) is the Jordan block associated
with eigenvalues λi, i = 2, . . . ,m and λ1 = 0.
(b) if G is balanced then

(i)1TLin(G) = 0T and

(ii) Lin(G) + Lin(G)T is positive semidefinite.

Corollary 5. The matrix Lout(G) exhibits the following
properties relating to G:
(a) if G contains a rooted in-branching then

(i) rankLout(G) = n− 1 with 1TLout (G) = 0T and

(ii) Jout (Λ) =


0 · · · 0
... Jout (λ2)

...
. . . 0

0 · · · 0 Jout (λm)

,

where Re (λi) > 0, and Jout (λi) is the Jordan block
associated with eigenvalues λi, i = 2, . . . ,m and λ1 = 0.
(b) if G is balanced then

(i) Lout(G)1 = 0 and

(ii) Lout(G) + Lout(G)T is positive semidefinite.

Proof: If G has a rooted out-branching, then Gr
has a rooted in-branching. Applying Proposition 3,
rankLin(G) = rankLin(G)T = rankLout(Gr) and
Lin(G)1 = Lout (Gr)T 1 = (1TLout (Gr))T . Using
Proposition 4(a.i), then (a.i) follows. Now, Lin(G)T =
(PinJin (Λ)P−1in )T = (P−1in )TJin (Λ)

T
PTin. Applying

Proposition 3, Lout(Gr) = PoutJout (Λ)P−1out has the prop-
erties Pout = (P−1in )T and Jin (λ2) = Jout (λ2)

T and so
Re (λi) of Jin (λi) and Jout (λi) for all i = 1, . . . ,m
are equal. Using Proposition 4(a.ii), (a.ii) follows. If G is
balanced, from Proposition 2 Lout(G) = Lin(G), thus using
Proposition 4(b.i) and (b.ii), (b.i) and (b.ii) follows.
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Dynamics and Agreement

We now examine the dynamics of (3). The equilibrium x̃i
for all i ∈ V satisfies

dix̃i =
∑

(j,i)∈E

wij x̃j . (6)

The flow interpretation of this equilibrium is that the diver-
gence of flow at every node goes to zero.

One significant feature of this equilibrium can be found
when we define wij = 1

δi
for each i ∈ V . Therefore, di = 1

and the equilibrium condition is xi =
∑

(j,i)∈E
1
δj
xj for all

i ∈ V . This equilibrium is exactly the rank metric used in
the PageRank algorithm underlying the Google search engine
[10]. The premise of the ranking is that a node i should be
high ranked if (a) the rank metric of nodes linking to node i
are high and (b) should be low if node i has few incoming
edges or if the nodes linking to node i have a low rank metric.

The dynamics of consensus and advection can be rep-
resented in closed form as x(t) = e−Lin(G)tx(0) and
x(t) = e−Lout(G)tx(0), respectively. Many features of these
dynamics are a direct consequence of the characteristics of
the matrices e−Lin(G)t and e−Lout(G)t. These features are
later exploited in the following proposition to reason about
invariance and convergence properties of these dynamics.

Proposition 6. [6] For ψin (G) = e−Lin(G)δ , where δ > 0,
(i) ψin (G) ≥ 0, ψin (G) is a right stochastic matrix, i.e.,

[ψin (G)]ij ≥ 0 and ψin (G)1 = 1, and
(ii) [ψin (G)]ij > 0 ⇐⇒ i = j or there is a directed path

from j to i in G.

Corollary 7. For ψout (G) = e−Lout(G)δ , where δ > 0,
(i) ψout (G) ≥ 0, ψout (G) is a left stochastic matrix, i.e.,

[ψout (G)]ij ≥ 0 and 1Tψout (G) = 1T , and
(ii) [ψout (G)]ij > 0 ⇐⇒ i = j or there is a directed

path from i to j in G.

Proof: Applying Proposition 3, ψin (Gr) =

e−Lin(Gr)δ = e−Lout(G)
T δ =

(
e−Lout(G)δ

)T
= ψTout (G).

Using Proposition 6, the Corollary follows.
The familiar property that a balanced graph G exhibits a

doubly stochastic ψin is a consequence of Proposition 6, the
related Corollary 7, and for balanced G, Lin(G) = Lout(G)
(Proposition 2). A result of this property is that, for consensus
dynamics over a balanced graph, the state of the nodes, at
any instant in time, is a convex combination of the values of
all the nodes at a previous instant in time.

