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Abstract. This paper investigates what is essentially a call-by-value version of PCF un-
der a complexity-theoretically motivated type system. The programming formalism, ATR,
has its first-order programs characterize the polynomial-time computable functions, and
its second-order programs characterize the type-2 basic feasible functionals of Mehlhorn
and of Cook and Urquhart. (The ATR-types are confined to levels 0, 1, and 2.) The
type system comes in two parts, one that primarily restricts the sizes of values of expres-
sions and a second that primarily restricts the time required to evaluate expressions. The
size-restricted part is motivated by Bellantoni and Cook’s and Leivant’s implicit charac-
terizations of polynomial-time. The time-restricting part is an affine version of Barber
and Plotkin’s DILL. Two semantics are constructed for ATR. The first is a pruning of
the näıve denotational semantics for ATR. This pruning removes certain functions that
cause otherwise feasible forms of recursion to go wrong. The second semantics is a model
for ATR’s time complexity relative to a certain abstract machine. This model provides
a setting for complexity recurrences arising from ATR recursions, the solutions of which
yield second-order polynomial time bounds. The time-complexity semantics is also shown
to be sound relative to the costs of interpretation on the abstract machine.

1. Introduction

A Lisp programmer knows the value of everything, but the cost of nothing.
— Alan Perlis

Perlis’ quip is an overstatement—but not by much. Programmers in functional (and object-
oriented) languages have few tools for reasoning about the efficiency of their programs.
Almost all tools from traditional analysis of algorithms are targeted toward roughly the
first-order fragment of C. What tools there are from formal methods are interesting, but
piecemeal and preliminary.
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This paper is an effort to fill in part of the puzzle of how to reason about the ef-
ficiency of programs that involve higher types. Our approach is, roughly, to take PCF

and its conventional denotational semantics [Plo77, Win93] and, using types, restrict the
language and its semantics to obtain a higher-type “feasible fragment” of both PCF and
the PCF computable functions. Our notion of higher-type feasibility is based on the ba-
sic feasible functionals (BFFs) [CU93, Meh76], a higher-type analogue of polynomial-time
computability, and Kapron and Cook’s [KC96] machine-based characterization of the type-
level 2 BFFs.1 Using a higher-type notion of computational complexity as the basis of our
work provides a connection to the basic notions and tools of traditional analysis of algo-
rithms (and their lifts to higher types). Using types to enforce feasibility constraints on
PCF provides a connection to much of the central work in formal methods.

Our approach is in contrast to the work of [BNS00, Hof03, LM93] which also involves
higher-type languages and types that guarantee feasibility. Those programming formalisms
are feasible in the sense that they have polynomial-time normalization properties and that
the type-level 1 functions expressible by these systems are guaranteed to be (ordinary)
polynomial-time computable. The higher-type constructions of these formalisms are essen-
tially aides for type-level 1 polynomial-time programming. As of this writing, there is scant
analysis of what higher-type functions these systems compute.2

For a simple example of a feasible higher-type function, consider C: (N → N) → (N →
N) → (N → N) with C f g = f ◦ g. (Convention: N is always interpreted as {0,1 }∗,
i.e., 0-1-strings.) In our setting, a reasonable implementation of C has a run-time bound
that is a second-order polynomial (see §2.12) in the complexities of arbitrary f and g; in
particular, if f and g are polynomial-time computable, so is C f g. Such a combinator C

can be considered as part of the “feasible glue” of a programming environment—when used
with other components, its complexity contribution is (higher-type) polynomially-bounded
in terms of the complexity of the other components and the combined complexity can be
expressed in a natural, compositional way. More elaborate examples of feasible functionals
include many of the deterministic black-box constructions from cryptography. Chapter 3
in Goldreich [Gol01] has detailed examples, but a typical such construct takes one pseudo-
random generator, g, and builds another, g̃, with better cryptographic properties but with
not much worse complexity properties than the original g. Note that these g’s and g̃’s may
be feasible only in a probabilistic- or circuit-complexity sense.3

While our notion of feasibility is based on the BFFs, our semantic models allow our
formalism to compute more than just the standard BFFs. For example, consider prn: (N →

1Mehlhorn [Meh76] originally discovered the class of type-2 BFFs in the mid-1970s. Later Cook and
Urquhart [CU93] independently discovered this class and extended it to all finite types over the full set-
theoretic hierarchy. N.B. If one restricts attention to continuous models, then starting at type-level 3 there
are alternative notions of “higher-type polynomial-time” [IKR02]. Dealing with type-level 3 and above
involves some knotty semantic and complexity-theoretic issues beyond the scope of this paper, hence our
restriction of ATR types to orders 2 and below.

2The work of [BNS00, Hof03] and of this paper sit on different sides of an important divide in higher-
type computability between notions of computation over computable data (e.g., [BNS00, Hof03, LM93]) and
notions of computation over continuous data (e.g., this paper) [Lon04, Lon05].

3See [KC96, IKR01] for a more extensive justification that the BFFs provide a sensible type-2 analogue
of the polynomial-time computable functions.
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N → N) → N → N with:

prn f ǫ −→ f ǫ ǫ.

prn f (a⊕ y) −→ f (a⊕ y) (prn f y).

}
(1.1)

(Conventions: ⊕ denotes string concatenation and a ∈ {0,1 }.) So, prn is a version of Cob-
ham’s [Cob65] primitive recursion on notation (or alternatively, a string-variant of foldr).
It is well-known that prn is not a BFF: starting with polynomial-time primitives, prn can be
used to define any primitive recursive function. However as Cobham noted, if one modifies
(1.1) by adding the side-condition:

(∃pf , a polynomial)(∀x)[ |prn f x| ≤ pf (|x|) ],

this modified prn produces definitions of just polynomial-time computable functions from
polynomial-time computable primitives. Bellantoni and Cook [BC92] showed how get rid of
explicit use of such a side condition through what amounts to a typing discipline. However,
their approach (which has been in large part adopted by the implicit computational com-
plexity community, see Hofmann’s survey [Hof00]), requires that prn be a “special form”
and that the f in (1.1) must be ultimately given by a purely syntactic definition. We, on
the other hand, want to be able to define prn within ATR (see Figure 13) and have the
definition’s meaning given by a conventional, higher-type denotational semantics. We thus
use Bellantoni and Cook’s [BC92] (and Leivant’s [Lei95]) ideas in both syntactic and se-
mantic contexts. That is, we extract the growth-rate bounds implicit in the aforementioned
systems, extend these bounds to higher types, and create a type system, programming lan-
guage, and semantic models that work to enforce these bounds. As a consequence, we can
define prn (with a particular typing) and be assured that, whether the f corresponds to
a purely syntactic term or to the interpretation a free variable, prn will not go wrong by
producing something of huge complexity. The language and its model thus implicitly in-
corporate side-conditions on growth via types.4 Handling constructs like prn as first class
functions is important because programmers care more about such combinators than about
most any standard BFF.

Outline. Our ATR formalism is based on Bellantoni and Cook [BC92] and Leivant’s [Lei95]
ideas on using “data ramification” to rein in computational complexity. §3 puts these ideas
in a concrete form of BCL, a simple type-level 1 programming formalism, and sketches
the proofs of three basic results on BCL: (i) that each BCL expression is polynomial size-
bounded, (ii) that computing the value of a BCL expression is polynomial time-bounded, and
(iii) each polynomial-time computable function is denoted by some BCL-expression. Most of
this paper is devoted to showing the analogous results for ATR. §4 discusses how one might
change BCL into a type-2 programming formalism, some of the problems one encounters,
and our strategies for dealing with these problems. ATR, our type-2 system, is introduced
in §5 along with its type system, typing rules, and basic syntactic properties. The goal of
§§6–10 is to show (type-2) polynomial size-boundedness for ATR. This is complicated by
the fact (described in §6) that the näıve semantics for ATR permits exponential blow-ups.
§§7–9 show how to prune back the näıve semantics to obtain a setting in which we can

4Incorporating side-conditions in models is nothing new. A fixed-point combinator has the implicit side-
condition that its argument is continuous (or at least monotone) so that, by Tarski’s fixed-point theorem
[Win93], we know the result is meaningful. Models of languages with fixed-point combinators typically have
continuity built-in so the side-condition is always implicit.
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prove polynomial size-boundedness, which is shown in §10. The goal of §§11–15 is to show
(type-2) polynomial time-boundedness for ATR. Our notion of the cost of evaluating ATR

expressions is based on a particular abstract machine (described in §11.1) that implements
an ATR-interpreter and the costs we assign to this machine’s steps (described in §11.2). §12
and §13 set up a time-complexity semantics for ATR− expressions (where ATR− consists
of ATR without its recursion construct) and establish that this time-complexity semantics
is: (i) sound for the abstract machine’s cost model (i.e., the semantics provides upper
bounds on these costs), and (ii) polynomial time-bounded, that is that the time-complexity
each ATR expression e has a second-order polynomial bound over the time-complexities of
e’s free variables. §16 shows that ATR can compute each type-2 basic feasible functional.
§17 considers possible extensions of our work. We begin in §2 which sets out some basic
background definitions with §§2.8–2.14 covering the more exotic topics.

Acknowledgments. Thanks to Susan Older and Bruce Kapron for repeatedly listening to
the second author describe this work along its evolution. Thanks to Neil Jones and Luke
Ong for inviting the second author to Oxford for a visit and for some extremely helpful
comments on an early draft of this paper. Thanks to Syracuse University for hosting the
first author during September 2005. Thanks also to the anonymous referees of both the
POPL version of this paper [DR06] and the present paper for many extremely helpful
comments. Finally many thanks to Peter O’Hearn, Josh Berdine, and the Queen Mary
theory group for hosting the second author’s visit in the Autumn of 2005 and for repeatedly
raking his poor type-systems over the coals until something reasonably simple and civilized
survived the ordeals. This work was partially supported by EPSRC grant GR/T25156/01
and NSF grant CCR-0098198.

2. Notation and conventions

2.1. Numbers and strings. We use two representations of the natural numbers: dyadic
and unary. Each element of N is identified with its dyadic representation over {0,1 }, i.e.,
0 ≡ ǫ, 1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. We freely pun between x ∈ N as a number and
a 0-1-string. Each element of ω is identified with its unary representation over {0 }, i.e.,
0 ≡ ǫ, 1 ≡ 0, 2 ≡ 00, 3 ≡ 000, etc. The elements of N are used as numeric/string values
to be computed over. The elements of ω are used as tallies to represent lengths, run times,
and generally anything that corresponds to a size measurement. Notation: For each natural
number k, k = 0k. Also x⊕ y = the concatenation of strings x and y.

2.2. Simple types. Below, b (with and without decorations) ranges over base types and
B ranges over nonempty sets of base types. The simple types over B are given by: T : : =
B | (T → T ). As usual, → is right associative and unnecessary parentheses are typically
dropped in type expressions, e.g., (σ1 → (σ2 → σ3)) = σ1 → σ2 → σ3. A type σ1 → · · · →
σk → b is often written as (σ1, . . . , σk) → b or, when σ = σ1 = · · · = σk, as (σk) → b. The
simple product types over B are given by: T : : = B | T → T | () | T × T, where () is
the type of the empty product. As usual, σ1 = σ, σk+1 = σk × σ, × is left associative, and
unnecessary parentheses are typically dropped in type expressions. The level of a simple
(product) type is given by: level(b) = level( () ) = 0; level(σ × τ) = max(level(σ), level(τ));
and level(σ → τ) = max(1 + level(σ), level(τ)). In this paper types are always interpreted
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over cartesian closed categories; hence, the two types (σ1, . . . , σk) → τ and σ1×· · ·×σk → τ

may be identified. By convention, we identify () → τ with τ and λ() e with e.

2.3. Subtyping. Suppose ≤: is a reflexive partial order on B. Then ≤: can be extended
to a reflexive partial order over the simple types over B by closing under:

σ1 ≤: σ0 & τ0 ≤: τ1 ⇐⇒ σ0 → τ0 ≤: σ1 → τ1. (2.1)

We read “σ ≤: τ” as σ is a subtype of τ ; and write τ :≥ σ for σ ≤: τ and σ �: τ for [σ ≤: τ

and σ 6= τ ] .

2.4. Type contexts and judgments. A type context Γ is a finite (possibly empty) map-
ping of variables to types; these are usually written as a list: v1:σ1, . . . , vk:σk. Γ,Γ′ denotes
the union of two type contexts with disjoint preimages. Γ ∪ Γ′ denotes the union of two
consistent type contexts, that is, Γ(x) and Γ′(x) are equal whenever both are defined. The
type judgment Γ ⊢F e: σ asserts that the assignment of type σ to expression e follows from
the type assignments of Γ under the typing rules for formalism F . We typically omit the
subscript in ⊢F when F is clear from context.

2.5. Semantic conventions. For a particular semantics S for a formalism F , S[[ · ]] is the
semantic map that takes an F-syntactic object to its S-meaning. S[[τ ]] is the collection
of things named by a type τ under S. For a type context Γ = x1: τ1, . . . , xn: τn, S[[Γ]] is
the set of all finite maps {x1 7→ a1, . . . , xn 7→ an }, where a1 ∈ S[[τ1]], . . . , an ∈ S[[τn]]; i.e.,
environments. Convention: ρ (with and without decorations) ranges over environments
and {} = the empty environment. S[[Γ ⊢ e: τ ]] is the map from S[[Γ]] to S[[τ ]] such that
S[[Γ ⊢ e: τ ]] ρ denotes the element of S[[τ ]] that is the S-meaning of expression e when e’s
free-variables have the meanings given by ρ. Conventions: S[[e]] is typically written in place
of S[[Γ ⊢ e: τ ]] since the type judgment is usually understood from context. When e is closed,
S[[e]] is sometimes written in place of S[[e]] {}. Also, e0 =S e1 means S[[e0]] = S[[e1]].

2.6. Syntactic conventions. Substitutions (e.g., e[x : = e′]) are always assumed to be
capture avoiding. Terms of the form (x e1 . . . ek) are sometimes written as x(e1, . . . , ek).

2.7. Call-by-value PCF. The syntax of our version of PCF is given in Figure 1, where
the syntactic categories are: constants (K), raw-expressions (E), variables (X), and type-
expressions (T ) and where a ∈ {0,1 }. Figure 2 states PCF’s typing rules, where op stands
for any of c0, c1, d, t0, and t1 and where E : : = e, e0, e1, e2, K : : = k, T : : = σ, τ , and
X : : = x. For emphasis we may write λx:σ e instead of λx e, but the type of x can always
be inferred from any type judgement in which λx e occurs. The intended interpretation of
N is N (∼= {0,1 }∗). The reduction rules are essentially the standard ones for call-by-value
PCF (see [Plo75, Pie02]). In particular, the reduction rules for c0, c1, d, t0, t1, down, if-
then-else, and fix are given in Figure 3. Note that in if-then-else tests, ǫ corresponds to false
and elements of (N−{ ǫ }) correspond to true. In tests, we use x 6= ǫ for syntactic sugar for
x and use |e0| ≤ |e1| as syntactic sugar for (down c0(e0) c0(e1)).

5 An operational semantics
for PCF is provided by the CEK-machine given in §11.1. We take V (for value) to be a

5We will see in §4 and §5 why down (as opposed to | · | ≤ | · |) is a primitive.
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E : : = K | (ca E) | (d E) | (ta E) | (down E E)

| X | (E E) | (λX E) | (if E then E else E) | (fix E)

K : : = { 0,1 }∗ T : : = the simple types over N

Figure 1: PCF syntax

Const-I:
Γ ⊢ k: N

op-I:
Γ ⊢ e: N

Γ ⊢ (op e): N
down-I:

Γ0 ⊢ e0: N Γ1 ⊢ e1: N

Γ0 ∪ Γ1 ⊢ (down e0 e1): N

Id-I:
Γ, x: σ ⊢ x: σ

→-I:
Γ, x: σ ⊢ e: τ

Γ ⊢ (λx e): σ → τ
→-E:

Γ0 ⊢ e0: σ → τ Γ1 ⊢ e1: σ

Γ0 ∪ Γ1 ⊢ (e0 e0): τ

If-I:
Γ0 ⊢ e0: N Γ1 ⊢ e1: N Γ2 ⊢ e2: N

Γ0 ∪ Γ1 ∪ Γ2 ⊢ (if e0 then e1 else e2): N
fix-I:

Γ ⊢ (λx e) : σ → σ

Γ ⊢ (fix (λx e)) : σ

Figure 2: The PCF typing rules

(ca v) −→ a⊕ v. (d (a⊕ v)) −→ v. (d ǫ) −→ ǫ.

(ta v) −→

{
0, if v begins with a;

ǫ, otherwise.
(down v0 v1) −→

{
v0, if |v0| ≤ |v1|;

ǫ, otherwise.

(if v0 then v1 else v2) −→

{
v1, if v0 6= ǫ;

v2, if v0 = ǫ.
fix (λx e) −→ e[x : = (fix (λx e)].

Figure 3: The PCF reduction rules for ca, d, ta, down, if-then-else, and fix

conventional denotational semantics for PCF [Win93]. Standard arguments show that our
operational semantics corresponds to V.

2.8. Total continuous functionals. Let σ and τ be simple product types over base type
N. Inductively define: TC() = ⋆; TCN = N; TCσ×τ = TCσ × TCτ ; TCσ→τ = the
Kleene/Kreisel total continuous functions from TCσ to TCτ ; the TCσ’s together form a
cartesian closed category TC.6 This paper is concerned with only the type-level 0, 1, and
2 portions of TC from which we construct models of our programming formalisms.

2.9. Total monotone continuous functionals. Let σ and τ be simple product types over
base type T (for tally). Inductively define the MCσ sets and partial orders ≤σ by: MCT = ω

and ≤T = the usual ordering on ω; MC() = ⋆ and ⋆ ≤() ⋆; MCσ×τ = MCσ × MCτ and
(a, b) ≤σ×τ (a′, b′) ⇐⇒ a ≤σ a′ and b ≤τ b′; and MCσ→τ = the Kleene/Kreisel total
continuous functions from MCσ to MCτ that are monotone (w.r.t. ≤σ and ≤τ ), and ≤σ→τ

is the point-wise ordering on MCσ→τ . (E.g., MCT→T = { f : ω → ω f(0) ≤ f(1) ≤ f(2) ≤
· · · }.) The MCσ’s turn out to form a cartesian closed category MC. As with TC, our

6For background on the Kleene/Kreisel total continuous functions and TC, see the historical survey of
Longley [Lon05] and the technical surveys of Normann [Nor99] and Schwichtenberg [Sch96].
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P : : = K | (∨ P P ) | (+ P P ) | (∗ P P ) | V | (P P ) | (λV P )

K : : = 0 | 1 | 2 | . . . T : : = the level 0, 1, and 2 simple types over T

Figure 4: The syntax for second-order polynomials and their standard types

Const-I:
Σ ⊢ k: T

⊙-I:
Σ ⊢ p0: T Σ ⊢ p1: T

Σ ⊢ (⊙ p0 p1): T
(⊙ = ∗, +, ∨)

Figure 5: The additional typing rules for the second-order polynomials

concern is with only the type-level 0, 1, and 2 portions of MC from which we construct our
models of size and time bounds. Convention: We typically omit the subscript in ≤σ when
the σ is clear from context.

2.10. Lengths. For v ∈ N, let |v| = k, where k is the length of the dyadic representation
of v (e.g., |110| = 3 = 000). For f ∈ TC(Nk)→N, define |f | ∈ MC(Tk)→T by:

|f |(~ℓ ) = max
{
|f(~v)| |v1| ≤ ℓ1, . . . , |vk| ≤ ℓk

}
. (2.2)

(This is Kapron and Cook’s [KC96] definition.) For each σ, a simple type over N, let
|σ| = σ[N : = T] (e.g., |N → N| = T → T). So by the above, |v| ∈ MC|σ| when level(σ) ≤ 1
and v ∈ TCσ. Here is a type-level 2 notion of length that suffices for this paper. For
γ = (σ1, . . . , σk) → N of level-2, F ∈ TCγ , and ℓ1 ∈ MC|σ1|, . . . , ℓk ∈ MC|σk |, define

|F |(~ℓ ) = max
{
|F (~v)| |v1| ≤|σ1| ℓ1, . . . , |vk| ≤|σk| ℓk

}
. (2.3)

|F | as defined above turns out to be an element of MC|γ|.
7

2.11. Maximums and polynomials. Let v1 ∨ v2 = max({ v1, v2 }) and let
∨k

i=1 vi =
max({ v1, . . . , vk }) for v1, . . . , vk ∈ ω. By convention, max(∅) = 0. We allow ∨ as another
arithmetic operation in polynomials; ∨ binds closer than either multiplication or addition.
Coefficients in polynomials will always be nonnegative; hence polynomials denote monotone
nondecreasing functions, i.e., type-level 1 elements of MC.

2.12. Second-order polynomials. We define the second-order polynomials [KC96] as a
type-level 2 fragment of the simply typed λ-calculus over base type T with arithmetic
operations ∨, +, and ∗. Figure 4 gives the syntax, where the syntactic categories are:
constants (K), raw expressions (P ), and type expressions (T ). We often write ∨-, +-, and
∗-expressions in infix form. The typing rules are Id-I, →-I, and →-E from Figure 2 together
with the rules in Figure 5. Moreover, the only variables allowed are those of of type levels 0
and 1. Our semantics L (for length) for second-order polynomials is: L[[σ]] = MCσ for
each σ, a simple type over T, and L[[Σ ⊢ p:σ]] = the standard definition. The depth a
second-order polynomial q is the maximal depth of nesting of applications in q’s β-normal

7When γ is type-level 2 and ℓ ∈ MC|γ|, generally {F ∈ TCγ |F | ≤|γ| ℓ } fails to be compact in the
appropriate topology. Consequently, the type-3 analogue of (2.3) fails to yield lengths that are total. There
are alternative notions of type-2 length that avoid this problem; [IKR02] investigates two of these.
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form, e.g., g0((g0(2 ∗ y ∗ g1(y
2)) ∨ 6)3) has depth 3. There is a special case for variables

of higher type: type-level ℓ variables are assigned depth ℓ.8 For second-order polynomials,
depth plays something like the role degree does for ordinary polynomials.

2.13. Time complexity. The CEK machine (§11.1) provides an operational semantics for
PCF as well as for the formalisms BCL (§3) and ATR (§5). Since this paper concerns the
evaluation of expressions and the associated costs, we use the CEK machine as our standard
model of computation and use the CEK cost model (§11.2) as our standard notion of time
complexity. As discussed in §11.2, Schönhage’s storage modification machine [Sch80] is
roughly the standard complexity-theoretic model of computation and cost underlying our
CEK model. Storage modification machines and Turing machines are polynomially-related
models of computation [Sch80]. Our CEK machine handles oracles (type-1 functions over
N) as the values of particular variables in the initial environment for an evaluation. As with
Kapron and Cook’s answer-length cost model for oracle Turing machines [KC96], part of
the CEK-cost of querying an oracle includes the length of the answer.

2.14. Basic feasibility. Suppose τ = (σ1, . . . , σk) → N is a simple type over N of level
1 or 2 and that f ∈ V[[τ ]]. (V[[ · ]] was introduced in §2.7.) We say that f is a basic
feasible functional (or BFF) when there is a closed, type-τ PCF-expression ef and a second-
order polynomial function qf such that (i) V[[ef ]] = f and (ii) for all vi ∈ V[[σ1]], . . . , vk ∈
V[[σk]], CEK-time(ef , v1, . . . , vk) ≤ qf (|v1|, . . . , |vk|), where CEK-time is introduced in
Definition 48 of §11.2. For level-1 τ , this gives us the usual notion of type-1 polynomial-time
computability. The original definitions and characterizations of the type-2 BFFs [Meh74,
CU93, CK90] were all in terms of programming formalisms. The definition here is based on
Kapron and Cook’s machine-based characterization of the type-2 BFFs [KC96].

