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Abstract. A review is given of the work carried out at the Weizmann Institute
during the past 25 years in the fields of terrestrial spectroscopy, the dynamo theory
of the earth's magnetic field, the tides in the world oceans, theoretical seismograma,
hydrodynamic stability, atomic spectroscopy, and the Boltzmann integral equation.
Some open problems in the solution of the Schrodinger wave equation are formulated.

1. Introduction. On May 15, 1946, at about the time of the founding of the Division
of Applied Mathematics at Brown, an international symposium was held in Rehovot,
Israel, on the occasion of the laying of the cornerstone of the Weizmann Institute.
In my talk, entitled "Some unsolved problems in classical physics," I dealt* with the
following topics:

(1) Pulsation theory of Cepheid variables;
(2) Equatorial acceleration of the sun;
(3) Origin of the earth's magnetic field;
(4) Problems of atmospheric tides and related geophysical phenomena;
(5) Theory of reflection of light or of sound from a rough surface;
(6) Problem of hydrodynamic stability.
I should like now to take stock and examine to what extent we succeeded in solving

some of these problems. Then I shall proceed to topics of more recent origin. The dis-
cussion will be based on our own work at the Weizmann Institute, which was aimed at
the solution of outstanding problems in the physical sciences.

2. Terrestrial spectroscopy. The brightness of some 5% q( all stars is variable,
and in many cases the variation is strictly periodic in time. A concomitant periodicity
is also observed in the radial velocity, suggesting that the phenomenon is due to a
radial pulsation of the star. The pulsation theory predicts that the period of radial
pulsation is of the order of the time it takes for a sound wave to travel from the center
to the surface of the star—thus providing us with information on the mean temperature
inside the star.

Today we know that our planet earth also goes into a radial pulsation when per-
turbed by a strong enough earthquake. This radial pulsation was observed for the
first time in the seismic and gravimetric records of the Great Chilean Earthquake of
May, 1960. Fig. 1 shows the spectral peaks of the free oscillations of the earth deduced
by Professor Slichter's group [1] from their gravimetric record of the Chilean earthquake.
The peak marked 54 min. is the fundamental spheroidal oscillation, corresponding

* Trends in modern science, Interscience, New York, 1949, pp. 211-226.
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Fia. 1. Power spectrum of gravity record after Chilean earthquake (May 22, 1960) in comparison
with that for corresponding quiet period. [1],

to a spherical harmonic of order n = 2. The radial pulsation mode, with n = 0, has a
theoretical period [2] of around 20.5 min., depending on the model assumed for the earth.
The observed peak is the one marked 20 in the figure. The second curve shows the
spectrum of the gravimetric record made a month after the Chilean earthquake. All
the spectral lines have decayed, except the purely radial pulsation peak marked 20.5.
1960 saw the birth of the new science of terrestrial spectroscopy [3], and currently
attention is centered on the radial pulsation mode and its overtones.

The mathematical problem arising in terrestrial spectroscopy is as follows: The
model of the earth is prescribed by specifying the distribution of the elastic constants
X(r) and n(r) and of the equilibrium density p0(r). From the density alone we can deter-
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mine the distribution of the equilibrium force of gravity g0(r). In the case of a purely
radial pulsation, the displacement u{r) is governed by the equation

2,4 d
po<x u i— p0goU + ~rr ar X(" + ~V) + + r (4" ~~ ̂f) ~~ °' (1)

subject to the boundary condition

(X + 2y)u + - \u = 0, r = a. (2)
r

Here a denotes the eigenfrequency of the model for a purely radial pulsation.
In the second class of a purely toroidal mode, the displacements, in a spherical system

of coordinates, are defined as

u = 0, v = dSn[9' ^ e", w = — f/(r) —e'", (3)
sin 6 d<p ou

with U(r) satisfying the equation

subject to the boundary condition

(dU/dr) - (U/r) = 0, r = a. (5)

The solution of both Eqs. (1) and (4) is a trivial matter, except for the need to dif-
ferentiate the empirically-determined elastic functions X(r) and ju(r). This difficulty
can be avoided by using the stresses as unknowns, instead of the displacements, as will
be explained below.