Proposition 8. The advection dynamics are positively invari-
ant over xi ≥ 0 for all i ∈ V , i.e., if xi(0) ≥ 0 for all i ∈ V
then xi(t) ≥ 0 for all i ∈ N for all t > 0.

Proof: From Corollary 7, e−Lout(G)t is a nonnegative
matrix so x(t) = e−Lout(G)tx(0) is nonnegative for xi(0) ≥
0 for all i ∈ N and all t > 0.

The following Proposition 9 for the consensus dynamics
characterizes the equilibrium where G contains a rooted out-
branching. Equivalently, Proposition 10 for the advection

dynamics characterizes the equilibrium where G contains a
rooted in-branching.

Proposition 9. [6] For a graph G containing a rooted
out-branching, the consensus dynamics (5), initialized from
x (0) = x0, satisfies

lim
t→∞

x(t) =
1√
n

(
uTx0

)
1,

where u = ū/ ‖ū‖ and ūTLin(G) = 0. Further, the quantity
uTx0 is conserved and ui > 0 for all i ∈ V if and only if G
is strongly connected1.

Proposition 10. For a graph G containing a rooted in-
branching, the advection dynamics (3), initialized from
x (0) = x0, satisfies

lim
t→∞

x(t) =
1√
n

(
1Tx0

)
v,

where v = v̄/ ‖v̄‖ and Lout(G)v̄ = 0. Further, vi > 0 for all
i ∈ V if and only if G is strongly connected.

Proof: Noting that x(t) = e−Lout(G)tx0 and
limt→∞ e−Lout(G)t = vwT , from the rank condition and
Jordan decomposition in Corollary 5, where the first column
of Pout and first row of P−1out are v and wT respectively (i.e.,
the normalized right and left eigenvectors associated with the
zero eigenvalue). Choosing w = 1√

n
1 from Corollary 5 one

has

lim
t→∞

x(t) =

(
1√
n
v1T

)
x0 =

1√
n

(
1Tx0

)
v.

Since G is strongly connected, for every node pair i and j
there exists a directed path in G, and so for every node pair
j and i there exists a reverse directed path. Consequently,
Gr is also strongly connected. From Proposition 9, the left
null space u of Lin (Gr) has all positive elements, therefore,
from Proposition 3, since Lout(G) = Lin (Gr)T the right null
space v of Lout(G) has all positive elements.

The following proposition relating to the equilibrium state
of the consensus dynamics over a balanced, rooted in-
branching G is a consequence of Propositions 9 and 10, the
fact that the consensus and advection dynamics are identical
(Proposition 2), and that if a graph is balanced and has a
rooted in-branching then it also has a rooted out-branching.

Proposition 11. [6] The consensus dynamics (and hence
advection dynamics) over a graph G reaches x(t) = 1

n11
Tx0

for every initial condition if and only if G is balanced and
contains a rooted in-branching (and hence a rooted out-
branching).

The results of this section are summarized in Figure 1
which is structured to highlight the differences between the
two sets of dynamics over rooted in/out-branching graphs and
the culmination of these features in balanced graphs.

1A graph G is strongly connected if between every pair of distinct vertices
there exists a directed path.
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IV. EXAMPLES

Next we showcase two applications of advection dynamics
to networked, multi-agent systems. We focus on two exam-
ples that of formation control and a sensor coverage problem.

A. Example 1 - Formation Control

The formation control problem where multi-agent teams
form geometric patterns is a popular application for con-
sensus [6]. With consensus, the formation is acquired by
reaching a consensus on an origin in space and then each
agent is coded with a reference position relative to this origin.
We now proceed to perform the same task using advection
where the geometry of the configuration is controlled by the
weights of the edges.

We consider a swarm of n vehicles moving along the x-
axis with velocity ν ∈ R. The objective is for the swarm
to move in formation with a predefined shape. We assume
each vehicle is aware of its global position and that each
vehicle is able to measure the relative position to one other
predesignated vehicle, thus acquiring its global position.

