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Abstract. Tone mapping is one of the main techniques to convert high-dynamic range (HDR)

images into low-dynamic range (LDR) images. We propose to use a variant of generative adver-

sarial networks to adaptively tone map images. We designed a conditional adversarial generative

network composed of a U-Net generator and patchGAN discriminator to adaptively convert

HDR images into LDR images. We extended previous work to include additional metrics such

as tone-mapped image quality index (TMQI), structural similarity index measure, Fréchet incep-

tion distance, and perceptual path length. In addition, we applied face detection on the Kalantari

dataset and showed that our proposed adversarial tone mapping operator generates the best LDR

image for the detection of faces. One of our training schemes, trained via 256 × 256 resolution

HDR–LDR image pairs, results in a model that can generate high TMQI low-resolution 256 ×

256 and high-resolution 1024 × 2048 LDR images. Given 1024 × 2048 resolution HDR images,

the TMQI of the generated LDR images reaches a value of 0.90, which outperforms all other

contemporary tone mapping operators.© The Authors. Published by SPIE under a Creative Commons

Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full

attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.30.4.043020]
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1 Introduction

The dynamic range of an image is described as the variation of luminance in different parts of the

image.1 The majority of real-life images are of low dynamic range (LDR) and are generally

represented by an 8-bit integer per pixel format.2 In contrast, high dynamic range (HDR) uses

more bits (16/32) to quantify the pixel values. Even though HDR images can better describe

a scene, most common 8-bit display methods are not compatible with HDR images. A cost-

effective method of displaying HDR images is to convert them into LDR images as opposed

to using a 16-bit display setting.

Many tone mapping operators (TMOs) have been proposed and have shown incredible

progress in many scenarios. Even though tone mapping is one of the most common ways to

perform HDR to LDR conversion, TMOs have many limitations, such as generalization, param-

eter turning, expert knowledge, and model instability.

The main research question of this work is: Is it possible to propose a TMO that can adap-

tively tone-map all HDR images with different contents? In this paper, we seek to answer this

question by exploring deep learning techniques. We propose a specific deep learning network, a

conditional generative adversarial network (cGAN),3 to adaptively convert an HDR image into

an LDR image. Our proposed model is training via HDR–LDR image pairs containing assorted

content, including natural scenarios, indoor/outdoor scenes, regular/irregular geometric shapes,

colorful/monochrome objects, and drastic luminance changes.
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In general, the implementation of any generative adversarial networks (GANs) requires an

objective loss function. In deep learning networks, the loss function measures the difference

between the output and input images. Common loss functions are the absolute (called L1)

or squared (called L2). In this work, we implement a unique network composed of general

cGAN loss, feature matching loss, and perceptual loss. Combining these losses allows the pro-

posed adversarial tone mapping operator (adTMO) to learn the distribution of ideally tone-

mapped images.

For low-resolution image-to-image translation tasks, cGAN has shown great success in gen-

erating high-quality target images.4 However, for high-resolution image-to-image translation

tasks, many problems exist. These problems require complex models to combat tilling patterns,

local blurring, and saturated artifacts.5,6 One of the main deterrences of using high-resolution

images is the amount of resources required for training, specifically the amount of time required

for convergence. In our work, we explore the possibility of using low-resolution images to train

a cGAN model (“U-Net” G and PatchGAN D). We extended the work on adTMO7 to include

additional metrics such as structural similarity index measure (SSIM), perceptual path length

(PPL), Fréchet inception distance (FID), and multi-scale structural similarity index measure

(MS-SSIM), as well as the performance metrics for face detection. We show that adTMO

outperforms most other TMOs when testing on low- and high-resolution HDR images.

This paper aims to design a smart TMO that can adaptively convert complex scenic HDR

images into LDR images. The main contributions of our work are listed as follows.

1. We propose adTMO, a variant of cGAN capable of adaptively generating high-resolution

and high-quality LDR images.

2. We explore different training and testing schemes, in order to find the best possible com-

bination to generate the highest quality images.

3. We evaluate the performance of adTMO and other TMOs using metrics such as SSIM and

FID. In addition, we look at the performance of face detection applied to the different

tone-mapped images.

This paper is organized as follows: Section 2 provides a literature review related to TMOs,

cGAN, and metrics used for evaluating image-to-image translation tasks. Section 3 describes the

architecture of adTMO and the different training/testing schemes we apply. Section 4 details the

databases used for training and the preprocessing and postprocessing steps applied to the images.

Section 5 summarizes the results of adTMO. Section 6 concludes our paper.

2 Related Work

In this section, we provide a short review of tone-mapping literature, cGAN, and metrics used for

evaluating image-to-image translation tasks.