In the third, and more difficult, class of oscillations, that of the poloidal modes,
the motion is governed not only by elastic forces but also by gravitational forces arising
from the change in the density field brought about by the oscillation. The displacements
now depend on two functions, U(r) and 7(r):

u = U(r)Sn(0, 4>), V = F(r) dS"(^ , w = ^j(6)

The perturbation in the gravitational field \p and the dilatation A are represented by

A = X(r)Sn(d, $), V = P(r)Sn(6, <t>), (7)

with

X = U + (2/r)U - [n(n + 1 )/r]V. (8)

The unknown functions U(r), V(r) and P(r) are subject to the differential system of
the sixth order

a2PoU + PoP + goPoX - p0 j- (g0U) + ~ (XX + 2Mt/)
(9)

+ % [4Ur -4U + n(n + 1)(-U - rV + 37)] = 0,r
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Po<r2Fr + p0P — gop0U + \X + r jj;
(10)

+ - [5U + 3rV - V - 2n(n + 1)7] = 0,r

p + _ n(n + l)p = AtG(.oU + poZ)j (n)
r r

In order to obviate the need for differentiating the empirically-determined elastic
parameters X(r) and n(r) we introduce as new variables

2/i = U, y2 = XX + 2pt7, y3 = V, (12)

y4 = - 7 + 7) , 2/5 = P, y«=P~ ±ttGPoU. (13)

In the ensuing equations, the derivatives of X(r) and /u(r) no longer appear explicitly:

... = , 2/2 , Xn(n + l)y3 , >
Vl (X + 2M)r ̂  (X + 2M) + (X + 2M)r '

(15)

- PoVe

... _ r_ 2n r2 - 4 „r4. 4m(3X + 2^)1 2/i 4 [iy,
y* - L 4"°^r + (X + 2/i) J r2 (X + 2/i)r

I r„/n , n iy 2m(3X + 2n)n(n + 1)1 y3 n(n + 1 )y.
+ [»(» + 1 )P0g0r j ? + -

#. = -V- + ^ ^ , (16)r r \i

■ _ P 2^(3X -j- 2^)~| Xy2
2/4 - [ffoPor (x + 2fi) J r3(X + 2M) J r3 (X + 2p)r

{-

(17)

+ ^ ~Po<r2r2 + ^ _|_M2m) + 2n — 1) + 2p(n2 + n — 1)] j ^ — ^7^

y5 = 4tt(?po2/5 + 2/a , (18)

4xGp„y,(n + l)t/3 , n(n + 1)2/5 2j/„2/e      I 7   (19)

This sixth-order differential system is to be solved subject to certain boundary conditions,
which are sufficient to determine the eigenvalue a.

These equations, which were formulated in 1958 [2], were solved by the standard
method of first expanding the solutions in the appropriate power series near the center
of the earth, and then carrying on the integration by the Runge-Kutta method. When
the first batch of data on the earth's spectrum was analyzed in 1960 it was found that
over 60 observed periods agreed to better than one percent with our theoretical values.
Today, terrestrial spectroscopy has become one of the active fields of research in geo-
physics, and has yielded new information on the internal constitution of the earth.

Historically, the subject of the earth's free oscillations was brought to the fore in
1954 when Benioff [4] reported that he had observed a period of 57 min. in the seismic
record of the Kamchatka earthquake of 1952, which he suggested might be due to a
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free spheroidal oscillation of the earth. In 1911 Love [5] estimated that a homogeneous
self-gravitating earth-model would have a fundamental period of around 60 minutes.
Under Benioff's persistent persuasion we ultimately yielded, and undertook a systematic
study of the free vibrations of the real earth. It was one of the first geophysical problems
to be analyzed on the electronic computer, and served as a vehicle by which to test
and develop methods of integrating a system of ordinary differential equations.

3. The dynamo theory of the origin of the earth's magnetic field. We were lucky,
because the dynamics of the oscillations of the earth happen to be governed by a rather
stable system of equations. This is in contrast to the system of equations

A - % f. + V<1 ~ r?F* = °> (2°)r o

F2-®2F2- y{| ef\ - y [r(l - r)2Fz + (4 - 12r + 8r2)F3]} = 0, (21)

F3-%F3- f|-| [r(l - rfF, + (4 - 12r + 8r2)P\] + 2e(l - r)F4| = 0, (22)

F< - % F<

" f 1 (23)
- 7|-| [3r(l - r)7\ + (-3 + 4r - r2)F\ + (-8 + 10r)F,] - 2e(l - r)f3| = 0,

which, though seemingly innocuous, turns out to be more delicate. This system of
equations arises in the dynamo theory of the origin of the earth's magnetic field. Here
you have the first major problem which will accupy applied mathematicians during the
next 25 years. I take 25 years as a yardstick because in the past 25 years this problem has
been on the books, with no impressive achievements to show. The reason, perhaps, is
that the proposed mechanism of a self-exciting dynamo in a liquid sphere (the liquid
core of the earth) is intrinsically more complex than the dynamics of the oscillations
of a gravitating elastic sphere. Indeed, a self-exciting dynamo may be impossible alto-
gether. After Larmor [6] proposed the idea of a self-exciting dynamo in 1919, it was not
until 1934 that the first reaction came from Cowling [7], who proved the negative result
that no dynamo can produce a symmetric magnetic field.