Let x̄(t) ∈ Rn and ȳ(t) ∈ Rn be the position of vehicles
at time t along the x and y axes, respectively. The origin of
the coordinate system is selected such that 1T x̄i(0) 6= 0 and
1T ȳi(0) 6= 0. The advection-based dynamics of the vehicles
are

ẋ(t) = −Lout(Gx)x(t) (7)
ẏ(t) = −Lout(Gy)y(t),

where x(t) := x̄(t)−νt1 and y(t) := ȳ(t). The graphs Gx =
(V,E,Wx) and Gy = (V,E,Wy) are directed cycle graphs2

with positive weights
{
wxi,j

}
∈ Wx and

{
wyi,j

}
∈ Wy ,

respectively. The edge set E corresponds to the inter-agent
sensing where if vehicle i can measure the position of vehicle
j then there is an edge {i, j} ∈ E. From (6), for the ad-
vection dynamics with underlying graph Gx the equilibrium
(x, y) = (x̃, ỹ) is x̃i = αx/w

x
i,i+1 for all i = 1, . . . , n−1 and

x̃n = αx/w
x
n,1 where αx = 1Tx0/

∑
{j,i}∈E

(
1/wxi,j

)
. As

all weights are positive and xi(0) > 0 then αx > 0. Similarly,
for equilibrium ỹ , constant αy > 0 and corresponding to
graph Gy . Therefore, the weight selection completely dictates
the shape of the equilibrium with the scaling of the shape
is dictated by αx and αy . From Proposition 1, the sum of
states is always constant and so the centroid of the formation
is
(
1
n1

Tx(0) + vt, 1
n1

T y(0)
)
.

We apply this advection formation technique to 6
vehicles moving along the x axis with velocity ν = 2m/s
and a required constellation with shape defined in an
arbitrary reference frame as xs = (1, 2, 1, 3, 2, 1)

T

and ys = (1, 2, 0, 0,−2,−1)
T
/
√

2; see Figure 2 for
shape. Let

[
wx12 wx23 wx34 wx45 wx56 wx61

]
=[

1 1
2 1 1

3
1
2 1

]
and[

wy12 wy23 wy34 wy45 wy56 wy61
]

=√
2
[

1 1/2 0 0 −1/2 −1
]

+ 2 where this weight

2A directed cycle graph G = (V,E,W ) is a n node graph with
{i+ 1, i} ∈ E and edge weight wi,i+1 ∈ W for i = 1, . . . , n − 1 as
well as {1, n} ∈ E with edge weight wn,1 ∈W .

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

1

2

3 4

5

6

Figure 2. Advection formation control with initial random condition and
position after 8sec marked with circles.

selection was chosen for ease of demonstration and is
not the only selection that will satisfy a certain formation
geometry. The vehicle trajectory initialized randomly in the
first quadrant is displayed in Figure 2 with the desired final
formation achieved.

B. Example 2 - Sensor Network

We consider a sensor surveillance task, operating in a land
corridor of length dw, where the sensors are directional with a
narrow cone of observation. A set of n sensors are randomly
placed pointing west in the corridor, which is oriented east
to west. The objective is to acquire good coverage of the
corridor while satisfying a total sensor power constraint by
trading power between neighboring sensors. Let xi(t) ≥ 0
be the fraction of total network power and zi(t) ≥ 0 be
the coverage of sensor i at time t. We utilize a coverage
model of the form zi(t) = βxi(t)

3 (single-ray range sensor or
wedge-shaped sensor with fixed arc-length) for some β > 0.
We subsequently require that the total power of the sensor
network is constant, i.e.,

∑
xi(t) = 1 for all t, while

maintaining good coverage. We will now discuss our measure
of “good coverage”, which aims to minimize gaps between
sensor observation areas along the east-west axis.

Assuming the minimal power is available to guarantee
no gaps between sensors areas, the corresponding optimal
power for each sensor i would be x∗i = ζi

dw
, where ζi is

the distance to the closest sensor to the east of sensor i.
Consider a local area around a point p ∈ R2 in the corridor,
with a set u+ of δ+i sensors west of p, and a set u−

of δ−i sensors east of p. Our local coverage cost function
is ci (p) =

∣∣∑
k∈u+ zk −

∑
k∈u− zk

∣∣. The cost function
penalizes nonuniform coverage east and west of point p.
For an infinite corridor, x∗ = argminx

´ dw
0

ci (ρ, 0) dρ. If
the coverage for all k ∈ u− is approximately equal to z−,
ci =

∣∣∑
k∈u+ zk − δ

−
i z
−
∣∣. Ideally then,

z− =
1

δ−i

∑
k∈u+

zk, (8)

and so if we were to place a sensor i at location p then we
assume for “good coverage” zi ≈ z−. An interpretation of
this equilibrium is that coverage of an area west of the sensor
i which is

∑
k∈u+ z̃k should be maintained in an equal area

east of sensor i where there are already located δ−i sensors,

3This work as also been extended to zi(t) = βxi(t)
p for p > 0.
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so sensor i is responsible for approximately 1
δ−i

of the area

east of p, i.e., 1
δ−i

∑
k∈u+ z̃k.