2.1 TMOs

Over the past 20 years, different TMOs have been designed to convert HDR images into LDR

images. They can be divided into two categories, global TMOs and local TMOs, based on how

they work on image pixels. Global TMOs, such as Larson et al.8 and Drago et al.,9 apply the same

function on all pixels of an image. Global TMOs take less time to convert HDR images, but the

output LDR images have reduced contrast. Local TMOs, e.g., Chiu et al.10 and Tumblin et al.,11

calculate the output pixel value based on the input and its neighboring pixels. Local TMOs can

preserve the local structure and generate good contrast but at a cost of more computation time.

In addition, most TMOs can only deal with some specific scenarios and do not generalize well

with regard to image content.

2.2 Generative Adversarial Networks

First proposed by Goodfellow in 2014,12 GAN has shown great success in many fields. GAN

consists of a generator model (G) and a discriminator model (D). The goal of G is to generate
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fake samples that are real enough to fool D. For D, its goal is to distinguish real samples from

collected databases and fake samples generated by G. By training G and D simultaneously,

they can compete with each other and achieve an equilibrium allowing G to implicitly learn

the distribution of real samples from the collected databases, without the need of complex loss

functions.

In this paper, we adopt cGAN,3 so that the goal of G changes to generating fake samples

under new conditions. Many low-resolution image-to-image translation tasks, such as semantic

labels to photos and architectural labels to photo, adopt cGAN to generate target images and

achieve satisfactory results.4 Patel et al.13 conducted a similar work using cGAN to convert HDR

images into LDR images, but they only tested with 256 × 256 resolution image crops. A com-

plex multi-scale architecture for high-resolution image-to-image tasks is proposed by Wang

et al.5 and Rana et al.6 Those proposed networks required high-resolution training images and

took many resources including memory and time to train. It took a week to train the multi-scale

network6 using a 12-GB NVIDIA Titan-X GPU on a Intel Xeon e7 core i7 machine.

Due to the downsampling process in the generation part of cGAN, it is challenging for the

input images to preserve the fine details. A bilateral filter is a common method to perform edge-

preserving and noise-reducing operations which can be adopted to preserve the finer details of an

image.14 A method that optimizes the bilateral filtering method to have a constant time O(1) was

proposed by Porikli.15 Others proposed to preserve edges in images include global image

smoothing based on the weighted least squares (WLS)16 and guided image filter.17 Extended

work onWLS was conducted by Min et al.18 to create a fast variant, achieving comparable results

but requiring much less computational time. Optimization to the guided image filtering tech-

nique was performed by incorporating an edge-aware weighting into the guided filter, which

greatly reduced the halo artifacts in images.19

Zheng et al.20 proposed to create a hybrid model that consists of both a model-driven and

data-driven approach to generate a higher quality image. In this paper, we have mainly focused

on the data-driven approach via the use of cGAN. However, there is an immense value in a

hybrid model; thus we plan to create such a hybrid model in future works by integrating the

model-driven portion into our data-driven model.

2.3 Evaluation for Image-to-Image Translation Task

Evaluation of image-to-image translation tasks remains an open question. SSIM was proposed

by Wang et al.21 to compare the structural information based on the human visual system. SSIM

is commonly used to compare the similarity between the generated images and the ground-truth

images. It is defined by Wang et al.21 as follows:

EQ-TARGET;temp:intralink-;e001;116;303SSIMðx; yÞ ¼
ð2μxμy þ C1Þð2σxy þ C2Þ

ðμ2x þ μ2y þ C1Þðσ
2
x þ σ2y þ C2Þ

; (1)

where μ is the mean with respect to x or y, σ is the variance with respect to x or y, and C1, C2 are

the constants defined as ð0.01LÞ2 and ð0.03LÞ2 (L is the dynamic range of the pixels),

respectively.

Based on SSIM, a metric called multi-scale structural similarity (MS-SSIM)22 was designed

to incorporate the variations of viewing conditions.

FID23 was proposed to capture the similarity between the generated and ground-truth images.

To compute FID, both the generated and real images are propagated through a pretrained

Inception V3 model24 and their difference from the last pooling layer is used. A smaller FID

represents higher similarity, that is given an FID of 0, two images are identical. The FID is

defined as follows:

EQ-TARGET;temp:intralink-;e002;116;136FID ¼ kμr − μgk
2 þ tr

�

Σr þ Σg − 2
ffiffiffiffiffiffiffiffiffiffi

ΣrΣg

p

�

; (2)

where μ represents the mean for the real (r) and generated (g) images, Σ represents the covariance

for the real (r) and generated (g) images, and tr is the trace linear function.
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Similar to FID, PPL25 uses the pretrained VGG1626 as embeddings to calculate the perceptual

similarity between two images. As with FID, a smaller PPL means that two images have a greater

perceptual similarity.

