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ABSTRACT Face recognition (FR) systems have demonstrated reliable verification performance, suggesting 
suitability for real-world applications ranging from photo tagging in social media to automated border control 

(ABC). In an advanced FR system with deep learning-based architecture, however, promoting the recognition 

efficiency alone is not sufficient, and the system should also withstand potential kinds of attacks. Recent 

studies show that (deep) FR systems exhibit an intriguing vulnerability to imperceptible or perceptible but 

natural-looking adversarial input images that drive the model to incorrect output predictions. In this article, 

we present a comprehensive survey on adversarial attacks against FR systems and elaborate on the 

competence of new countermeasures against them. Further, we propose a taxonomy of existing attack and 

defense methods based on different criteria. We compare attack methods on the orientation, evaluation 

process, and attributes, and defense approaches on the category. Finally, we discuss the challenges and 

potential research direction. 

INDEX TERMS Biometrics, Face recognition, Adversarial attacks, Adversarial perturbation, Deep 

learning,  

I. INTRODUCTION 

Face recognition (FR) has been a prevalent biometric 

technique for identity authentication and is broadly used in 

several areas, such as finance, military, public security, and 

daily life. A typical FR system's ultimate goal is to identify 

or verify a person from a digital image or a video frame. 

Researchers describe FR as a biometric artificial intelligence-

based application that can exclusively identify a person 

through analyzing patterns of the person's facial features. 

The idea of using the face as a biometric trait inspired in 

the 1960s, and the design of the first successful FR system 
dates back to the early 1960s [1]. In recent times, the latest 

advancements of deep learning and the use of mounting 

hardware and abundant data have resulted in massive 

development in FR algorithms with accurate performance 

[2]–[4]. This performance permits the broad deployment of 

FR technologies in further diverse applications, ranging from 

photo tagging in social media to dubious identification in 
automated border control (ABC) systems. 

In an advanced FR model, however, promoting the 

recognition efficiency alone is not sufficient, and the system 

should also withstand potential kinds of attacks. Recently, 

researchers found that (deep) FR systems are vulnerable 

against different types of attacks that create data variations to 

fool classifiers. These attacks can be launched either via (a) 

physical attacks, which modify the physical appearance of a 

face before image capturing, or (b) digital attacks, which 

implement modifications in the captured face image [5].  

Presentation attacks also referred to as spoofing attacks 

[6], are among the main techniques used for physical attacks. 

A presentation attack aims to subvert the face recognition 

system by presenting a facial biometric artifact, including a 

printed photo, the electronic display of a facial photo, 

replaying video using an electronic display, and 3D face 

masks [7]. It has recently been demonstrated that makeup can 

also be abused to launch presentation attacks [8]. 

In contrast, adversarial attacks [9] and the variations 

resulting from morphing attacks [10, 116] are critical 

techniques utilized for digital invasion. A typical adversarial 

attack can deceive the FR systems with carefully crafted 

perturbations, called adversarial examples [11]. It should be 

noted that adversarial attacks are mainly categorized in the 

class of digital attacks, e.g., adversarial example generation 

methods mostly implement on the face images digitally, 

however, some methods are designed to accomplish 

physically by making physical changes on the face 
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appearances and then capturing the modified images [12]. 

Several approaches have been proposed to overcome the 

devastating consequences of this type of attacks, both those 

that target FR systems [13]–[16] and those that target beyond 

that area [17]–[19]. On the other hand, the goal of a morphing 

attack is to generate a fake face with the morphing and 

blending of two or more different subjects (e.g., a criminal 

and an accomplice) to enroll the criminal as a legitimate 

identity template of the FR system [20], [21]. Similarly, 

many efforts have been made in this regard to 

countermeasure destructive consequences ranging from face 

morphing detection methods [22]–[25] to accomplice's facial 

restoration approaches [26]–[28]. 

Among different attacks, adversarial attacks are 

fascinating since they can generally target deep neural 

networks (DNNs) and could specifically focus on 

convolutional neural networks (CNNs), based on which the 

state-of-the-art FR models are established. The massive 

growth in the number of papers published each year in the 

field of adversarial example generation demonstrates this 

type of attack (see Fig. 1). 

 

FIGURE 1. The cumulative number of adversarial example papers 
published in recent years [29]. 

 

This work presents a comprehensive survey on different 
techniques of adversarial attack generation intended to 

deceive FR systems, along with the potential 

countermeasures established against them. This is the first 
study that attempts to review adversarial attack and defense 

strategies on FR systems to the best of our knowledge. Since 

FR may refer to each of the two applications of face 

identification or face verification, we review both in this 
study. 

The main contributions of this paper are: 

• We review recent studies on adversarial example 

generation approaches on FR systems, present an 

illustrative taxonomy of the corresponding methods 

according to their orientation, and compare these 

approaches on orientation, evaluation process, and 

attributes. 

• We review the new adversarial detection methods for 

the FR systems, categorize the presented algorithms, 

and demonstrate a descriptive taxonomy. 

• We outline the main challenges and potential solutions 

for adversarial examples that target FR models based on 

four main problems: Particularization/Specification of 

adversarial examples, instability of FR models, 

deviation from the human vision system, and image-

agnostic perturbation generation. 

The remainder of this paper is organized as follows: 

Section II introduces the background of FR techniques, 

architectures, and datasets. In Section III, we describe the 

standard terms related to adversarial attacks and defenses in 

the context of the FR course, represent the attacks' attributes, 

explain the experimental standards, and discuss the pioneer 

methods of generating attacks. We review adversarial 

example generation methods intended to deceive the FR 

mission in Section IV. We discuss the methods and compare 

the approaches based on orientation, evaluation process, and 

attributes. In Section V, corresponding countermeasures are 

investigated. We discuss current challenges and potential 

future research directions in Section VI. Section VII 

concludes the work. 

II. BACKGROUNDS 

In this section, we briefly introduce basic FR systems and 

elaborate on incorporated models in the era of deep learning. 

Next, we present widely used architectures and standard 

datasets in this regard. 

A. A BRIEF INTRODUCTION TO FACE RECOGNITION  

Face recognition has been an age-old research topic in the 

computer vision community, and the first success of it dates 

to the 1960s. Since then, this research path has undergone 

scientific leaps in four decisive times. The face 

representation for recognition has taken sequential forms of 

holistic learning, local feature learning, shallow learning, 

and deep learning [30]. 

In the early 1990s, the historical Eigenface approach [1] 

was introduced, and the study of FR became popular shortly 

after that. From then till the 2000s, the holistic approaches 

that extracted low-dimensional representations from face 

images based on certain distribution assumptions [31]–[34] 

dominated the FR community. Nevertheless, these methods 

demonstrated a failure in addressing the uncontrolled facial 

modifications that deviate from the prior considered 

assumptions. In the early 2000s, local-feature-based FR 

techniques were introduced, and handcrafted descriptors 

such as Gabor [35] and LBP [36] became popular. However, 

distinctiveness and compactness were the two properties 

these local features lacked. In the early 2010s, local learning-

based features were introduced [37]–[39] to learn local filters 

and encode codebooks for better distinctiveness and 

compactness Though resolved the lack of necessary 

properties, these shallow representations demonstrated a loss 
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of robustness against complicated nonlinear facial 

appearance variations. 

These traditional methods attempted to recognize faces by 

one- or two-layer representations and improved FR accuracy 

The goal is to explore each aspect of unconstrained facial 

variations, including illumination, pose, expression, or 

occlusion, separately. The advent of deep learning methods 

resolved the limitations of traditional methods. In deep-

learning-based FR approaches, multiple layers of processing 

units learn multiple representations that correspond to 

different levels of abstraction. Interestingly, the higher-level 

abstract representations have demonstrated a strong 

invariance against face illumination, pose, expression, and 

occlusion changes, and represented facial identity with 

extraordinary stability. In 2014, DeepFace [3] attained state-

of-the-art accuracy on the Labeled Faces in the Wild (LFW) 

dataset [40]. In an unconstrained condition, it competed 

successfully with the human performance for the first time 

and approached the desired accuracy by training a 9-layer 

network on 4 million facial images. Deep learning 

techniques have reformed the research horizon of FR in 

almost all aspects, from algorithm designs and training/test 

datasets to application setups and evaluation protocols. 

B. DISTINGUISHED ARCHITECTURES OF FACE 
RECOGNIZERS 

DeepFace [3] was the first distinguished deep architecture 

introduced to the FR community. It has a deep CNN 

architecture with several locally connected layers. Afterward, 

FaceNet [41] and VGG-Face [2] deep-learning-based models 

were introduced, which were designed to train popular 

GoogleNet [42] and VGGNet [43] over the large-scale face 

datasets, respectively. These models fine-tuned the networks 

via a triplet loss function and implemented it on face patches 

created by an online triplet mining method. Later, the 

SphereFace [44] was proposed according to ResNet 

architecture [45], and a novel angular softmax loss learns 

discriminative features by an angular margin. Similar to this 

network, CosFace [46] and ArcFace [47] were introduced 

based on cosine and angular margin-based loss, respectively. 