3. The BCL formalism

The programming formalisms of this paper are built on work of Bellantoni and Cook
[BC92] and Leivant [Lei95]. Bellantoni and Cook’s paper takes a programming formalism
for the primitive recursive functions, imposes certain intensionally-motivated constraints,
and obtains a formalism for the polynomial-time computable functions. To explain these
constraints and how they rein in computational strength, we sketch both BCL, a simple
type-1 programming formalism based on Bellantoni and Cook’s and Leivant’s ideas, and
BCL’s properties.9 This sketch provides an initial framework for this paper’s formalisms.

BCL has the same syntax as PCF (§2.7) with three changes: (i) fix is replaced with prn

(for primitive recursion on notation [Cob65]) that has the reduction rule given by (1.1),
(ii) the only variables allowed are those of base type, and (iii) the type system is altered
as described below. If we were to stay with the simple types over N and the PCF-typing
rules (Figure 2 and with prn: (N → N → N) → N → N), the resulting formalism would
compute exactly the primitive recursive functions. Instead we modify the types and typing
as follows. N is replaced with two base types, Nnorm (normal values) and Nsafe (safe values),
subtype ordered Nnorm ≤: Nsafe. The BCL types are just the type-level 0 and 1 simple types

8Since, for example, for f :T → T, f ≡η λx f(x) and depth(λx f(x)) = 1.
9
BCL is much closer to Leivant’s formalism [Lei95], which uses a ramified type system, than Bellantoni

and Cook’s, which does not use a conventional type system.
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E : : = . . . | (prn E) T : : = the level 0 and 1 types over Nnorm and Nsafe

Figure 6: BCL syntax

Zero-I:
Γ ⊢ ǫ:Nnorm

Subsumption:
Γ ⊢ e: σ

Γ ⊢ e: τ
(σ ≤: τ)

d-I ′:
Γ ⊢ e:Nnorm

Γ ⊢ (d e): Nnorm

prn-I:
Γ ⊢ e:Nnorm → Nsafe → Nsafe

Γ ⊢ (prn e) : Nnorm → Nsafe

Figure 7: Additional BCL typing rules

cat: Nnorm → Nsafe → Nsafe = // cat w x = w⊕ x. So, |cat w x| = |w| + |x|.
λw, x let f : Nnorm → Nsafe → Nsafe =

λy, z if t0(y) then c0(z) else if t1(y) then c1(z) else x

in prn f w

dup: Nnorm → Nnorm → Nsafe = // dup w x =

|w| many︷ ︸︸ ︷
x⊕ · · · ⊕x. So, |dup w x| = |w| · |x|.

λw, x let g:Nnorm → Nsafe → Nsafe = λy, z if y 6= ǫ then (cat x z ) else ǫ

in prn g w

Figure 8: Two sample BCL programs

over Nnorm and Nsafe. Both base types have intended interpretation N. The point of the
two base types is to separate the roles of N-values: a Nnorm-value can be used to drive a
recursion, but cannot be the result of a recursion, whereas a Nsafe-value can be the result
of a recursion, but cannot be used to drive a recursion. These intentions are enforced by
the BCL typing rules, consisting of: ID-I, →-I, and →-E from Figure 2; Const-I, c0-I, c1-I,
d-I, t0-I, t1-I, down-I, and If-I also from Figure 2 where each N is changed to Nsafe; and
the rules in Figure 7. (Zero-I and d-I ′ are needed to make the prn reduction rules type-
correct.) Figure 8 contains two sample BCL programs. For the sake of readability, we use
the let construct as syntactic sugar.10

Propositions 1, 2, and 3 state the key computational limitations and capabilities of
BCL. In the following ~x:Nnorm abbreviates x1: Nnorm, . . . , xm:Nnorm and ~y: Nsafe abbreviates
y1:Nsafe, . . . , yn:Nsafe. Recall from §2.13 that our standard notion of time complexity is the
time cost model of the CEK-machine (Definition 48(a)).

Proposition 1 (BCL polynomial size-boundedness). Suppose ~x: Nnorm, ~y: Nsafe ⊢ e:b.
(a) If b = Nnorm, then for all values of ~x, ~y, |e| ≤

∨m
i=1 |xi|.

(b) If b = Nsafe, then there is a polynomial p over over |x1|, . . . , |xm| such that, for all
values of ~x, ~y, |e| ≤ p +

∨n
j=1 |yj |.

Proposition 1’s proof is an induction on e’s syntactic structure, where the prn-case is
the crux of the argument. Here is a sketch of a mild simplification of that case. (This
sketch is the model for several key subsequent arguments.) Suppose e = prn e′ x, where
x0: Nnorm, ~x:Nnorm, y0:Nsafe, ~y:Nsafe ⊢ (e′ x0 y0): Nsafe and x ∈ {x1, . . . , xm }. Also suppose

10Where (let x = e′ in e)
def
≡ e[x : = e′]. This permits naming defined functions.
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that, for all values of x0, . . . , xm, y0, . . . , yn, |e′ x0 y0| ≤ p′(|x0|) +
∨n

j=0 |yj | where p′ is a

polynomial over |x0| (explicitly) and |x1|, . . . , |xm| (implicitly). Fix the values of x1, . . . , yn,
where in particular x has the value a1 . . . ak for a1, . . . ,ak ∈ {0,1 }. We determine bounds
for |prn e′ ǫ|, |prn e′ ak|, |prn e′ ak−1ak|, . . . , |prn e′ a1 . . . ak| in turn. First, |prn e′ ǫ| =
|e′ ǫ ǫ| ≤ p′(0) +

∨n
j=1 |yj|. Next,

|prn e′ ak| = |e′ ak (prn e′ ǫ)| ≤ p′(1) + |prn e′ ǫ| ∨
∨n

j=1 |yj| ≤

p′(1) + (p′(0) +
∨n

j=1 |yj|) ∨
∨n

j=1 |yj| ≤ p′(0) + p′(1) +
∨n

j=1 |yj|.

Continuing, we end up with |prn e′ x| ≤ p′(0) + p′(1) + · · · + p′(k) +
∨n

j=1 |yj| ≤ (|x| + 1) ∗

p′(|x|) +
∨n

j=1 |yj|. So, p = (|x| + 1) ∗ p′(|x|) suffices for this case.

Proposition 2 (BCL polynomial time-boundedness). Given ~x:Nnorm, ~y:Nsafe ⊢ e: (b1, . . . ,

bℓ) → b, there is a polynomial q over over |w1|, . . . , |wℓ|, |x1|, . . . , |xm|, |y1|, . . . , |yn| such
that, for all values of w1, . . . , yn, q bounds the CEK-cost of evaluating (e w1 . . . wℓ).

Proposition 2’s proof rests on three observations: (i) evaluating (prn e e′) takes |e′|-
many (top-level) recursions, (ii) by the first observation and the details of CEK costs, the
time-cost of a CEK evaluation of a BCL expression can be bounded by a polynomial over
the lengths of base type values involved, and (iii) Proposition 1 provides polynomial bounds
on all these lengths. Proposition 2 thus follows through a straightforward induction on the
syntactic structure of e. Proposition 3’s proof is mostly an exercise in programming.

Proposition 3 (BCL polynomial-time completeness). For each polynomial-time computable
f ∈ ((Nℓ) → N), there is an ⊢ ef : (Nℓ

norm) → Nsafe such that V[[ef ]] = f .

BCL is ≤:-predicative in the sense that no information about a Nsafe-value can ever
make its way into a Nnorm-value. For example:

Proposition 4. Suppose ⊢ e: (Nnorm,Nsafe) → Nnorm. Then e ≡αβ λw, x e′ with e′ = ǫ or

else e′ = (d(k) w) for some k ≥ 0, where (d(0) w) = w and (d(k+1) w) = (d (d(k) w)).

BCL’s ≤:-predicativity plays a key role in proving the polynomial size-bounds of Propo-
sition 1, but plays no direct (helpful) role in the other proofs.

4. Building a better BCL

Our definition of ATR in the next section can be thought of as building an extension of
BCL that: (i) computes the type-2 BFFs, (ii) replaces prn with something closer to fix, and
(iii) admits reasonably direct complexity theoretic analyses. This section motivates some
of the differences between BCL and ATR.

Types and depth. We want to extend BCL’s type system to allow definitions of functions
as such F0 = λf ∈ N → N, x ∈ N f(f(x)), a basic feasible functional. A key question then
is how to assign types to functional parameters such as f above. Under f :Nnorm → Nsafe,
F0 fails to have a well-typed definition. Under any of f :Nnorm → Nnorm, f :Nsafe → Nsafe,
and f :Nsafe → Nnorm, F0 has a well-typed definition, but then so does F1 = λf ∈ N →
N, x ∈ N f (|x|)(x) which is not basic feasible. Thus some nontrivial modification of the
BCL types seems necessary for any extension to type-level 2.
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down-I ′:
Γ0 ⊢ e0: Nsafe Γ1 ⊢ e1: Nnorm

Γ0 ∪ Γ1 ⊢ (down e0 e1): Nnorm

If-I ′:
Γ0 ⊢ e0: Nsafe Γ1 ⊢ e1: Nnorm Γ2 ⊢ e2: Nnorm

Γ0 ∪ Γ1 ∪ Γ2 ⊢ (if e0 then e1 else e2): Nnorm

Figure 9: Additional rules for BCL′

We sketch a näıve extension that uses of an informal notion of the depth of an expression
(based on second-order polynomial depth, see §2.12). Let the näıve depth of an expression
(in normal form) be the depth of nesting of applications of type-level 1 variables. For
example, given f :N → N → N, then f(c0(f(c0(x), y)), c1(d(y))) has näıve depth 2. We
can regard the values of x and y as (depth-0) inputs and the values of c0(x) and d(y) as
the results of polynomial-time computations over those inputs. Taking the type-level 1
variables as representing oracles, the value of f(c0(x), y) can then be regarded as a depth-1
input (that is an input that is in response to a depth-0 query); hence, c0(f(c0(x), y)) is
the result of a polynomial-time computation over a depth-1 input. Similarly, the value of
f(c0(f(c0(x), y)), c1(d(y))) can be regarded as a depth-2 input. Thus, our näıve extension
amounts to having, for each d ∈ ω, depth-d versions of both Nnorm and Nsafe and treating all
arrow types as “depth polymorphic” so, for instance, the type of f as above indicates that
f takes depth-d safe values to depth-(d + 1) normal values, for each d ∈ ω. This permits a
well-typed definition for F0, but not for F1.

The näıvete of the above is shown by another example. Let

F2 = λf ∈ N → N, y ∈ N [ g(|y|)(y), where g = λw ∈ N (f(w) mod (y + 1)) ]. (4.1)

F2 is basic feasible, |F2(f, y)| ≤ |y|, but it is reasonable to think of F2(f, y) having un-
bounded näıve depth.

Our solution to this problem is to use a more relaxed version of ≤:-predictivity than
that of BCL. To explain this let us consider BCL′, which is the result of adding rules of
Figure 9 to BCL. (The rewrite rule for down is given in Figure 3.) These typing rules allow
information about Nsafe values to flow into Nnorm values, but only in very controlled ways.
In down-I ′, the controlling condition is that the length of this Nsafe information is bounded
by the length of some prior Nnorm value. In If-I ′, essentially only one bit of information
about a Nsafe value is allowed to influence the Nnorm value of the expression. Because of
these controlling conditions, the proofs of Propositions 1, 2, and 3 go through for BCL′ with
only minor changes, but in place of Proposition 4 we have:

Proposition 5. {V[[e]] ⊢BCL
′ e: Nnorm → Nsafe → Nnorm } = the set of polynomial-time

computable f ∈ N → N → N such that |f(x, y)| ≤ |x| for all x and y.

Each BCL′ type γ has a quantitative meaning in the sense that every element of {V[[e]]
Γ ⊢BCL

′ e: γ } has a polynomial size-bound of a particular form. ATR has rules analogous
to If-I ′ and down-I ′ and, consequently, functions such as F2 have well-typed definitions.
Moreover, each ATR type γ has a quantitative meaning in the sense that {V[[e]] ⊢ATR

e: γ } = the set of all ATR-computable functions having second-order polynomial size-bounds
of a form dictated by γ. In particular, for each γ, a dγ ∈ ω can be read off such that all
the bounding polynomials for type-γ objects can be of depth ≤ dγ . This is the (non-näıve)
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connection of ATR’s type-system to the notion of depth. The above glosses over the issue
of the “depth polymorphic” higher types which are discussed in §5.

Truncated fixed points. For PCF, fix is thought as expressing general recursion. It
would be ever so convenient if one could replace fix with some higher-type polynomial-time
construct and obtain “the” feasible version of PCF in which all (and only) the polynomial-
time recursion schemes are expressible. However, because of some basic limitations of
subrecursive programming formalisms [Mar72, Roy87], it is unlikely that there is any finite
collection of constructs through which one can express all and only such recursion schemes.

Our goals are thus more modest. We make use of the programming construct crec,
for clocked recursion. The crec construct is a descendant of Cobham’s [Cob65] bounded
recursion on notation and not a true fixed-point constructor. The reduction rule for crec is:

crec a (λrf e) −→ λ~x
(
if |a| ≤ |x1| then

(
e′ ~x

)
else ǫ

)
(4.2)

with e′ = e[f : =
(
crec (0⊕ a) (λrf e)

)
],

where a is a constant and ~x = x1, . . . , xk is a sequence of variables. Roughly, |a| acts as the
tally of the number of recursions thus far and 0⊕ a is the result of a tick of the clock. The
value of x1 is the program’s estimate of the total number of recursions it needs to do its job.
Typing constraints will make sure that each crec-recursion terminates after polynomially-
many steps. Without these constraints, crec is essentially equivalent to fix. Clocking the
fixed point process is a strong restriction. However, results on clocked programming systems
([RC94, Chapter 4]) suggest that clocking, whether explicit or implicit, is needed to produce
programs for which one can determine explicit run-time bounds.

Along with clocking, we impose two other restrictions on recursions.

One use. In any expression of the form (crec a (λrf e)), we require that f has at most
one use in e. Operationally this means that, in any possible evaluation of e, at most one
application of f takes place. One consequence of this restriction is that no free occurrence
of f is allowed within any inner crec expression. (Even if f occurs but once in an inner crec,
the presumption is that f may be used many times.) Affine typing constraints enforce this
one-use restriction. Note that prn is a one-use form of recursion.

The motivation for the one-use restriction stems from the recurrence equations that
come out of time-complexity analyses of recursions. Under the one-use restriction, bounds
on the cost of m steps of a crec recursion are provided by recurrences of the form T (m,~n) ≤
T (m − 1, ~n) + q(~n), where ~n represents the other parameters and q is a (second-order)
polynomial. Such T ’s grow polynomially in m. Thus, a polynomial bound on the depth of
a crec recursion implies a polynomial bound on the recursion’s total cost. If, say, two uses
were allowed, the recurrences would be of the form T (m,~n) ≤ 2 · T (m − 1, ~n) + q(~n) and
such T ’s can grow exponentially in m.

Tail recursions. We restrict crec terms to expressing just tail recursions. Terminology:
The tail terms of an expression e consist of: (i) e itself, (ii) e′, when (λx e′) is a tail term,
and (iii) e1 and e2, when (if e0 then e1 else e2) is a tail term. A tail call in e is a tail term
of the form (f e1 . . . ek). Informally, a tail recursive definition is a function definition in
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E : : = . . . | (crec K (λrX E)) L : : = (✷⋄)∗ | ⋄(✷⋄)∗

T0 : : = NL T : : = the level 0, 1, and 2 simple types over T0

Figure 10: ATR syntax

which every recursive call is a tail call. Formally, we say that (crec a (λrf e)) expresses a
tail recursion when each occurrence of f in e is as the head of a tail call in e.11

Simplicity is the foremost motivation for the restriction to tail recursions as they are
easy to work with from both programming and complexity-theoretic standpoints. Addition-
ally, tail recursion is a well-studied and widely-used universal form of recursion: there are
continuation passing style translations of many program constructs into pure tail-recursive
programs. (Reynolds [Rey93] provides a nice historical introduction.) Understanding the
complexity theoretic properties of tail-recursive programs should lead to an understanding
of a much more general set of programs.

5. Affine tiered recursion

Syntax. ATR (for affine tiered recursion) has the same syntax as PCF with three changes:
(i) fix is replaced with crec as discussed in the previous section, (ii) the only variables allowed
are those of type-levels 0 and 1, and (iii) the type system is altered as described below.

Types. The ATR types consist of labeled base types (T0 from Figure 10) and the level 1
and 2 simple types over these base types. We first consider labels (L from Figure 10).

Labels. Labels are strings of alternating ⋄’s and ✷’s in which the rightmost symbol of a
nonempty label is always ⋄. A label ak . . . a0 can be thought of as describing program-
oracle conversations: each symbol ai represents an action (✷ = an oracle action, ⋄ = a
program action) with the ordering in time being a0 through ak. Terminology: ε = the
empty label, ℓ ≤ ℓ′ means label ℓ is a suffix of label ℓ′, and ℓ∨ ℓ′ is the ≤-maximum of ℓ and
ℓ′. Also let succ(ℓ) = the successor of ℓ in the ≤-ordering, depth(ℓ) = the number of ✷’s in
ℓ, and, for each d ∈ ω, ✷d = (✷⋄)d and ⋄d = ⋄(✷⋄)d. Note: depth(✷d) = depth(⋄d) = d.

Labeled base types. The ATR base types are all of the form Nℓ, where ℓ is a label. These base
types are subtype-ordered by: Nℓ ≤: Nℓ′ ⇐⇒ ℓ ≤ ℓ′. We thus have the linear ordering:
Nε ≤: N⋄ ≤: N✷⋄ ≤: N⋄✷⋄ ≤: · · · , or equivalently, N✷0

≤: N⋄0
≤: N✷1

≤: N⋄1
≤: · · · . Define

depth(Nℓ) = depth(ℓ). N✷d
and N⋄d

are the depth-d analogues of the BCL′-types Nnorm and
Nsafe, respectively. These types can be interpreted as follows.

• A Nε-value is an ordinary base-type input or else is bounded by some prior (i.e.,
previously computed) Nε-value.

• A N⋄d
-value is the result of a (type-2) polynomial-time computation over N✷d

-values
or else is bounded by some prior N⋄d

-value.

11Because of the one-use restriction, this simple definition of tail recursion suffices for this paper. For
details on the more general notion see [Rey98, FWH01].
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• A N✷d+1
-value is the answer to a query made to a type-1 input on N⋄d

-values or else
is bounded by some prior N✷d+1

-value.

The N✷d
types are called oracular and the N⋄d

’s are called computational.

The ATR arrow types. These are just the level 1 and 2 simple types over the Nℓ’s. The sub-
type relation ≤: is extended to these arrow types as in (2.1). Terminology: Let shape(σ) =
the simple type over N resulting from erasing all the labels. The tail of a type is given by:

tail(Nℓ) = Nℓ. tail(σ → τ) = tail(τ).

Let depth(σ) = depth(tail(σ)). When tail(σ) is oracular, we also call σ oracular and let
side(σ) = ✷. When tail(σ) is computational, we call σ computational and let side(σ) = ⋄.

Definition 6 (Predicative, impredicative, flat, and strict types). An ATR type γ is pred-
icative when γ is a base type or when γ = (σ1, . . . , σk) → Nℓ and tail(σi) ≤: Nℓ for each i.
A type is impredicative when it fails to be predicative. An ATR type (σ1, . . . , σk) → Nℓ is
flat when tail(σi) = Nℓ for some i. A type is strict when it fails to be flat.

Examples: Nε → N⋄ is predicative whereas N⋄ → Nε is impredicative, and both are
strict. Both N⋄ → N⋄ and N⋄ → N✷⋄ → N⋄ are flat, but the first is predicative and the
second impredicative. Recursive definitions tend to involve flat types.

Example 23 below illustrates that values of both impredicative and flat types require
special restrictions in any sensible semantics of ATR. Our semantic restrictions for these
types are made precise in §7 and §9 below. Here we give a quick sketch of these restrictions
as they figure in definition of ∝, the shifts-to relation, used in the typing rules. For each
impredicative type (~σ) → Nℓ: if ⊢ f : (~σ) → Nℓ, then the value of |f(~x)| is essentially
independent of the values of the |xi|’s with tail(σi) : Nℓ. For each flat type (~σ) → Nℓ (that
for simplicity here we further restrict to be a level-1 computational type): if ⊢ f : (~σ) → Nℓ,
then |f(~x)| ≤ p +

∨
{ |xi| tail(σi) = Nℓ }, where p is a second-order polynomial over

elements of { |xi| tail(σi) �: Nℓ }. (Compare this to the bound of Proposition 1(b).)

Typing rules. The ATR-typing rules are given in Figure 11. The rules Zero-I, Const-
I, Int-Id-I, Subsumption, op-I, →-I, and →-E are essentially lifts from BCL (with one
subtlety regarding →-E discussed below). The if-I and down-I rules were motivated in §4.
The remaining three rules Aff-Id-I and crec-I (that relate to recursions and the split type
contexts) and Shift (that coerces types) require some discussion.

Affinely restricted variables and crec. Each ATR type judgment is of the form Γ;∆ ⊢ e: γ
where each type context is separated into two parts: a intuitionistic zone (Γ) and an affine
zone (∆). Γ and ∆ are simply finite maps (with disjoint preimages) from variables to ATR-
types. By convention, “ ” denotes an empty zone. Also by convention we shall restrict our
attention to ATR type judgments in which each affine zone consists of at most one type
assignment. (See Scholium 7(a).) In reading the rules of Figure 11, think of a variable in an
affine zone as destined to be the recursor variable in some crec expression. An intuitionistic
zone can be thought of as assigning types to each of the mundane variables.

Terminology: A variable f is said to be affinely restricted in Γ;∆ ⊢ e: σ if and only if
f is assigned a type by ∆ or is λr-abstracted over in e.
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Zero-I:
Γ; ∆ ⊢ ǫ: Nε

Const-I:
Γ; ∆ ⊢ k: N⋄

Int-Id-I:
Γ, x: σ; ∆ ⊢ x: σ

Aff-Id-I:
Γ; x: γ ⊢ x: γ

Shift:
Γ; ∆ ⊢ e: σ

Γ; ∆ ⊢ e: τ
(σ ∝ τ) Subsumption:

Γ; ∆ ⊢ e: σ

Γ; ∆ ⊢ e: τ
(σ ≤: τ)

op-I:
Γ; ∆ ⊢ e: N⋄d

Γ; ∆ ⊢ (op e): N⋄d

down-I:
Γ; ∆0 ⊢ e0: Nℓ0 Γ; ∆1 ⊢ e1: Nℓ1

Γ; ∆0, ∆1 ⊢ (down e0 e1): Nℓ1

→-I:
Γ, x: σ; ∆ ⊢ e: τ

Γ; ∆ ⊢ (λx e): σ → τ
→-e:

Γ; ∆ ⊢ e0: σ → τ Γ; ⊢ e1: σ

Γ; ∆ ⊢ (e0 e1): τ

if-I:
Γ; ⊢ e0: Nℓ Γ; ∆1 ⊢ e1: Nℓ′ Γ; ∆2 ⊢ e2:Nℓ′

Γ; ∆1 ∪ ∆2 ⊢ (if e0 then e1 else e2): Nℓ′

crec–I:
⊢ K:N⋄ Γ; f : γ ⊢ e: γ

Γ; ⊢ (crec K (λrf e)) : γ

(
γ ∈ R and TailPos(f, e)

)

where:

R
def
= { (b1,b2, . . . ,bk) → b b1 and each bi ≤: b1 is oracular} .