Evaluating the performance of TMOs is also an issue for tone mapping operations. One

intuitive solution is a subjective evaluation, which involves human participants ranking LDR

images generated by different TMOs based on their subjective preference. Such subjective evalu-

ation takes a lot of time and energy, with the results unstable across different participant groups.27

Another solution is objective metrics, e.g., tone-mapped image quality index (TMQI)28 and

TMQI-II,29 widely used in tone-mapping optimization studies.6,30 TMQI represents a form

of indexing that considers the naturalness of tone-mapped LDR images, and structural fidelity

between the HDR and tone-mapped LDR images expressed as28

EQ-TARGET;temp:intralink-;e003;116;604TMQIðH;LÞ ¼ a½SðH;LÞ�α þ ð1 − aÞ½NðLÞ�β; (3)

where H and L denote the original HDR image and the tone-mapped LDR image, S and N

denote the structural fidelity and statistical naturalness measures, respectively. α and β control

the sensitivities of S and N, and 0 ≤ a ≤ 1 adjusts the relative weights between S and N. In this

paper, we use the default α, β, and a, recommended by Yeganeh and Wang.28

3 Proposed Method

In this section, we will detail our proposed adTMO to convert HDR images into LDR images, the

architecture of our G and D, the objective function we use, and the different training/testing

schemes we deploy.

3.1 cGAN-Based adTMO

In this paper, we construct adTMO based on the principle of cGAN3 that can translate HDR

images into LDR images. Figure 1 shows the training pipeline of our proposed adTMO. We

train D using (HDR, LDR) pairs where D is trying to predict (HDR, RealLDR) pair as real

and predict (HDR, FakeLDR) pair as fake. G is trying to generate FakeLDR that is real enough

so that D is unable to distinguish FakeLDR from RealLDR. We train G and D simultaneously,

specifically, in each iteration, we train D twice with weight set to 0.5 [once using the (HDR,

RealLDR) pair, and once using the (HDR, FakeLDR) pair].

3.2 Network Architectures

We adopt the network architectures from Isola et al.,4 where G is a U-Net31 and D is a 70 × 70

PatchGAN,32 both using convolution-BatchNorm-LeakyRelu33 blocks with α ¼ 0.2.

Fig. 1 Training pipeline of cGAN. D is trained to distinguish ground truth LDR image from the

generated LDR image. G is trained to generate LDR image that is real enough to fool D.
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3.2.1 Generator architecture

Figure 2 shows the architecture of our G, which is a U-Net consisting of one input block, seven

encoding blocks, one bottleneck, seven decoding blocks, and one output block. Each encoding

block will down-sample image size by 1∕4 (1/2 of width and 1/2 of height) of the previous block

with strides ¼ 2, and each decoding block will up-sample the previous block by 4 times. We

added direct connections between the encoding and decoding blocks in order to preserve some of

the finer details that may have been lost during the downsampling process. This direct connec-

tion, also called skip connection, allows for the gradient of the later layers to propagate back to

the earlier layers. Such propagation prompts the model to learn, more efficiently, the mapping

between the input and output layers, allowing for the finer details to be recovered from the down-

sampling process. For the i’th decoding block, we add a direct skip from the last i’th encoding

block and concatenate the two blocks in channel before applying the LeakyRelu activation

function. The filter size is set to 4 × 4 for all blocks. The filter number is set to 64 for the

first encoding block and doubles for each of the next encoding block until it reaches 512,

then remains unchanged. The filter number for each decoding block is the same as the encoding

block with which it connects. For the bottleneck block, the filter number is set to 512, and

the activation function is ReLU. For the output block, the filter number is set to 1 and the acti-

vation function is sigmoid. We can feed our G with images of different sizes given it is fully

convolutional.

3.2.2 Discriminator architecture

Figure 3 shows the architecture of our D. This is a 70 × 70 PatchGAN consisting of one input

layer, five encoding blocks, and one output block. The input layer concatenates the input HDR

and LDR image in the color channel. Each of the first four encoding blocks will down-sample

image size to 1∕4 of the previous block with strides ¼ 2. For the last encoding block, we set

strides ¼ 1, leaving the image size unchanged. The number of filters for each encoding blocks is

defined as follows 64, 128, 256, 512, and 512. The output block has 1 filter, with strides ¼ 1,

a sigmoid activation and outputs a 16 × 16 matrix. Each value in the output matrix maps to

a 70 × 70 receptive field in the input layer, identifying this patch as either real or fake.

Fig. 2 Architecture of the U-Net generator with one input block, seven encoding blocks, one bottle-

neck block, seven decoding blocks, and one output block. There is a direct skip connecting each

encoding–decoding pair.