These models were designed in a way to separate learned 

features with larger cosine and angular distances. Lightweight 

networks were then proposed to overcome the lack of GPUs' 

power and memory size and become applicable to many 

mobiles and embedded devices. LightCNN [48], with a novel 

max-feature-map (MFM) activation function, is a famous 

example of this category that results in a compact 

representation and reduces the computational cost. 

C. STANDARD FACE RECOGNITION DATASETS 

In 2007, the LFW dataset was provided from 3K images of 

faces on the web under unconstrained conditions and opened 

a new path for other testing databases to be used in different 

tasks. Having sufficiently large training datasets to evaluate 

the effectiveness of deep FR models resulted in continually 

developing more complex datasets to facilitate the FR 

research. The early deep FR models, such as DeepFace, 

FaceNet, and DeepID [49], were trained on private, controlled, 

or small-scale training datasets, hence, not allowing the new 

models to compare with. To resolve this problem, CASIA-

Webface [50], a collection of 0.5M images of 10K celebrities, 

was introduced as the first widely used public training dataset. 

Later, MS-Celeb-1M [51], VGGface2 [52], and Megaface 

[53], collections of over 1M images, were introduced as a 

public large-scale training dataset to be used by many 

advanced deep learning methods. 

III. ADVERSARIAL ATTACK GENERATION 

An adversarial attack consists of finely modifying an original 
image with the intention of the alterations become almost 

imperceptible to the human eye, to fool a specific classifier. In 

the realm of digital attacks, this can be implemented as the 

addition of a minimal vector n to the input image x, i.e. (x + 

n), such that the deep learning model 𝑭𝑭 predicts an incorrect 

output for the altered input x + n, which is known as an 

adversarial example. This way, a box-constrained 

optimization problem for generating the adversarial example 𝒙𝒙′ can generally be described as [9]:  𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙ʹ   �𝒙𝒙ʹ − 𝒙𝒙�2 𝑠𝑠. 𝑡𝑡.    𝑭𝑭(𝒙𝒙ʹ) =  𝑙𝑙ʹ 𝑭𝑭(𝒙𝒙) =  𝑙𝑙 𝑙𝑙 ≠ 𝑙𝑙ʹ 
 𝒙𝒙ʹ ∈ [0,1] 

 

 

 

(1) 

where 𝑙𝑙 and 𝑙𝑙′ represent the output label of 𝒙𝒙 and 𝒙𝒙′, and ‖. ‖2 

denotes the distance between two image samples according 

to 𝐿𝐿2-norm.  

As represented in Fig. 2, to fool the FR model (VGG16 in 

this case), the input images are altered so that the human can 

still forecast the correct class. However, deep learning 

network will be confused and misled to the wrong category. 

Szegedy et al. [9] were the first to demonstrate the 

vulnerability of CNN models to adversarial attacks generated 

by introducing a minute noise in the input image. The 

accuracies of GoogleNet and VGG-Face models also 

demonstrated to be degraded with color balance 

manipulation. Note that adversarial attacks' invisibility and 

the widespread application of deep learning algorithms can 

cause severe damages in real-world scenarios [54]. For 

example, if the signboard is altered in self-directed driving, 

adversarial examples can overly threaten the car, pedestrians, 

and other automobiles. Similarly, in FR applications, the 

failure to verify the altered input could lead to the degraded 

performance that can take benefit in the closed set 

verification/identification scenarios. 

A.  TERMS AND DEFINITIONS 

This section gives a brief introduction to the standard terms 

related to adversarial attacks on (deep) FR models. Our 

definitions of words are essential to understand the technical  
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FIGURE 2.  Visualization of original face image (first column), 
adversarial noise vector of VGG-16 (second column), and altered image 
(last column). From top to bottom, the four rows represent the addition 
of adversarial noise to the original RGB image and corresponding 

grayscale representations of R, G, and B color channels. Adversarial 
noise is magnified by a factor of 4 to enhance visibility [13]. 

 

components of the reviewed studies. The remainder of this 

article follows the same definitions of the terms. 
• Adversarial example/image is an intentionally altered 

(e.g., by adding noise) version of a clean image to fool 

machine learning (ML) models, such as FR models. 

• Adversarial training is a training process that uses  

adversarial images along with clean images.  

• Adversary is an agent who creates an adversarial 

example or the example itself, depending on the case 

study.  

• Dodging attack occurs when the attacker tries to have a 

face misidentified as any other arbitrary face. It is also 

known as obfuscation attack in the literature [55], [56].   

• Evasion attack tries to evade the system by altering 

samples during the testing phase yet not influencing the 

training data. 

• Impersonation attack seeks to disguise a face as a 

specific (authorized) face.  
• Poisoning attack takes place during the training time to 

contaminate the training data. In this attack, the attacker 

tries to poison data by inserting wisely designed samples 

to compromise the whole learning process ultimately. 

• Threat model is a model that formalizes assumptions 

about the attacker's goals, attack strategy, knowledge of 

the attacked system. 

B. ADVERSARIAL ATTACKS ATTRIBUTES 

In this section, we discuss the main attributes of adversarial 

example generation methods.  

1) ADVERSARIAL CAPACITY  

Adversarial capacity is determined by the amount of 

knowledge the attackers could gain about the model. Threat 

models in deep FR systems are classified into the following 

types according to the attack's capacity.  

 White-box attack assumes the complete knowledge of 

the target model, i.e., its parameters, architecture, training 

method, and even in some cases, its training data. 

 Black-box attack feeds a target model with the 

adversarial examples (during testing) created without 

knowing that model (e.g., its training procedure or its 

architecture or its parameters). Though the knowledge of the 

model is not available, the attackers can interact with such a 

model by utilizing the transferability of adversarial examples 

(Section III-B.3).  

2) ADVERSARIAL SPECIFICITY  

Adversarial specificity is defined as the ability of the attack 

to allow a specific intrusion/disruption or create general 

mayhem. Threat models in deep FR systems could be 

categorized into the following types according to the attack's 

specificity.  

 Targeted attack deceives a model into falsely predicting 

a specific label for the adversarial example. In an FR or 

biometric system, this is achieved by impersonating 

distinguished people.  

 Non-targeted attack predicts the adversarial examples' 

labels irrelevantly, as long as the results are not the correct 

labels. In an FR/biometric system, this is accomplished 

through face dodging. A non-targeted attack is more 

comfortable to implement than a targeted attack since it has 

more choices and space to alter the output. 

3) ADVERSARIAL TRANSFERABILITY 

Adversarial transferability is the ability of an adversarial 

example to continue to impact the models other than the one 

employed to create it. It is critical for black-box attacks 

where access to the target model, the training dataset, and 

other learning parameters may not be available. A substitute 

neural network model can be trained in such circumstances, 

and then adversarial examples can be generated against the 

substitute model. Due to transferability, the target model will 

be vulnerable to these adversarial examples. The 

transferability of adversarial examples could be defined from 

easy to hard, according to having the same neural network 

architectures but different datasets or having different neural 

network architectures from the beginning [11]. 

4) ADVERSARIAL PERTURBATIONS 

Adversarial perturbation is a kind of disruption that can 

fool a given model on a specific image with high probability. 

Small perturbation is a central premise for adversarial 

examples. In the realm of adversarial machine learning, the 

goal is to minimize the norm of the smallest adversarial 

perturbation to make target models misclassified. Explicitly, 

given an input image 𝒙𝒙, the perturbation vector n aims to 

alter the label of 𝒙𝒙, corresponding to the minimal distance 

from 𝒙𝒙 to the decision boundary of the classifier [9]: 
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𝑚𝑚𝑚𝑚𝑚𝑚𝒏𝒏∈ℝ𝑑𝑑‖𝒏𝒏‖2 𝑠𝑠. 𝑡𝑡.     𝑭𝑭(𝒙𝒙)𝑭𝑭(𝒙𝒙 + 𝒏𝒏) ≤ 0 

 

(2) 

where 𝑑𝑑 is the dimension of the input image and perturbation 

vector. The perturbation could be categorized into the 

following types according to the scope of its implementation. 

 Image-specific perturbations can be explicitly 

generated according to the given input images.  

 Universal perturbations can be generated without 

knowing the underlying details of the given images. Note 

that universality refers to the characteristic of a perturbation 

to have a good transferability and the ability to be applied to 

all input data uniformly. Although universal perturbations 

make it easier to create adversaries in real-world 

applications, most present attacks generate image-specific 

perturbations. It is aimed to move toward this direction and 

create universal perturbations that are not required to be 

reformed when the input samples are changed (Section VI). 