TailPos(f, e)
def
= [ Each occurrence of f in e is as the head of a tail call ] .

Figure 11: ATR typing rules

The use of split type contexts is adapted from Barber and Plotkin’s DILL [Bar96,
BP97],12 a linear typing scheme that permits a direct description of →, the intuitionistic
arrow of the conventional simple types. The key rule borrowed from DILL is →-E which
forbids free occurrences of affinely restricted variables in the operand position of any in-
tuitionistic application. This precludes the typing of crec-expressions containing subterms
such as λrf (λg (g (g ǫ)) f) ≡β λrf (f (f ǫ)) where f is used multiple times.

The crec-I rule forbids any free occurrence of an affinely restricted variable; if such
a free occurrence was allowed, it could be used any number of times through the crec-
recursion. The crec-I rule requires that the recursor variable have a type γ ∈ R which
in turn becomes the type of the crec-expression. The restrictions in R’s definition (in
Figure 11) are a more elaborate version of the typing restrictions for prn-expressions in
BCL. When γ = (N✷d

,b2, . . . ,bk) → b ∈ R, it turns out that R’s restrictions limit a type-
γ crec-expression to at most p-many recursions, where p is some fixed, depth-d second-order
polynomial (Theorem 43). Excluding N⋄, . . . ,N⋄d−1

in γ forbids depth 0, . . . , d−1 analogues
of Nsafe-parameters from figuring in the recursion, and consequently, the recursion cannot
accumulate information that could change the value of p unboundedly.

Scholium 7.

(a) Judgments with with multiple type assignments in their affine zone are derivable.
However, such a judgment is a dead end in the sense that crec-I, the only means to eliminate
an affine-zone variable, requires a singleton affine zone.

12The discussion of DILL in [O’H03] is quite helpful.
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(b) ATR has no explicit ⊸-types. Implicitly, a (λrf e) subexpression is of type γ ⊸ γ

and crec-I plays roles of both ⊸-I and ⊸-E. ATR’s very restricted use of affinity permits
this ⊸-bypass.

(c) As mentioned in §4, the restriction to tail recursions in crec-I is in the interest of
simplicity. In a follow-up to the present paper, we show how to relax this restriction to allow
a broader range of affine recursions in ATR programs [DR07]. Dealing with this broader
range of recursions turns out to require nontrivial extensions of the techniques of §§12–15
below.

Shift. The Shift rule covariantly coerces the type of a term to be deeper. Before stating
the definition of the shifts-to relation (∝), we first consider the simple case of shifting
types of shape N → N. The core idea is simply: (Nℓ1 → Nℓ0) ∝ (Nℓ′

1
→ Nℓ′

0
) when

depth(Nℓ′
0
)− depth(Nℓ0) = depth(Nℓ′

1
)− depth(Nℓ1) ≥ 0. The motivation for this is that if p

and q are second-order polynomials of depths dp and dq, respectively, and x is a base-type
variable appearing in p that is treated as representing a depth-dx value (with dx ≤ dq), then
p[x : = q] is, in the worst case, of depth dp+(dq−dx). The full story for shifting level-1 types
has to account of arbitrary arities, the sides of the component types, and impredicative and
flat types, but even so it is still not too involved. Shifting level-2 types involves a new set
of issues that we discuss after dealing with the level-1 case. Recall that max(∅) = 0.

Definition 8 (∝, the shifts-to relation).
(a) We inductively define ∝ by: N✷d

∝ N✷d′
and N⋄d

∝ N⋄d′
when d ≤ d′; and (σ1 →

· · · → σk → Nℓ0) ∝ (σ′
1 → · · · → σ′

k → Nℓ′
0
) when

(i) Nℓ0 ∝ Nℓ′
0
, σ1 ∝ σ′

1, . . . , σk ∝ σ′
k,

(ii) tail(σi) = Nℓ0 implies tail(σ′
i) = Nℓ′

0
for i = 1, . . . , k, and

(iii) depth(Nℓ′
0
) − depth(Nℓ0) ≥ D((~σ) → Nℓ0 , ~σ

′).

(b) D((~σ) → Nℓ0 , ~σ
′)

def
= max{ depth(σ′

i)− depth(σi) σi ≤: Nℓ0 }, for σ1 ∝ σ′
1, . . . , σk ∝

σ′
k where each σi and σ′

i is a base type. (See Definition 9 for the general definition of D.)

For base types: Nℓ ∝ Nℓ′ if and only if depth(Nℓ) ≤ depth(Nℓ′) and side(Nℓ) = side(Nℓ′).
It follows from this and condition (i) that no type (or component of a type) can change
sides as a result of a shift.

For level-1 types: Condition (i) says that the component types on the right are either
the same as or else deeper versions of the corresponding types on the left. Condition (ii)
preserves flatness (which is critical in level-2 shifting). Condition (iii) is just the core idea
stated above. Note that the max in Definition 8(b) includes only types ≤: Nℓ0 . This is
because as remarked above, if σi : Nℓ0 , then the i-th argument has essentially no effect on
the size of the Nℓ′

0
-result.

Example: Consider the problem: Γ; ⊢ f(f(x)): ?, where Γ = f :N⋄ → N✷⋄, x:N⋄.
Using →-E and Subsumption, we derive Γ; ⊢ f(x):N⋄✷⋄. Using Shift we derive Γ; ⊢
f :N⋄✷⋄ → N✷⋄✷⋄. Using →-E again we obtain Γ; ⊢ f(f(x)):N✷⋄✷⋄ as desired.

Now let us consider shifting level-2 types. Suppose we want to shift (N✷0
→ N✷1

) → N✷3

to some type of the form (N✷0
→ N✷2

) → N✷d
. What should the value of d be? Suppose

f :N✷0
→ N✷1

. Without using subsumption, building a term of type N✷3
from f requires

nesting applications of f (using type-1 shifts). The longest chain of such depth-increasing
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undo((Nℓ1 , . . . , Nℓk
) → Nℓ0 , Nℓ)

def
=





undefined, if (Nℓ1 , . . . , Nℓk
) → Nℓ0 is flat or ℓ0 > ℓ;

Nℓ′ ⊕ ℓ′′ , otherwise, where ℓ′ = max{ ℓi ℓi < ℓ0 } and ℓ′′ is the

suffix of ℓ following the leftmost occurrence of ℓ0 in ℓ.

Figure 12: The definition of undo

applications is 3.13 When the argument type N✷0
→ N✷1

is shifted to N✷0
→ N✷2

, each
application of this argument now ups the depth by an additional +1. So, the largest depth
that can result from the change is d = 3 + 3 · 1 = 6. When shifting (~σ) → Nℓ to some
(~σ′) → Nℓ′ with each σi and σ′

i a level-1 type, to determine ℓ′ we must: (a) determine all
the ways a Nℓ value could be built by a chain of depth-increasing applications of arguments
of the types ~σ, (b) for each of these ways, figure the increase in the depth of the Nℓ-value
when each σi-argument is replaced by its σ′

i version, and (c) compute the maximum of
these increases. To help in this, we introduce undo in Figure 12. Example: For d > 0,
undo(N✷0

→ N✷1
,N✷d

) = undo(N✷0
→ N✷1

,N⋄d
) = N✷d−1

. To compute undo(τ,Nℓ), one
determines if a type-τ argument could be used in a chain of depth-increasing applications
that build a Nℓ value, and if so, one figures (in terms of ℓ) where a leftmost application
of such an argument could occur, and returns the ≤:-largest type of the arguments of
this application. (It is straightforward to prove that undo behaves as claimed.) N.B. If
undo(γ,Nℓ) is defined, then undo(γ,Nℓ) �: Nℓ. We now define:

Definition 9 (D for level-2 types). Suppose σ1 ∝ σ′
1, . . . , σk ∝ σ′

k.

(a) D((~σ) → Nℓ, ~σ
′)

def
= max({ depth(σ′

i) − depth(σi) + D
(
(~σ) → undo(σi,Nℓ), ~σ

′
)

undo(σi,Nℓ) is defined }), when each σi and σ′
i is level-1.

(b) D((~σ) → Nℓ, ~σ
′)

def
= D((~σ)0 → Nℓ, (~σ

′)0)+D((~σ)1 → Nℓ, (~σ
′)1), when the σi’s contain

both level-0 and level-1 types and where (~γ)i denotes the subsequence of level-i types of ~γ.

The recursion of Definition 9(a) determines maximum increase in depth as outlined
above. Since applications amount to simultaneous substitutions, the contributions of the
level-0 and level-1 argument shifts are independent. Thus Definition 9(b)’s formula suffices
for the general case. Example: See the discussion below of fcat from Figure 13.

Now let us consider the reason behind condition (ii) in Definition 8(a). A term of a flat
type can be used an arbitrary number of times in constructing a value. Consequently, if
Definition 8(a) had allowed flat level-1 types (which increase the depth by 0) to be shifted
to strict level-1 types (which increase the depth by a positive amount), then it would have
been impossible to bound the depth increase of shifts involving arguments of flat types.

Some examples. Figure 13 contains five sample programs. These examples use the syn-
tactic sugar of the let and letrec constructs.14 The first three programs and their typing are

13Note that the outer two of these three applications must involve shifting the type of the argument.
Also, informally, in f(f(f(down(f(f(f(f(ǫ)))), ǫ)))) only the outer three applications of f count as a chain
of depth-increasing applications because of the drop in depth caused by the down. Formally, no shadowed
(Definition 29) application can be in a depth-increasing chain.

14Where (letrec f = e′ in e)
def
≡ e[f : = (crec 0 (λrf e′))] and let is as in footnote 10.
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reverse: Nε → N⋄ = // reverse a1 . . .ak = ak . . .a1.
λw letrec f : Nε → N⋄ → N⋄ → N⋄ =

λb, x, r if (t0 x) then f b (d x) (c0 r)
else if (t1 x) then f b (d x) (c1 r)
else r

in f w w ǫ

prn: (N⋄ → N⋄ → N⋄) → Nε → N⋄ = // See (1.1).
λe, y letrec f :Nε → N⋄ → N⋄ → N⋄ → N⋄ =

λb, x, z, r if (t0 x) then f b (d x) (c0 z) (e (c0 z) r)
else if (t1 x) then f b (d x) (c1 z) (e (c1 z) r)
else r

in f y (reverse y) ǫ (e ǫ ǫ)

cat :Nε → N⋄ → N⋄ = // cat w x = w⊕x as before.
λw, x let f : N⋄ → N⋄ → N⋄ =

λy, z if (t0 y) then (c0 z) else if (t1 y) then (c1 z) else x

in prn f w

fcat : (N⋄ → N✷⋄) → Nε → N⋄✷⋄ = // fcat f a1 . . .ak = (f a1 . . .ak)⊕
λf, x let e:N⋄ → N⋄✷⋄ → N⋄✷⋄ = // (f a2 . . .ak)⊕ · · · ⊕(f ak)⊕(f ǫ)

λy, r (cat (f y) r)
in prn e x

findk : (N⋄ → N✷⋄) → Nε → Nε = // See (5.1)
λf, x letrec h: N✷⋄ → Nε → Nε = // Invariant: k ≤ len(m) and |m| ≤ |f |(|x|)

λm, k if k == x then k

else if k == (len m) then k

else h (max (f (k + 1)) m) (down (k + 1) x)
in h (f ǫ) ǫ

Figure 13: ATR versions of reverse, prn, cat, fcat, and findk

all straightforward. For the typing of fcat, cat ’s type is shifted to N✷1
→ N⋄1

→ N⋄1
and

prn’s type is shifted to (N⋄0
→ N⋄1

→ N⋄1
) → N✷0

→ N⋄1
. The final program computes

λf ∈ (N → N), x ∈ N

{
(µk < x)

[
k = maxi≤k len(f(i))

]
, if such a k exists;

x, otherwise;
(5.1)

where len(z) = the dyadic representation of the length of z. This is a surprising and
subtle example of a BFF due to Kapron [Kap91] and was a key example that lead to the
Kapron-Cook Theorem [KC96]. In findk, we assume we have: a type-(N✷1

→ N✷1
→ N✷1

)
definition of (x, y) 7→ [1, if x = y; ǫ, otherwise], a type-(N✷1

→ N✷1
) definition of len, a

type-(N✷1
→ N✷1

→ N✷1
) definition of max, and a type-(N⋄0

→ N⋄0
) definition of x 7→ x+1.

Filling in these missing definitions is a straightforward exercise. A more challenging exercise
is to define (5.1) via prn’s.

Semantics. The CEK machine of (§11.1) provides an operational semantics of ATR. For a
denotational semantics we provisionally take the obvious modification of PCF’s V-semantics.
(V was introduced in §2.7.) Example 23 illustrates some inherent difficulties with V as a
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semantics for ATR. We shall circumvent these difficulties by some selective pruning of V in
§7 and §9.

Some syntactic properties.

Definition 10 (Use). If variable x fails to occur free in expression e, then uses(x, e) = 0;
otherwise uses(x, e) is given by:

uses(x, x) = 1. uses(x, (op e0)) = uses(x, (λy e0)) = uses(x, e0).

uses(x, (down e0 e1)) = uses(x, (e0 e1)) = uses(x, e0) + uses(x, e1).

uses(x, (if e0 then e1 else e2)) = uses(x, e0) + uses(x, e1) ∨ uses(x, e2).

uses(x, (crec K (λrf e0))) = † (≡ unbounded).

By convention, a < † and a + † = † + a = a ∨ † = † ∨ a = † for each a ∈ N.

Lemma 11 (One-use). If Γ; f : γ ⊢ e: γ or Γ; ⊢ (crec k (λrf e)): γ, then uses(f, e) ≤ 1.

Lemma 12 (Subject reduction). If Γ;∆ ⊢ e: γ and e βη-reduces to e′, then Γ;∆ ⊢ e′: γ.

Lemma 13 (Unique typing of subterms). If Γ;∆ ⊢ e:σ, then each occurrence of a subterm
in e has a uniquely assignable type that is consistent with Γ;∆ ⊢ e: σ.

Lemma 14. Γ;∆ ⊢ λ~x e: (~σ) → Nℓ if and only if Γ, ~x:~σ;∆ ⊢ e:Nℓ.

Lemma 11 follows from a straightforward structural induction on judgment derivations.
The proof of Lemma 12 is an adaptation the argument for [Pie02, Theorem 15.3.4]. The
proof of Lemma 13 is also an adaptation of standard arguments. We make frequent, implicit
use of Lemma 13 below. Lemma 14 is a reality check on the definition of ∝. The proof of
this is a completely standard induction on derivations except in the case where the last rule
used in deriving Γ;∆ ⊢ λ~x e: (~σ) → Nℓ is Shift. The argument for this case is an induction
on the structure of e, where application is the key subcase. There one simply checks that
our definition of ∝ correctly calculates upper bounds on the increase in depth.

ATR’s computational limitations and capabilities. The major goals of the rest of the
paper are to establish type-level 2 analogues of Propositions 1, 2, and 3 for ATR. We shall
first prove Theorem 43, a polynomial size-boundedness result for ATR. The groundwork for
this result will be the investigation of second-order size-bounds in the next few sections.

Remark 15 (Related work). As noted in §1, ramified types based on Bellantoni and Cook’s
ideas, higher types, and linear types are common features of work on implicit complexity (see
Hofmann’s survey [Hof00]), but most of that work has focused on guaranteeing complexity of
type-level 1 programs. The ATR type system is roughly a refinement of the type systems of
[IKR01, IKR02] which were constructed to help study higher-type complexity classes. Also,
the type systems of this paper and [IKR01, IKR02] were greatly influenced by Leivant’s
elegant ramified type systems [Lei95, Lei94]. We note that in [Lei03] Leivant proposes a
formalism that uses intersection types to address the same problems dealt with by our Shift
rule (e.g., how to type f(f(x))).
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Zero-I:
Σ ⊢ 0: Tε

Const-I:
Σ ⊢ k: T⋄

Subsumption:
Σ ⊢ p:σ

Σ ⊢ p: τ
(σ ≤: τ)

Shift:
Σ ⊢ p:σ

Σ ⊢ p: τ
(σ ∝ τ) ∨-I:

Σ0 ⊢ p0: Tℓ Σ1 ⊢ p1: Tℓ

Σ0 ∪ Σ1 ⊢ (∨ p0 p1): Tℓ

+-I:
Σ1 ⊢ p1: T⋄d

Σ2 ⊢ p2: T⋄d

Σ1 ∪ Σ2 ⊢ (+ p1 p2): T⋄d

∗-I:
Σ1 ⊢ p1: T⋄d

Σ2 ⊢ p2: T⋄d

Σ1 ∪ Σ2 ⊢ (∗ p1 p2): T⋄d

Figure 14: Additional typing rules for the second-order polynomials under the size types

Remark 16 (Pragmatic predicativity). Many of the formalisms based on Bellantoni and
Cook’s ideas are predicative in the sense of Proposition 4—no information about “safe
values” can influence “normal values.” Two principles followed in this paper are: (i) The
ramification of data (e.g., the normal/safe distinction) and the complexity it adds to the
type system is something we will put up with to control the size of values; (ii) however, if
there is a good reason to cut through the ramification while still controlling sizes, then we
will happily do so. As a consequence of (i), our type system for second-order polynomial
size-bounds is strictly predicative. As a consequence of (ii), ATR’s type system includes the
if-I and down-I rules and impredicative types to handle examples like F2 of (4.1).

There is a price for the down construct—its use tends to complicate correctness argu-
ments for algorithms. For example, consider the subexpression (down (k + 1) x) in the
ATR-program for findk in Figure 13. The purpose of the down is to guarantee to the type
system that the subexpression’s value is small (e.g., ≤ |x|). The correctness of the algo-
rithm depends critically on the easy observation that, in any run of the program, the value
of the subexpression will always be k + 1. This is common in expressing algorithms in
ATR—one knows that a value is small, but an application of down is needed to convince the
type-system of this. As a result the correctness proof needs a lemma showing that original
value is indeed small and the down expression does not change the value. Thus our use of
down and (mild) impredicativity is a compromise between the simplicity, but restrictiveness,
of predicative systems and the richer, but more complex, type systems that permit finer
reasoning about size.15

6. Size bounds

6.1. The second-order polynomials under the size types. To work with size bounds,
we introduce the size types and a typing of second-order polynomials under these types.
The size types parallel the intuitionistic part of ATR’s type system.

Definition 17.

(a) For each ATR type σ, let |σ| = σ[N : = T]. (E.g., |Nǫ → N⋄| = Tǫ → T⋄.) These
|σ|’s are the size types. All the ATR-types terminology and operations (e.g., shape, tail, ≤:,
∝, etc.) are defined analogously for size types.

15Hofmann’s work on non-size-increasing functions [Hof03, Hof02] provides a nice example of a type
system for fine control of sizes, but that system is not helpful in dealing with the F2 or findk examples.
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(b) The typing rules for the second-order polynomials under the size types consist of
Id-I, →-I, and →-E from Figure 2 and the rules of Figure 14.

Recall the L-semantics for second-order polynomials introduced in §2.12. We provision-
ally take L[[σ]] = L[[shape(σ)]] and define L[[Σ ⊢ p:σ]] as before. Later, a pruned version of
the L-semantics will end up as our intended semantics for the second-order polynomials to
parallel our pruning of the V-semantics for ATR.

The following definition formalizes what it means for an ATR expression to be polyno-
mially size-bounded. N.B. This definition heavily overloads the “length of” notation, |·|. In
particular, if x is an ATR variable, we treat |x| as a size-expression variable. Definition 18(c)
is based on a similar notion from [IKR02].

Definition 18. Suppose Γ;∆ ⊢ e: σ is an ATR-type judgment.

(a) |Γ;∆|
def
= { |x| 7→ |σ| (Γ;∆)(x) = σ }.

(b) For each ρ ∈ V[[Γ;∆]], define |ρ| ∈ L[[|Γ;∆|]] by |ρ|(|x|) = |ρ(x)|.16

(c) We say that the second-order polynomial p bounds the size of e (or, p is a size-bound
for e) with respect to Γ;∆ when |Γ;∆| ⊢ p: |σ| and |V[[e]] ρ| ≤|σ| L[[p]] |ρ| for all ρ ∈ V[[Γ;∆]].
(The “with respect to” clause is dropped when it is clear from context.)

Lemmas 19, 21, and 22 below note a few basic properties of the second-order polyno-
mials under the size types. Lemma 21 connects the depth of a second-order polynomial p

and the depths of the types assignable to p. Lemmas 19 and 20 follow by proofs similar to
those for Lemmas 12 and 14. Lemma 21’s proof is a straightforward induction on judgment
derivations, and Lemma 22 is just an observation. Terminology: Inductively define 0γ by:
0Tℓ

= 0 and 0σ→τ = λx 0τ . By abuse of notation, we often write 0γ for L[[⊢ 0γ : γ]]{}.

Lemma 19 (Subject Reduction). Suppose Σ ⊢ p:σ and p βη-reduces to p′. Then Σ ⊢ p′:σ.

Lemma 20. Σ ⊢ λ~x p: (~σ) → Tℓ if and only if Σ, ~x:~σ ⊢ p:Tℓ.

Lemma 21 (Label Soundness). Suppose Σ ⊢ p:σ has a derivation in which the only types
assigned by contexts are from {Nε } ∪ { (Nk

⋄) → N✷⋄ k > 0 }. Then depth(p) ≤ depth(σ).

Lemma 22. 0γ is the least element of L[[γ]] under the pointwise ordering.

6.2. Semantic troubles. The näıve (and false! ) ATR-analogue of Proposition 1 is:

For each Γ;∆ ⊢ e: σ, there is a pe that bounds the size of e with respect to Γ;∆.

Example 23 illustrates the problems with this. N.B. If the definition of BCL had allowed
unrestricted free variables of type-level 1, the problems of Example 23 would have occurred
in that setting too.

Example 23. Let e1 and e2 be as given in Figure 15, let prn be as in Figure 13, and let
dup be an ATR-version of the definition in Figure 8.

(a) Suppose Γ1 = g1:N⋄ → Nε and ρ1 = { g1 7→ λz ∈ N z }. Then |V[[e1]] ρ1| =
λn ∈ ω n2n

. Note |ρ1(g1)| = λn ∈ ω n is a polynomial function. The problem is that
ρ1(g1) = λx ∈ N x subverts the intent of the type-system by allowing an unrestricted flow
of information about “safe” values into “normal” values.17

16
N.B. The | · | in “|x|” is syntactic, whereas the | · | in “|ρ|” and “|ρ(x)|” are semantic.

17By using a similar trick and the full power of crec, one can write nonterminating ATR programs.
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e1: Nε → N⋄ = // Assume g1: N⋄ → Nε.
λw let h1: N⋄ → N⋄ → N⋄ = λx, y if x 6= ǫ then (dup (g1 y) (g1 y)) else w

in prn h1 w

e2: Nε → N⋄ = // Assume g2: N⋄ → N⋄.
λw let h2: N⋄ → N⋄ → N⋄ = λx, y if x 6= ǫ then (g2 y) else w

in prn h2 w

Figure 15: Two problematic programs

(b) Suppose Γ2 = g2: N⋄ → N⋄ and ρ2 = { g2 7→ λz ∈ N z⊕ z }. Then |V[[e2]] ρ2| =
λn ∈ ω n2n. Note |ρ2(g2)| = λn ∈ ω 2n is a polynomial function. The problem is that
ρ2(g2) = λy ∈ N y⊕ y subverts the fundamental restriction on the sizes of “safe” values in
growth-rate bounds as in Proposition 1(b).