Fig. 3 Architecture of the PatchGAN discriminator. Each value in the output matrix identifies a

70 × 70 receptive field in the input layer as either real or fake.
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3.3 Objective Function

As discussed earlier, the goal of G is to convert an HDR image into its tone-mapped LDR

version, and the goal of D is to distinguish the generated LDR image from the ground-truth

LDR image. The objective of cGAN3 can therefore be written as

EQ-TARGET;temp:intralink-;e004;116;680LGðG;DÞ ¼ EðxÞ logð1 −Dðx; GðxÞÞÞ

LDðG;DÞ ¼ −Eðx;yÞ log Dðx; yÞ − EðxÞ logð1 −Dðx; GðxÞÞÞ;
(4)

where G tries to minimize LGðG;DÞ, and D tries to minimize LDðG;DÞ.
In addition to the cGAN loss, we incorporated a feature matching loss LFM based on D. We

extract features from multiple layers of D and attempt to match these intermediate representa-

tions between the real and generated LDR image, i.e., we minimize the difference between the

features via the L1 norm:

EQ-TARGET;temp:intralink-;e005;116;569LFMðG;DÞ ¼ Eðx;yÞ

X

M

i¼1

1

Ui

½kDðiÞðx; yÞ −DðiÞðx; GðxÞÞk1�; (5)

where DðiÞ denotes the i’th layer with Ui activations of D, and M is the number of layers of D.

In this experiment, we chose five convolution layers in the five encoding blocks of D.

Additionally, we appended the perceptual loss Lprp used by Johnson et al.,34 which consists

of the features computed from every single layer of the pretrained Inception V3 network,24

given by

EQ-TARGET;temp:intralink-;e006;116;457LprpðGÞ ¼ Eðx;yÞ

X

N

i¼1

1

Vi

½kFðiÞðyÞ − FðiÞðGðxÞÞk1�; (6)

where FðiÞ denotes the i’th layer with Vi activations of the Inception V3 network, and N is the

selected number of layers in the Inception V3 network. In this experiment, we empirically

choose five activation layers of the Inception V3 network as F to calculate Lprp.

With LFM and Lprp, we are able to keep both low-level image characteristics and high-level

perceptual information. Combining these losses together, our final objective is expressed as

EQ-TARGET;temp:intralink-;e007;116;347Gloss ¼ LGðG;DÞ þ αLFMðG;DÞ þ βLprpðGÞ Dloss ¼ LDðG;DÞ; (7)

where α and β control the weight of LFM and Lprp with respect to LcGAN. Here we set α ¼ 10 and

β ¼ 10, recommended by Rana et al.6

3.4 Training and Testing

We deploy different training and testing scheme combinations to achieve better performance.

3.4.1 Training

We adopt three training schemes.

• Training scheme A (see purple box in Fig. 4). All HDR images were resized into 256 × 256

resolution, and TMOs were used to generate tone-mapped LDR images. The generated 748

HDR-LDR image pairs were used to train our adTMO.

• Training scheme B (see blue box in Fig. 4). This scheme required resizing the HDR images

into 1024 × 1024 resolution and using TMOs to generate tone-mapped LDR images. The

next step was to randomly crop the corresponding 256 × 256 resolution regions from

HDR images and LDR images. We generated 23,936 HDR-LDR image pairs to train the

adTMO.

• Training scheme C. The resized and cropped 256 × 256 resolution images were combined

from training schemes A and B to provide all together 24,684 training pairs.
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All training schemes used 256 × 256 resolution images as the training database, so the training

process took less time and resources than using high-resolution images. The Adam optimizer35was

used for all three schemes, with learing rate ¼ 0.0002, β1 ¼ 0.5, β2 ¼ 0.999. We set the batch size

to 1 and trained until the loss converged. The training process was deployed on an NVIDIA

GeForce RTX 2080, and each training process can be finished within 30 h, which is much shorter

than the 1-week training time in the muti-scale network propose by Rana et al.6

3.4.2 Testing

We deploy different testing schemes to evaluate the performance of our proposed adTMO.

• Testing scheme W (see the red box of Fig. 5). Test with resized 256 × 256 resolution

images, we resized original HDR images into 256 × 256 resolution then fed them into G

and generated the target LDR images.

Fig. 4 The purple and blue boxes, respectively, show how we generate training pairs for training

schemes A and B.

Fig. 5 The red, blue, brown, and purple boxes, respectively, show the process of test schemesW,

X, Y, and Z.
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• Testing scheme X (see the blue box of Fig. 5). Test with resized 1024 × 2048 resolution

images, we resized original HDR images into 1024 × 2048 resolution then fed them into G

and generated the target LDR images.

• Testing scheme Y (see the brown box of Fig. 5). Test with cropped 256 × 256 resolution

images, we cropped 1024 × 2048 resolution HDR images into 256 × 256 resolution

pieces, then fed them into G, and generated the target LDR pieces.