The equation governing the magnetic field H is

dH/dt = \V2H + curl (U X H). (24)

Here U denotes the velocity field, which in the kinematic approximation is assumed
to be given, and X = 1/4ttk, k denoting the electrical conductivity. Bullard and Gellman
[8] studied the steady kinematic dynamo for the case when the convection is assumed to
be represented in spherical coordinates by

ur = (Q/r*)Qs(r)Pl(cos 6) cos 2<fi, (25)

ug = [Qs(f)/r](d/dd)Pl(cos d) cos 2<f>, (26)

1 /> nn2/ M d o , QT{r) dP^COS 6)
U* = V^me <2s(r)P*(c0S ^ cos 2+-—r dJ— ' (27)

Qs = r3(l - r)2, QT = er2(l - r). (28)
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The problem then reduces to an eigenvalue problem for a nondimensional parameter
V given by

V = 4iri<aU, (29)

where a denotes the radius of the sphere and U the scale of the velocity.
The system (20)-(23) is the severely truncated form of (24) when we expand H in

spherical harmonics Yn(6, <j>):

H = EF,(r)y,(M). (30)
n

If we attempt a solution by expanding in power series near the origin and carrying on
thence by numerical integration, we find that, for the relevant values of the eigenvalue V
of around 50, the basic fundamental solutions grow from unity at the origin to magni-
tudes of the order of 1O10 at the surface. The equations have therefore either to be pre-
doctored or to be solved by finite-difference methods. The results achieved to date
[9, 10] are not encouraging, since they show that as the number of terms in (30) is in-
creased, the eigenvalue V grows continuously without manifesting any tendency toward
convergence. One of the immediate objectives of the dynamo theory would be to find
a steady convective field, other than the one represented by Eqs. (25)-(27), for which
the eigenvalue V does converge. If such a steady convective field exists, and at present
this is not certain, then one could turn attention to the dynamic aspects of the problem,
in particular to the mechanism which is likely to maintain the convection in the presence
of dissipation.

One such possible mechanism which I investigated recently [11] is the steady field
induced by the periodic motion in the liquid core of the earth due to the bodily tides.
The tidal potential of the moon and of the sun produce tidal motions not only in the
oceans but also throughout the body of the earth, including the liquid core. The amplitude
of the bodily tide is of the order of 20 cm. If U in (24) denotes the periodic displacement
in the liquid core of the earth due to the bodily tide, then H will also vary with the tidal
period. The cross-term curl (U X H) will produce harmonic overtones of the fundamental
tidal period, including a steady term. The magnitude of the steady term depends on
whether the induction extends through the entire body of the core, or is confined to a
skin-layer near the surface of the core. In the former case, an order-of-magnitude in-
vestigation [11] shows that the coupling between the convectively inducing and the
induced fields is too small. The question as to whether the self-exciting dynamo, if it
exists, is a body-phenomenon or a skin-effect will be elucidated only after a convergent
solution is achieved for some kinematic model.

4. The tides in the world oceans. While on the subject of tides in the core of the
earth, we cannot avoid facing up to the fact that to date the problem of determining the
tides in the ocean has not yet been solved completely. According to Laplace [12a],
one should be able to predict the amplitudes and phases of the tides f not only on the
coasts but also at every point in the interior of oceans, if we know the ocean depth
h(8, A) and if we can also solve the tidal equations

(du/dt) — 2wv cos 6 = (g/a)(df/dff) — F„ , (31)

(dv/dt) + 2com cos 6 = —(g/a sin 0)(df'/dX) — I<\ , (32)

where u and v are the components of velocity,
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f = f - f, f = -n/ff, (33)
f denoting the equilibrium tide and 0 the tidal potential. The equation of continuity

  fe sin ' (34)dt a sin 6 \dd d\)

together with (31) and (32), serve to determine the tide and the velocity components
u and v. The terms F$ and I'\ in (31) and (32) represent the components of the frictional
force F acting on a column of water of depth h. We found that these dissipative terms
had to be introduced; otherwise the tidal amplitudes obtained by solving the Laplace
tidal equations came out too large when compared with the observed tides on the coasts
and on islands. After tidal dissipation was introduced, the numerical stability was also
improved. The resulting tidal dissipation turned out to be of the right order of magnitude
compared with the astronomical value deduced from the observed secular acceleration
of the moon in its orbit. You may not have been aware that the day is becoming longer,
while the month and the year are becoming shorter—-all because of tidal friction. Aside
from tidal dissipation and its effect on the lunar orbit, we shall in this lecture disregard
the moon altogether.