The problem of Example 23(a) is addressed in §7 by pruning the L- and V-semantics
to restrict impredicative-type values. The problem of Example 23(b) is addressed in §9 by
further pruning to restrict flat-type values.

7. Impredicative types and nearly well-foundedness

Failing to restrict impredicative-type values leads to problems like the one of Exam-
ple 23(a). These problems can be avoided by requiring that each impredicative-type value
have a length that is nearly well-founded.

Definition 24. A t ∈ L[[γ]] is γ-well-founded when γ = Tℓ or else γ = (σ1, . . . , σk) → Tℓ

and, for each i with tail(σi) : Tℓ, the function t has no dependence on its i-th argument.
A t is nearly γ-well-founded when there is a γ-well-founded t′ such that t ≤ t′.

Remark 25. Why nearly well-founded? The natural sources of ATR-terms with impred-
icative types are the if-then-else and down constructs. Let c = λx, y, z (if x then y else z)
and d = λx, y (down x y), where ⊢ c: (Nℓ,Nℓ′ ,Nℓ′) → Nℓ′ , ⊢ d: (Nℓ,Nℓ′) → Nℓ′ , and ℓ > ℓ′.
Thus |c| ∈ L[[|(Nℓ,Nℓ′ ,Nℓ′) → Nℓ′ |]] and |d| ∈ L[[|(Nℓ,Nℓ′) → Nℓ′ |]]. Neither |c| nor |d| is well-
founded since |c| = λk,m, n (m, if k = 0; n, otherwise) and |d| = λk,m min(k,m). How-
ever, both |c| and |d| are nearly well-founded as |c| ≤ λk,m, n (m ∨ n) and |d| ≤ λk,m m.

Lemma 26. Suppose Σ ⊢ p:σ, ρ ∈ L[[Σ]], and ρ(x) is nearly Σ(x)-well-founded for each
x ∈ preimage(Σ). Then L[[p]] ρ is nearly σ-well-founded.

Lemma 26 follows by a straightforward induction and indicates that a semantics for
the second-order polynomials based on nearly well-foundedness will be well defined. Ter-
minology. The restriction of f ∈ (X1, . . . ,Xk) → Y to (X ′

1, . . . ,X
′
k) → Y (where X ′

1 ⊆
X1, . . . ,X

′
k ⊆ Xk) is λx1 ∈ X ′

1, . . . , xk ∈ X ′
k f(x1, . . . , xk).

Definition 27 (The nearly well-founded semantics).
(a) Inductively define Lnwf [[γ]] by: Lnwf [[Tℓ]] = ω. For γ = (σ1, . . . , σk) → Tℓ, Lnwf [[γ]]

is the restriction to (Lnwf [[σ1]], . . . ,Lnwf [[σk]]) → Lnwf [[Tℓ]] of the γ-nearly well-founded ele-
ments of L[[γ]]. Define Lnwf [[Σ]] and Lnwf [[Σ ⊢ p: γ]] in the standard way.

(b) Inductively define Vnwf [[γ]] by: Vnwf [[Nℓ]] = N. For γ = (σ1, . . . , σk) → Nℓ, Vnwf [[γ]] is
the restriction to (Vnwf [[σ1]], . . . ,Vnwf [[σk]]) → Vnwf [[Nℓ]] of the f ∈ V[[γ]] with |f | ∈ Lnwf [[|γ|]].
Define Vnwf [[Γ;∆]] and Vnwf [[Γ;∆ ⊢ E: γ]] in the standard way.
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(c) We write p =nwf p′ when Lnwf [[Σ ⊢ p: γ]] |ρ| = Lnwf [[Σ ⊢ p′: γ]] |ρ| for all |ρ| ∈ Lnwf [[Σ]].
We define ≤nwf , ≥nwf , . . . analogously.

There is still a problem with impredicative-type values. In deriving closed-form upper
bounds on recursions, we often need a well-founded upper bound on the value of a variable
of an impredicative type. There is no effective way to obtain such bound. We thus do the
next best thing: give a canonical such upper bound a name and work with that name.

Definition 28. We add a new combinator, p, to the second-order polynomials such that
Lnwf [[Σ ⊢ (p p): γ]] |ρ| = the least γ-well-founded upper bound on Lnwf [[Σ ⊢ p: γ]] |ρ|. (See
Figure 17 for p’s typing rule.) For each variable x, we abbreviate (px) by px.

The choice p makes is analogous to choice of a in the situation where one knows
f ∈ O(n) and picks the least a ∈ ω such that f(n) ≤ a · (n + 1) for all n ∈ ω. In most uses,
px’s are destined to be substituted for by concrete, well-founded terms.

To help work with terms involving impredicative types we introduce:

Definition 29 (Shadowing). Suppose Σ ⊢ p:σ. An occurrence of a subterm r of p is
shadowed when the occurrence properly appears within another shadowed occurrence or
else the occurrence has an enclosing subexpression (t r) where the occurrence of t is of an
impredicative type σ → τ with tail(σ) : tail(τ). A variable x is a shadowed free variable
for p when all of x’s free occurrences in p are shadowed; otherwise x is an unshadowed free
variable for p.

8. Safe upper bounds

The restriction to the Vnwf-semantics solves the problem with impredicative types, but
not the problem with flat types. To work towards a solution of this later problem, in this
section we introduce the notion of a safe second-order polynomial (Definition 30) and show
that any expression (in a simplification of ATR) that does not involve flat-type variables has
a safe upper bound. The next section proposes a solution to the flat-type problem: that
each flat-type length must have a safe upper bound. Theorem 43, in §10, shows that this
proposed solution does indeed work. Convention: In this section b, γ, σ, and τ range over
size types. In writing p = (x p1 . . . pk), we mean x is a variable and, when k = 0, p = x.

Definition 30 (Strictness, chariness, and safety). Suppose Σ ⊢ p: γ.
(a) We say that p is b-strict with respect to Σ when tail(γ) ≤: b and every unshadowed

free-variable occurrence in p has a type with tail �: b.
(b) We say that p is b-chary with respect to Σ when γ = b and either (i) p = (x q1 · · · qk)

with each qi b-strict or (ii) p = p1∨ · · · ∨pm, where each pi satisfies (i). (Note that 0 sneaks
in as b-chary; take m = 0 in (ii).)

(c) We say that p is γ-safe with respect to Σ if and only if
(i) when γ = T✷d

, then p =nwf q ∨ r where q is γ-strict and r is γ-chary,
(ii) when γ = T⋄d

, then p =nwf q + r where q is a γ-strict and r is γ-chary r, and
(iii) when γ = σ → τ , then (p x) is τ -safe with respect to Σ, x:σ.

With the above notions, we drop the “with respect to Σ” when Σ is clear from context.
Examples: Recall the bound p +

∨n
j=1 |yj| of Proposition 1(b). In terms of the size-

types, the subterm p is T⋄-strict, the subterm
∨n

j=1 |yj| is T⋄-chary, and hence, p+
∨n

j=1 |yj |
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s-I:
Σ ⊢ s: T⋄d

Σ ⊢ (s s): T⋄d

R-I:
Σ0 ⊢ s0: Tℓ′ → Tℓ′ Σ1 ⊢ s1: Tℓ Σ2 ⊢ s2: Tℓ′

Σ0 ∪ Σ1 ∪ Σ2 ⊢ (R s0 s1 s2): Tℓ′

(
ℓ′ =

succ(ℓ)

)

Figure 16: The additional typing rules for GR

is T⋄-safe. Roughly, Proposition 1 implies that each BCL expression has a safe size-bound.
Note that if f :N⋄ → N✷⋄ and x: N⋄, then |f |(|x|) is T✷⋄-chary, but not T✷⋄-strict.

Strictness and chariness are syntactic notions, whereas safety is a semantic notion be-
cause of the use of =nwf in Definition 30(c). Thus:

Lemma 31. If Σ ⊢ p:b and p is b-strict or b-chary, then p is also b-safe.

Proof. Since 0 is both b-strict and b-chary and since p =nwf p∨0 =nwf 0∨p =nwf p+0 =nwf

0 + p, the lemma follows.

The next lemma notes a key property of safe second-order polynomials.

Lemma 32 (Safe substitution). Fix Σ. Given a γ-safe p0, a σ-safe p1, and a variable x

with Σ(x) = σ, we can effectively find a γ-safe p′0 such that p0[x : = p1] ≤nwf p′0.

Proof. Except for the case when p1 is a λ-expression, the argument is a straightforward
induction. When p1 is a λ-expression, the substitution can trigger a cascade of other substi-
tutions to deal with. However, as we are working with an applied simply-typed λ-calculus,
strong normalization holds [Win93], and hence, these cascades are finite. Consequently, to
deal with this case we simply use a stronger induction than before, say on the syntactic
structure of p0 and p1 and on the length of the longest path of β-reductions to normal form
of p0[x : = p1]. This is fairly conventional and left to the reader.18

Remark 25 informally argued that if e, an ATR expression, does not involve impredica-
tive-type variables, then |e| has a well-founded upper bound. The analogous argument here
would be that if e does not involve flat-type variables, then |e| has a safe upper bound. This
assertion is true, but not so interesting because most natural crec-expressions have their
recursor variable of flat type. To get around this problem we introduce a little formalism,
GR (for growth rate) which includes a simple iteration construct that does not depend so
heavily on flat-type variables and which captures ATR’s growth rate properties including
ATR’s difficulty with flat-type values. We show in Theorem 34 that GR expressions that do
not involve flat-type variables have safe upper bounds.

Definition 33. GR’s raw terms are given by: S : : = 0∗ | (∨ S S) | (s S) | (R S S S) | X

| (S S) | (λX S). The typing rules for GR consist of →-I and →-E from Figure 2; Zero-I,
Const-I, Subsumption, Shift, and ∨-I from Figure 14; and s-I and R-I from Figure 16.19

The intended interpretations of ∨, s, and R are: (∨m n) = max(m,n), (s m) = m + 1, and

(R f m n) = f (m)(n).

We straightforwardly extend the Lnwf -semantics for second-order polynomials to GR.
Note: Lnwf [[λm,n (R f m n)]] ρ = λm,n ∈ ω n2m when ρ(f) = λk ∈ ω 2k. So GR has
familiar problems with flat-type values. We note that the GR analogues of Lemmas 19,
20, and 22 all hold. Terminology: Σ ⊢ s:σ is flat-type-variable free when no variable is
explicitly or implicitly assigned a flat type by the judgment.

18Alternatively, the lemma’s proof could be done through a logical relations induction [Win93].
19Recall from §5 that succ(ℓ) = the successor of ℓ in the ordering on labels.
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Theorem 34. Given a flat-type-variable free Σ ⊢ s: γ, we can effectively find a γ-safe ps

with respect to Σ such that s ≤nwf ps. Moreover, we can choose ps so that all free variable
occurrences are unshadowed.

Proof. Without loss of generality we assume that s is in β-normal form. The argument is
a structural induction on the derivation of Σ ⊢ s: γ. We consider the cases of the last rule
used in the derivation. Let d range over ω.

Case: Zero-I. Then s = 0 and γ = Tε. So ps = 0 suffices since 0 is Tε-strict.
Case: Const-I. Then s = k and γ = T⋄. So ps = k suffices since k is T⋄-strict.
Case: Id-I. Then s = x, a variable. Subcase: γ is a base type. Then ps = x suffices

since x is γ-chary. Subcase: γ = (σ0, . . . , σk) → b. (Recall the introduction of px in
Definition 28.) Let Σ′ = Σ, x0:σ0, . . . , xk: σk and p′ = (px p0 . . . pk) where, for each i,
pi = xi if tail(σi) �: b, and pi = 0σi

, otherwise. (Note that since s is flat-type-variable free,
tail(σi) 6= b for each i.) Then p′ is b-chary with respect to Σ′ and (x x0 . . . xk) ≤nwf p′. It
follows that ps = λx0, . . . , xk p′ suffices.

Case: →-I. This case follows by the induction hypothesis and clause (iii) in Defini-
tion 30(c).

Case: →-E. This case follows by the induction hypothesis and Lemma 32.
Case: Subsumption. Then by Subsumption we know that Σ ⊢ s: γ′ where γ′ ≤: γ.

Without loss of generality, we assume γ′ �: γ. By the induction hypothesis there exists p,
a γ′-safe size-bound for s with respect to Σ. It follows from Definition 30 that p is γ-strict
with respect to Σ. Hence, ps = p suffices.

Case: Shift. Recall that if (~σ) → b ∝ (~σ′) → b′, then, for each i, tail(σi) �: b implies
tail(σ′

i) �: b′ and tail(σi) = b implies tail(σ′
i) = b′. Thus this case follows from Lemma 20

(in both its second-order polynomial and GR versions) and Definition 30.
Case: s-I. Then s = (s s1) and γ = T⋄d

. So by s-I, we know that Σ ⊢ s1:T⋄d
and

by the induction hypothesis we have that there is a T⋄d
-strict q and a T⋄d

-chary r with
s1 ≤nwf q + r. Thus ps = (q + 1) + r suffices since q + 1 is T⋄d

-strict.
Case: ∨-I. Then s = (∨ s0 s1). Subcase: γ = T⋄d

. So by ∨-I we know that
Σ0 ⊢ s0:T⋄d

and Σ1 ⊢ s1: T⋄d
, where Σ = Σ0 ∪ Σ1. By the induction hypothesis, there are

T⋄d
-strict q0 and q1 and T⋄d

-chary r0 and r1 such that s0 ≤nwf q0 + r0 and s1 ≤nwf q1 + r1.
Thus ps = (q0∨q1)+(r0∨r1) suffices since s ≤nwf (q0+r0)∨(q1+r1) ≤nwf (q0∨q1)+(r0∨r1)
and since (q0∨ q1) is T⋄d

-strict (r0 ∨ r1) is T⋄d
-chary with respect to Σ. Subcase: γ = T✷d

.
This follows by an easy modification of the above argument.

Case: R-I. Then s = (R s0 s1 s2). Subcase: γ = T⋄d
. So by R-I, we have Σ0 ⊢

s0:T⋄d
→ T⋄d

, Σ1 ⊢ s1: T✷d
, and Σ2 ⊢ s2:T⋄d

, where Σ = Σ0 ∪Σ1 ∪Σ2. Since s is flat-type-
variable free, we must have s1 = λz s′1 where Σ0, z: T⋄d

⊢ s′1: T⋄d
. Hence, by the induction

hypothesis, there are T⋄d
-strict q0 and q2, T⋄d

-chary r0 and r2, and T✷d
-safe p1 such that

s′1 ≤nwf q0 + r0, s1 ≤nwf p1, and s2 ≤nwf q2 + r2. Note that p1 is also T⋄d
-strict. Suppose

z has no free occurrences in q0 + r0. Then it follows that s ≤nwf (q0 + r0) ∨ (q2 + r2) ≤nwf

(q0 ∨ q2) + (r0 ∨ r2); so ps = (q0 ∨ q2) + (r0 ∨ r2) suffices. Now suppose z does have a
free occurrence in q0 + r0. Since q0 is T⋄d

-strict, z cannot occur in q0. Since s is flat-
type-variable free, it follows that r0 =nwf z ∨ r′0 where z has no free occurrences in r′0 and
where r′0 is T⋄d

-chary. By the inequality q + (q′ + r′) ∨ r ≤ (q + q′) + r′ ∨ r, it follows that
s ≤nwf (p1 ∗ q0 + q2)+ (r′0 ∨ r2). So, ps = (p1 ∗ q0 + q2)+ (r′0 ∨ r2) suffices. (Note the parallel
to the proof of Proposition 1.) Subcase: γ = T✷d

. This follows by an easy modification of
the above argument.
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p-I:
Σ ⊢ p:σ

Σ ⊢ (p p): σ
q-I:

Σ ⊢ p:σ

Σ ⊢ (q p): σ†
r-I:

Σ ⊢ p: σ

Σ ⊢ (r p): σ‡

Figure 17: Typing rules for the p, q, and r combinators

9. Flat types and well-temperedness

To avoid problems like the one of Example 23(b), flat-type values need to be restricted.
The GR formalism of the previous section is subject to roughly the same problem as that of
Example 23(b), but by Theorem 34 flat-type-variable free GR expressions have safe second-
order polynomial bounds. This suggests that a solution to the flat-type values problem is to
require all flat-type values to have safe size-bounds. We call this property well-temperedness,
meaning: all things are in the right proportions.

Definition 35. A t ∈ Lnwf [[γ]] is γ-well-tempered when γ is strict or when γ is flat and
there is a closed, γ-safe s with t ≤ Lnwf [[s]].

Lemma 36. Suppose Σ ⊢ p:σ, ρ ∈ Lnwf [[Σ]], and ρ(x) is Σ(x)-well-tempered for each
x ∈ preimage(Σ). Then Lnwf [[p]] ρ is σ-well-tempered.

Lemma 36’s proof is an induction on the derivation of Σ ⊢ p:σ. Everything is fairly
straightforward except that the →-E case depends critically on Lemma 32. Lemma 36
indicates that a semantics for the second-order polynomials based on well-temperedness
will be well defined.

Definition 37 (The well-tempered semantics).
(a) Inductively define Lwt[[σ]] by: Lwt[[Tℓ]] = ω and, for σ = (σ1, . . . , σk) → Tℓ, Lwt[[σ]]

is the restriction to (Lwt[[σ1]], . . . ,Lwt[[σk]]) → Lwt[[Tℓ]] of the σ-well-tempered elements of
Lnwf [[σ]]. Lwt[[Σ]] and Lwt[[Σ ⊢ p: σ]] are defined in the standard way.

(b) Inductively define Vwt[[σ]] by: Vwt[[Nℓ]] = N and, for σ = (σ1, . . . , σk) → Nℓ, Vwt[[σ]]
is the restriction to (Vwt[[σ1]], . . . ,Vwt[[σk]]) → Vwt[[Nℓ]] of the f ∈ Vnwf [[σ]] with |f | ∈ Lwt[[|σ|]].
Vwt[[Γ;∆]] and Vwt[[Γ;∆ ⊢ E:σ]] are defined in the standard way.

(c) We write p =wt p′ when Lwt[[Σ ⊢ p:σ]] |ρ| = Lwt[[Σ ⊢ p′: σ]] |ρ| for all |ρ| ∈ Lwt[[Σ]].
We define ≤wt, ≥wt, . . . analogously.

There is still a problem with flat-type values. To give closed-form upper bounds on
recursions, we sometimes need to decompose a safe flat-type polynomial into strict and
chary parts. (Recall that safety is a semantic, not syntactic, notion.) For flat-type-variable
free safe polynomials this is easy. A way of breaking flat-type variables into strict and chary
parts would allow us to extend this decomposition to all safe polynomials. We introduce
two new combinators to effect such a decomposition. Since there is no canonical way to do
this decomposition, we take a different (and trickier) approach from that of Definition 28.
Terminology: Let (b)† = (b)‡ = b, ((~σ) → b)† = (~σ′) → b, and ((~σ) → b)‡ = (~σ′′) → b,
where ~σ′ = the subsequence of σi’s in ~σ with tail(σi) 6= b and ~σ′′ = the subsequence of σi’s
in ~σ with σi 6= b. (Recall: () → b ≡ b.)

Definition 38. We add two new combinators, q and r, to the second-order polynomials
with typing rules given in Figure 17. Suppose Σ = w1: τ1, . . . , wn: τn, Σ ⊢ p: γ, and
ρ ∈ Lwt[[Σ]]. For γ strict, define Lwt[[(q p)]] ρ = 0γ† and Lwt[[(r p)]] = Lwt[[(p p)]]. Suppose

γ = (σ0, . . . , σk) → b is flat. Let ζ = (~τ , ~σ) → b, (σ′
i1

, . . . , σ′
im

) → b = γ†, (σ′′
j1

, . . . , σ′′
jn

) →
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b = γ‡, ~x = x0, . . . , xk, ~x′ = xi1, . . . , xim , ~x′′ = xj1 , . . . , xjn , and { z1, . . . , zu } = {wi τi =
b } ∪ {xi τi = b } where the zi’s are all distinct. Define Lwt[[(q p)]] = Lwt[[λ~x′ q]] and
Lwt[[(r p)]] = Lwt[[λ~x′′ r]], where (i) q is b-strict with respect to Σ, ~x: ~σ, (ii) r is b-chary with
respect to Σ, ~x: ~σ and r has no occurrence of any zi, and (iii)

Lwt[[⊢ λ~w (p p): ζ]] ≤

{
Lwt[[⊢ λ~w, ~x (q + r ∨ z1 ∨ . . . ∨ zu): ζ]], for computational γ;

Lwt[[⊢ λ~w, ~x (q ∨ r ∨ z1 ∨ . . . ∨ zu): ζ]], for oracular γ.

For each variable x, we abbreviate (qx) by qx and (rx) by rx. Also, we take (qx ~x′) as
being b-strict and (rx ~x′′) as being b-chary.

Example 39. By the definition of prn given in Figure 13 and our proof sketch for Propo-
sition 1, it follows that |prn| ≤wt λ|e|, |x|

(
(|x| + 1) ∗ q|e|(|x|) + r|e|(|x|)

)
.

By Definitions 35 and 37, q and r as in Definition 38 must exist. By the axiom of
choice, there are functions that pick out particular q and r. N.B. The choices of q and
r are arbitrary subject to satisfying conditions (i), (ii), and (iii) of Definition 38. The
semantics for the second-order polynomials is thus parameterized by the functions that pick
out the required q’s and r’s. The choices q and r make are analogous to the choices of a

and b ∈ ω in the situation were one knows that f ∈ O(n) and picks some arbitrary a and
b such that f(n) ≤ a · n + b for all n. Such a and b can be used in constructing algebraic
upper bounds on expressions involving f . If later we determine concrete a0 and b0 such
that f(n) ≤ a0 · n + b0 for all n, then said algebraic upper bounds are still valid after the
substitution [a : = a0, b : = b0] since the choices of a and b were arbitrary.

Definition 40. Suppose Σ ⊢ p: γ, where { y1, . . . , yk } = { y Σ(y) = tail(γ) }. We say that
p is manifestly γ-safe with respect to Σ if and only if the only applications of the p, q, and
r combinators are to variables, and:

(a) when γ = T✷d
, then p is of one of the forms: q, r∨yi1∨. . .∨yin , and q∨r∨yi1∨. . .∨yin ,

where q is γ-strict, r is γ-chary with no occurrences of any of the yi’s, and { yi1 , . . . , yin } is
a (possibly empty) subset of { y1, . . . , yk };

(b) when γ = T⋄d
, then p is of one of the forms: q, r∨yi1∨. . .∨yin , and q+r∨yi1∨. . .∨yin ,

where q, r, and { yi1 , . . . , yin } are as in (a); and
(c) when γ = (σ0, . . . , σm) → b, then the β-normal form of (p ~x) is manifestly b-safe

with respect to Σ, x0:σ0, . . . , xm: σm.

Lemma 41 (Manifestly safe substitution). Fix Σ. Given a manifestly γ-safe p0, a mani-
festly σ-safe p1, and a variable x with Σ(x) = σ, we can effectively find a manifestly γ-safe
p′0 such that p0[x : = p1] ≤nwf p′0.

Proof. This is a straightforward adaptation of the proof of Lemma 32.