C. EXPERIMENTAL STANDARDS 

The performance of adversarial attacks against FR systems 

is evaluated based on different datasets and target models. 

This spectrum results in complications to evaluate the 

adversarial attacks and quantify the robustness of FR models. 

Large datasets and complex models usually make the attack 

and defense exertions harder.  

 Datasets. The LFW, CASIA-WebFace, MegaFace, 

VGGFace2, and CelebA [57] are the most widely used image 

classification datasets to evaluate adversarial attacks on FR 

systems. 

 Target models. Adversaries broadly attack several 

eminent deep FR models, such as DeepFace, FaceNet, VGG-

Face, DeepID, SphereFace, CosFace ArcFace, OpenFace 

[58], dlib1 , and LResNet100E-IR Face ID model2. 

 According to these datasets and target models in the 

following sections, we will inspect recent studies on 

adversarial examples targeted FR models according to these 

datasets and target models. 

D. PIONEERS  

In this section, we review several pioneer methods for 

generating adversarial examples. Almost each one of these 

methods forms the basis of the real-world attacks and has the 

power of significantly affecting machine learning target 

models in practice. Descriptions provided here will show the 

gradual improvements of the adversarial attacks and the 

extent to which state-of-the-art adversarial attacks can 

achieve. We will focus on the main methods that attack 

DNNs in general and review them in chronological order to 

maintain discussion flow. 

1) L-BFGS 

 
1 http://dlib.net 

 

Szegedy et al. [9] first generated adversarial examples using 

an L-BFGS method. The box-constrained L-BFGS is used for 

approximately solving the following problem: 𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙ʹ   𝑐𝑐‖𝒏𝒏‖2 +  𝐿𝐿(𝒙𝒙ʹ,  𝑙𝑙)  𝑠𝑠. 𝑡𝑡.    𝒙𝒙ʹ ∈ [0,1] 

 

(3) 

where 𝐿𝐿(𝒙𝒙′, 𝒍𝒍) computes the loss of the classifier, and a 

minimum 𝑐𝑐 > 0 is approximately calculated by line-

searching to satisfy the above condition. Authors showed 

that the above method could compute perturbations that fool 

neural networks when added to clean images while remains 

imperceptible to human eyes.  

2) FAST GRADIENT SIGN METHOD (FGSM) 

Goodfellow et al. [59] proposed a fast and straightforward 

method, named Fast Gradient Sign Method (FGSM) to 

compute an adversarial perturbation by solving the following 

problem efficiently: 𝒏𝒏 = 𝜖𝜖 𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚�𝛻𝛻𝒙𝒙𝒥𝒥(𝜽𝜽,𝒙𝒙, 𝑙𝑙)�  (4) 

where 𝜖𝜖 is the perturbation magnitude, sign(. ) denotes the 

sign function, and 𝛻𝛻𝒙𝒙𝒥𝒥(. , . , . ) represents the gradient of the 

cost function around the current value of the model 

parameters concerning the 𝒙𝒙. The generated adversarial 

example 𝒙𝒙′ is calculated as 𝒙𝒙′ = 𝒙𝒙+ 𝒏𝒏. With the application 

of the FGSM method, adversarial examples are not computed 

iteratively but, in a one-step, gradient update along the 

direction of the gradient sign at each pixel. Miyato et al.  [60] 

proposed a closely related method and named it Fast 

Gradient 𝐿𝐿2. With this method, the perturbation is computed 

as: 𝒏𝒏 = 𝜖𝜖 𝛻𝛻𝒙𝒙𝒥𝒥(𝜽𝜽, 𝒙𝒙, 𝑙𝑙)‖𝛻𝛻𝒙𝒙𝒥𝒥(𝜽𝜽,𝒙𝒙, 𝑙𝑙)‖2   
(5) 

As it is shown, the computed gradient is normalized with its 𝐿𝐿2-norm. An alternative of using the 𝐿𝐿∞-norm for 

normalization was proposed by Kurakin et al.  [61] and 

referred to as the Fast Gradient 𝐿𝐿∞ method. In the literature, 

all of these methods are categorized as one-step methods. 

3) BASIC & LEAST-LIKELY ITERATIVE CLASS 
METHODS 

Kurakin et al. [54] extended the one-step gradient ascent idea 

and proposed the Basic Iterative Method (BIM). The BIM 

iteratively adjusts the direction that increases the loss of the 

classifier by running multiple small steps. In each iteration, 

the values of the pixels of the image are clipped as follows:  𝒙𝒙ʹ(𝑖𝑖+1)
= 𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝜖𝜖 �𝒙𝒙ʹ(𝑖𝑖) + 𝛼𝛼⋅ 𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 �𝛻𝛻𝒙𝒙ʹ(𝑖𝑖)𝒥𝒥�𝜽𝜽,𝒙𝒙ʹ(𝑖𝑖), 𝑙𝑙���   

(6) 

2 https://github.com/deepinsight/insightface/wiki/Model-Zoo 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3092646, IEEE Access

  

6 

 

where 𝒙𝒙′(𝑖𝑖) denotes the generated adversarial example at the 𝑚𝑚𝑡𝑡ℎ iteration, 𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝜖𝜖{. } confines its change in each iteration, 

and 𝛼𝛼 is the step size. The initialization of the BIM algorithm 

is done by setting 𝒙𝒙′(0) = 𝒙𝒙 , and its termination is controlled 

by the number of iterations determined by 𝑚𝑚𝑚𝑚𝑚𝑚(𝜖𝜖 + 4,  1.25𝜖𝜖). 

This method is also known as the Iterative Fast Gradient 

Sign Method (I-FGSM) in the literature. Following this 

methodology, the Iterative Fast Gradient Value Method (I-

FGVM) is proposed, which differs in how it uses the 𝛻𝛻𝑥𝑥′(𝑖𝑖)𝒥𝒥 

gradient [54], [62]. Specifically, the I-FGVM changes the 

input 𝒙𝒙 in the direction of the gradient, whereas the I-FGSM 

uses only the sign gradient. In each iteration of I-FGSM, the 

values of the pixels of the image are clipped as follows:  𝒙𝒙ʹ(𝑖𝑖+1) = 𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝜖𝜖�𝒙𝒙ʹ(𝑖𝑖) + 𝛼𝛼 ⋅ 𝛻𝛻𝒙𝒙ʹ(𝑖𝑖)𝒥𝒥�𝜽𝜽,𝒙𝒙ʹ(𝑖𝑖), 𝑙𝑙�� (7) 

In another try, Kurakin et al. [54] extended BIM to 

Iterative Least-likely Class Method (ILCM), similar to what 

they did to extend FGSM to its "one-step target class." They 

substituted the label 𝑙𝑙 of the image in (6) by the least likely 

class (say 𝑙𝑙2) predicted by the classifier and tried to 

maximize the cross-entropy loss. 

4) JACOBIAN-BASED SALIENCY MAP ATTACK (JSMA) 

Papernot et al. [63] designed an adversarial attack by 

confining the 𝐿𝐿0-norm of the perturbations. In contrast to 

perturbing the whole image, they planned to perturb a few 

pixels in the image that might induce significant changes to 

the output. Accordingly, they defined a saliency adversarial 

map, called Jacobian-based Saliency Map Attack (JSMA), by 

which they could monitor the effect of changing each pixel 

of the clean image on the resulting classification. The 

proposed algorithm is repeated until the maximum number 

of allowable pixels are altered in the adversarial image so 

that the neural network fooling succeeded. 

5) ONE PIXEL ATTACK  

Su et al. [64] proposed a successful method of fooling 

different neural networks by only changing one pixel per 

image. The optimization problem becomes: 𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙ʹ  𝒥𝒥(𝜽𝜽,𝑭𝑭(𝒙𝒙ʹ),  𝑙𝑙ʹ) 

 𝑠𝑠. 𝑡𝑡.   ‖𝒏𝒏‖0 ≤ 𝜖𝜖0 

 

(8) 

To modify only one pixel, 𝜖𝜖0 is set to 1, hence, making 

the optimization problem hard. So, the authors applied the 

concept of Differential Evolution [65] to find the optimal 

solution. This technique requires the probabilistic labels 

predicted by the targeted model and does not necessitate any 

information about the network parameter values or gradients. 

It is implemented in a simple evolutionary strategy yet 

successfully fooling networks. 

6) DEEPFOOL 

Moosavi-Dezfooli et al. [66] proposed an iterative manner, 

called DeepFool, to find a minimal norm adversarial 

perturbation for a clean input image. The proposed algorithm 

initializes with the assumption that the input image is located 

in a region confined by the decision boundaries of an affine 

classifier, and the class label of the input is initially decided. 