• Testing scheme Z (see the purple box of Fig. 5). Test with 4 × 8 concatenated cropped

256 × 256 resolution images, we cropped 1024 × 2048 resolution HDR images into

32 256 × 256 resolution pieces, fed them into G and generated the target LDR images,

and then concatenated them together into the complete 1024 × 2048 resolution images.

4 Experimental Setup

In this section, we will detail the HDR image databases collected, how we pre- and postprocessed

these databases.

4.1 Databases

From the many open-source HDR image databases accessible online, we selected our databases

based on their content diversity, usability, resolution, and quality. Table 1 summarizes the HDR

image databases we used, with the majority being high-resolution. We used 105 images from

Kalantari and Ramamoorthi45 to test adTMO, and 748 images from other 10 databases in Table 1

to train adTMO.

4.2 Resizing

We used two collections of 256 × 256 resolution images for training. The first set of images were

the original images resized to 256 × 256 resolution (based on training scheme A), whereas the

second set of images were randomly cropped from resized 1024 × 1024 images (based on train-

ing scheme B). For testing purpose, we resized HDR images into two resolutions: 256 × 256

and 1024 × 2048.

4.3 Target LDR Images Generation

All the collected HDR images were unlabeled, i.e., the ground-truth LDR images were unknown.

To solve this problem, for each HDR image, we applied 30 different TMOs to get 30 LDR image

candidates using the MATLAB HDR TOOLBOX46 and followed the suggestion to apply

GammaTMO after tone-mapping as some specific TMOs require gamma encoding. From these

30 LDR image candidates, we selected the one with the highest TMQI as the ground-truth LDR

image. Table 2 summarizes the performance of each TMOwhen applied to the resized 256 × 256

HDR images. In Table 2, we provide the average TMQI for each TMO after applying it to the

whole training set, and the number of LDR images with the highest TMQI among 30 candidates.

Table 1 HDR image databases.

Databases # Images
# Pixels per
image (×106) Databases # Images

# Pixels per
image (×106)

Ref. 36 88 0.5 Ref. 37 92 1.8

Ref. 28 26 0.6 Ref. 38 44 14.5

Ref. 39 224 3.2 Ref. 40 15 0.3

Ref. 41 64 1.5 Ref. 42 8 2.9

Ref. 43 7 2.4 Ref. 44 180 12.9

Ref. 45 105 11.1
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The last row tabulates the average TMQI of the selected 748 target LDR images. Among the

TMOs provided by the MATLAB HDR TOOLBOX, WardHistAdjTMO reaches the highest

average TMQI and provides the most ground-truth LDR images (124 images). Apart from

RamanTMO, which contributed 0 ground-truth images, all other TMOs provide at least one

image for the ground-truth set.

This approach to generate target LDR images is similar to the one proposed by Cai et al.47 to

generate high-contrast images. Both our work and theirs aim to reproduce satisfactory natural

LDR images. Although we focus on keeping the structural similarity from the HDR images

and retaining the color naturalness, Cai et al. aimed to produce a high-contrast image from

an under-/over-exposed image. Difference also exists in how to select the “ground-truth” target

image. We use an objective metric TMQI to select a ground-truth LDR image, whereas Cai et al.

used a subjective ranking to select a ground-truth high-contrast image.

4.4 Normalization

We linearly normalized the pixel value of input HDR and LDR images into [0, 1]. For input HDR

images, the min/max normalization was applied:

EQ-TARGET;temp:intralink-;e008;116;141vout ¼
vin − vmin

vmax − vmin

; (8)

where vmax and vmin are the maximum and minimum pixel values of the input HDR image,

respectively. For input LDR image, we applied vout ¼ vin∕255 to do the normalization so that

the pixel values of input LDR image are also in the range of [0, 1].

Table 2 TMOs performance in tone-mapping 256 × 256 HDR images.