We now have a reasonable semantics for ATR and the tools to work with this semantics
to establish (in Theorem 43) a safe polynomial boundedness result for ATR, where:

Definition 42. Suppose Γ;∆ ⊢ e: σ. We say that p is a |σ|-safe polynomial size-bound for
e with respect to Γ;∆ when p is a |σ|-safe second-order polynomial with respect to |Γ;∆|
and |Vwt[[e]] ρ| ≤ Lwt[[p]] |ρ| for all ρ ∈ Vwt[[Γ;∆]]; if in addition p is manifestly |σ|-safe with
respect to Γ;∆, we say that p is a manifestly |σ|-safe polynomial size-bound for e with
respect to Γ;∆. (The “with respect to” clause is dropped when it is clear from context.)



28 N. DANNER AND J. S. ROYER

10. Polynomial size-boundedness

Theorem 43 (Polynomial Boundedness). Given Γ;∆ ⊢ e: γ, we can effectively find pe, a
manifestly |γ|-safe polynomial size-bound for e with respect to Γ;∆.

Proof. The argument is a structural induction on the derivation of Γ;∆ ⊢ e: γ. We consider
the cases of the last rule used in the derivation. Excluding the crec case, everything is
fairly straightforward. Fix ρ ∈ Vwt[[Γ;∆]]. Note that |Vwt[[ · ]] ρ| is invariant under β- and
η-equivalence. So without loss of generality, we assume that e is in β-normal form.

Cases: Int-Id-I and Aff-Id-I. Then e = x, a variable. Subcase: γ is strict. Then
pe = |x| clearly suffices. Subcase: γ is flat. Hence, level(γ) = 1. Let (b0, . . . ,bk) → b = γ.
Then by Definitions 37 and 38,

pe = λ|x0|, . . . , |xk|
(
(q|x|

−→
|x′|) ⊙ (r|x|

−→
|x′|) ∨ |y1| ∨ . . . ∨ |yℓ|

)

suffices, where
−→
|x′| = the subsequence of the |xi|’s with bi 6= b and { y1, . . . , yℓ } = { y

(Γ, x0:b0, . . . , xk:bk;∆)(y) = b }, and where ⊙ = +, if γ is computational, and ⊙ = ∨, if
γ is oracular.

Case: Zero-I. Then e = ǫ and γ = Nε. Clearly pe = 0 suffices.
Case: Const-I. Then e = some constant k and γ = N⋄. Clearly pe = |k| suffices.
Case: ta-I . So γ = N⋄d

for some d. Clearly pe = 1 suffices.
Case: d-I. Then e = (d e′) for some e′ and γ = N⋄d

for some d. By the induction
hypothesis, there is pe′ , a manifestly T⋄d

-safe polynomial size-bound for e′ with respect to
Γ;∆. Clearly pe = pe′ suffices.

Case: down-I. Then e = (down e0 e1) with Γ;∆ ⊢ e0:b0, Γ;∆ ⊢ e1:b1, and γ = b1.
By the induction hypothesis, there is a pe1

, a manifestly |b1|-safe polynomial size-bound for
e1 with respect to Γ;∆. Clearly pe = pe1

suffices.
Case: ca-I. Then e = (ca e′) for some e′ and γ = N⋄d

for some d. By the induction
hypothesis, there is pe′ , a manifestly T⋄d

-safe polynomial size-bound for e′ with respect to
Γ;∆. Clearly pe = 1 + pe′ suffices.

Cases: Subsumption and Shift. These follow as in the proof of Theorem 34.
Aside: For the arguments for the →-I and →-E cases below, recall from §2.10 that (2.2)

and (2.3) provide the definition of length for elements of TC of type-level 1 and type-level
2, respectively, and that higher-type lengths are pointwise monotone nondecreasing.

Case: →-I. Then e = λx e′ and γ = σ → τ . By our induction hypothesis, there
is a pe′ , a manifestly |τ |-safe polynomial size bound for e′ with respect to Γ, x: σ;∆. Let
pe = λ|x| pe′ . By Definition 30(c), pe is manifestly |γ|-safe with respect to |Γ;∆|. Let v

range over Vwt[[σ]]. Then, for each t ∈ Lwt[[|σ|]], we have the chain of bounds of Figure 18.
Clearly this pe suffices.

Case: →-E. Then e = (e0 e1) and for some σ we have that Γ;∆ ⊢ e0:σ → γ and
Γ; ⊢ e1: σ. By the induction hypothesis, there are pe0

and pe1
such that pe0

is a manifestly
(|σ| → |τ |)-safe polynomial size bound for e0 and pe1

is a manifestly |σ|-safe polynomial
size-bound for e1. By Lemma 41 we can effectively find a manifestly γ-safe pe such that
(pe0

pe1
) ≤wt pe. Then we have the chain of bounds of Figure 19. Clearly this pe suffices.

Case: If-I. Then e = (if e0 then e1 else e2). By the induction hypothesis, there are
pe1

and pe2
, manifestly |γ|-safe polynomial size-bounds for e1 and e2 respectively. Clearly

pe = pe1
∨ pe2

suffices.

We have just one case left, but now the real work starts.
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∣∣Vwt[[λx e′]]ρ
∣∣ (t)

= max{ |(Vwt[[λx e′]] ρ)(v)| |v| ≤ t } (by (2.2) and (2.3))

= max{ |(Vwt[[e
′]] (ρ ∪ { x 7→ v })| |v| ≤ t } (by the Vwt-interpretation of λ-terms)

≤ max{ (Lwt[[pe′ ]] (|ρ| ∪ { |x| 7→ |v| }) |v| ≤ t } (by the choice of pe′)

≤ (Lwt[[pe′ ]] (|ρ| ∪ { |x| 7→ t }) (by monotonicity)

= (Lwt[[λ|x| pe′ ]] |ρ|)(t) (by the Lwt-interpretation of λ-terms)

= (Lwt[[pe]] |ρ|)(t) (by the choice of pe).

Figure 18: Bounds for the →-I case

∣∣Vwt[[(e0 e1)]]ρ
∣∣

=
∣∣(Vwt[[e0]] ρ)

(
Vwt[[e1]]| ρ

)∣∣ (by the Vwt-interpretation of application)

≤ (|Vwt[[e0]]ρ|)
(
|Vwt[[e1]]ρ|

)
(by (2.2) and (2.3))

≤ (Lwt[[pe0
]] |ρ|)

(
Lwt[[pe1

]] |ρ|
)

(by monotonicity and the choices of pe0
and pe1

)

= Lwt[[(pe0
pe1

)]] |ρ| (by the Lwt-interpretation of application)

= Lwt[[pe]] |ρ| (by the choice of pe).

Figure 19: Bounds for the →-E case

Case: crec-I. Then γ = (b1, . . . ,bk) → b0 ∈ R, so b1 = N✷d1
for some d1, and

e = (crec a (λrf A)) with a ∈ 0∗, Γ; f : γ ⊢ A: γ, and TailPos(f,A). (Recall: TailPos
is defined in Figure 11.) For simplicity we assume {b1, . . . ,bk } = {Nε, . . . ,N✷d−1

,N✷d1
}

∪ {b N✷d1
�: b ≤: bmax } for some bmax. Without loss of generality we suppose:

A = λx1, . . . , xk B, (10.1)

where Γ̂; f : γ ⊢ B:b0 for Γ̂ = Γ, x1:b1, . . . , xk:bk, B is in β-normal form, and TailPos(f,B).
Aside: To find pe for this case, we analyze e’s tail recursion and determine size bounds

on how large the tail-recursion’s arguments can grow. In particular, we show that there
is a polynomial bound beyond which the first argument cannot grow; hence, by (4.2), this
polynomial bounds the depth of e’s tail recursion. From this bound on recursion depth and
from the size bounds on the tail-recursion arguments, constructing pe is straightforward.
To derive these bounds, we proceed a little informally and work with unfolded versions of e.

Consider the occurrences of f in B. Since we have TailPos(f,B) and Γ̂; f : γ ⊢ B:b0,

these occurrences must have enclosing expressions of the form (f e1 . . . ek), where Γ̂; ⊢

e1:b1, . . . Γ̂; ⊢ ek:bk. For a given such subexpression of B, we know by the induction
hypothesis that, for each i = 1, . . . , k, there is a pi, a manifestly bi-safe polynomial size-

bound for ei with respect to Γ̂; . Since f occurs but finitely many times in B, we may
choose p1, . . . , pk so that they bound the size of the corresponding argument expressions
for every f -application in B. Without loss of generality, we assume that if bi = bj , then
pi = pj.
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Using the crec reduction rule (4.2), we expand out one-level of e’s crec-recursion and,
by using β- and η-reductions, clean things up to obtain

e(1) = λ~x if |a| ≤ |x1| then B̂ else ǫ, where

B̂ = the βη-normal form of B [f : = (crec (0⊕ a) (λrf A))]).

Clearly, Vwt[[e]] = Vwt[[e
(1)]]. Let ξ denote the substitution [|x1| : = p1, . . . , |xk| : = pk].

From our choices of the pi’s and B̂ it follows that (p1 ξ), . . . , (pk ξ) bound the size of the

corresponding argument expressions for every f -application in B̂. For each i, (pi ξ) can
be equivalently expressed in terms of pi as follows. Terminology: An r is strictly b-chary
when r is b-chary and contains no occurrences of type-b variables.20

(Note: In working through the proofs of Lemmas 44 and 45 below, the reader many
want to consider the case of: γ = (N✷1

,N✷0
,N⋄1

) → N⋄1
, f has but one occurrence in

A, p1(|x1|, |x2|, |x3|) = |g|(|x2|) ∨ |x1|, p2(|x1|, |x2|, |x3|) = |x2|, and p3(|x1|, |x2|, |x3|) =
q3(|x1|, |x2|) + |x3|, where g: N⋄0

→ N✷1
and where q3 is an ordinary polynomial.)

Lemma 44 (The one step lemma). Each pi can be taken so that:
(a) If bi ≤: N✷d1

, then pi ξ =wt pi.

(b) If N✷d1
�: bi = N✷d

, then there is a bi-strict qi and a strictly bi-chary ri such that
pi ξ =wt qi ξ ∨ ri ξ ∨ pi.

(c) If N✷d1
�: bi = N⋄d

, then there is a bi-strict qi and a strictly bi-chary ri such that
pi ξ =wt qi ξ + ri ξ ∨ pi.

Proof. For each d, let:

{ud
0, . . . , u

d
bd
}

def
= {u Γ(u) = N✷d

}. {wd
0 , . . . , wd

b′
d
}

def
= {u Γ(u) = N⋄d

}.

{ud
0, . . . , u

d
cd
}

def
= {xi bi = N✷d

}. {wd
0, . . . , w

d
c′
d
}

def
= {xi bi = N⋄d

}.

(The u’s and w’s correspond to the arguments of the recursion while the u’s and w’s corre-
spond to the other parameters.)

For part (a), we inductively consider the cases of bi = Nε, N✷1
, . . . ,N✷d1

in turn.

Case: bi = Nε. By the induction hypothesis, we may take pi to be q ∨ r ∨ t̂∨ t, where

q is T✷0
-strict, r is strictly T✷0

-chary, t̂ =
∨b0

a=0 |u
0
a|, and t =

∨c0
a=0 |u

0
a|. It follows from the

size typing rules that the only T✷0
-strict terms are =wt 0. So, it suffices to take pi = r∨ t̂∨t.

Note that r = r ξ and t̂ = t̂ ξ since neither r nor t̂ have any occurrences of any u0
a. Also

recall that we are assuming that if bi = bj , then pi = pj. Thus, for each a, |u0
a| ξ = pa = pi.

So, t ξ =wt pi = r ∨ t̂ ∨ t. Consequently,

pi ξ =wt (r ∨ t̂ ∨ t) ξ =wt r ξ ∨ t̂ ξ ∨ t ξ =wt r ∨ t̂ ∨ (r ∨ t̂ ∨ t) =wt r ∨ t̂ ∨ t =wt pi.

Hence, our choice of pi suffices for this case.
Case: bi = N✷1

. By the induction hypothesis, we can take pi to be of the form q∨r∨t̂∨t,

where q is T✷1
-strict, r is strictly T✷1

-chary, t̂ =
∨b1

a=0 |u
1
a|, and t =

∨c1
a=0 |u

1
a|. We first

consider q. Since Γ does not assign any of x1, . . . , xk the type N⋄0
, the only variables from

x1, . . . , xk whose lengths can occur in q are those assigned type Nε. Let q̂ = q ξ, where for
each i′ with bi′ = Nε, we take pi′ to satisfy part (a). Hence, it follows that q̂ ξ =wt q̂. Also,
by the monotonicity of everything in sight, we have that q ≤wt q̂. By the same argument,

20Such an r may contain occurrences of variables of types of the form (σ0, . . . , σk) → b.
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for r̂ = r ξ we have that r̂ ξ =wt r̂ and r ≤wt r̂. So, it suffices to take pi = q̂ ∨ r̂∨ t̂∨ t. Note
that t̂ = t̂ ξ since t̂ has no occurrence of any ud

a. Also recall that we are assuming that if
bi = bj , then pi = pj. Thus, for each a, |u1

a| ξ = pa = pi. So, t ξ =wt pi = q̂ ∨ r̂ ∨ t̂ ∨ t.
Consequently,

pi ξ =wt

(
q̂ ∨ r̂ ∨ t̂ ∨ t

)
ξ =wt q̂ ξ ∨ r̂ ξ ∨ t̂ ξ ∨ t ξ =wt

q̂ ∨ r̂ ∨ t̂ ∨ (q̂ ∨ r̂ ∨ t̂ ∨ t) =wt q̂ ∨ r̂ ∨ t̂ ∨ t =wt pi.

Hence, our choice of pi suffices for this case.
Cases: bi = N✷2

, . . . ,N✷d1
. These cases follow from essentially the same as argument

given for the bi = N✷1
case.

Therefore, part (a) follows.
We henceforth assume that pi satisfies part (a) for each i with bi ≤: N✷d1

.

For parts (b) and (c), consider the cases of bi = N⋄d1
, N✷d1+1

, . . . ,bmax in turn.
Case: bi = N⋄d1

. By the induction hypothesis, we may take pi to be of the form

q+r∨ t̂∨t, where q is T⋄d1
-strict, r is strictly T⋄d1

-chary, t̂ =
∨b′

d1

a=0 |w
d1
a |, and t =

∨c′
d1

a=0 |w
d1
a |.

Note that as in the previous cases, t̂ = t̂ ξ. Also recall that we are assuming that if bi = bj ,

then pi = pj . Thus, for each a, |wd1
a | ξ = pa = pi. So, t ξ =wt pi = q+r∨ t̂∨t. Consequently,

pi ξ =wt (q + r ∨ t̂ ∨ t) ξ =wt q ξ + r ξ ∨ t̂ ξ ∨ t ξ =wt

q ξ + r ξ ∨ t̂ ∨ (q + r ∨ t̂ ∨ t) =wt q ξ + r ξ ∨ (q + r ∨ t̂ ∨ t) =wt q ξ + r ξ ∨ pi.

Hence, taking qi = q and ri = r suffices for this case.
Case: bi = N✷d1+1

. By the induction hypothesis, we may take pi to be of the form

q ∨ r ∨ t̂ ∨ t, where q is T✷d1+1
-strict, r is strictly T✷d1+1

-chary, t̂ =
∨b′

d1+1

a=0 |ud1+1
a |, and

t =
∨c′

d1+1

a=0 |ud1+1
a |. By an argument similar to the one for the previous case it follows that

taking qi = q and ri = r suffices for this case too.
Cases: bi = N⋄d1+1

, . . . ,bmax. These cases follow from essentially the same as argu-

ments as given for the previous two cases.

Lemma 44
Henceforth we assume that each pi is as in Lemma 44 and, in the cases where N✷d1

�: bi,
qi and ri are as in that lemma too. For each n ∈ ω, define

e(n) = the β-normal form of the n-level unfolding of e’s crec-recursion, (10.2)

where β- and η-reductions are used to neaten up things as in the definition of e(1). So,
e(0) = e and e(1) = our prior definition of e(1). Let ξ(0) = the empty substitution and

ξ(n+1) = ξ ◦ ξ(n) = the (n + 1)-fold composition ξ. It follows that, with respect to Γ̂; , for

each i and n, (pi ξ
(n)) is a size bound for i-th argument expression of every f -application

in e(n).

Lemma 45 (The n step lemma). For each i and n:
(a) pi ξ

(n) =wt pi when bi ≤: N✷d1
.

(b) pi ξ
(n) ≤wt (qi ∨ ri) ξ(n) ∨ pi when N✷d1

�: bi = N✷d
.

(c) pi ξ
(n) ≤wt n ∗ (qi ξ(n)) + (ri ξ(n)) ∨ pi when N✷d1

�: bi = N⋄d
.



32 N. DANNER AND J. S. ROYER

Proof. Part (a) follows directly from Lemma 44(a). For parts (b) and (c) we first note
that by monotonicity we have that, for all k and i, (qi ∨ ri)ξ

(k) ≤wt (qi ∨ ri) ξ(k+1). Now,
for part (b), it follows immediately from Lemma 44(b) that, for each n and i, we have

pi ξ
(n) =wt

(∨n
j=0(qi ∨ ri) ξ(j)

)
∨pi. Hence by the noted monotonicity of (qi∨ri)ξ

(·), part (b)

follows. For part (c), first fix i such that bi = N⋄d
with d ≥ d1. It follows from an easy

induction that for all n, pi ξ
(n) ≤wt (

∑n
j=1 qi ξ

(j)) + (
∨n

j=1 ri ξ
(j)) ∨ pi; note the parallel to

the argument for the prn-case of Proposition 1. Hence by monotonicity of qiξ
(·) and riξ

(·),
part (c) follows.

Lemma 45
By Lemma 45(a) and (4.2) we have

Lemma 46 (Termination). Lwt[[p0]] |ρ| ≥ the maximum depth of e’s crec-recursion.

For each i with bi ≤: N✷d1
, let p′i = pi. For σ = N⋄d1

, . . . ,bmax in turn, we inductively

define θσ to be the substitution [xj : = p′j bj �: σ] and also define, for each i with bi = σ:

p′i
def
=

{
(ri θσ) ∨ pi, if σ is oracular;

p′0 · (qi θσ) + (ri θσ) ∨ pi, if σ is computational.

By Lemma 41, for each i, we can effectively find a manifestly bi-safe p′′i with p′i ≤wt p′′i .

Lemma 47 (Final sizes). For each i, p′′i is a manifestly bi-safe polynomial size-bound on
the i-th argument expression in the final step of the crec-recursion in e.

Proof. For each i with bi ≤: N✷d1
, the conclusion follows from Lemma 45(a). For the σ =

N⋄d1
case, fix an i with bi = N⋄d1

. Then the bound for this case follows from Lemmas 45(c)

and 46. The N✷d1+1
through bmax cases follow similarly.

Lemma 47
By the induction hypothesis, there exists pB , a manifestly |b0|-safe polynomial size-

bound for B (as in (10.1)) with respect to Γ; f : γ. By Lemma 41, we can effectively find
a manifestly b0-safe p̂ such that pB

[
|f | : = 0γ , |x1| : = p′1, . . . , |xk| : = p′k

]
≤wt p̂. The effect

of the substitution on pB is to trivialize |f | and replace each |xi| with the final size bound
from Lemma 47. It follows that p̂ is a manifestly b0-safe size bound for the value returned
by final step of the crec-recursion. Since TailPos(f,A), p̂ is also a size bound on the value
returned by the entire (tail) recursion. Thus, pE = λ|x1|, . . . |xk| p̂ suffices for the crec

case.

Theorem 43

11. An abstract machine

Our next major goal is to show that every ATR expression is computable within a
second-order polynomial time-bound (Theorem 79). Before formalizing time bounds, we
first need to make precise what is being bounded. Below we set out the abstract machine
that provides the operational semantics of PCF, BCL, and ATR and, based on this, §11.2
introduces and justifies our notion of the time cost of an expression evaluation.
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(
(B e), ρ̂, κ

)
→

(
e, ρ̂, 〈op, B, κ〉

)
(a)(

v, ρ̂, 〈op, B, κ〉
)

→
(
δ1(B, v), {}, κ

)
(b)

(
(down e e′), ρ̂, κ

)
→

(
e, ρ̂, 〈dn, e′, ρ̂, κ〉

)
(c)(

v, ρ̂, 〈dn, e′, ρ̂′, κ〉
)

→
(
e′, ρ̂′, 〈dn′, v, κ〉

)
(d)(

v′, ρ̂′, 〈dn′, v, κ〉
)

→
(
δ2(v, v′), {}, κ

)
(e)

(
x, ρ̂, κ

)
→

(
v, ρ̂′, κ

)
, where 〈v, ρ̂′〉 = ρ̂(x) (f)

(
(e e′), ρ̂, κ

)
→

(
e, ρ̂, 〈arg, e′, ρ̂, κ〉

)
(g)(

v, ρ̂, 〈arg, e′, ρ̂′, κ〉
)

→
(
e′, ρ̂′, 〈fun, v, ρ̂, κ〉

)
(h)(

v′, ρ̂′, 〈fun, (λx e), ρ̂, κ〉
)

→
(
e, ρ̂[x 7→ 〈v′, ρ̂′]〉, κ

)
(i)(

v′, ρ̂′, 〈fun, O, ρ̂, κ〉
)

→
(
O(v′), {}, κ

)
(j)

(
(if e? then et else ef ), ρ̂, κ

)
→

(
e?, ρ̂, 〈test, et, ef , ρ̂, κ〉

)
(k)

(
v?, ρ̂

′, 〈test, et, ef , ρ̂, κ〉
)

→

{(
et, ρ̂, κ

)
, if v? 6= ǫ;

(
ef , ρ̂, κ

)
, if v? = ǫ.

(l)

(
(fix (λx e)), ρ̂, κ

)
→

(
e[x : = (fix (λx e))], ρ̂, κ

)
(m)

(
(prn e), ρ̂, κ

)
→

(
e′, ρ̂, κ

)
, where (n)

e′ = λy (if y 6= ǫ then (e y (prn e (d y))) else (e ǫ ǫ))

(
(crec c (λrx e)), ρ̂, κ

)
→

(
e′, ρ̂, κ

)
, where (o)

e′ = (λ~v (if |v0| ≤ |c| then ǫ else e′′) and

e′′ = (e[x : = crec c0(c) (λrx e)] ~v )

Figure 20: The CEK-rewrite rules

11.1. The CEK machine. The operational semantics for PCF, BCL, and ATR are provided
by the abstract machine whose rules are given in Figure 20. The machine is based on
Felleisen and Friedman’s CEK-machine [FF87] as presented by Felleisen and Flatt [FF06].
States in this machine are triples consisting of: (i) an expression to be reduced or else a
value, (ii) an environment, and (iii) a continuation. CEK-environments, closures, and values
are defined recursively by:

CEK-Environments = Variables
finite
→ Closures.

Closures = (Terms ∪ Values) × CEK-Environments.

Values = Strings ∪ Oracles ∪ λ-Terms.

An oracle is just an element of
⋃

k>0 TC(Nk)→N. Note that the result of applying an oracle

value O ∈ TC(Nk+1)→N to a v ∈ N is the oracle value O(v) ∈ TC(Nk)→N, where k > 0. The

continuations should be self-explanatory from the rules—and if not, see [FWH01].
The CEK rules use the following variables (plain and decorated) with indicated ranges.

B:Basic-Operations (i.e., c0, c1, d, t0, and t1); κ:Continuations; e:Terms; O:Oracles; ρ̂:CEK-
Environments; v:Values; and x:Variables. Also, δ1(B, v) returns the value of the given
basic-operation on the given value and δ2(v, v′) returns down(v, v′). For each expression e
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and CEK-environment ρ̂ with FV (e) ⊆ preimage(ρ̂),

evalCEK(e, ρ̂)
def
=

{
v, if

(
e, ρ̂, halt

)
→∗

(
v, ρ̂′, halt

)
;

undefined, if there is no such v and ρ̂′.