At each iteration, the image is perturbed by a small vector. It 

is sought to lead the resulting perturbed image to the 

boundaries obtained by linearly approximating the region 

boundaries within which the image resides. In each iteration, 

the perturbations are added to the image and accumulated to 

compute the ultimate perturbation, which alters the input 

image label according to the original decision boundaries of 

the image region. DeepFool has been demonstrated to 

provide smaller perturbations compared to FGSM and JSMA 

while having similar fooling ratios.  

7) UNIVERSAL ADVERSARIAL PERTURBATIONS 

In contrast to their DeepFool method that computes image-

specific perturbations, Moosavi-Dezfooli et al. [67]  

proposed their newer algorithm to generate image-agnostic 

Universal Adversarial Perturbations to fool a network on 

any image successfully. They attempted to find a universal 

perturbation that satisfies the following constraint:  𝑃𝑃�𝑭𝑭(𝒙𝒙) ≠ 𝑭𝑭(𝒙𝒙 + 𝒏𝒏)� ≥ 𝛿𝛿      

s. t.   ‖𝒏𝒏‖p ≤ ξ  

 

(9) 

where 𝑃𝑃(. ) denotes the probability, 𝛿𝛿 controls the fooling 

rate, ‖. ‖𝑝𝑝 refers to 𝐿𝐿𝑝𝑝-norm, and 𝜉𝜉 confines the size of 

universal perturbation. Accordingly, the smaller the value of 𝜉𝜉, the more imperceptible the adversarial example to human 

eyes. It is shown that the Universal Adversarial 

Perturbations could be generalized well across popular deep 

learning architectures (e.g., VGG, CaffeNet, GoogLeNet, 

ResNet).  

8) CARLINI & WAGNER ATTACKS (C&W) 

Carlini and Wagner [68] introduced a set of adversarial 

attacks to defeat defensive distillation. According to their 

study, the 𝐿𝐿0-, 𝐿𝐿1- and 𝐿𝐿2-norms of quasi-imperceptible 

perturbations are restricted to fail defensive distillation for 

the targeted networks. It is also demonstrated that the 

adversarial examples generated with un-distilled networks 

transfer well to the distilled networks making the generated 

perturbations proper for black-box attacks. Regarding 

definition, distillation is referred to as a training procedure to 

transfer knowledge of a more complex network to a smaller 

network. This notion was initially introduced by Hinton et 

al. [69]. Later, Papernot et al. [70] introduced the variant of 

the procedure using the knowledge of the network to 

improve its robustness. 

IV. ADVERSARIAL EXAMPLE GENERATION AGAINST 
FACE RECOGNITION  

In this section, we review adversarial examples generated 

against FR systems. We first explain the main attack 

generation methods introduced in the literature. Next, we 

compare different attacks according to their orientation. 

Finally, we repeat the comparison this time based on 

attributes of the adversarial capacity, specificity, 

transferability, and the perturbation type. 
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A.  METHODS 

In this section, we review the main adversarial example 

generation methods against FR models. We review different 

studies in which they will be compared in succeeding 

sections to maintain the discussion flow. 

1) IMAGE-LEVEL GRID-BASED OCCLUSION 

Distortions that are not specific to faces and can be applied 

to any object image are categorized as image-level 

distortions. Goswami et al. [71] introduced an image-level 

distortion called Grid-based Occlusion. In this approach, 

points 𝑷𝑷 = {𝑝𝑝1, 𝑝𝑝2,  … ,  𝑝𝑝𝑛𝑛 } are selected along the image 

upper (𝑦𝑦 = 0) and left (𝑥𝑥 = 0) boundaries according to a 

parameter 𝜌𝜌𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔, where grids refer to Grid-based Occlusion. 

The 𝜌𝜌𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 parameter determines the number of grids utilized 

to alter the given image with higher values to result in a 

denser grid, i.e., more grid lines. For each point 𝑝𝑝𝑖𝑖 = (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖), 

a point on the opposite boundary of the image, 𝑝𝑝𝑖𝑖′ = �𝑥𝑥𝑖𝑖′ , 𝑦𝑦𝑖𝑖′�, 
is selected, with the condition if 𝑦𝑦𝑖𝑖 = 0 then 𝑦𝑦𝑖𝑖′ = 𝐻𝐻, and if 

0
i

x =  then 𝑥𝑥𝑖𝑖′ = 𝑊𝑊, where 𝑊𝑊 × 𝐻𝐻 is the input image size. 

Once a set of pair points 𝑷𝑷 and 𝑷𝑷′ selected, one-pixel wide 

lines are created to link each pair. Finally, the pixels placed 

on these lines set to 0 grayscale value. 

2) IMAGE-LEVEL MOST SIGNIFICANT BIT-BASED 
NOISE (XMSB) DISTORTION 

Image-level most significant bit-based noise is another 

image-level distortion introduced by Goswami et al. [71]. In 

this approach, three sets of pixels 𝒳𝒳1,  𝒳𝒳2,  𝒳𝒳3 are selected 

stochastically from the image such that |𝒳𝒳𝑖𝑖| =  ∅𝑖𝑖 ×𝑊𝑊 × 𝐻𝐻. 

Here 𝑊𝑊 × 𝐻𝐻 is the input image size, and the parameter ∅𝑖𝑖 
represents the fraction of pixels where the 𝑚𝑚𝑡𝑡ℎ most significant 

bit is flipped. Accordingly, the higher the value of ∅𝑖𝑖, the 

more pixels are distorted in the 
th

i  most significant bit. For 

each 𝒫𝒫𝑗𝑗 ∈ 𝒳𝒳𝑖𝑖 ,  ∀𝑚𝑚 ∈ [1,3], the following operation is pursued:  𝒫𝒫kj = 𝒫𝒫kj ⊕ 1 (10)  

where 𝒫𝒫𝑘𝑘𝑗𝑗 represents the 𝑘𝑘𝑡𝑡ℎ most significant bit of the  𝑗𝑗𝑡𝑡ℎ 

pixel in the set and ⊕ denotes the bitwise XOR operation. 

Also, it should be noted that the sets 𝒳𝒳𝑖𝑖 may overlap; hence, 

the total number of pixels influenced by the noise is less than 

or equal to |𝒳𝒳1| + |𝒳𝒳2| + |𝒳𝒳3|, depending on the stochastic 

selection.  

3) FACE-LEVEL DISTORTION 

Besides image-level distortion, Goswami et al. [71] also 

introduced face-level distortions. This type of distortion 

expressly necessitates face-specific information, e.g., 

location of facial landmarks. As a result, this approach is 

typically applied after performing automatic face and facial 

landmark detection. Once facial landmarks are detected, they 

are utilized along with their boundaries to perform the 

masking step. To obscure the eye region, a singular blocking 

band is drawn on the face image as follows: 𝐼𝐼{𝑥𝑥,𝑦𝑦} = 0,  ∀𝑥𝑥 ∈ [0,𝑊𝑊], 𝑦𝑦∈ �𝑦𝑦𝑒𝑒 − 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 𝜓𝜓⁄ ,  𝑦𝑦𝑒𝑒 + 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 𝜓𝜓⁄ � (11) 

where 𝑦𝑦𝑒𝑒 = (𝑦𝑦𝑙𝑙𝑒𝑒 + 𝑦𝑦𝑔𝑔𝑒𝑒) 2⁄  , and (𝑥𝑥𝑙𝑙𝑒𝑒 ,𝑦𝑦𝑙𝑙𝑒𝑒) and (𝑥𝑥𝑔𝑔𝑒𝑒 ,𝑦𝑦𝑔𝑔𝑒𝑒) are 

positions of left eye center and right eye center, respectively. 

The 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 is the inter-eye distance and calculated as 𝑥𝑥𝑔𝑔𝑒𝑒 − 𝑥𝑥𝑙𝑙𝑒𝑒 , 

and 𝜓𝜓 is the parameter that determines the occlusion band's 

width. The Eye Region Occlusion (ERO) process could be 

implemented to obscure the forehead and brow in a similar 

trend using the facial landmarks on the forehead and brow 

regions as a mask. It could also be implemented to occlude 

the beard region utilizing the outer facial landmarks and nose 

and mouth coordinates to create the mask as combinations of 

individually occluded areas.  

4) EVOLUTIONARY ATTACK  

Dong et al. [72] proposed Evolutionary Attack method, 

based on (1+1)-CMA-ES [73], which is a useful and 

straightforward variant of the covariance matrix adaptation 

evolution strategy (CMA-ES) [74]. In each update iteration 

of the (1+1)-CMA-ES, a new offspring (candidate solution) 

is generated from its parent (current solution) by adding 

random noise, the objective of these two solutions is 

evaluated, and the better one is selected for the next iteration. 