Now in attempting to solve Laplace's tidal equations we have of course first to
determine the topography of the ocean bottom; i.e., the function h(d, X). This task is
not an attractive one to an applied mathematician, but if he aims to come to grips
with nature, he must train himself to submit to the standards of elegance set by nature,
rather than by pure mathematicians. The goal of determining, on the basis of only a given
tidal potential, the tidal motion in the huge dynamical system of the oceans covering
three-quarters of the surface of the globe, with the possibility of confronting the theoret-
ical results with numerous tidal observations as well as with observations of the asso-
ciated tidal variations in the force of gravity, should inspire the applied mathematician
to submit to the drudgery involved in determining the topography of the ocean bottom.
By now over a million ocean depth stations have been processed by Dishon [12b] from
which a representative h{6, X) can be determined.

Fig. 2 shows our theoretical solution [13] of Laplace's tidal equations, modified by
the inclusion of frictional forces, for an ocean model whose coastline is defined by arcs
of 1° in latitude and longitude. The theoretical tides turned out to be of the right mag-
nitude: they could have come out in the range of kilometers or millimeters. The degree
of agreement with tidal observations is shown in Fig. 3 (facing page 78) for the Atlantic
Ocean. One of the interesting theoretical results is the existence of a South Atlantic amphi-
drome (21°S, 15°W) whose reality is supported by island observations. Further corrobora-
tion has come from Dr. Cartwright's recent tidal expedition [14] to the South Atlantic.

A great deal of additional work remains to be done by applied mathematicians
before the whole complex of tidal phenomena on the earth is understood. The significance
of this problem stems from the fact that it is the simplest dynamical system on a global
scale which we can tackle at present and from which we can gain experience which we
may hope to apply to the even more exacting task of elucidating the dynamics of our
atmosphere. The oceanic tidal problem is tied in with the bodily tide, the tides in the
atmosphere, the tide in gravity, and possibly also with the mechanism which maintains
the magnetic field of the earth. We may expect an increasing number of tidal measure-
ments in midoceanic stations, as well as a more detailed mapping of the distribution of
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tidal gravity. One of the immediate problems, both theoretically and observationally,
is tidal dissipation, which is a phenomenon confined to the shelf and coastal waters.
We have only four years left to accomplish this task before the deadline of the bicen-
tennial anniversary of the formulation of Laplace's tidal equations [12a].

5. Theoretical seismograms. Traditionally, the interpretation of seismograms was
based essentially on ray theory. Attention was centered on identifying the first arrival
times of the compressional P-wave and of the shear wave S. From the arrival times of
the P- and waves one can determine the variation of the P- and S-velocities with the
distance r from the center of the earth. In this manner, for example, Gutenberg dis-
covered that below a depth of some 3000 kilometers from the surface, the material of
the earth is liquid. The question naturally arose as to what additional information
on the structure of the interior of the earth could be gained from a study of the whole
body of the seismogram, besides the pips of the P and S arrivals. It was hoped that a
complete wave-theoretical solution for the seismic wave produced by the application of
a well-defined stress-pulse at the focus would reveal additional information on the
nature of the medium. The first theoretical seismogram was derived in 1948 [15] for the
case of an underwater explosion, and is shown in the upper part of Fig. 4. It was an
approximate solution based on the normal mode theory. This record revealed a whole
array of theoretical wave features which could be identified and measured in underwater
explosion records, and which were correlated with the structure of the bottom.

Subsequently [16a], it was possible to obtain an exact solution of the seismic wave
problem. For this purpose it was necessary first to derive an exact inversion of the
integral equation

p J exp (-pt)W(t, r, II) dt = ^ J J„(^ rxjf(x) exp [(— p/c)II(x2 + a2),/2]x dx, (35)

where f(x) is given and W is to be determined. The difficulty with (35) is that W consists
of a superposition of a series of discontinuous pulses W. , each pulse (ray) being strictly
zero until its arrival time ti , and subsequently being a well-defined function W,(t — <,).
The lower record in Fig. 4 [16b] gives the exact solution to the same underwater explosion
problem which is represented by the approximate normal-mode solution shown above.
Regrettably, no new information could be gleaned from the exact solution that had not
been derived from the earlier normal-mode solution.