TMOs TMQI
# LDR images with

highest TMQI TMOs TMQI
# LDR images with

highest TMQI

AshikhminTMO 0.83� 0.07 23 BanterleTMO 0.89� 0.04 24

BestExposureTMO 0.88� 0.05 12 BruceExpoBlend
TMO

0.85� 0.06 9

ChiuTMO 0.86� 0.06 28 DragoTMO 0.89� 0.04 18

DurandTMO 0.87� 0.07 39 ExponentialTMO 0.84� 0.03 1

FerwerdaTMO 0.80� 0.11 13 GammaTMO 0.75� 0.15 15

KimKautzConsistent
TMO

0.90� 0.05 37 KrawczykTMO 0.88� 0.07 30

KuangTMO 0.90� 0.05 25 LischinskiTMO 0.93� 0.04 89

LogarithmicTMO 0.82� 0.07 18 MertensTMO 0.83� 0.06 5

NormalizeTMO 0.88� 0.07 19 PattanaikTMO 0.73� 0.09 1

RamanTMO 0.80� 0.05 0 ReinhardDevlinTMO 0.86� 0.07 17

ReinhardTMO 0.92� 0.04 60 SchlickTMO 0.77� 0.10 2

TumblinTMO 0.83� 0.08 16 VanHaterenTMO 0.76� 0.09 2

WardGlobalTMO 0.81� 0.08 6 WardHistAdjTMO 0.92� 0.04 124

YPFerwerdaTMO 0.86� 0.06 38 YPTumblinTMO 0.80� 0.07 6

MATLAB tonemap
function

0.89� 0.05 75

target LDR images 0.96� 0.02 748
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4.5 Luminance Extraction and Color Reproduction

When training and testing our proposed adTMO, we used the luminance channel rather than the

RGB channels of the input images to ease the computation complexity and reduce the memory

requirement. Before training, we calculated the weighted sum of the RGB channels to extract

the luminance channel with the weights from Ref. 6:

EQ-TARGET;temp:intralink-;e009;116;668L ¼ 0.2959 · CR þ 0.5870 · CG þ 0.1140 · CB: (9)

After generating the luminance channel from G, we used Cout ¼ Cin · Lout∕Lin to reproduce

the RGB channels, where Lin and Lout are the input and output luminance channels, respectively,

and Cin and Cout are the RGB channels of the original HDR image and the generated LDR image

after color reproduction. After color reproduction, some pixel values would be larger than 255

and they were reduced to 255 to maintain the 8-bit RGB range.

5 Results

In this section, we discuss the results of our proposed adTMO, in terms of multiple metrics of

the generated LDR images in different training/testing schemes.

Figure 6 demonstrates one scenario of LDR content in the RGB channels after color repro-

duction, in different training/testing schemes. We omit the generated LDR content in testing

scheme Y because they were the images used for constructing the images in testing scheme

Z. LDR images in testing scheme W [(a), (d), and (g)] have higher TMQI, but such conversion

is meaningless, as many details are lost in the resizing operation. LDR images of testing scheme

X, Z in training scheme A [(b), (c)] have lower TMQI with shadows around the flowers, because

we only trained adTMO with resized 256 × 256 images so that many fine details from the

Fig. 6 TheRGB channels of LDR images generated by adTMOafter color reproduction. (a)–(c) are

based on training scheme A; (d)–(f) are based on training scheme B; (g)–(i) are based on training

scheme C. (a), (d), (g)are based on testing schemeW; (b), (e), (h) are based on testing scheme X;

and (c), (f), (i) are based on testing scheme Z.
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original images were lost. After we add cropped images into training databases, adTMOwas able

to learn how to keep the details of the original images. Therefore, the LDR images of testing

scheme X in training scheme B, C [(e) and (h)] look more natural and have higher TMQI. The

LDR images of testing scheme Z [(c), (f), and (i)] show “concatenated” edges, because cropping

a complete image into pieces and generating their tone-mapped LDR images individually break

the internal connections between these pieces. Future work is required to generate these indi-

vidual images and combine them in such a way that these edges are removed while maintaining

the high contrast in each individual image. Some finer details are not kept well by using the

proposed adTMO. It should be noted that edge-preserving techniques such as bilateral filtering

or guided image filtering have shown great promise in alleviating this problem. Further exper-

imentation is required, and we plan in the future to incorporate these techniques into a deep-

learning based TMO to create a more robust operator.

Fig. 7 Qualitative comparisons of adTMO and top-9-ranked TMOs for outdoor and indoor scenes

on TMQI metric.
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We chose training scheme C to train the proposed adTMO, testing scheme W to tone-map

256 × 256 resolution images and testing scheme X to tone-map 1024 × 2048 resolution images

given that train scheme C has the larger data set for training, and the resulting LDR images

[(g) and (h)] have higher TMQI.

In Fig. 7, we demonstrate qualitative comparisons of adTMO and other top-9-ranked TMOs

that produce the highest TMQI for four different scenarios, in generating 1024 × 2048 resolution

Table 3 Qualitative comparisons of adTMO and all other TMOs for 256 × 256 resolution images

on SSIM, MS-SSIM, FID, and PPL metrics. The bold values indicate the metric where adTMO

performs the best amongst all other TMOs.