This method can solve the black-box optimization problem 

of: 𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙ʹ  𝐿𝐿(𝒙𝒙ʹ) =   �𝒙𝒙ʹ − 𝒙𝒙� 2 + 𝛿𝛿 �𝒞𝒞 �𝑭𝑭(𝒙𝒙ʹ)� = 1� (12)  

where 𝒞𝒞(. ) is an adversarial criterion that takes 1 if the attack 

requirement is satisfied and 0 otherwise, and 𝛿𝛿(𝑎𝑎) is 0 if 𝑎𝑎 is 

true, and +∞, otherwise. However, the authors did not apply 

the (1+1)-CMA-ES to optimize (12) due to the high 

dimension of 𝒙𝒙′. To accelerate this algorithm, they proposed 

an appropriate distribution to sample the random noise in 

each iteration, which can model the local geometry of the 

search directions. They sampled a random noise from a 

biased Gaussian distribution to minimize the distance of the 

sampled adversarial image from the original image. This 

added bias term is a critical hyper-parameter controlling the 

strength of going towards the original image. The authors 

also proposed techniques to reduce the dimension of search 

space by considering the characteristics of this problem. 

They sampled random noise in a lower-dimensional space 

ℝ𝑚𝑚 with 𝑚𝑚 < 𝑑𝑑, where 𝑑𝑑 is the dimension of input space. They 

then adopted an upscaling operator, precisely, the bilinear 

interpolation method, to project noise vector to the original 

space. Consequently, the input image dimension is preserved, 

and the dimension of search space is reduced. 

5) FEATURE FAST & ITERATIVE ATTACK METHODS 

Given a face pair and a deep face model, [75] proposed 

feature-level attacks to compare the face pair via calculating 

the distance between their normalized deep representations. 

These representations are similar to the embedding features, 

except that they are normalized and extracted from the deep 

face model. To discover the vulnerability of deep face 

models, the authors proposed to add perturbation on one of 

the face images to generate adversarial examples and deceive 

the face model. According to their notion, a positive and 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3092646, IEEE Access

  

8 

 

negative face pair is defined, for which the corresponding 

output labels are the same and different, respectively. 

Denoting the face pair by {𝒙𝒙𝟏𝟏,  𝒙𝒙𝟐𝟐} and adversarial example 

by 𝒙𝒙′ = 𝒙𝒙1 +  𝒏𝒏, for a positive face pair, 𝑙𝑙1 = 𝑙𝑙2 and the 

optimized objective and loss function are formulated as: 𝒏𝒏 = 𝑎𝑎𝑎𝑎𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 𝒏𝒏 ‖𝑭𝑭(𝒙𝒙1 +  𝒏𝒏) − 𝑭𝑭(𝒙𝒙𝟐𝟐)‖2,   ‖𝒏𝒏‖∞ < 𝜀𝜀 𝒥𝒥(𝒙𝒙1 +  𝒏𝒏,𝒙𝒙2) =   ‖𝑭𝑭(𝒙𝒙1 +  𝒏𝒏) − 𝑭𝑭(𝒙𝒙2)‖2 

 

(13) 

whereas for negative face pair {𝒙𝒙1,𝒙𝒙2}, 𝑙𝑙1 ≠ 𝑙𝑙2 and the 

optimized objective and loss function are formulated as: 𝒏𝒏 = 𝑎𝑎𝑎𝑎𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 𝒏𝒏 ‖𝑭𝑭(𝒙𝒙1 +  𝒏𝒏) − 𝑭𝑭(𝒙𝒙𝟐𝟐)‖2,   ‖𝒏𝒏‖∞ < 𝜀𝜀 𝒥𝒥(𝒙𝒙1 +  𝒏𝒏,𝒙𝒙2) =   − ‖𝑭𝑭(𝒙𝒙1 +  𝒏𝒏) − 𝑭𝑭(𝒙𝒙2)‖2 

 

(14) 

 

where 𝐹𝐹(𝒙𝒙𝒊𝒊) denotes deep representations after normalization 

and 𝜀𝜀 limits the maximum deviation of the perturbation. 

Forming adversarial perturbation based on the loss functions 

of (13) and (14) is called Feature Fast Attack Method (FFM) 

and defined as:  𝒙𝒙1 +  𝒏𝒏 =  𝒢𝒢𝒙𝒙1, 𝜀𝜀 �𝒙𝒙1 + 𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 �𝛻𝛻𝒙𝒙𝟏𝟏𝒥𝒥(𝒙𝒙1,𝒙𝒙2)�� 

 

(15) 

Considering an iterative way, the authors proposed the 

Feature Iterative Attack Method (FIM) as:  𝒏𝒏𝟎𝟎 = 0      

gN+1 = ∇𝐱𝐱1+𝐧𝐧N𝒥𝒥(𝒙𝒙1 + 𝒏𝒏𝑁𝑁 ,𝒙𝒙2) 𝒙𝒙1 + 𝒏𝒏𝑁𝑁+1 = �𝒙𝒙1 + 𝒏𝒏𝑁𝑁 , sign(gN+1)� 

 

(16) 

where 𝒢𝒢𝒙𝒙, 𝜀𝜀(𝒙𝒙′) = 𝑚𝑚𝑚𝑚𝑚𝑚(255,  𝒙𝒙+ 𝜀𝜀,𝑚𝑚𝑎𝑎𝑥𝑥(0,  𝒙𝒙 − 𝜀𝜀,  𝒙𝒙′)); the 

iteration can be chosen heuristically 𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀 + 4,  1.25𝜀𝜀). 

6) EYEGLASS ACCESSORY PRINTING  

Sharif et al. [76] proposed a physically realizable attack for 

impersonation or dodging in a digital environment. To 

enable physical realizability, the first step involved 

implementing the attacks purely with facial accessories 

(specifically, eyeglass frames) via 3d- or even 2d-printing 

technologies. In particular, they used a specific readily 

available digital model of eyeglass frames and utilized a 

commodity inkjet printer (Epson XP-830) to print the front 

plane of the eyeglass frames on glossy paper, which are 

affixed to actual eyeglass frames, subsequently. After 

alignment, the frames occupy about 6.5% of the 224 × 224 

face image pixels, implying that the attacks perturb at most 

6.5% of the pixels in the image. To find the color of the 

frames necessary to achieve impersonation or dodging, their 

color is initialized to a solid color (e.g., yellow), and the 

frames are rendered onto the image of the subject. Their 

color is updated iteratively through the gradient descent 

process to craft adversarial perturbations tolerant to slight 

natural movements when physically wearing the frames.  

The second step involved tweaking the mathematical 

formulation of the attacker's objective to focus on adversarial 

perturbations that both robust to small changes in viewing 

condition and smooth as expected from natural images. To 

find perturbations independent of the exact imaging 

conditions, aiming to enhance the generality of the 

perturbations, the authors looked for perturbations that can 

cause any image in a set of inputs to be misclassified. To this 

end, an attacker collects a set of images, 𝑿𝑿, and finds a single 

perturbation that optimizes her objective for every image 𝒙𝒙 ∈𝑿𝑿. For impersonation, this is formalized as the following 

optimization problem (dodging is analogous): 𝑎𝑎𝑎𝑎𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝒏𝒏  �𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠(𝑭𝑭(𝒙𝒙 + 𝒏𝒏),  𝑙𝑙)𝑥𝑥∈𝑋𝑋  

 

(17) 

where 𝒏𝒏 denotes the perturbation. To preserve the 

smoothness of perturbations, the optimization is updated to 

account for minimizing total variation (TV) [77], which is 

defined as:  𝑇𝑇𝑇𝑇(𝒏𝒏) = ���𝒏𝒏𝑖𝑖,𝑗𝑗 − 𝒏𝒏𝑖𝑖+1,𝑗𝑗�2𝑖𝑖,𝑗𝑗
+ �𝒏𝒏𝑖𝑖,𝑗𝑗 − 𝒏𝒏𝑖𝑖,𝑗𝑗+1�2�1 2�  

 

 

(18) 

where 𝒏𝒏𝑖𝑖,𝑗𝑗 denotes a pixel in 𝒏𝒏 at coordinate (𝑚𝑚, 𝑗𝑗). 𝑇𝑇𝑇𝑇(𝒏𝒏) is 

low when the values of adjacent pixels are close to each other 

(i.e., the perturbation is smooth), and high otherwise. 

Therefore, by minimizing 𝑇𝑇𝑇𝑇(𝒏𝒏), the smoothness of the 

perturbed image hence the physical realizability is improved. 