For each ordinary environment ρ = {x1 7→ v1, . . . , xk 7→ vk }, let ρ∗ be the correspond-

ing CEK-environment, i.e, {x1 7→ (v1, {}), . . . , xk 7→ (vk, {}) }, and let evalCEK(e, ρ)
def
=

evalCEK(e, ρ∗).

11.2. The CEK cost model. We assume that the underlying model of computation is
along the lines of Kolmogorov and Uspenskii’s [KU58] “pointer machines” or Schönhage’s
storage modification machines [Sch80]. A string is represented by a linked list of 0’s and
1’s. We take the cost of evaluating an expression e to be the sum of the cost of the steps
involved in evaluating e on the CEK machine. We charge unit cost for for CEK-steps that
do not involve operations on strings or else carry out operations that work on just the fronts
of strings (e.g., ca, d, and ta). For steps that involve copying or examining the entirety of
arbitrary strings (rules (e), (f), and (j)), our charge involves the sum of the lengths of the
strings involved. Specifically:

(j) Oracle application. Applying this rule has cost 1 ∨ |O(v)| when O(v) is of base
type and 1 otherwise. (When O(v) is of base type, an application of the oracle pops into
memory a string of length |O(v)|. We view the action of entering this string in memory,
character-by-character, as observable.)

(e) δ2 application. Applying this rule has cost 1 + |v|+ |v′|. (down looks at the entirety
of its arguments.)

(f) Environment application. Applying this rule has cost 1 ∨ |ρ̂(x)| when ρ̂(x) is of a
base type and 1 otherwise. (Since our CEK machine starts with an arbitrary environment,
the environment is essentially another oracle.)

Given this assignments of costs, we introduce:

Definition 48. For each expression e and CEK-environment ρ̂,

costCEK(e, ρ̂)
def
=





s, if evalCEK(e, ρ̂) is defined, where s is the sum of
the costs of the steps in this CEK-computation;

undefined, otherwise.

and for each ordinary environment ρ, costCEK(e, ρ)
def
= costCEK(e, ρ∗).

We note that the standard proof that storage modification machines and Turing ma-
chines are polynomially-related models of computation [Sch80] straightforwardly extends to
show that, at type-levels 1 and 2, our CEK model of computation and cost is (second-order)
polynomially related to Kapron and Cook’s oracle Turing machines under their answer-
length cost model [KC96].

12. Time bounds

As the next step towards showing polynomial time-boundedness for ATR, the present
section sets up a formal framework for working with time bounds. We start by noting the
obvious: Run time is not an extensional property of programs. That is, Vwt-equivalent
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expressions can have quite distinct run time properties. Because of this we introduce T , a
new semantics for ATR that provides upper bounds on the time complexity of expressions.

The setting. Our framework for time complexities uses the following simple setting.
CEK costs. Time costs are assigned to ATR-computations via the CEK cost model.
Worst-case bounds. T [[e]] will provide a worst-case upper bound on the CEK cost of

evaluating e, but not necessarily a tight upper bound.
No free lunch. All evaluations have positive costs. This even applies to “immediately

evaluating” expressions (e.g., λ-expressions), since checking whether something “immediate-
evaluates” counts as a computation with costs.

Inputs as oracles. We treat each type-level 1 input f as an oracle. In a time-complexity
context this means that f is thought of answering any query in one time step, or equivalently,
any computation involved in determining the reply to a query happens unobserved off-stage.
Thus the cost of a query to f involves only (i) the time to write down a query v, and (ii) the
time to read the reply f(v). The times (i) and (ii) are bounded by roughly |v| and |f |(|v|),
respectively. Thus our time bounds will ultimately be expressed in terms of the lengths of
the values of free and input variables.

Currying and time complexity. In common usage, “the time complexity of e” can mean
one of two things. When e is of base type, the phrase usually refers to the time required to
compute the value of e. We might think of this as time past—the time it took to arrive at
e’s value. When e is of an arrow type and thus describes a procedure, the phrase usually
refers to the function that, given the sizes of arguments, returns the maximum time the
procedure will take when run on arguments of the specified sizes. We might think of this as
time in possible futures in which e’s value is applied. An expression can have both a past
and futures of interest. Consider (e0 e1) where e0 is of type Nε → Nε → N⋄ and e1 is of type
Nε. Then (e0 e1) has a time complexity in the first sense as it took time to evaluate the
expression, and, since (e0 e1) is of type Nε → N⋄, it also has a time complexity in the second
sense. Now consider just e0 itself. It too can have a nontrivial time complexity in the first
sense and the potential/futures part of e0’s time complexity must account for the multiple
senses of time complexity just attributed to (e0 e1). Type-level-2 expressions add further
twists to the story. Our treatment of time complexity takes into account these extended
senses.

Costs and potentials. In the following the time complexity of an expression e always has
two components: a cost and a potential. A cost is always a positive (tally) integer and is
intended to be an upper bound on the time it takes to evaluate e. The form of a potential
depends on the type of e. Suppose e is of a base (i.e., string) type. Then e’s potential is
intended to be an upper bound on the length of its value, an element of ω. The length of e’s
value describes the potential of e in the sense that when e’s value is used, its length is the
only facet of the value that plays a role in determining time complexities. Now suppose e

is of type, say, Nε → N⋄. Then e’s potential will be an fe ∈ (ω → ω×ω) that maps a p ∈ ω

(the length/potential of the value of an argument of e) to a (cr, pr) ∈ ω × ω where cr is the
cost of applying the value of e to something of length p and pr is the length/potential of
the result. Note that (cr, pr) is a time complexity for something of base type. Generalizing
from this, our motto will be:
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The potential of a type-(σ → τ) thing is a map from potentials of type-σ

things to time complexities of type-τ things.21

Our first task in making good on this motto is to situate time complexities in a suitable
semantic model.22

A model for time complexities. The time types are the result of the following transla-
tions (‖ · ‖ and 〈〈 · 〉〉) of ATR types:

‖σ‖
def
= T × 〈〈σ〉〉. 〈〈Nℓ〉〉

def
= Tℓ. 〈〈σ → τ〉〉

def
= 〈〈σ〉〉 → ‖τ‖ .

So, ‖Nℓ1 → Nℓ2 → Nℓ0‖ = T × (Tℓ1 → T × (Tℓ2 → T × Tℓ0)) and ‖(Nℓ1 → Nℓ2) → Nℓ0‖ =
T × ((Tℓ1 → T × Tℓ2) → T × Tℓ0). The time types are thus a subset of the simple product
types over {T, Tǫ, T⋄, T✷⋄, . . . }. The intent is that T is the type of costs, the Tℓ’s help
describe lengths, ‖γ‖ is the type of complexity bounds of type-γ objects, and 〈〈γ〉〉 is the
type of potentials of type-γ objects. (Note: 〈〈σ → τ〉〉’s definition parallels the motto.)

Our proof of polynomial time-boundedness for ATR (Theorem 79) needs to intertwine
the size estimates implicit in potentials and the size bounds of Theorem 43. The semantics
for the time types thus needs to be an extension of the Lwt-semantics. To define this
extension we use a combinator, Pot, defined in Definition 60 below. For the moment it
is enough to know that, for each ATR-type σ and p ∈ Lwt[[〈〈σ〉〉]], Pot(p) ∈ Lwt[[|σ|]] is a
canonical projection of p to a type-|σ| size bound. Following the definition of Pot, Lemma 61
notes that all of the notions introduced between here and there mesh properly.

Definition 49 (Lwt extended to the time types). Suppose σ and τ are ATR types. Then

Lwt[[‖σ‖]]
def
= ω × Lwt[[〈〈σ〉〉]] and Lwt[[〈〈σ〉〉]] is inductively defined by Lwt[[〈〈Nℓ〉〉]]

def
= ω and

Lwt[[〈〈σ → τ〉〉]]
def
= the set of all monotone Kleene-Kreisel functionals f :Lwt[[〈〈σ〉〉]] → Lwt[[‖τ‖]]

such that: (i) Pot(f) ∈ Lwt[[|σ → τ |]] and (ii) Pot(f(p1)) = Pot(f(p2)) whenever Pot(p1) =
Pot(p2).

Condition (i) above restricts Lwt[[〈〈σ → τ〉〉]] so that the projection Pot acts as advertised.
Condition (ii) restricts each f ∈ Lwt[[〈〈σ → τ〉〉]] so that the size information in f(p) depends
only on the size information in p.

We can now define the T (time-complexity) and P (potential) interpretations of the
ATR types. (The P-interpretation is a notational convenience.)

Definition 50. Suppose σ is an ATR-type. Then T [[σ]]
def
= Lwt[[‖σ‖]] and P[[σ]]

def
= Lwt[[〈〈σ〉〉]].

The T -interpretation of constants and oracles. The following two definitions intro-
duce a translation from the Vwt model into the T model. We use this translation to assign
time complexities to program inputs: string constants and oracles.

Definition 51. Let ‖a‖
def
= (1 ∨ |a|, 〈〈a〉〉) and 〈〈a〉〉

def
= |a| for each a ∈ Vwt[[Nℓ]].

21In a more general setting (e.g., call-by-name), a (σ → τ ) potential is a map from σ-time-complexities
to τ -time-complexities, as an operator may be applied to an unevaluated operand.

22
N.B. The time-complexity cost/potential distinction appears in prior work [San90, Shu85, VS03]. Re-

mark 82 below discusses this prior work and how it relates to ours.
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By Lemma 61(a) below, ‖a‖ ∈ T [[Nℓ]]. We view ‖a‖ as the time complexity of the
string/integer constant a. The interpretation of the cost component of ‖a‖ is that the cost
of evaluating the constant a is the cost of writing down a character by character. (When
a = ǫ, we still charge 1.)

Definition 52. Let ‖f‖
def
= (1, 〈〈f〉〉) and 〈〈f〉〉

def
= λp ∈ P[[σ]] max { ‖(f v)‖ 〈〈v〉〉 ≤ p } for

each f ∈ Vwt[[σ → τ ]].

By Lemma 61(a) below, ‖f‖ ∈ T [[σ → τ ]]. We view ‖f‖ as the time complexity of f as
an oracle: the only time costs associated with applying f are those involved in setting up
applications of f and reading off the results. Recall that under call-by-value, a λ-expression
immediately evaluates to itself. The function-symbol f will be treated analogously to a
λ-term. Hence, the cost component of ‖f‖ is 1. The definition of 〈〈f〉〉 parallels both our
informal discussion of the notion of the potential of a type-level 1 function and the definition
of the length of functions of type levels 1 and 2 in §2.10. One can show that when f is
a type-level 2, 〈〈f〉〉 is total. (The argument is similar to the proof of the totality of the
type-level 2 notion of length defined by (2.3) in §2.10.)

Definition 51 and the type-level 1 part of Definition 52 describe the time complexities
of possible ATR inputs. The following lemma unpacks the definition of 〈〈f〉〉 for f of type-
level 1. The proof is a straightforward induction and hence omitted.

Lemma 53. For f ∈ Vwt[[(Nℓ1 , . . . ,Nℓk
) → Nℓ0 ]], 〈〈f〉〉 = q1 where qi = λpi ∈ ω (1, qi+1)

(for 1 ≤ i < k) and qk = λpk ∈ ω
(
1 ∨ |f |(p1, . . . , pk), |f |(p1, . . . , pk)

)
.

T -Applications.

Definition 54.

(a) Suppose t0 ∈ T [[σ → τ ]] and t1 ∈ T [[σ]], where t0 = (c0, p0), t1 = (c1, p1), and

(cr, pr) = p0(p1). Then t0 ⋆ t1
def
= (c0 + c1 + cr + 3, pr).

(b) Suppose t0 ∈ T [[(σ1, . . . , σk) → τ ]], t1 ∈ T [[σ1]], . . . , tk ∈ T [[σk]]. Then t0 ⋆ ~t
def
=

t0 ⋆ t1 ⋆ . . . ⋆ tk. (The ⋆ operation left associates.)

By Lemma 61(b) below, t0 ⋆ t1 ∈ T [[τ ]] when t0 ∈ T [[σ → τ ]] and t1 ∈ T [[σ]]. Suppose
that t0 (respectively, t1) is the time complexity of a type-(σ → τ) expression e0 (respectively,
type-σ expression e1). Then t0⋆t1 is intended to be the time complexity of (e0 e1). The cost
component of t0 ⋆ t1 is: (the cost of evaluating e0) + (the cost of evaluating e1) + (the cost
of applying e0’s value to e1’s value) + 3, where the 3 is the CEK-overhead of an application.
The potential component is simply the potential of the result of the application. The next
lemma works out of the effect of the ⋆ operation for type-level 1 oracles.

Lemma 55. Suppose f ∈ Vwt[[(Nℓ1 , . . . ,Nℓk
) → Nℓ0 ]], v1 ∈ Vwt[[Nℓ1 ]], . . . , vk ∈ Vwt[[Nℓk

]].
Then

‖f‖ ⋆
−−→
‖v‖ =

(
(
∑k

i=1(1 ∨ |vi|)) + 1 ∨ |f |(
−→
|v|) + 5k − 1, |f |(

−→
|v|)

)
, (12.1)

where
−−→
‖v‖ abbreviates ‖v1‖ , . . . , ‖vk‖ and

−→
|v| abbreviates |v1|, . . . , |vk|.

The proof is a straightforward calculation. Equation (12.1) can be interpreted as giving
an upper bound on the time complexity of applying an oracle f to arguments v1, . . . , vk.
Let us consider the cost component of the k = 1 and k = 2 cases of (12.1) in more detail.
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1 = the cost of evaluating f

1 ∨ |v1| = the cost of evaluating v1, i.e., the cost of writing down the value v1

1 ∨ |f |(|v1|) = the cost of applying f to v1, i.e., the cost of writing down f(v1)’s value
3 = the overhead of the application

Figure 21: Break down of the cost component of ‖f‖ ⋆ ‖v1‖

For k = 1, the right-hand side of (12.1) simplifies to: ((1∨ |v1|)+ 1∨ |f |(|v1|)+ 4, |f |(|v1|)).
Its cost component is broken down in Figure 21. For k = 2, the right-hand side of (12.1)
simplifies to:

(
(1 ∨ |v1|) + (1 ∨ |v2|) + 1 ∨ |f |(|v1|, |v2|) + 9, |f |(|v1|, |v2|)

)
. We leave it to

the reader to break down its cost component.

T -Environments. As a companion to T -application we shall define an analogue of cur-
rying in T . First, we introduce T -environments. Recall that in a call-by-value language,
variables name values [Plo75], i.e., the end result of a (terminating) evaluation. Thus, a
value does not need to be evaluated again, at least no more than an input value does. Hence,
if a T -environment maps a variable to a type-γ time complexity (c, p), then c should be:
1 ∨ p, when γ is a base type, and 1, when γ is an arrow type.

Definition 56. Suppose σ and τ vary over ATR types and Γ;∆ is an ATR is type context.

(a) ‖Γ;∆‖
def
= {x 7→ ‖σ‖ (Γ;∆)(x) = σ }.

(b) For p ∈ P[[Nℓ]], val(p)
def
= (1 ∨ p, p).

(c) For p ∈ P[[σ → τ ]], val(p)
def
= (1, p).

(d) Tval[[σ]]
def
= { val(p) p ∈ P[[σ]] }.

(e) T [[Γ;∆]] is the set of all finite maps of the form {x1 7→ t1, . . . , xk 7→ tk }, where
{x1, . . . , xk } = preimage(Γ;∆), and, for i = 1, . . . , k, ti ∈ Tval[[(Γ;∆)(xi))]].

(f) For each ρ ∈ Vwt[[Γ;∆]], define ‖ρ‖ ∈ T [[Γ;∆]] by ‖ρ‖ (x) = ‖ρ(x)‖. Such as ‖ρ‖ is
called an oracle environment.

Convention: We use ̺ as a variable over T -environments. N.B. Not every ̺ of interest
is an oracle environment.

T -currying. Here then is our time-complexity analogue to currying. Recall that T [[Γ;∆ ⊢
e: τ ]] will be (when we get around to defining it) a function from T [[Γ;∆]] to T [[τ ]].

Definition 57. Suppose (i) Γ;∆ is a ATR type context with (Γ;∆)(xi) = σi, for i = 1, . . . , k;
(ii) Γ′;∆′ is the result of removing x1: σ1 from Γ;∆; and (iii) X is a function from T [[Γ;∆]]
to T [[τ ]]. Then Λ⋆(x1,X) is the function from T [[Γ′;∆′]] to T [[σ1 → τ ]] given by:

Λ⋆(x1,X) ̺′
def
=

(
1, λp ∈ P[[σ1]] (X (̺′ ∪ {x1 7→ val(p) }))

)
, (12.2)

where ̺′ ∈ T [[Γ′;∆′]]. Also, Λ⋆(x1, x2, . . . , xk,X)
def
= Λ⋆(x1,Λ⋆(x2, . . . , xk,X)) when k > 1.

Note the complementary roles of Λ⋆ and ⋆: Λ⋆ shifts the past (the cost) into the future
(the potential) and ⋆ shifts part of the future (the potential) into the past (the cost). This
being complexity theory, there are carrying charges on all this shifting. This is illustrated
in the next lemma that shows how Λ⋆ and ⋆ interact. First, we introduce:



ADVENTURES IN TIME AND SPACE 39

Definition 58. dally(d, (c, p))
def
= (c + d, p) for d ∈ ω and (c, p), a time complexity.

Lemma 59 (Almost the η-law). Suppose Γ, ∆, X, ~x, ~σ, and τ are as in Definition 57.
Let Γ′;∆′ be the result of removing x1: σ1, . . . , xk:σk from Γ;∆. Let ̺ ∈ T [[Γ;∆]] and let ̺′

be the restriction of ̺ to preimage(Γ′;∆′). Then
(
Λ⋆(x1, . . . , xk,X) ̺′

)
⋆ ̺(x1) ⋆ . . . ⋆ ̺(xk) = dally(5 · k + 4 +

∑k
i=1ci, X ̺), (12.3)

where (c1, p1) = ̺(x1), . . . , (ck, pk) = ̺(xk).

The lemma’s proof is another straightforward calculation.

Projections. The next definition introduces a way of recovering more conventional bounds
from time complexities. Note, by Definitions 51 and 52, and Lemmas 53 and 55, when v is
a string constant or a type-1 oracle, the value of ‖v‖ is a function of the value of |v|. So,
by an abuse of notation, we treat ‖v‖ as a function of |v| for such v.

Definition 60. Suppose σ and (σ1, . . . , σk) → Nℓ are ATR types.

(a) For each t ∈ T [[σ]], let cost(t)
def
= π1(t) and pot(t)

def
= π2(t). (So, t = (cost(t), pot(t)).)

(b) For each t ∈ T [[Nℓ]], let Cost(t) = cost(t) and Pot(t) = pot(t) and, for each t ∈
T [[(σ1, . . . , σk) → Nℓ]], let:

Cost(t)
def
= λ

−→
|v| cost(t ⋆

−−→
‖v‖). Pot(t)

def
= λ

−→
|v| pot(t ⋆

−−→
‖v‖).

where
−→
|v| abbreviates |v1| ∈ Lwt[[σ1]], . . . , |vk| ∈ Lwt[[σk]] and

−−→
‖v‖ abbreviates ‖v1‖ , . . . , ‖vk‖.

(So, t ⋆
−−→
‖v‖ = (Cost(t)(

−→
|v|),Pot(t)(

−→
|v|)).) We call Cost(t) and Pot(t), respectively, the base

cost and base potential of t.

(c) For each p ∈ P[[σ]], let Pot(p)
def
= Pot( (1, p) ).

Suppose t is the time complexity of e of type (~σ) → Nℓ. Then both Cost(t) and Pot(t)

are functions of the sizes of possible arguments of e. The intent is that Cost(t)(
−→
|v|) is an

upper bound on the time cost of first evaluating e and then applying its value to arguments
of the specified sizes and that Pot(t) is an upper bound on the length of e’s value.

With Pot’s definition in hand, we make good on the promise to check that the notions
defined between Definitions 49 and 60 make sense.

Lemma 61. Suppose σ and σ → τ are ATR types.
(a) For each v ∈ Vwt[[σ]], ‖v‖ ∈ T [[σ]] and Pot(v) = |v|.
(b) For each t0 ∈ T [[σ → τ ]] and t1 ∈ T [[σ]], t0 ⋆ t1 ∈ T [[τ ]].
(c) Λ⋆ is well-defined in the sense that the left-hand side of (12.2) is in T [[σ1 → τ ]] as

asserted in Definition 61.

All three parts follow straightforwardly from the definitions.

Time-complexity polynomials. To complete the basic time-complexity framework, we
define an extension of the second-order polynomials for the simple product types over T,
Tε, T⋄, . . . under the L-semantics. The restriction of these to the time types under the
Lwt-semantics are the time-complexity polynomials. First we extend the grammar for raw
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T [[k]] ̺
def
= ‖k‖ T [[(ca e0)]] ̺

def
= (c0 + 2, p0 + 1).

T [[(ta e0)]] ̺
def
= (c0 + 2, 1). T [[(d e0)]] ̺

def
= (c0 + 2, (p0 − 1) ∨ 0).

T [[v]] ̺
def
= ̺(v). T [[(down e0 e1)]] ̺

def
= (c0 + c1 + p0 + p1 + 3, min(p0, p1)).

T [[(λx e0)]] ̺
def
= Λ⋆(x, T [[e0]]) ̺. T [[(e0 e1)]] ̺

def
= (T [[e0]] ̺) ⋆ (T [[e1]] ̺).

T [[(if e0 then e1 else e2)]] ̺
def
= (c0 + 2, 0) + (c1, p1) ∨ (c2, p2).

Above: k is a string constant, ̺ ∈ T [[Γ; ∆]], and (ci, pi) = T [[Γ; ∆ ⊢ ei: γi]] ̺ for i = 0, 1, 2.

Figure 22: The T -interpretation of ATR−.

expressions to include: P : : = (P,P ) | π1(P ) | π2(P ). Then we add the following new
typing rules for second-order polynomials:

Σ ⊢ p:σ1 × σ2

Σ ⊢ πi(p):σi

Σ1 ⊢ p1:σ1 Σ2 ⊢ p2: σ2

Σ1 ∪ Σ2 ⊢ (p1, p2): σ1 × σ2

Σ1 ⊢ p1: σ Σ2 ⊢ p2:σ

Σ1 ∪ Σ2 ⊢ p1 ⊙ p2: σ

where σ, σ1, and σ2 simple product types over T, Tε, T⋄, . . . and ⊙ stands for any of ∗,
+, or ∨. Next we extend the arithmetic operations to all types by recursively defining, for
each γ and each u, v ∈ L[[γ]]:

u ⊙ v
def
=





the standard thing, if γ = T;

(π1(u) ⊙ π1(v), π2(u) ⊙ π2(v)), if γ = σ × τ ;

λz ∈ L[[σ]] (u(z) ⊙ v(z)), if γ = σ → τ.

(12.4)

Finally, the L-interpretation of the polynomials is just the standard definition.

Remark 62. Note that q1 of Lemma 53 and the right-hand sides of (12.1) and (12.3) are
well-typed, time-complexity polynomials. Also note that by Definition 54(a), if q1 and q2 are
time-complexity polynomials with ‖Γ;∆‖ ⊢ q1: ‖σ → τ‖ and ‖Γ;∆‖ ⊢ q2: ‖σ‖, then q1 ⋆ q2

is a time-complexity polynomial with ‖Γ;∆‖ ⊢ q1 ⋆ q2: ‖τ‖.