TMOs TMQI SSIM MS-SSIM FID PPL

AshikhminTMO 0.85� 0.07 0.71 0.73 103.2 327.5

BanterleTMO 0.89� 0.05 0.72 0.73 91.3 242.6

BestExposureTMO 0.90� 0.05 0.81 0.82 92.7 210.4

BruceExpoBlendTMO 0.88� 0.07 0.78 0.81 87.4 154.5

ChiuTMO 0.86� 0.06 0.71 0.75 98.0 201.7

DragoTMO 0.89� 0.05 0.76 0.78 93.4 296.1

DurandTMO 0.90� 0.06 0.78 0.79 88.3 164.1

ExponentialTMO 0.84� 0.04 0.73 0.76 121.9 219.5

FerwerdaTMO 0.84� 0.09 0.75 0.77 108.3 285.1

GammaTMO 0.80� 0.07 0.62 0.68 118.4 439.5

KimKautzConsistentTMO 0.90� 0.05 0.78 0.78 84.2 138.6

KrawczykTMO 0.86� 0.08 0.70 0.72 104.7 248.6

KuangTMO 0.89� 0.06 0.78 0.79 94.5 238.5

LischinskiTMO 0.93� 0.05 0.82 0.83 74.3 159.2

LogarithmicTMO 0.88� 0.07 0.76 0.78 98.2 223.8

MertensTMO 0.87� 0.06 0.71 0.73 96.2 194.4

NormalizeTMO 0.87� 0.08 0.73 0.76 101.4 245.8

PattanaikTMO 0.77� 0.02 0.60 0.63 164.9 468.1

RamanTMO 0.85� 0.07 0.69 0.71 116.7 280.2

ReinhardDevlinTMO 0.84� 0.04 0.71 0.72 113.8 202.7

ReinhardTMO 0.92� 0.05 0.80 0.81 80.5 143.8

SchlickTMO 0.84� 0.09 0.70 0.72 104.6 257.3

TumblinTMO 0.86� 0.04 0.70 0.72 108.5 236.1

VanHaterenTMO 0.82� 0.04 0.68 0.70 115.7 275.9

WardGlobalTMO 0.89� 0.06 0.80 0.81 92.5 193.6

WardHistAdjTMO 0.93� 0.04 0.80 0.81 70.3 152.9

YPFerwerdaTMO 0.86� 0.06 0.72 0.74 98.2 204.2

YPTumblinTMO 0.81� 0.03 0.68 0.71 102.5 257.4

YPWardGlobalTMO 0.87� 0.06 0.71 0.74 98.4 201.5

MATLAB tonemap function 0.87� 0.04 0.74 0.76 129.5 286.3

Proposed adTMO 0.92� 0.05 0.80 0.82 68.2 163.2
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images. In most scenarios, including indoor/outdoor, irregular geometric shape, large colors

range, and drastic luminance changes, our adTMO outperforms all other TMOs on TMQI metric.

As well, the LDR images generated by adTMO do not suffer contrast problems like other LDR

images. Tables 3 and 4 list different metrics mentioned in Sec. 2 of the test dataset tone-mapped

Table 4 Qualitative comparisons of adTMO and all other TMOs for 1024 × 2048 resolution

images on SSIM, MS-SSIM, FID, PPL, and face detection accuracy metrics. The bold values

indicate the metric where adTMO performs the best amongst all other TMOs.

TMOs TMQI SSIM MS-SSIM FID PPL Face detection acc. (%)