6. Hydrodynamic stability. In recent years we have attacked the problem of the
stability of plane Poiseuille flow to periodic disturbances of finite amplitude. The assumed
periodicity is in the x-direction, along the axis of the main parabolic flow. Our method
was [17] to solve the Navier-Stokes equation

3V2\p | dV2* dX72ip

with

+ (36)dt dydxdxdyR

4> = to + ]C f"(y, t) exp (-iotnx), /_„ = (37)
n- — oo

by letting

Uv, o = e mm®, (38)
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Fia. 4. Theoretical seismogram for an underwater explosion. Upper curve gives approximate normal
mode solution [15]. Lower curve gives the exact solution [16b].

where the <i>nk{y) are the solutions of the Orr-Sommerfeld equation. The aim, of course,
was to convert the partial differential equation (36) into a system of ordinary simul-
taneous differential equations for the coefficients Bnk(t), whose solution was hoped to be
more tractable. This program encountered a difficulty arising from the peculiar distri-
bution of the eigenvalues c of the Orr-Sommerfeld equation in the complex c-plane,
as shown in Fig. 5. The modes numbered 8 and 9, which have very close roots, interact
mutually and introduce resonance features into the solution (38) which apparently
impedes the convergence of the expansion in (37).

7. Atomic spectroscopy. So much for outdoor physics. There is a job to be done
also for indoor physics. The solution of the Schrodinger wave equation in atomic spec-
troscopy can, by itself, occupy us applied mathematicians fully for the next twenty-five
years. This is an extremely important task, with potential applications also to astro-
physics and chemistry. Again, in 1976 it will be fifty years since Schrodinger announced
the equation, and we have little time to lose. For an atom of nuclear charge Z surrounded
by n electrons the wave equation is
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(39)

Here r, denotes the distance of electron i from the nucleus, assumed to be fixed at the
center of coordinates, and rit is the distance between electrons i and j. The discrete
eigenvalues Ek of the energy and the associated eigenfunction \ph are determined by the
condition that \p2 shall be integrable in the 3ft-dimensional space of the n electrons.
To date it has been possible to solve Eq. (39) only for the helium isoelectronic series;
i.e., for the case of two electrons, when the equation takes on the form

Vty + Vlt + 2[E + - + - - —V = 0. (40)\ n r2 r 12/

In the ground state, \p depends only on the lengths of the triangle (n , r2 , r12) formed
by the nucleus and the two electrons

4> = <A(n , r2 , r12), (41)

for which (40) takes on the form

dV 2 dj , dV , 2.d\p d2xp 4 drp
dr\ n dn drl r2 dr2 r\2 rl2 drl2 ^

, (r\-rl+r\2) dV {r\ - r\ + r?2) d** J F , Z Z _ ±\
nr 12 ^r12 r2r,2 3r2 5^2 \ r, r2 r]2/

This equation is nonseparable. In 1929 the Norwegian physicist Hylleraas attacked the
problem variationally [18]. He took for \p the development

* = N exp (-Iks) £ clmnkl+m+\'run, (43)

with

s = n + r2 , t = r2 — r, , u = rl2, (44)

and determined the coefficients cimn in the expansion and the scale parameter k from the
variational equivalent form of (42). Now there is a gentleman, Willis Lamb, in New
Haven, who predicted in the fifties that the eigenvalues E of (39) have to be shifted
upward due to radiative effects,—'the so-called Lamb shift. Around 1957, there developed
a research program on an international scale aimed at measuring and computing the
Lamb shift in helium. Professor G. Herzberg of Ottawa set out to measure very accurately
the ionization energy I of helium. It was hoped that the observed value of I would turn
out to be less than the value deducible from the first eigenvalue Ei of (42), and this
difference would represent the Lamb shift, whose magnitude can also be computed
by an independent method [19]. Herzberg's measured value [20], published in 1958, was

I = 198310.82 ± 0.15 cm"1. (45)

I took up this problem in 1957 and introduced, instead of the triangular coordinates
(ri , r2 , r12), the perimetric coordinates (u, v, w) [21] defined by

u = e(r2 + r12 — r,), (46)

v = e(r, + r 12 — r2), (47)

w = 2e(r, + r2 — r12), (48)
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where e2 = —E. The advantage of the perimetric coordinates is that they are not
constrained by the triangular condition, each ranging from 0 to independently of
the others. This allows the representation

^ = exp [ — \{u + v + w)]F(u, v, w), (49)

F = ^2 A(l, m,n)L,(u)L„(v)L„(w). (50)
I , tn, n—0

Substituting (49) and (50) in (42), and using the recursion relations of the Laguerre
polynomials Ln(u), we are led to a recursion relation for the coefficients A (I, m, n),
the roots of whose determinant are the eigenvalues Ek. This recursion relation does not
look attractive:

4(/+1)(/+2)[—Z+«(lr+-m+«)]4 (1+2, tn, »)+4(»>+1)(ot+2)[—Z+e(l+/+«)J^ (I, ">+2, ti)
+4(/+l)(m+l)[l-2Z+e(2+/+m)].4(/+l,m+l,tt)+2(/+l)(«+l)[l-2Z+*(2+2w+«)]
X^4(/+1,»m, n+l)+2(w+l)(n+1)[1 — 2Z-\- t(2-\-2l-\-n)~]A(I, tn-\-1, n-{-l)-{-(n-\-l)(n-\-2)A (I, tn, w-f-2)
+ (/+l){4Z(4/+4w+2fi+7)-8w-4n-6-2f[(m+»)(4OT+12/)+n!+12/+18fn+15n+14]}^(/+l,m, n)
+ (CT+l){4Z(4/+4m+2«+7)-8/-4n-6-2e[(/+»)(4/+12m)+»J+12m+18/+15«+14]}yl(/,m+l,B)
+4(»+l){Z(2/+2m+2)—/— tn—n— 2— e£—P— w?-\-ilm-{-2lnJr2nm-\-ilJrSm-\-2n-\-2~]} A(l, tn, »+l)
-(-4e(w-|-l)(vi-\-2)nA (I, w-f~2, n— 1) —(—4e1)(l+2)nA (/—f— 2, tn, n— 1)
+ 2e/(n+l)(»+2).4(/— 1, tn, >!+2)+2(m(«+l)(»+2).4 (I, tn— 1, n+2)
+ {4(2Z-|-1)(2m+ !)+4(2«+ l)(/+m+l)+6n2+ 6»+2—iZ\_(l-\-m) (6/+6w+4k+12)—4/ot+4»+83
+4cf (/-(-?b)(10/»j+ 10/»+10/+10ff!+18n+4»5+16)+/»(4— 12»)+8+12«+4n!3}.4 (l,m,u)
+ 4/(tn~\~ l)fl — 2Z-t- e (1 "{"/"I" w)J.4 (I— 1, w-f~ 1, '0~f"4(/4~ l)/w[]l — 2Z-[- e(l-|-/-l-7w)]/l (/—f-1, tw— 1, ti)
+2/(»+l)[l —2Z+e(2»H—4/—h)}4(Z— 1, m, «+l) + 2w(w+l)[l —2Z+«(2/—4m—«)]/((/, m— 1, «+l)
+2(/+l)«[l-2Z+e(2m-4/-K-3)X/+l,»»,«-l)+2(m+l)»[l-2Z+e(2/-4m-»-3)]^(/, m+l,»-j)
+ 2/{-(4m+2H.+3)+Z(8/+8m+4n+6)-e[(m+«+l)(12/+4m+2)+n+fi2]}J4(/-l,m>«)
4-2wi{ — (4/+2k+3)-|-Z(8/-{-8m-[-4ti-}-6) — t\_(l-\-n-\-1) (l2tn-\-M-\-2)~\-ti-\-n2^\} A (/, tn— 1, n)
+4«{ — (/+m+K+l)+Z(2/+2m+2) —e[[(/+m)(l+2«—Z—m)+6/m+2n]}yl (I, m, ti— 1)
+ 2ew(K—n-2)+2tn(n-l)(m+l)A(l,m+l,n-2)+id(l-l)(n+l)A(l-2, tn, n+1)
+ 4em(»tt— 1)(»+ 1)A (I, tn— 2, »+1) + 4/(/— 1)C~Z+e(l+fn+K)]/i (1—2, tn, n)
+4m(»i—1)[—Z+e(l+Z+K)]-4 (A m—2, »)+»(«— 1)A (I, tn, tt—2)
+4/m[l — 2Z-\-e(l+tn)\A (I— 1, tn— 1, «)+2/«[[l—2Z+e(2m+»+l)J.4 (/— 1, m, n— 1)

+2mn[l-2Z+t(2l+n+l)~\A (/, m-1, n- 1)=0. (51)

It has, however, the advantage that all the coefficients in the resulting determinant are
integers, which facilitates storage in the computer. This method yielded eignevalues of
extreme accuracy. Already in our first communication [22] we obtained a theoretical
ionization energy of I — 198312.01 ± 0.01 cm-1 using a determinant of order 203, which
exceeded by far the experimental accuracy of ±0.15 cm-1. Subsequently [23] we went up
to a determinant of order 1078, obtaining I = 198312.0258 ± 0.0001 cm-1. If we subtract
from this Herzberg's experimental value, we get a Lamb shift of —1.206 ± 0.15 cm-1,
which agrees within the experimental error with the theoretical value of —1.34 cm-1 for
the Lamb shift [19].