13. The time-complexity interpretation of ATR−

Here we establish a polynomial time-boundedness result for ATR−, the subsystem of
ATR obtained by dropping the crec construct. Definition 63 introduces the T -interpretation
of ATR− and the proof of Theorem 67 shows that ATR−-expressions have time complexities
that are polynomial bounded and well-behaved in other ways. All of this turns out to
be pleasantly straightforward. The hard work comes in the following two sections: §14
establishes a key time-complexity decomposition property concerning the affine types and
§15 uses this decomposition to define the T -interpretation of crec expressions and to prove
a polynomial boundedness theorem for ATR time complexities.

Convention: Through out this section suppose that γ, σ, and τ are ATR types and Γ;∆
is an ATR type context.

Definition 63. Figure 22 provides the T -interpretation for each ATR− construct.
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We note that our T -interpretation of ATR− is well-defined in the sense that T [[Γ;∆ ⊢
e: γ]] ̺ ∈ T [[γ]] for each ATR− judgment Γ;∆ ⊢ e: γ and ̺ ∈ T [[Γ;∆]]. (This follows from
Lemma 61 and some straightforward calculations.) Here is a simple application of Defini-
tion 63. Let g = (λy (c0 (c0 y))): Nε → N⋄ and A = (λf (λx (f x)) ): (Nε → N⋄) → Nε →
N⋄. We write T [[e]] for T [[e]]{} to cut some clutter. The reader may check that:

T [[g]] = (1, λpy ∈ P[[Nε]] (1 ∨ py + 4, py + 2)).

T [[A]] =
(
1, λpf ∈ P[[Nε → N⋄]]

(
1, λpx ∈ P[[Nε]] val(pf ) ⋆ val(px)

))
.

T [[(A g)]] = (T [[A]]) ⋆ (T [[g]]) = dally(7,T [[g]]).

There are three key things to establish about the time complexities assigned by T , that
they are: not too big, not too small, and well-behaved. “Not too big” means that the time
complexities are polynomially-bounded in the sense of Definition 64 below. “Not too small”
means that costCEK(e, ρ) ≤ cost(T [[e]] ‖ρ‖) and |Vwt[[e]] ρ| ≤ Pot(T [[e]] ‖ρ‖). This “not too
small” property (soundness) is introduced in Definition 65. Finally, “well-behaved” means
that the T -assigned time complexities are monotone (Definition 66) which requires that
T [[e]] ̺ ≤ T [[e]] ̺′ when ̺ ≤ ̺′ (see Definition 66(a)) and that when T [[e]] ̺ is a function,
it is pointwise, monotone nondecreasing. Monotonicity plays an important role in dealing
with crec. Theorem 67 establishes that the T -interpretation of ATR− satisfies each of these
properties. Let F range over programming formalisms (e.g., ATR− or ATR) in the following.

Definition 64 (Polynomial time-boundedness). A T -interpretation of F is polynomial time-
bounded when, given Γ;∆ ⊢F e: γ, we can effectively find a time-complexity polynomial pe

with |Γ;∆| ⊢ pe: ‖γ‖ such that T [[e]] ‖ρ‖ ≤ Lwt[[pe]] |ρ| for each ρ ∈ Vwt[[Γ;∆]].

Definition 65 (Soundness). A T -interpretation of F is sound when, for each Γ;∆ ⊢F

e: γ and each ρ ∈ Vwt[[Γ;∆]], we have costCEK(e, ρ) ≤ cost(T [[e]] ‖ρ‖) and
∣∣Vwt[[e]] ρ

∣∣ ≤
Pot(T [[e]] ‖ρ‖).

Definition 66 (Monotonicity).
(a) For ̺, ̺′ ∈ T [[Γ;∆]], we write ̺ ≤ ̺′ when ̺(x) ≤ ̺′(x) for each x ∈ preimage(Γ;∆).
(b) We say that a T -interpretation of F is monotone when, for each Γ;∆ ⊢F e: γ: (i)

T [[e]] is a pointwise, monotone nondecreasing function from T [[Γ;∆]] to T [[γ]], and (ii) if
γ = (σ0, . . . , σk) → b, then the function from T [[Γ;∆]]×T [[σ0]]× · · · × T [[σk]] to T [[b]] given
by (̺, v0, . . . , vk) 7→ ((T [[e]] ̺) v0 . . . vk) is pointwise, monotone nondecreasing.

Theorem 67. The T -interpretation of ATR− is (a) polynomial time-bounded, (b) mono-
tone, and (c) sound.

The proofs of parts (a) and (b) are straightforward standard structural inductions, but
the argument for (c) is a logical-relations arguments [Win93]. Before proving the above we
first introduce a few useful time-complexity polynomials.

Definition 68. N.B. The following definitions are purely syntactic. Suppose v ∈ N. Let

‖v‖
def
= (1 ∨ |v|, |v|). For each b, let ‖x‖

b

def
= (1 ∨ |x|, |x|). For each γ = (b1, . . . ,bk) →

b0, let ‖x‖γ

def
= (1, q1) where qi = λpi (1, qi+1)), for each i with 1 ≤ i < k, and qk =

λpk

(
1 ∨ |x|(p1, . . . , pk), |x|(p1, . . . , pk)

)
. (Recall Lemma 53.)

Note that if Γ;∆ ⊢ x: γ where x is a variable, then |Γ;∆| ⊢ ‖x‖ : ‖γ‖.

Proof of Theorem 67(a): Polynomial time-boundedness. Fix an ATR−-judgment Γ;∆ ⊢ e: γ.
Let ρ range over Vwt[[Γ;∆]]. We have to effectively construct a t.c. polynomial qe as required
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by Definition 64. The argument is yet another a structural induction on the derivation of
Γ;∆ ⊢ e: γ. We consider the cases of the last rule used in the derivation.

Cases: Zero-I and Const-I. Then e = v ∈ N and γ is a base type. Let qe = ‖v‖. By
Definition 63, T [[v]] ‖ρ‖ = (1 ∨ |v|, |v|) = Lwt[[qe]] |ρ| and thus qe suffices.

Cases: Int-Id-I and Aff-Id-I. Then e = x, a variable. Then by Definition 63, T [[x]] ‖ρ‖ =
‖ρ‖ (x) = ‖ρ(x)‖. Let qe = ‖x‖γ . Subcase: γ is a base type. By Definition 68(b),

qe = (1 ∨ |x|, |x|). So by Definition 51, ‖ρ(x)‖ = Lwt[[qe]] |ρ| and thus qe suffices. Sub-
case: γ = (b1, . . . ,bk) → b0. By Definition 68(c), qe = (1, q1), where q1, . . . , qk are as in
that definition. By Lemma 53, ‖ρ(x)‖ = Lwt[[qe]]|ρ| and thus qe suffices.

Case: ca-I, where a ∈ {0,1 }. Then e = (ca e0) for some e0 and γ = N⋄d
for some d.

Let (c0, p0) = T [[e0]] ‖ρ‖. By Definition 63, T [[e]] ‖ρ‖ = (c0 + 2, p0 + 1). By the induction
hypothesis, we can construct qe0

with |Γ;∆| ⊢ qe0
: N⋄d

such that T [[e0]] ‖ρ‖ ≤ Lwt[[qe0
]] |ρ|.

Thus, qe = qe0
+ (2, 1) suffices.

Cases: t0-I , t1-I , down-I , d-I, →-e, and If-I. These follow by arguments analogous to
the proof for the ca-I case.

Cases: Subsumption and Shifting. There is nothing to prove here.
Case: →-E. Then e = (e0 e1) for some e0 and e1 with Γ;∆ ⊢ e0: τ → γ and Γ; ⊢

e1: τ . By the induction hypothesis, we can construct q0 and q1, bounding time-complexity
polynomials for T [[e0]] and T [[e1]], respectively. Let qe = q0 ⋆q1. By Remark 62, qe is a time-
complexity polynomial and it follows from the monotonicity of ⋆ that T [[(e0 e1)]] ‖ρ‖ =
(T [[e0]] ‖ρ‖) ⋆ (T [[e1]] ‖ρ‖) ≤ (q0 ‖ρ‖) ⋆ (q1 ‖ρ‖) = qe ‖ρ‖. Thus, qe suffices.

Case: →-I. Then γ = σ → τ and e = (λx e0) for some e0 with Γ, x: σ;∆ ⊢ e0: τ .
By Definitions 57 and 63 we thus have T [[e]] = Λ⋆(x,T [[e0]]). By the induction hypothesis,
we can construct qe0

with |Γ, x:σ;∆| ⊢ qe0
: ‖τ‖ with T [[e0]] ‖ρ

′‖ ≤ Lwt[[qe0
]] |ρ′| for each

ρ′ ∈ Vwt[[Γ, x: σ;∆]]. Subcase: σ is a base type. So, 〈〈σ〉〉 = T × σ. Let qe = (1, λ|x| qe0
). A

straightforward argument shows that qe suffices for the polynomial bound. Subcase: σ =

(σ1, . . . , σk) → b. Let p′ be the expression λ
−→
|y| π2

(
(1, p) ⋆

−−→
‖y‖

)
, where

−→
|y| = |y1|, . . . , |yk|

and
−−→
‖y‖ = (1∨|y1|, |y1|), . . . , (1∨|yk|, |yk|). (See Definition 60(b).) Let p′′ be the expansion

of p′ in which p is treated as being of type 〈〈σ〉〉 and the T -applications are expanded out
per Definition 54. It follows that p′′ is a time complexity polynomial with |Γ|, p: 〈〈σ〉〉; |∆| ⊢
p′′: |σ|. Let qe = (1, λp qe0

[|x| : = p′′]). Again, a straightforward argument shows that qe

suffices for the polynomial bound.

Theorem 67(a)

Proof of Theorem 67(b): Monotonicity. This argument follows along the lines of the proof
of part (a) and is left to the reader.

Theorem 67(b)
For the proof of soundness, we shall first define a logical relation ⊑tc

γ between CEK-

closures and time-complexities. Roughly, eρ̂ ⊑tc
γ (c, p) says that the time complexity (c, p)

bounds the cost of evaluating the closure eρ̂. Conventions on CEK-closures: CEK-closures
are written eρ̂. (We always assume FV (e) ⊆ preimage(ρ̂).) A CEK-closure eρ̂ is called
a value when e is a CEK-value. eρ̂ ↓ vρ̂′ means that starting from (e, ρ̂, halt), the CEK-
machine eventually ends up with (v, ρ̂′, halt), where vρ̂′ is a value. Below, v ranges over
CEK-values and p and q range over potentials.

Definition 69.
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(a) For each ATR-type γ we define a relation ⊑tc
γ between type-γ CEK-closures and

time complexities and a second relation ⊑pot
γ between type-γ CEK-closures and potentials

as follows.

• eρ̂ ⊑tc
γ (c, p) ≡def costCEK(e, ρ̂) ≤ c & vρ̂′ ⊑pot

γ p, where eρ̂ ↓ vρ̂′.

• vρ̂ ⊑pot
b

p ≡def |vρ̂| ≤ p.

• (λx e)ρ̂ ⊑pot
σ→τ p ≡def for all vρ̂′ and all q with vρ̂′ ⊑pot

σ q, e(ρ̂[x 7→ vρ̂′]) ⊑tc
τ p(q).

• Oρ̂ ⊑pot
γ→τ p ≡def for all vρ̂′ and all q with vρ̂′ ⊑pot

γ q, O(vρ̂′){} ⊑tc
τ p(q).

(b) Suppose ̺ ∈ T [[Γ;∆]]. We write ρ̂ ⊑ ̺ when, for each x ∈ preimage(ρ̂), xρ̂ ⊑tc
γ ̺(x),

where γ = (Γ;∆)(x).
(c) Suppose Γ;∆ ⊢ e: γ and X: T [[Γ;∆]] → T [[γ]]. We write e ⊑tc

γ X when, for all

CEK-environments ρ̂ and ̺ ∈ T [[Γ;∆]] with ρ̂ ⊑ ̺, eρ̂ ⊑tc
γ X̺.

Lemma 70.

(a) Suppose x is a variable and vρ̂ ⊑pot
γ q. Then x(ρ̂′ ∪ {x 7→ vρ̂ }) ⊑tc

γ val(q).

(b) Suppose Γ;∆ ⊢ e: γ. Then e ⊑tc
γ T [[e]].

(c) Suppose eρ̂ is a type-γ CEK-closure and t and t′ are type-γ time complexities with
eρ̂ ⊑tc

γ t and t ≤ t′. Then eρ̂ ⊑tc
γ t′.

Proof. Part (a). Since vρ̂ ⊑pot
γ q = pot(val(q)), we just need to show that costCEK(x(ρ̂′ ∪

{x 7→ vρ̂ })) ≤ cost(val(q)). If γ is a base type, then |v| ≤ q, hence costCEK(x(ρ̂′ ∪ {x 7→
vρ̂ })) = 1 ∨ |v| ≤ 1 ∨ q = cost(val(q)).

Part (b). The argument is a structural induction on the derivation of Γ;∆ ⊢ e: γ. We
consider the cases of the last rule used in the derivation. Fix a CEK-environment ρ̂ and a
̺ ∈ T [[Γ;∆]] with ρ̂ ⊑ ̺.

Case: Zero-I and Const-I. Then e = v, a string constant. So, T [[e]] ̺ = (1 ∨ |v|, |v|),
costCEK(e, ρ̂) = 1 ≤ 1 ∨ |v|, and |e ̺| = |v|. Hence, e is as required.

Case: Int-Id-I and Aff-Id-I. Then e = x, a variable. Since ρ̂ ⊑ ̺, we have xρ̂ ⊑tc
γ

̺(x) = T [[x]] ̺. Hence, e is as required.
Case: ca-I, where a ∈ {0,1 }. Then e = (ca e0) where Γ;∆ ⊢ e0: γ and γ is a base

type. Let (c0, p0) = T [[e0]] ̺ and suppose e0ρ̂ ↓ vρ̂′. By the induction hypothesis applied
to e0, we know costCEK(e0, ρ̂) ≤ c0 and |vρ̂′| ≤ p0. By inspection of the CEK machine
and the definition of costCEK, costCEK(ca e0, ρ̂) = costCEK(e0, ρ̂) + 2 ≤ c0 + 2. It also
follows that (ca e0)ρ̂ ↓ (a ⊕ v)ρ̂′ and |(a ⊕ v)ρ̂′| = |vρ̂′| + 1 ≤ p0 + 1. By Definition 63,
T [[e]] ‖ρ‖ = (c0 + 2, p0 + 1). Hence, e is as required.

Cases: t0-I , t1-I , down-I , d-I, →-E, and If-I. These follow by arguments analogous to
the proof for the ca-I case.

Cases: Subsumption and Shifting. There is nothing to prove here.
Case: →-I. Then γ = σ → τ and e = (λx e0) for some e0 with Γ, x: σ;∆ ⊢ e0: τ . So, by

Definition 63, cost(T [[λx e0]] ̺) = 1 and λx e0 ̺ is itself a value. Since costCEK(λx e0, ρ̂) =

1, all that is left to show is that (λx e0)ρ̂ ⊑pot
σ→τ pot(T [[λx e0]] ̺). Let p = pot(T [[λx e0]] ̺) =

pot(Λ⋆(x,T [[e0]]) ̺) = λp′ ∈ P[[σ]] (T [[e0]] (̺
′∪{x 7→ val(p′) })), let vρ̂ be an arbitrary type-σ

value and let q be an arbitrary potential with vρ̂ ⊑pot
σ q. Then establishing (λx e0)ρ̂ ⊑pot

σ→τ

T [[λx e0]] ̺ is equivalent to showing e0(ρ̂[x 7→ vρ̂′]) ⊑tc
τ p(q) By part (a), x(ρ̂∪{x 7→ vρ } ⊑tc

σ

val(q). Hence, ρ̂∪{x 7→ vρ } ⊑ ̺∪{x 7→ val(q) }. Thus, by the induction hypothesis on e0,
e0(ρ̂[x 7→ vρ̂′]) ⊑tc

τ T [[e0]](̺
′ ∪ {x 7→ val(q) }) = p(q). Hence, e is as required.

Case: →-E. Then e = (e0 e1) for some e0 and e1 with Γ;∆ ⊢ e0:σ → γ and Γ; ⊢ e1: σ.
Suppose e0ρ̂ ↓ v0ρ̂0, e1ρ̂ ↓ v1ρ̂1, (e0 e1)ρ̂ ↓ vrρ̂r, (c0, p0) = T [[e0]]̺, (c1, p1) = T [[e1]]̺, and
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(cr, pr) = p0(p1). By the induction hypothesis on e0 and e1:

(a) costCEK(e0, ρ̂) ≤ c0. (b) v0ρ̂0 ⊑pot
σ p0. (13.1)

(a) costCEK(e1, ρ̂) ≤ c1. (b) v1ρ̂1 ⊑pot
σ p1. (13.2)

There are two subcases to consider based on the form of v0. Subcase: v0 = λx e′0 for
some Γ, x: σ;∆ ⊢ e′0: γ. Then (13.1b) means that, for all type-τ values vρ̂′′ and all q with

vρ̂′′ ⊑pot
σ q, we have e′0 (ρ̂′ ∪ {x 7→ vρ̂′′ }) ⊑tc

γ p0(q). So by (13.2b), e′0ρ̂
′
0 ⊑tc

γ (cr, pr), where

ρ̂′0 = ρ̂′ ∪ {x 7→ v1ρ̂1 }. Now

costCEK((e0 e1), ρ̂) = costCEK(e0, ρ̂) + costCEK(e1, ρ̂) + costCEK(e′0, ρ̂
′
0) + 3

(by Figure 20 & Definition 48)

≤ c0 + c1 + cr + 3 (by (13.1a), (13.2a), & e′0ρ̂
′
0 ⊑tc

γ (cr, pr))

= cost(T [[(e0 e1)]] ̺) (by Definition 63).

Note that e′0ρ̂
′
0 ↓ vrρ̂r. So by e′0ρ̂

′
0 ⊑tc

γ (cr, pr), vrρ̂r ⊑pot
γ pr = pot(T [[(e0 e1)]] ̺). Hence,

in this subcase e is as required. Subcase: v0 is an oracle. The argument here is a repeat,
mutatis mutandis, of the proof of previous subcase.

Part (c). The argument follows along the lines of the proof of (b).

Lemma 70

Proof of Theorem 67(c): Soundness. This follows straightforwardly from Lemma 70(b) and
Definition 60.

Scholium 71. The T -interpretation of ATR− (and later, ATR) sits in-between the ac-
tual costs of evaluating expressions on our CEK machine and the sought-after polynomial
time-bounds on these costs. Why is working with T -interpretations preferable to working
directly with executions of CEK machines and their costs? Part of the reason is that T -
interpretations have built-in to them the cost-potential aspects expressions. One would
somehow have to replicate these in working directly with CEK-computations. Another
part of the reason is that T -interpretations collapse the many possible paths of a CEK-
computation into a single time-complexity. The T -interpretation of if-then-else is chiefly
responsible for these collapses. Scholium 80 notes that these collapses are a source of some
trouble in dealing with crec-expressions.

14. An affine decomposition of time complexities

When analyzing the time complexity of a program, one often needs to decompose its
time complexity into pieces that may have little to do with the program’s apparent syntactic
structure. Theorem 74 below is a general time-complexity decomposition result for ATR

expressions. The ATR typing rules for affinely restricted variables are critical in ensuring
this time-complexity decomposition. The decomposition is used in the next section to
obtain the recurrences for the analysis of the time complexity of crec expressions. Note
that the theorem presupposes that that T [[ · ]] is defined on crec expressions. However, since
no affinely restricted variable can occur free in a well-typed crec expression and since the
application of the theorem will be within a structural induction, this presupposition does
not add any difficulties.
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Remark 72. In fact, the time-complexity of a crec expression e will be defined in terms of
time-complexities of expressions built up from subexpressions of e using term constructors
other than crec. Thus a completely standard structural induction for establishing soundness
does not quite work. A fully formal proof would have first established results such as “if
e0 ⊑tc

σ→τ X0 and e1 ⊑tc
σ X1, then (e0 e1) ⊑

tc
τ X0 ⋆ X1” where the Xi’s are general mappings

from T -environments to time complexities. These lemmas would then be used to carry out
the induction steps of a structural induction which, in all but the crec case, would just
quote the relevant lemma. Rather than impose this additional level of detail on the reader,
we have opted for a less formal approach here and will assume that if we inductively have
soundness for a subterm e, then we also have it for terms built up from e without crec.

To help in the statement and proof of the Affine Decomposition Theorem, we introduce
the following definitions and conventions.

Definition 73.

(a) (c1, p1) ⊎ (c2, p2)
def
= (c1 + c2, p1 ∨ p2), where (c1, p1), (c2, p2) ∈ T [[γ]]. (Clearly,

(c1, p1) ⊎ (c2, ph2) ∈ T [[γ]].)
(b) For each ATR-type γ, define ǫγ inductively by: ǫNℓ

= ǫ and ǫσ→τ = λx ǫτ . (Clearly,
⊢ ǫγ : γ and |Vwt[[ǫγ ]] {}| = 0|γ|.)

(c) Given f : (σ1, . . . , σk) → Nℓ, an expression of the form (f e1 . . . ek) is called a full
application of f .

Conventions on factoring out environments: Suppose ⊙ is a binary operation on time
complexities. We often write T [[e0]]⊙T [[e1]] for ̺ 7→ (T [[e0]] ̺) ⊙ (T [[e1]]) ̺). For example:
(T [[e0]] ⊎ T [[e1]]) ̺ = (T [[e0]] ̺) ⊎ (T [[e1]]) ̺) and (T [[e0]] ⋆ T [[e1]]) ̺ = (T [[e0]] ̺) ⋆ (T [[e1]]) ̺).
We extend this convention to n-ary operations. For example: val(T [[e]]) ̺ = val(T [[e]] ̺) and
(T [[e0]] ⋆ . . . ⋆ T [[ek]]) ̺ = (T [[e0]] ̺) ⋆ . . . ⋆ (T [[ek]]) ̺). We also generalize this last equality as
follows. Suppose X is a map from T [[Γ;∆]] to T [[(σ1, . . . , σk) → Nℓ]] and, for i = 1, . . . , k,

Yi is a map from T [[Γ;∆]] to T [[σi]]. Then X ⋆ ~Y denotes the map T [[Γ;∆]] to T [[Nℓ]] given

by: (X ⋆ ~Y )̺ = (X̺) ⋆ (Y1̺) ⋆ . . . ⋆ (Yk̺).

Theorem 74 (Affine decomposition). Suppose Γ; f : γ ⊢ e:Nℓ0 , where γ = (Nℓ1 , . . . ,Nℓk
)

→ Nℓ0 ∈ R and TailPos(f, e). Let ζ denote the substitution [f : = ǫγ ]. Then

T [[e]] ≤ T [[e ζ]] ⊎ (T [[f ]] ⋆ ~t ), (14.1)

where (f e1
1 . . . e1

k), . . . , (f em
1 . . . em

k ) are the full applications of f occurring in e and
tj =

∨m
i=1 val(T [[ei

j ]]) for j = 1, . . . , k.

By Lemma 11 we know that there is at most one use of an affinely restricted variable
in an expression. In terms of costs, one can thus interpret (14.1) as saying that the cost of
evaluating e can be bounded by the sum of: (i) the cost of evaluating e ζ, which includes
the all of the costs of e except for the possible application of the value of f to the values
of its arguments, and (ii) cost((T [[f ]] ⋆ ~t ) ̺), which clearly bounds the cost of any such f

application. In terms of potentials, one can interpret (14.1) as saying that the size of the
value of e is bounded by the maximum of (i) the size of the value of e ζ, which covers all
the cases where f is not applied, and (ii) pot((T [[f ]] ⋆~t ) ̺), which covers all the cases where
f is applied.