7) VISIBLE LIGHT-BASED ATTACK (VLA) 

Shen et al. [78] introduced a Visible Light-based Attack 

(VLA) against FR systems, where visible light-based 

adversarial perturbations are crafted and projected on human 

faces. For each adversarial example, the authors proposed to 

generate a perturbation frame and a concealing frame, which 

are projected to the face of the user. The perturbation frame 

contains information on how to change the input user's facial 

features to the features of a targeted or non-targeted user, 

whereas the concealing frame aims to hide the perturbations 

in the perturbation frame from being observed by human 

eyes. 

Regarding the perturbation frames generation, this 

method enlarges the pixel-level image modifications into 

region-level to avoid probable perturbation loss in physical 

scenarios. Accordingly, the perturbation frame is divided 

into exclusive ranges based on the similarity of containing 

color values. A Manshift clustering divides all colors, where 

nearby similar colors are divided into the same regions, and 

each group of nearby pixels with the same color in the image 

is regarded as one perturbation region. Then, in the second 

step, a region filtering strategy is utilized to ensure that the 

camera can successfully capture all projected details in a 

perturbation frame, and small color regions would not get 

lost in the images captured in physical scenarios. Denoting 𝒏𝒏 =  𝒙𝒙′ − 𝒙𝒙 as the perturbation frame, a clustering and 

filtering result of 𝒏𝒏 is denoted by 𝑪𝑪𝒙𝒙, 𝒙𝒙′ and defined as 

follows: 
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𝑪𝑪𝒙𝒙, 𝒙𝒙′ = {𝐺𝐺𝑖𝑖(𝑝𝑝),  𝑅𝑅𝑖𝑖|0 ≤ 𝑚𝑚 ≤ 𝑚𝑚} (19) 

where 𝐺𝐺𝑖𝑖(𝑝𝑝) indicates whether the color of a pixel 𝑝𝑝 should 

be set as 𝑅𝑅𝑖𝑖, and 𝑚𝑚 is the total number of color regions. For 

each pixel 𝒑𝒑.  in the image 𝑪𝑪𝒙𝒙, 𝒙𝒙′, 𝐺𝐺𝑖𝑖(𝑝𝑝)  is 1 if 𝑝𝑝 lies within 𝑅𝑅𝑖𝑖, and 0, otherwise. The generation function 𝐻𝐻(⋅) is defined 

next to transform the clustering result 𝑪𝑪𝒙𝒙, 𝒙𝒙′ into a 

perturbation frame 𝒏𝒏, as shown in (20):  𝒏𝒏 = 𝐻𝐻�𝑪𝑪𝒙𝒙, 𝒙𝒙ʹ� = [𝑅𝑅𝑖𝑖 if 𝐺𝐺𝑖𝑖(𝑝𝑝) = 1] (20) 

 To hide the perturbation frames from human eyes, 

concealing frames are generated according to the effect of 

persistence of vision (POV) [79]. According to POV, two 

different colors that swap frequently cause the human brain 

not directly process these changes at the exact moment they 

occur, making the human eyes perceive a new color as a 

fusion of those colors. Based on this knowledge, by 

projecting the perturbation frame and the concealing frame 

alternately, i.e., displaying the corresponding two colors of 

generated images interchangeably, it can be difficult for 

human eyes to feel the perturbation frame, and a fusion of 

these colors will be perceived as a base/background color of 

the image.   

8) ADVHAT ATTACK 

Komkov and Petiushko [80] proposed a reproducible 

adversarial attack generation method, called AdvHat. They 

printed a rectangular paper sticker on a standard color printer 

and put it on the hat with an off-plane transformations 

algorithm. The proposed algorithm split into two steps: (1) 

off-plane bending of the sticker, which is simulated as a 

parabolic transformation in the 3D space to map each point 

of the sticker to the new point on the parabolic cylinder, and 

(2) pitch rotation of the sticker, which is stimulated by the 

application of a 3D affine transformation to the obtained new 
points. The authors projected the resulted sticker on the high-

quality face image with small perturbations in the projection 

parameters. They transformed the new face image into the 

standard template of ArcFace input to pass it to the 

optimization step. Regarding the optimization step, the sum 

of two parameters (TV loss and cosine similarity between 

two embeddings) is minimized as follows to achieve the 

gradient signs used to modify the sticker image: 𝐿𝐿𝑇𝑇(𝒙𝒙ʹ,𝒂𝒂) = 𝐿𝐿sim(𝒙𝒙ʹ,𝒂𝒂) + 𝜆𝜆 ⋅ 𝑇𝑇𝑇𝑇(𝑝𝑝𝑎𝑎𝑡𝑡𝑐𝑐ℎ) (21) 

where 𝐿𝐿𝑇𝑇 is the total loss, 𝑝𝑝𝑎𝑎𝑡𝑡𝑐𝑐ℎ denotes the sticker, 𝒙𝒙′
 is a 

photo with the applied patch, and 𝜆𝜆 is a weight for TV loss, 

which is assumed to be 1𝑒𝑒 − 4 in this work. Here, 𝐿𝐿sim is 

cosine similarity between two embeddings and defined as 

follows: 𝐿𝐿sim(𝒙𝒙ʹ,𝒂𝒂) = cos�𝑒𝑒𝒙𝒙ʹ , 𝑒𝑒𝒂𝒂� (22) 

where 𝑒𝑒𝒙𝒙′ is obtained embeddings of the face image of the 

attacker and 𝑒𝑒𝑎𝑎 refers to the embedding of the desired 

person's face image calculated by ArcFace. 

9) PENALIZED FAST GRADIENT VALUE METHOD (P-
FGVM)  

Chatzikyriakidis et al.  [81] introduced a Penalized Fast 

Gradient Value Method (P-FGVM) adversarial attack 

technique, which runs on the image spatial domain and 

generates adversarial de-identified facial images like the 

original ones. This technique is inspired by the I-FGVM, 

with a minor exception of combining an adversarial loss and 

a "realism" loss term in its gradient descent update 

equations. In this method, a targeted adversarial example 𝒙𝒙′ 

is generated through the following gradient descent update 

equations:  𝒙𝒙′(𝑖𝑖+1) = 𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝜖𝜖 �𝒙𝒙′(𝑖𝑖) + 𝛼𝛼⋅ �𝛻𝛻𝒙𝒙′(𝑖𝑖)𝒥𝒥�𝜽𝜽,𝒙𝒙′(𝑖𝑖), 𝑙𝑙�
+ 𝜆𝜆�𝒙𝒙′(𝑖𝑖) − 𝒙𝒙��� 

 

(23) 

 

where 𝜆𝜆 is a weight coefficient and (𝒙𝒙′(𝑖𝑖) − 𝒙𝒙) is the realism 

loss term. 

10) FACE FRIEND-SAFE ATTACK 

Kwon et al. [82] proposed the Face Friend-safe adversarial 

example generation method, which generates adversarial 

examples that are misrecognized by an enemy FR system, 

nonetheless, appropriately recognized by a friend FR system 

with the least distortion. The proposed method consists of a 

transformer, a friend classifier 𝑀𝑀friend, and an enemy 

classifier 𝑀𝑀enemy, to generate adversarial face images. Given 

the pre-trained 𝑀𝑀friend and 𝑀𝑀enemy and the original input 𝒙𝒙 ∈𝑿𝑿, the optimization problem of generating the adversarial 

face example 𝒙𝒙′ is as follows:  𝑎𝑎𝑎𝑎𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙′   𝐿𝐿(𝒙𝒙,  𝒙𝒙′) 𝑠𝑠. 𝑡𝑡.   gfriend(x′) = l   and   𝑠𝑠enemy(x′) ≠ l 

 

(24) 

 

where 𝑠𝑠friend(𝒙𝒙) and 𝑠𝑠enemy(𝒙𝒙) denote the operation functions 

of a friend classifier 𝑀𝑀friend and enemy classifier 𝑀𝑀enemy, 

respectively. 𝐿𝐿(. ) is the distance measured between the face 

original sample 𝒙𝒙 and face transformed example 𝒙𝒙′. The 

transformer generates adversarial face example 𝒙𝒙′, taking the 

original sample 𝒙𝒙 and its corresponding output label. The 

classification loss of 𝒙𝒙′ by 𝑀𝑀friend and 𝑀𝑀enemy are returned to 

the transformer, which then calculates the total loss, 𝐿𝐿𝑇𝑇, and 

repeats the above procedure to generate an adversarial face 

example 𝒙𝒙′ while minimizing 𝐿𝐿𝑇𝑇. This total loss is defined as 

follows:  𝐿𝐿𝑇𝑇 = 𝐿𝐿friend + 𝐿𝐿enemy + 𝐿𝐿distortion (25) 

where 𝐿𝐿friend is the classification loss function of 𝑀𝑀friend, 𝐿𝐿enemy is the classification loss function of 𝑀𝑀enemy, and 𝐿𝐿distortion is the distortion of the transformed example, and 

defined as the distance between 𝒙𝒙 and 𝒙𝒙′. 