We then extended this work to other discrete states of helium, as well as of ionized
lithium Li+ [24]. The results [25] are shown in Table I. You see that uniformly our
theoretical term-values agreed with the experimental values to within the experimental
error. A unique situation was achieved, where for the first time the experimentalists
were lagging behind the theoreticians in accuracy.
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Fig. 5. The eigenvalues c[ = c\r -f- ic\{ of the Orr-Sommerfeld equation belonging to the first mode
n = 1. a = 1, R = 2000.

This was the state of affairs in the summer of 1961, when Herzberg in Ottawa was
producing experimental term-values of ever-increasing accuracy [26] and we were able
to more than match them by our calculations. Your former President, Barnaby Keeney,
dropped in and I complained that WEIZAC was turning out results so fast that I could
hardly manage to write them up. "Don't worry," said Barnaby, "soon WEIZAC will
also write the papers, and another computer will then write the reviews." The next

TABLE I.
Summary of the verification of the Lamb shift correction in He and Li+. J is the theoretical ionization energy,
excluding the Lamb shift correction. The error A in J is taken as the difference between the value quoted
for the given order n and the extrapolated value. J th = J + Lamb shift.

Atom State J An Lamb shift Jlh JeXp

He 11 S 198312.0258 O.OOOI 1078 -l.352±0.025 I983I0.674±0.025 198310.8±0.15
-1.361 40.056 198310.665±0.056

-1.341 + 0.005 198310.685+0.005

He 2's 32033.318 O.OOl 615 -0.104+0.014 32033.214 + 0.014 32033.26+ 0.03 [ +0.05]

He 23S 38454.8274 0.00001 1078 -0.109+0.009 38454.718 + 0.009 38454.73 + 0.05

Li+ I1 S 610087.449 0.004 444 -17.83] 610079.61 610079. ±5 [ + 3]

Li+ 23S 134045.2612 0.0001 308 -tl.!4l 134044.12 134044.19 + 0.10
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day we hit a snag: for the 2\S state of Li+ our term-value came out 118704.88 ± 0.01 cm-1
as against the experimental value 120008.30 ± 0.10 cm-1 determined by Herzberg
and Moore [26]. Instead of a matching to within 0.1 cm-1 we now had a huge discrepancy
of 1303.4 cm-1. In terms of wavelengths, this means that instead of the line 8517.4 A,
which Herzberg and Moore measured, they should have measured another spectral
line at 9584 A. I reported this discrepancy to Herzberg and inquired, in case there was
a misidentification, whether he could search for a line in the neighborhood of 9584 A.
Herzberg replied that his photographic plate was no longer sensitive in the far infrared
region of 9584 A; also, that the identification was based on the work of Series and Willis
of Oxford, and that he only refined their measurements. A check of the paper by Series
and Willis [27] revealed that they, in turn, based their identification on an extrapolation
made in 1926 by the Danish spectroscopist Werner [28].

I then wrote to Professor Rank, an expert in infrared spectroscopy, asking that he
search for the Li+ line at 9584 A. Rank replied that he could do it if I would supply
him with a source. So I dictated a letter to Herzberg asking that he send his source
to Rank. The next morning, I looked at this letter, and decided that the situation was
getting out of hand: Here I was in Rehovot, asking Herzberg in Ottawa to send a source
to Rank at Pennsylvania State College to enable him to carry out an experiment for the
purpose of checking a spectral identification made by Series and Willis at Oxford, which
they in turn made on the basis of a paper written by Werner in Copenhagen in 1926!
So I dropped the scheme, and sent in my paper for publication. In the fall of 1962,
I received a reprint of a paper by Toresson and Edl6n [29] from Lund, where they
reported that they had found a Li+ line at 9581.42 A, giving an experimental term-value
of 118704.82 ± 0.15 cm-1, "in perfect agreement" with our calculated value of
118704.88 cm-1. It turns out that Werner withdrew his 1926 prediction of the 8517 A line
in his thesis, which he published in 1927 [30] in Danish.