If (14.1) solely concerned CEK costs, the above remarks would almost constitute a proof.
However, (14.1) is about T -interpretations of expressions and T [[e]] is an approximation to
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T [[A]] ̺ = (cost(T [[A0]] ̺) + 2, 0) ⊎
∨2

i=1
T [[Ai]] ̺

≤ (cost(T [[A0]] ̺) + 2, 0) ⊎
∨2

i=1

(
T [[Ai ζ]] ̺ ⊎ (T [[f ]] ⋆ ~t ) ̺

)

≤ (cost(T [[A0]] ̺) + 2, 0) ⊎
(∨2

i=1
T [[Ai ζ]] ̺

)
⊎ (T [[f ]] ⋆ ~t ) ̺

≤
(
(cost(T [[A0 ζ]] ̺) + 2, 0) ⊎

∨2

i=1
T [[Ai ζ]] ̺

)
⊎ (T [[f ]] ⋆ ~t ) ̺

= T [[Aζ]] ̺ ⊎ (T [[f ]] ⋆ ~t ) ̺.

Figure 23: The decomposition for if-then-else expressions

the true time complexities involved in evaluating e. The theorem asserts that our T -
interpretation of ATR is verisimilar enough to capture this property of time complexities.
This later requires a little work.

Proof of Theorem 74. Fix ̺ ∈ T [[Γ; f : γ]]. Without loss of generality, we assume there are no
bound occurrences of f in e. We argue by structural induction that for each A, a subterm
of e with Γ; f : γ ⊢ A: Nℓ0 , we have

T [[A]] ̺ ≤ T [[Aζ]] ̺ ⊎
(
T [[f ]] ⋆ ~t

)
̺, (14.2)

where the ~t ’s are as in the lemma’s statement. It follows from TailPos(f, e) that the
following three cases are the only ones to consider.

Case 1: f fails to occur in A. Then (14.2) follows immediately.
Case 2: A = (f e1 . . . ek), where Γ; ⊢ e1:Nℓ1 , . . . ,Γ; ⊢ ek:Nℓk

. By the monotonicity
of T [[f ]] and the T -interpretation of application from Figure 22, it follows that (14.2) holds
for A.

Case 3: A = (if A0 then A1 else A2) where f occurs in A1 or A2 or both. By

Definitions 63 and 74(c), T [[A]] ̺ = (cost(T [[A0]] ̺) + 2, 0) ⊎
∨2

i=1T [[Ai]] ̺. Note: A0 = A0 ζ

since f cannot appear in A0. By the induction hypothesis applied to A1 and A2, T [[Ai]] ̺ ≤
T [[Ai ζ]] ̺ ⊎ (T [[f ]] ⋆ ~t ) ̺ for i = 1, 2. Thus we have the chain of bounds of Figure 23.

Scholium 75. As demonstrated in [DR07], handling forms of recursion beyond tail recur-
sion requires notions of decomposition more sophisticated than (14.1). Moreover, if explicit
⊸-types were added to ATR, then the decomposition also becomes more involved than
(14.1).

For the analysis of crec expressions we need the following corollary to Theorem 74. We
leave its proof to the reader who should be mindful of Remark 72 above.

Corollary 76. Suppose Γ; f : γ ⊢ A: γ, where γ = (Nℓ1 , . . . ,Nℓk
) → Nℓ0 ∈ R, A =

λu1, . . . , uk B, TailPos(f,A), Γ(x1) = Nℓ1 , . . . ,Γ(xk) = Nℓk
, and ζ is as before. Then

T [[(A ~x)]] ≤ T [[(A ~x) ζ]] ⊎ (T [[f ]] ⋆ ~t ), where (f e1
1 . . . e1

k), . . . , (f em
1 . . . em

k ) are the full
applications of f occurring in B and tj = (

∨m
i=1 val(T [[ei

j ]]))[~u : = ~x] for j = 1, . . . , k.
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15. The time-complexity interpretation of ATR

We are now in a position to consider the time complexity properties of crec expres-
sions. Remark 77 below motivates the T -interpretation of crec expressions given in Defi-
nition 78. The remark’s analysis will be reused in establishing soundness and polynomial
time-boundedness for ATR.

Remark 77. Suppose Γ; f : γ ⊢ A: γ, where γ = (~b) → b0 ∈ R and TailPos(f,A). For each
a ∈ N, let ea = (crec a (λrf A)). Thus, Γ; ⊢ ea: γ. Our goal is to express T [[ea]] in terms
of T [[e0⊕a]] so as to later extract recurrences, the solutions of which will provide a closed
form polynomial time-bound for ea. So suppose in the following that T [[e0⊕ a]] has a settled
value and that T -soundness holds for all proper subterms of ea and their expansions below.
In a CEK evaluation of ea, in one step ea is rewritten to λ~x Ba, where

Ba = (if |a| ≤ |x1| then Ca else ǫ) and Ca = (A ~x)[f : = e0⊕ a].

Let Γ = Γ, ~x: ~b. So, Γ; f : γ ⊢ Ba:b0 and Γ; f : γ ⊢ Ca:b0. Fix a CEK-environment ρ̂ and a
̺ ∈ T [[Γ; f : γ]] with ρ̂ ⊑ ̺. From Figure 20 and Definition 48 it follows that

costCEK(Ba, ρ̂) ≤ 2 · |ρ̂(x1)| + 2 · |a| + 5 +

{
costCEK(Ca, ρ̂), if |a| ≤ |ρ̂(x1)|;

1, otherwise.
(15.1)

By our T -soundness assumptions,

Ca ⊑tc
b0

T [[Ca]]. (15.2)

Let ζ be the substitution [f : = ǫγ ]. By Corollary 76 applied to (A ~x): T [[(A ~x)]] ≤
T [[(A ~x) ζ]] ⊎ (T [[f ]] ⋆ ~t ), where t1, . . . , tk are as in Theorem 74. Let ξ be the substitution
[f : = e0⊕ a]. Since f has no occurrence in ~t, we have that T [[(A ~x) ξ]] ≤ T [[(A ~x) ζ ξ]] ⊎
(T [[f ξ]] ⋆ ~t ) which can be restated as:

T [[Ca]] ≤ T [[(A ~x) ζ]] ⊎ (T [[e0⊕ a]] ⋆ ~t ). (15.3)

Since ρ̂ ⊑ ̺, |ρ̂(x1)| ≤ pot(T [[x1]]̺). So, by Lemma 70(c), (15.1), (15.2), and (15.3),
Baρ̂ ⊑tc

b0
Xa̺, where Xa:T [[Γ; f : γ]] → T [[b0]] is given by

Xa ̺′ =

{
dally(c,T [[(A ~x) ζ]] ̺′) ⊎ (T [[e0⊕ a]] ⋆ ~t ) ̺′, if |a| ≤ p1;

(c + 1, 0), otherwise;

where p1 = pot(T [[x1]] ̺
′), c = 2 · p1 + 2 · |a| + 5, and ~t is as before.

By the analysis for the →-I case in Theorem 67’s proof, (λ~x Ba) ⊑tc
γ Λ⋆(~x,Xa). As

costCEK(λ~x Ba, ) = 1, we have that ea ⊑tc
γ Ya, where Ya

def
= dally(1,Λ⋆(~x,Xa)).

Definition 78 (The T -interpretation of ATR). T [[Γ; ⊢ (crec a (λrf A)): γ]]
def
= Ya, where

Ya is as above. Figure 22 provides the the T -interpretations for the other ATR constructs.

The well-definedness of T [[Γ; ⊢ (crec a (λrf A)): γ]] is part of:

Theorem 79. The T -interpretation of ATR is (a) polynomial time-bounded, (b) monotone,
and (c) sound, as well as (d) well-defined.
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Proof sketch. All the parts are shown simultaneously by a structural induction on the
derivation of Γ;∆ ⊢ e: γ. Along with parts (a)–(d) we also show:

Claim: For all ̺ ∈ T [[Γ;∆]], Pot(T [[e]] ̺) ≤ T [[p̃e]] ̺, where pe is the polynomial size-
bound for e from Theorem 43 and p̃e is the result of replacing each occurrence of each
variable |x| in pe with Pot(x). (E.g., if p = λ|z| (2 ∗ |g|(|z|) + 1), then p̃e = λ|z| (2 ∗
Pot(g)(Pot(|z|)) + 1).)

Intuitively, p̃e is the version of pe that is over base potentials (Definition 60(b)) instead
of lengths and the Claim says that the upper bound on size that is implicit in our T -
interpretation, is at least as good as the size bounds of Theorem 43. Through the Claim we
are able to make use, in a time-complexity context, of the polynomial bound on the depth
of crec-recursions from the proof of Theorem 43.

Here, then, is the induction.
For each case, except the crec one, parts (a), (b), and (c) are as in the proof of The-

orem 67; part (d) is evident, and the Claim follows from an inspection of the bounds
assigned in the proof of Theorem 43 and Definition 63. We thus consider the case of
e = (crec a (λrf A)) where Γ; f : γ ⊢ A: γ, γ = (σ1, . . . , σk) → b0 ∈ R, and TailPos(f,A).
Without loss of generality, we assume a is a tally string n. So, 0⊕ a = n + 1.

We first import the notation from Remark 77. So, e = en, where en is as in Remark 77

with a = n. Also let
−−−→
T [[x]] denote T [[x1]], . . . ,T [[xk]], ̺ ∈ T [[Γ; ]], and let m range over

{n, n + 1, . . . }. Then, by Remark 77, Definition 78, and Lemma 59 we have: (T [[em]] ⋆
−−−→
T [[x]])̺ = (Ym ̺) ⋆

−−→
̺(x) = (dally(1,Λ⋆(~x,Xm))̺) ⋆

−−→
̺(x) = T [[r0]] ̺ ⊎ Xm̺, where r0 =

(5k + 4 + cost(̺(x1)) + · · · + cost(̺(xk)), 0). Let r1,m = r0 ⊎ (2 · pot(̺(x1)) + 2 · m + 6, 0)
and r2,m = r0 ⊎ (2 · pot(̺(x1)) + 2 · m + 5, 0). Then, by the definition of Xn in Remark 77,

(T [[em]] ⋆
−−−→
T [[x]])̺ =





T [[r1,m]] ̺, if pot(̺(x1)) ≤ n;

T [[r2,m]] ̺ ⊎ T [[(A~x)ζ]]̺ ⊎ (T [[em+1]] ⋆ ~t )̺,

otherwise.

(15.4)

Now let us import some notation from the proof of Theorem 43: Let p1, . . . , pk be
the manifestly safe polynomials that bound the sizes of the arguments of f in A and let
p′1, . . . , p

′
k be the polynomials that bound the final sizes of said arguments.

Part (d): Well-definedness. Let ̺n = ̺. Combine the m = n and m = n+1 versions of

(15.4) to express (T [[en ]]⋆
−−−→
T [[x]])̺n in terms of T [[en+2]] and ̺n+1 = the update to ̺n produced

by the application (T [[en+1]] ⋆~t )̺n. It follows from the Claim that pot(̺n+1(x1)) ≤ T [[p̃′1]]̺.

We can keep repeating this process, for m = n+2, n+3, . . . , to express (T [[en ]]⋆
−−−→
T [[x]])̺n in

terms of of T [[em+1]] and ̺m = the update to ̺m−1 produced by the application (T [[em ]] ⋆

~t )̺m−1. The Claim still tells us that pot(̺n+1(x1)) ≤ T [[p̃′1]]̺. Hence, the otherwise clause
of (15.4) can hold only finitely many m. Thus, it follows that, T [[en ]] is defined and total.

Part (b): Monotonicity. Note that the terms Lwt[[r1,m]] and Lwt[[r2,m]] clearly sat-
isfy monotonicity. It follows from the induction hypothesis that the terms T [[(A~x)ζ]] and
t1, . . . , tk also satisfy monotonicity. It follows from (15.4) that if, for a particular m, the
T [[em+1]] term satisfies monotonicity, then so does T [[em ]]. Hence, by the finiteness of the
expansion it follows that T [[en ]] satisfies monotonicity.

Part (c) and the Claim. By arguments along the lines of the one just given for mono-
tonicity, one can establish soundness and the Claim for en.
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Part (a): Polynomial time-boundedness. Recall from Definition 64, the definition of
polynomial time-boundedness, the key inequality to be shown is T [[e]] ‖ρ‖ ≤ Lwt[[pe]] |ρ| for
each ρ ∈ Vwt[[Γ;∆]]. So if ρ is an ATR-environment and x is a variable with a string or
oracle value, then T [[Pot(x)]] ‖ρ‖ = Lwt[[|x|]]|ρ|. Thus, for each e′, T [[p̃e′ ]] ‖ρ‖ = Lwt[[pe′ ]]|ρ|.

Now, it follows from the induction hypothesis that there is an r, a polynomial time-
bound for (A~x)ζ relative to Γ; . Let r′1 = r1,p′

1
and r′2 = r2,p′

1
. Let ξ and ξ′ respectively

denote the substitutions [|x1| : = p1, . . . , |xk| : = pk] and [|x1| : = p′1, . . . , |xk| : = p′k], where
p1, . . . , pk, p

′
1, . . . , p

′
k are the polynomials from Theorem 43 introduced before. Note that

‖xi‖ ξ = (1 ∨ pi, pi). By the Claim, for each j = 1, . . . , k, T [[tj]] ‖ρ‖ ≤ Lwt[[(1 ∨ pj, pj)]] |ρ| =
Lwt[[(‖xj‖ ξ]] |ρ|. Hence, assuming pot(Lwt[[|x1|]] |ρ|) > n,

(T [[en+1]] ⋆~t) ‖ρ‖ ≤ (T [[en+1]] ⋆ (
−−→
‖x‖ξ)) ‖ρ‖ (by monotonicity)

≤ Lwt[[(r
′
2 ⊎ r)ξ]] |ρ| ⊎ (L[[en+2]] ⋆ (~t ξ)) ‖ρ‖ (by (15.4))

≤ Lwt[[(r2,m ⊎ r)ξ]] |ρ| ⊎ (L[[en+2]] ⋆ (~t ξ)) ‖ρ‖ (by monotonicity).

Clearly, we can repeat the above expansion (p1 − n)-many times (i.e., until termination),
collect terms, and produce the desired polynomial bound. Here is the algebra. Let s = r′1ξ

′ ⊎⊎ p′
1
−n

m=0 (r′2 ⊎ r)ξ(m), s1 = cost(r′1ξ
′)+p′1 ·(cost(r

′
2ξ

′) + cost(rξ′)), and s2 = pot( (r′1∨r′2∨r)ξ′ ).

Then (T [[en]] ⋆
−−→
‖x‖) ‖ρ‖ ≤ Lwt[[s]] |ρ| ≤ Lwt[[(s1, s2)]] |ρ| by a straightforward argument.

Thus, λ
−→
|x| (s1, s2) suffices as the polynomial time bound for en.

Scholium 80. Note that we resorted to reasoning directly about CEK-costs to obtain
(15.1). This is because if we had used Definition 63’s T -interpretation of if-then-else, then
we would have be left without a base case in our recursive unfoldings of crec-expressions.

We note that as a consequence of parts (a) and (c) of Theorem 79 we have:

Corollary 81. For each Γ;∆ ⊢ e: γ, there is a second-order polynomial qe with |Γ;∆| ⊢
qe: |γ| such that costCEK(e, ρ) ≤ Lwt[[qe]]|ρ| for each ρ ∈ Vwt[[Γ;∆]].

Remark 82 (Related work). The time-complexity cost/potential distinction appears in
prior work. A version of this distinction can be found in Sands’ Ph.D. thesis [San90]. Shultis
[Shu85] sketched how to use the distinction in order to give time-complexity semantics for
reasoning about the run-time programs that involve higher types. Van Stone [VS03] gives a
much more detailed and sophisticated semantics for a variant of PCF using the cost/potential
distinction. Very roughly, Shultis and Van Stone were focused on giving static analyses to
extract time-bounds for functional programs that compute first-order functions. The time-
complexity semantics of this paper was developed independently of Shultis’ and Van Stone’s
work. We also note that Benzinger’s work [Ben01, Ben04] on automatically inferring the
complexity of Nuprl programs made extensive use of higher-type recurrence equations.

16. Complexity-theoretic completeness

Our final result on ATR is that each type-1 and type-2 BFF is ATR computable. Con-
ventions: In this section, let σ = (σ1, . . . , σk) → N range over simple types over N of levels
1 or 2, and let γ, γ0, γ1, . . . range over ATR types. Recall from §2.14 that f ∈ V[[σ]] is basic
feasible when there is a closed type-σ, PCF-expression ef and a second-order polynomial
function qf such that V[[ef ]] = f and, for all vi ∈ V[[σ1]], . . . , vk ∈ V[[σk]], CEK-time(ef , v1,

. . . , vk) ≤ qf (|v1|, . . . , |vk|). Let BFFσ = the class of all type-σ BFFs.
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Definition 83. We say that each base type is unhindered and that (γ1, . . . , γk) → Nℓ is
unhindered when (γ1, . . . , γk) → Nℓ is strict, predicative and each γi unhindered.

Note that Vwt[[γ]] = V[[shape(γ)]] if and only if γ is unhindered.

Theorem 84. BFFσ = {Vwt[[⊢ e: γ]] σ = shape(γ) & γ is unhindered } for each σ.

Proof. Fix σ and let Uσ = {Vwt[[⊢ e: γ]] σ = shape(γ) & γ is unhindered}.
Claim 1: Uσ ⊆ BFFσ. Proof: It is straightforward to express a crec-recursion with

PCF’s fix-construct with only polynomially-much over head on the cost of the simulation.
Hence, the claim follows from Theorem 79.

Claim 2: BFFσ ⊆ Uσ. Proof: Kapron and Cook [KC96] showed that the type-2
basic feasible functionals are characterized by the functions computable in second-order
polynomial time-bounded oracle Turing machines (OTMs). Proposition 18 from [IKR01]
shows how to simulate any second-order polynomial time-bounded oracle Turing machine
using that paper’s ITLP2 programming formalism. That simulation is easily adapted to
ATR. Hence, the claim follows.

Note: The proof’s two claims are constructive in that: (i) given a closed ATR-expression
e of unhindered type, one can construct an equivalent PCF expression e′ and a second-order
polynomial pe that bounds the run time of e′, and (ii) given an OTM M and a second-order
polynomial p that bounds the run time of M, one can construct an ATR-expression that
computes the same function as M.

Claim 2 can be extended beyond unhindered types as follows. For each ATR arrow-
type γ = (γ1, . . . , γk) → Nℓ, and each type-shape(γ) OTM M, we say that M computes a
BFFγ-function when there is a type-|γ| polynomial p such that the run time of M on (~v) is
bounded by p(|v1|, . . . , |vk|). The proof of Claim 2 lifts to show: for all ATR arrow-types γ,
each BFFγ-function is ATR computable.

17. Conclusions

ATR is a small functional language, based on PCF, which has the property that each
ATR program has a second-order polynomial time-bound. The ATR-computable functions
include the basic feasible functionals at type-levels 1 and 2. However, the ATR-computable
functions contain other functions, such as prn , that are not basic feasible in the original
sense of Cook and Urquhart [CU93]. ATR is able to express such functions thanks to its
type system and supporting semantics that work together to control growth rates and time
complexities. Without some such controls feasible recursion schemes, such as prn , cannot
be first-class objects of a programming language.

The ATR type-system and semantics were crafted so that ATR’s complexity properties
could be established through adaptations of standard tools for the analysis of conventional
programming languages (e.g., intuitionistic and affine types, denotational semantics for
ATR and its time complexity, and an abstract machine that provides both an operational
semantics for ATR and a basis for the time-complexity semantics). As ATR is based on
PCF (a theoretical first-cousin of both ML and Haskell), our results suggest that one might
be able to craft “feasible sublanguages” of ML and Haskell that are both theoretically
well-supported and tolerable for programmers.

ATR and its semantic and analytic frameworks are certainly not the final word on any
issue. Here we discuss several possible extensions of our work.
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More general recursions. In [DR07] we consider an expansion of ATR that allows
a fairly wide range of affine (one-use) recursions. In particular, the expanded ATR can
fairly naturally express the classic insertion- and selection-sort algorithms. Handling this
larger set of recursions requires some nontrivial extensions of our framework for analyzing
time-complexities.

Dealing with nonlinear recursions (e.g., the standard quicksort algorithm) is trickier
to handle because there must be independent clocks on each branch of the recursion that
together guarantee certain global upper bounds.

Recursions with type-level 1 parameters. Another possible extension of ATR

would be to allow type-level 1 parameters in crec-recursions so that, for example, one could
give a continuation-passing-style definition of prn. Because type-1 parameters in recursions
act to recursively define functions, these parameters must be affinely restricted just like
principle recursor variables of crec-expressions. Consequently, such an extension must also
include explicit ⊸-types to restrict these parameters. However, along with the ⊸-types
come (explicitly or implicitly) tensor-products and these cause problems in analyzing crec-
recursions (e.g., one is forced account for all the possible interactions of the affine parameters
in the course of a recursion and so the näıve “polynomial” time-bounds are exponential in
size).

Lazy evaluation. For a lazy (e.g., call-by-need) version of ATR, one would need to:
(i) construct an abstract machine for this lazy-ATR, (ii) modify the T -semantics a bit to
accommodate the lazy constructs; and (iii) rework the T -interpretation of ATR which would
then have to be shown monotone, sound, and constructively polynomial time-bounded.
(Since the well-tempered semantics is extensional, it requires very few changes for a lazy-
ATR.) If our lazy-ATR allowed infinite strings, then the Vwt-semantics would also have to
be modified. Note that Sands [San90] and Van Stone [VS03] both consider lazy evaluation
in their work.

Lists and streams. There are multiple senses of the “size” of a list. For example, the
run-time of reverse should depend on just a list’s length, whereas the run-time of a search
depends on both the list’s length and the sizes of the list’s elements. Any useful extension of
ATR that includes lists needs to account for these multiple senses of size in the type system
and the well-tempered and time-complexity semantics. If lists are combined with laziness,
then we also have the problem of handling infinite lists. However, ATR and its semantics
already handle one flavor of infinite object, i.e., type-level 1 inputs, so handling a second
flavor of infinite object many not be too hard.

Type checking, type inference, time-bound inference. We have not studied the
problem of ATR type checking. But since ATR is just an applied simply typed lambda
calculus with subtyping, standard type-checking tools should suffice. Type inference is a
much more interesting problem. We suspect that a useful type inference algorithm could
be based on Frederiksen and Jones’ [FJ04] work on applying size-change analysis to detect
whether programs run in polynomial time. Another interesting problem would be to start
with a well-typed ATR program and then extract reasonably tight size and time bounds (as
opposed to the not-so-tight bounds given by Theorem 79).

Beyond type-level 2. There are semantic and complexity-theoretic issues to be resolved
in order to extend the semantics of ATR to type-levels 3 and above. The key problem is
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that our definition of the length of a type-2 function (2.3) does not generalize to type-
level 3. This is because for Ψ ∈ MC((N→N)→N)→N and G ∈ MC(N→N)→N, we can have
sup{ |Ψ(F )| |F | ≤ |G| } = ∞, even when G is 0–1 valued. To fix this problem one
can introduce a different notion of length that incorporates information about a function’s
modulus of continuity. It appears that ATR and the Vwt- and T -semantics extend to this
new setting. However, it also appears that this new notion of length gives us a new notion
of higher-type feasibility that goes beyond the BFFs. Sorting out what is going on here
should be the source of other adventures.
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