Let the position of sensor i be (pi, qi) ∈ R2 (where the x
axis points east and the y axis north). We assume, since the
sensors are in a land corridor, that maxi∈N (qi)−mini∈N (qi)
is small, and subsequently, if the communication range on
sensors is dc > 0, dc ∈ R, that sensor i is in communication
range of sensor j if |pi − pj | ≤ dc. Additionally we assume
that if sensors are sufficiently close to the east or west
end of the corridor, communications can be relayed between
them via some infrastructure at the ends of the corridor. A
communication graph G = (V,E,W ) is defined such that
if sensor j is within communication range of sensor i and
pj > pi then (i, j) ∈ E with the exception of the sensors
at the ends of the corridor where if pj − pi ≥ dw − dc then
(j, i) ∈ E. The graph is unweighted with wij = 1 for all
(j, i) ∈ E.

Assuming dc is large enough to form a rooted in-
branching, and δi > 0 for all i ∈ V , then G will be
strongly connected. Applying the advection dynamics (3), our
equilibrium power x̃ will satisfy

x̃i =
1

δi

∑
(k,i)∈E

x̃k,

and x̃i > 0 for all i ∈ V if
∑
xi(0) = 1Tx(0) > 0

(Proposition 10). The corresponding equilibrium coverage z̃
is z̃i = 1

δi

∑
(k,i)∈E z̃k for all i ∈ V . As previously discussed,

this is our condition (8) for “good coverage” whereby the
coverage of the area dc west of the sensor maintained dc
east of sensor i. An interesting aspect of this formulation is
that the unweighted network topology is being exploited to
infer inter-sensor distance information and hence coverage
density characteristics.

We assume that all sensors are initialized with a feasible
power, i.e.,

∑n
i=1 xi(0) = 1 and xi (0) ≥ 0 for all i ∈ V .

From Proposition 1, the total power of the sensor network
will be conserved, i.e.,

∑n
i=1 xi(t) = 1 for all time t. As

advection is positively invariant over the nonnegative xi (t),
from Proposition 8, the power will always be nonnegative,
i.e., xi(t) ≥ 0, for all i ∈ V .

We apply this approach to a dw = 40m long land corridor
containing 40 randomly placed sensors. The initial power
fraction was assigned randomly and dc = 1.75 m dictates
the topology of the flow graph. The final equilibrium power
x̃(t) overlayed on the graph G is displayed in Figure 3.
Figure 4 depicts the observation cones for a) the optimal
power usage from all sensors, b) the equilibrium power usage
obtained using an arc-length fixed to that of the corridor’s
width, and c) a uniform power usage for all sensors. We find
that the minimum power requirement by the advection power
distribution is within 1.25 times of the optimal power. This
is compared to a uniform sensor power which required 2.5
times the optimal power.

V. CONCLUSION

This paper presents an advection-based approach to multi-
agent cooperative control. We compare the advection dynam-
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Figure 3. Sensor graph with grayscale gradations corresponding to
equilibrium power x(t). Nodes are numbered from west to east.
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Figure 4. Optimal, advection dynamics and uniform sensor coverage of the
land corridor. The shaded bands indicate areas not covered by the sensors.

ics to the popular consensus dynamics but also make com-
ments on novel properties that are only held by advection.
One property of particular significance is the conservation
of the sum of the states. We demonstrate the utility of this
property in such applications as sensor coverage where power
can be traded through the network to optimize coverage.
Because of the parallels with consensus dynamics, there
is a large area of future advection research involving the
application of advection to problems traditionally solved
by consensus. One application of particular interest is the
introduction of control nodes, which do not conform to
advection, into an advection-based network.

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
Cooperation in Networked Multi-Agent Systems,” Proc. IEEE, vol. 95,
no. 1, pp. 215–233, Jan. 2007.

[2] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-Formation
Stability,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 3, pp. 443–455, 2004.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] Y. Hatano and M. Mesbahi, “Agreement over Random Networks,”
IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1867–
1872, 2005.

[5] L. Grady and J. Polimeni, Discrete Calculus. New York: Springer,
2010.

[6] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[7] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

[8] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathe-
matical Sciences. Academic Press, 1979.

[9] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic
Networks: A Mathematical Approach to Motion Coordination Algo-
rithms. Princeton University Press, 2009.

[10] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISBN Systems, vol. 30, pp.
107–117, 1998.

1466