AshikhminTMO 0.82� 0.09 0.69 0.70 114.6 254.8 70.5

BanterleTMO 0.84� 0.08 0.67 0.69 104.5 239.6 87.6

BestExposureTMO 0.85� 0.07 0.73 0.73 102.4 218.5 88.6

BruceExpoBlendTMO 0.81� 0.07 0.70 0.71 96.5 204.5 83.8

ChiuTMO 0.78� 0.06 0.64 0.68 104.9 208.7 78.1

DragoTMO 0.84� 0.07 0.69 0.71 98.6 175.3 85.7

DurandTMO 0.89� 0.07 0.75 0.77 104.7 264.9 87.6

ExponentialTMO 0.83� 0.05 0.70 0.71 142.7 304.6 73.3

FerwerdaTMO 0.76� 0.11 0.70 0.72 123.8 175.0 70.5

GammaTMO 0.78� 0.08 0.61 0.66 121.5 275.1 73.3

KimKautzConsistentTMO 0.85� 0.07 0.75 0.76 97.4 204.6 81.9

KrawczykTMO 0.81� 0.10 0.68 0.69 119.5 259.0 80.0

KuangTMO 0.85� 0.08 0.72 0.74 101.3 237.1 81.0

LischinskiTMO 0.89� 0.07 0.80 0.81 87.5 174.2 88.6

LogarithmicTMO 0.82� 0.08 0.72 0.74 103.9 222.5 80.0

MertensTMO 0.84� 0.08 0.68 0.71 99.4 194.9 77.1

NormalizeTMO 0.82� 0.09 0.68 0.70 105.4 223.7 78.1

PattanaikTMO 0.70� 0.06 0.58 0.61 195.8 479.1 4.8

RamanTMO 0.82� 0.08 0.64 0.66 124.7 275.9 77.1

ReinhardDevlinTMO 0.79� 0.05 0.69 0.70 115.3 246.1 76.2

ReinhardTMO 0.86� 0.07 0.75 0.76 87.1 196.4 87.6

SchlickTMO 0.79� 0.08 0.66 0.68 119.6 219.4 75.2

TumblinTMO 0.80� 0.06 0.67 0.69 125.2 231.8 78.1

VanHaterenTMO 0.77� 0.06 0.62 0.65 128.5 274.0 76.2

WardGlobalTMO 0.82� 0.07 0.75 0.76 96.3 162.4 81.9

WardHistAdjTMO 0.89� 0.06 0.76 0.76 77.5 186.5 83.8

YPFerwerdaTMO 0.86� 0.08 0.71 0.73 107.5 201.4 76.2

YPTumblinTMO 0.75� 0.05 0.66 0.67 111.8 214.8 70.5

YPWardGlobalTMO 0.80� 0.06 0.64 0.67 105.7 197.5 81.0

MATLAB tonemap function 0.84� 0.06 0.70 0.72 141.6 308.1 88.6

Proposed adTMO 0.90� 0.06 0.80 0.81 79.5 187.4 90.5

Cao et al.: Adversarial and adaptive tone mapping operator: multi-scheme generation and multi-metric. . .

Journal of Electronic Imaging 043020-13 Jul∕Aug 2021 • Vol. 30(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



by 30 TMOs and the proposed adTMO. We modify the PPL so that it can be used to evaluate

TMOs. Specifically, the PPL is calculated as follows:

EQ-TARGET;temp:intralink-;e010;116;711PPL ¼ E½
1

ϵ2
dðgflerp½fðz1Þ; fðz2Þ; t�g; gflerp½fðz1Þ; fðz2Þ; tþ ϵ�gÞ�: (10)

where fðzÞ represent the function mapping latent space to style vector in adTMO, t is uniformly

distributed between 0 and 1, lerp represents for linear interpolation, g is the generator function to

create image, d measures the perceptual distance between the images, and ϵ is set as 10−4 here.

In generating 256 × 256 resolution images, our proposed adTMO outperforms all other TMOs

with regard to the metric FID and outperforms most of TMOs with regard to other metrics. In

generating 1024 × 2048 resolution images, our proposed adTMO outperforms all other TMOs

with regard to the metrics TMQI, SSIM, and MS-SSIM and outperforms most other TMOs with

regard to FID and PPL. We also divided the images into two sets, one for indoor scenes and

another for outdoor scenes. Both reach high TMQI (0.89 and 0.90) for 1024 × 2048 resolution

images. Our deep learning-based tone mapping algorithm uses a mixture of best features from

other TMOs. In the absence of interactive parameter adjustment as it is not always available, our

approach offers the best TMQI.

In addition to the above-mentioned metrics, we also applied a face detection technique to the

generated 1024 × 2048 LDR images to measure the face detection accuracy as HDR-LDR trans-

lation is often used in security and healthcare applications. The face detection accuracy is defined

as acc ¼ TP∕ðTPþ FNÞ, where TP and FN represent the number of faces that are detected and

not detected, respectively. The face detector used in this paper is the Haar cascades face detec-

tor,48 and the test set we used for evaluation is by Kalantari and Ramamoorthi,45 which consists

of HDR images containing human faces. Our proposed adTMO reaches the highest face detec-

tion accuracy compared with other TMOs. The main reason contributing to this is that we use

the pretrained Inception V3 network24 to derive the perceptual loss, so our generated LDR

images look more natural, and the face detector trained on natural images can achieve higher

accuracy in LDR images generated by our adTMO. Overall, adTMO output has the highest

quality, regarding high-resolution 1024 × 2048 images and is comparable to the results for

256 × 256 images.

6 Conclusion

We propose an adTMO, which can adaptively generate high-resolution and high-quality LDR

images. We explore different training and testing schemes and find the best possible combination

to generate the highest quality images. We use multiple metrics including TMQI, SSIM,

MS-SSIM, and face detection accuracy to measure the performance of the proposed adTMO.

When testing on low-resolution LDR images, our adTMO has the highest performance on the

FID metric across all other TMOs. When testing on high-resolution LDR images, our adTMO

has the highest performance on TMQI, SSIM, MS-SSIM, and face detection accuracy over all

other TMOs. Looking specifically at the TMQI metric, the proposed adTMO achieves a TMQI

of 0.90� 0.06, which is superior to the DeepTMO’s6 0.88� 0.06. In addition, we have the

advantage in the training time where we spend 30 h for training, which is much short than

DeepTMO’s 1 week.
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