11) FAST LANDMARK MANIPULATION (FLM) METHOD 

Dabouei et al. [83] proposed a fast landmark manipulation 

approach to craft adversarial faces. They proposed to 

generate adversarial examples by spatially transforming 
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original images. Using a landmark detector function 𝜱𝜱, that 

maps the face image 𝒙𝒙 to a set of k 2D-landmark locations 𝑷𝑷 = {𝑝𝑝1, … , 𝑝𝑝𝑘𝑘},   𝑝𝑝𝑖𝑖 = (𝑢𝑢𝑖𝑖 ,  𝑣𝑣𝑖𝑖), it is assumed that 𝑝𝑝𝑖𝑖′ = �𝑢𝑢𝑖𝑖′ , 𝑣𝑣𝑖𝑖′� 
is the transformed version of  𝑝𝑝𝑚𝑚, and defines the 𝑚𝑚𝑡𝑡ℎ landmark 

location in the corresponding adversarial image 𝒙𝒙′. To 

manipulate the face image based on 𝑷𝑷, a per-landmark flow 

(displacement) 𝑠𝑠 is defined to produce the location of the 

corresponding adversarial landmarks. Accordingly, the 

adversarial landmark 𝑝𝑝𝑖𝑖′  can be obtained from the original 

landmark 𝑝𝑝𝑖𝑖  and optimized particular displacement vector 𝑠𝑠𝑖𝑖 = (𝛥𝛥𝑢𝑢𝑖𝑖,𝛥𝛥𝑣𝑣𝑖𝑖) as follows: 

piʹ = pi + fi �𝑢𝑢𝑖𝑖ʹ , 𝑣𝑣𝑖𝑖ʹ� = (𝑢𝑢𝑖𝑖 + 𝛥𝛥𝑢𝑢𝑖𝑖 ,  𝑣𝑣𝑖𝑖 + 𝛥𝛥𝑣𝑣𝑖𝑖) 

(26) 

In contrast with the reference work [84], which fulfills 

this purpose by defining field 𝑠𝑠 for all pixel locations in the 

input image, Dabouei et al. [83] defined it only for k 

landmarks, which is notably small compared to the number 

of pixels in the input image, especially when incorporated in 

real applications like FR problems. This limited number of 

control points also reduces the distortion introduced by the 

spatial transformation. Using the transformation 𝑇𝑇, the 

benign face image spatially transformed into an adversarial 

face image as follows:  𝒙𝒙′ = 𝑇𝑇(𝑷𝑷,  𝑷𝑷′,𝒙𝒙) (27) 

where 𝑷𝑷′ refers to target control points. Incorporating the 

softmax cost as the measure for the correct classification, 

authors defined the total loss for generating adversarial faces 

as: 𝐿𝐿(𝑷𝑷,𝑷𝑷′,  𝒙𝒙,  𝑙𝑙) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠�𝑭𝑭�𝑇𝑇(𝑷𝑷,  𝑷𝑷′,𝒙𝒙)�,  𝑙𝑙�− 𝜆𝜆𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓(𝑷𝑷′ − 𝑷𝑷) 

(28) 

where  𝜆𝜆𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓 is a positive coefficient used to control the 

magnitude of displacement, and 𝐿𝐿𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓 is a term incorporated 

for bounding the displacement field. This way, the landmark 

displacement field 𝑠𝑠 is found iteratively using the gradient 

direction of the prediction and called the FLM method. 

Authors also extended this approach proposing the Grouped 

Fast Landmark Manipulation (GFLM) Method, which 

semantically groups landmarks and manipulates the group 

properties instead of perturbing each landmark. This idea 

was formed to resolve severe distortion of the adversarial 

faces generated by FLM and preserve the whole structure of 

the created images. 

B.  COMPARISON OF DIFFERENT ADVERSARIES ON 
ORIENTATION  

A general taxonomy of existing adversarial example 

generation techniques against FR systems considering the 

orientation of adversaries is depicted in Fig. 3. Based on the 

strategies followed in different studies or tools recruited to 

launch adversarial attacks, different techniques could be 

mainly classified into four categories, namely, (1) CNN 

models-oriented; (2) physical attacks-oriented; and (3) 

geometry-oriented. The remainder of this section is 

structured according to this classification. 

 

FIGURE 3. The broad categorization of adversarial attack generation 
methods aimed to deceive the FR systems. 
 

1) CNN MODELS-ORIENTED 

As stated earlier, deep learning paradigm has seen a 

remarkable propagation in the FR mission. Several models 

are deep CNN-based architectures with many hidden layers 

and millions of parameters, which are designed to achieve 

very high accuracies when tested on different databases. 

Whereas reported efficiencies of such models improve 

progressively, they are shown to be susceptible to adversarial 

attacks. Realizing this, many researchers have started to 

design approaches to exploit the weaknesses of such 

algorithms. 

Goswami et al. [71] considered the vulnerability of 

several deep CNN-based FR algorithms in the presence of 

image processing-based distortions at (1) image-level and (2) 

face-level. They confirmed that attacks on systems do not 

need to be sophisticated learning based. Instead, a random 

noise or even horizontal and vertical black grid lines drawn 

in the face image can severely reduce the face verification 
accuracies. Examples of this effort are depicted in Fig. 4. 

 

FIGURE 4.  Clean input images (a) modified by image processing-based 
distortions of xMSB (b), Grid-based Occlusion (c), Forehead and Brow 
Occlusion (FHBO) (d), Eye Region Occlusion (ERO) (e), and Bread-like 
Occlusion (f) [71].  
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Dong et al. [72] proposed the Evolutionary Attack 

algorithm to evaluate the robustness of multiple advanced FR 

models against label-level adversarial examples in a 

decision-based attack setting.  

Zhong and Deng [85] defined Dropout Face Attacking 

Networks (DFANet) technique to explore the vulnerability of 

deep CNNs against feature-level adversarial examples. They 

incorporated dropout in the convolutional layers in the 

iterative steps of the adversarial generation process to 

improve the transferability of adversarial examples. 

Specifically, for a face model composed of convolutional 

layers, given the output of the 𝑚𝑚𝑡𝑡ℎ convolutional layer, they 

proposed to generate a mask with elements that 

independently sampled from a Bernoulli distribution. This 

mask is then utilized to modify the output of the 𝑚𝑚𝑡𝑡ℎ 

convolutional layer via Hadamard product of those. Authors 

proposed to apply this method to the generation of FIM and 

combined it with transferability enhancement methods [86]–

[88]. Applying their practice on the LFW dataset, they 

generated a new set of adversarial face pairs to attack 

commercial APIs of Amazon3, Microsoft4, Baidu5, and 

Face++6, which provide highly accurate facial analysis and 

facial search capabilities to detect, analyze, and compare 

faces for a wide variety of applications. They made this 

TALFW database available to the public for future 

investigations. 

Garofalo et al. [89] focused on the security aspect of face 

authentication systems aiming to let impostors evade the FR 

models. The authors deployed a poisoning attack on an 

authenticator based on the OpenFace FR framework which 

was extended with a support vector machine (SVM) 

classifier. They implemented the attack against the 

underlying SVM model to classify face templates extracted 

by the FaceNet model. In another study with a similar 

purpose, Chatzikyriakidis et al. [81] proposed to utilize 

adversarial examples in cases of face de-identification. They 

introduced the P-FGVM adversarial attack technique against 

CNN-based face classifiers. Examples of implementing this 

method to generate adversarial images are shown in Fig. 5.  

Lately, Kwon et al. [82] proposed the Face Friend-safe 

adversarial example generation method to successfully 

mislead an enemy FR system, nonetheless, be appropriately 

recognized by a friend FR system. 

Recently, a new Python-based toolbox, termed Advbox, is 

proposed to generate adversarial examples [90]. With 

Advbox, it is possible to fool neural networks in 

PaddlePaddle, PyTorch, Caffe2, MxNet, Keras, and 

TensorFlow, with the additional capability to benchmark the 

robustness of ML models. Compared to previous works, this 

platform supports actual attack scenarios, such as FR attacks. 

 
3 https://aws.amazon.com/rekognition 
4 https://azure.microsoft.com 

 

FIGURE 5.  Clean facial images (a) modified by adversarial perturbation 
(b) to generate de-identified facial images (c) via adversarial attack 
method P-FGVM [81]. The absolute value of perturbation is amplified by 
10x. 
 