Our next exciting encounter with experimentalists occurred in 1964 on the question
of the intensity of the helium line due to the transition from the excited 21P1 state to
the ground state l'iS0 . The intensity is given by the /-value

/on = \{En - E0) |^o(r, + r2)in\2, (52)

where \pn is the eigenfunction and En the associated eigenvalue of the excited state,
\f/o , E„ of the ground state, and r, and r2 denote the position vectors of electrons 1 and 2.
With our wave functions we were able to predict [31] that

/(21P1 - l'So) = 0.27616 ± 0.00001. (53)

Kuhn and Vaughan [32] determined the /-value by measuring the variation of line-width
with pressure and arrived at a value which was 30% larger. I remember reporting on
this discrepancy at the seventh Brookhaven conference on molecular beams and atomic
spectroscopy held at Uppsala in June, 1964. When I mentioned that the measurements°
were made on the line 7281 A, a cry burst forth from the assembly: "What? The yellow
line?" I had the impression that "the yellow line" of helium is some sanctum in spec-
troscopy whose desecration by a heretic applied mathematician could not be tolerated.
Rabi, who was present at the conference, managed to calm spirits down, and in subse-
quent years the experiment was repeated [33] and further analysis was made of the
experimental results [34]. A definitive experimental determination was made recently at
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Columbia by an independent method [35] giving an /-value of 0.275 ± 0.007, in agree-
ment with (53).

We have treated the helium isoelectronic series for Z — 2 up to 10 [36, 37]. These
theoretical results agree throughout with recent experimental data which have come
from spectra produced by lasers and in plasmas, as well as from other refined experi-
mental techniques.

The vast field of atomic spectroscopy still remains the burden of the applied mathe-
matician for the future. Even in two-electron spectroscopy, there remain some basic
unsolved problems, which I shall try to formulate in the hope that our colleagues can
be persuaded to help with their elucidation.

1. Taking Eq. (42) for the ground state of two-electron atoms, is there a base which
is intrinsically more related to the structure of (42) than are the Laguerre functions
which we adopted in (50)?

2. Since (42) is not separable, does there exist a transformation kernel K such that
the transform of \p is separable:

, r2 , r12) = JJJ K(n , r2 , r12 , x, y, dx dy dzl (54)

3. Having obtained an accurate solution for the ground state of (42), what in-
formation of a global nature can be derived from the knowledge of \p0 alone concerning
the other eigenfunctions \[/n of (42)? It is known, for instance [38], that the function

S(k) = £ UEn - Eo)\ (55)

where f0n is defined in (52) and where the summation extends over all the eigenvalues
En of (42) including the continuum, can be derived from \p0 alone for the integer values of

k=-1,0,1,2. (56)

Can S(k) be evaluated from \p0 also for nonintegral values of fc? Of particular interest
is the function

P(k) = (d/dk) In S(k). (57)

P(2) enters in the calculation of the Lamb shift.
4. There is still no suitable method for obtaining accurate wave functions for the

continuum.
When we come to three-electron atoms, such as the lithium isoelectronic series, we

are stymied even at the first step.
5. Can the six sides of the pyramid subtended by the nucleus and the three electrons

be transformed into new functions of these variables such that each new variable varies
between fixed limits independently of the others, as do the perimetric coordinates
(46)-(48) in the case of the triangle?

6. While at it, we might consider a question of more general nature. If F(x) is a
solution of a linear ordinary differential equation L„ of the nth order

Ln(F) = 0, (58)

then
G(x) = F\x) (59)
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obeys a linear differential equation [39] of order n(n + l)/2. In the case n = 2, for
example, with

F + IF = 0, (60)
G satisfies the equation

(?' + 4/G + 2/G = 0. (61)
Given that F(x, y, z) satisfies the wave equation

(d2F/dx2) + (d2F/dy2) + (d2F/dz2) + k2F = 0, (62)

is there a linear partial differential equation which is satisfied by G(x, y, z) where
G(x, y, z) = F2{x, y, z)t (63)

8. The Boltzmann integral equation. My omission of the Boltzmann integral
equation is not to be construed as implying that all is well on that front. In the linearized
Hilbert-Boltzmann form of this equation I found, for the case of a gas-model of rigid
spheres, that the integral equation could be converted into one or several ordinary
differential equations [40, 41, 42], This fact, it turned out, had already been noted by
Boltzmann. The method of solution via the differential equations worked well in the
cases of self-diffusion, heat conduction and viscosity. In the case of propagation of
sound, however, it was not effective and we had to resort to expansions in terms of the
eigenfunctions of the Maxwell gas model.

The above poses the general question: which class of integral equations can be con-
verted into differential equations?

Hilbert stated that of all the applications made in his book [43], the Boltzmann
equation was the only one that was intrinsically integral and did not have its origin in
a differential equation. As it turned out, even the Boltzmann integral equation could
be converted to a system of differential equations.
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