2) PHYSICAL ATTACKS-ORIENTED  

Intruders to facial biometric systems often encountered two 

kinds of challenges: (1) they do not have precise control over 

the FR systems' (digital) input; instead, they may be able to 

control their physical appearance, and (2) they might be 

easily observed by traditional means like the police, when 

manipulating their appearances to evade recognition, e.g., 

with an excessive amount of makeup. In the light of such 

challenges, a new class of adversarial attacks has emerged 

based on the physical state of the attackers. 

Sharif et al. [76] developed the Eyeglass Accessory 

Printing method to generate a physically realizable yet 

inconspicuous class of attacks. In [91], authors proposed 

Adversarial Generative Nets (AGNs) to generate images of 

artifacts (e.g., eyeglasses) that would lead to 

misclassification. The artifacts generated by such neural 

networks resembled a reference set of artifacts (e.g., real 

eyeglass designs) and satisfied the inconspicuousness 

objective. Similar to GANs, AGNs are adversarially trained 

against a discriminator to learn how to generate realistic 

images. Differently from GANs, AGNs are also trained to 

generate adversarial outputs that can mislead given FR 

models on both digital and physical levels of evasion 

purposes. In this study, the FR algorithms were targeted on 

the digital-level by traditional attacks, such as Szegedy's L-

BFGS method [9], and deceived on the physical-level by 

requesting individuals to wear their 3D-printed sunglasses 

frames. Fig. 6 illustrates an impersonation attack generation 

by wearing such an accessory. 

Zhou et al. [92] designed a cap, with some penny-size lit 

Infrared LEDs on the peak, to generate inconspicuous 

physical adversarial attacks via Infrared dot direction on the 

carrier's face. The loss in this work is optimized by adjusting 

light spots in line with the model on the attacker's photo. The  

5 https://ai.baidu.com 
6 https://www.faceplusplus.com.cn 
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FIGURE 6.  The eyeglass frames (a) were used by Lujo Bauer (b) to 
impersonate Milla Jovovich (c) [76]. 
 

attacker could then evade detection by adjusting the 

positions, sizes, and strengths of the dots.  

Motivated by the differences in image-forming principles 

between cameras and human eyes, Shen et al. [78] proposed 

the VLA attack against FR models. In a similar study, Nguyen 

et al. [55] studied the feasibility of directing real-time 

physical attacks on FR systems by adversarial light 

projections using a web camera and a projector. In this 

approach, the authors captured the adversary's facial image 

with a camera and used one or more target images to (1) 

adjust the camera-projector setup according to the attack 

environment and (2) create a digital adversarial pattern. The 

digital pattern is then projected onto the adversary's face in 

the physical domain with a projector to evade recognition. 

Although this work's objectives are identical to the infrared-

based adversarial attacks [92], it does not necessitate creating 

a wearable artifact, thus, offers a more comfortable 

alternative setup to direct physical attacks on FR models.  

Another study [80] proposed to target the public Face ID 

model LResNet100E-IR, ArcFace@ms1m-refine-v2, by 

AdvHat attack generation method in fixed (full-face photos 

with uniform light) and variable (different angles of the face 

rotation and light conditions) settings. Similarly, Pautov et al. 

[93] examined the security of the same recognition system 

and proposed to print, add (as face attributes) and photograph 

adversarial patches; the snapshot of an individual with such 

attributes is then delivered to the classifier to alter the 
correctly recognized class to the desired one. In this work, 

patches were either various parts of the attacker's face, like 

nose or forehead or some wearable accessories such as 

eyeglasses.  

3) GEOMETRY-ORIENTED 

Prevalent intensity-based adversarial attack methods, which 

manipulate the intensity of input images directly, are 

computationally cheap but sensitive to spatial 

transformations. A small rotation, translation, or scale 

variation in the input image could result in a drastic change 

in similarity in these methods. Due to this limitation, a new 

class of attacks was initiated to generate geometry-based 

adversarial examples. 

Dabouei et al. [83] proposed the FLM method to craft 

adversarial faces almost 200 times quicker than traditional 

geometric attacks. They further introduced GFLM as the 

extended version of the fast geometric perturbation 

generation algorithm. Fig. 7 demonstrates an overview of the 

proposed fast geometry-based adversarial attack [83]. 

 

FIGURE 7.  Fast landmark manipulation method application to produce 
adversarial landmark locations, with which the ground truth image 
spatially transformed to a natural adversarial image. As shown in green 
and red colors, the ground truth image is correctly classified, whereas 
the adversarial image is misclassified to a wrong class [83]. 
 

Song et al. [94] focused on attacks that mislead the FR 

networks to detect someone as a target person, not 

misclassify inconspicuously. They introduced an Attentional 

Adversarial Attack Generative Network (𝐴𝐴3𝐺𝐺𝐺𝐺) to generate 

adversarial examples similar to the original images while 

having the same feature representation as to the target face. 

To capture the target person's semantic information, they 

appended a conditional variational autoencoder and attention 

modules to learn the instance-level correspondences between 

faces. 

Utilizing GANs, Deb et al. [56] crafted natural face 

images with a barely distinguishable difference from target 

face images. They proposed the AdvFaces adversarial face 

synthesis method to craft minimal perturbations in the 

prominent facial regions. This method comprises a generator, 

a discriminator, and a face matcher to automatically generate 

an adversarial mask added to the image to obtain an 

adversarial face image. Table I. presents a general overview 

of different adversarial example generation approaches 

regarding their orientation. 

C.  COMPARISON OF DIFFERENT ADVERSARIES ON 
EVALUATION PROCESS  

This section compares different adversarial example 

generation techniques in terms of their evaluation process 

and corresponding utilized metrics. 

    Goswami et al. [71] evaluated the verification 

performance of CNN-based FR algorithms, including 

OpenFace, VGG-Face, LightCNN, and L-CSSE [95], and 

one commercial-off-the-shelf recognizer (COTS) in the 

presence of image processing based adversarial distortions 

on the PaSC [96] and MEDS [97] databases. They reported 

experimental results based on the genuine accept rate (GAR) 

(%) of the attacks at 1% false accept rate (FAR). Overall, they 

demonstrated that deep learning-based algorithms could 

experience higher performance drop as opposed to the non-

deep learning-based COTS when any distortion is introduced 

in the data. 
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TABLE I 
COMPARISON OF DIFFERENT ADVERSARIAL ATTACK GENERATION ALGORITHMS ON THE ORIENTATION AND EVALUATION PROCESS 

Representative 
study  

Attack 
orientation  

Method/Description Evaluation metrics 

[71] CNN models (1) Image-level Grid-based Occlusion, (2) Image-level Most 

Significant Bit-based Noise (xMSB) Distortion, (3) Face-level 

Distortion 

GAR (%) @ 1% FAR 

[72] CNN models Evolutionary Attack MSE 

[85] CNN models DFANet Hit rate 

[89] CNN models Poisoning attack on an authenticator based on OpenFace extended 
with an SVM classifier 

FNR, FPR, CE 

[81] CNN models P-FGVM MSSIM 

[82] CNN models Face Friend-safe Attack SR of the enemy classifier, the accuracy 
of the friend classifier, and average 
distortion 

[90] CNN models Advbox toolbox  
[76], [91] Physical Eyeglass Accessory Printing SR  

[92] Physical Physical adversarial example generation via an infrared LEDs-

equipped cap 

𝐿𝐿2 distance between feature vectors of 

given pair of faces  
[78] Physical VLA SR 
[55] Physical  Physical adversarial example generation via real-time light 

projection 

Similarity score threshold @ 0.01% FAR  

[80] Physical AdvHat attack Baseline similarity and final similarity 
[93] Physical Adversarial example generation by printing, adding, and 

photographing adversarial patches of nose, forehead, and eyeglasses 

of the attacker 

Cosine similarity between embeddings of 

the given pair of faces 

[83] Geometric FLM SR, computation time  

[94] Geometric Adversarial example generation via 𝐴𝐴3𝐺𝐺𝐺𝐺 Physical likeness, similarity score, 

recognition accuracy  
[56] Geometric Adversarial face generation via AdvFaces method SR, SSIM 

 

Dong et al. [72] compared the performance of the 

Evolutionary Attack method with all existing decision-based 

black-box attack generation methods, including the boundary 

attack method [98], optimization-based method [99], and an 

extension of NES in the label-only setting (NES-LO) [100]. 

On the LFW and MegaFace datasets, the authors made this 

comparison against SphereFace, CosFace, and ArcFace FR 

models. For all methods, they measured the distortion 

between the adversarial and original images by mean square 

error (MSE) to evaluate the performance of different 

methods. Experimental results demonstrated that the 

proposed method could converge much faster and achieve 

smaller distortions compared with other methods consistently 

across both tasks (i.e., face verification and identification), 

both attack settings (i.e., dodging and impersonation), and all 

face models.  

Zhong and Deng [85] evaluated the transferability of 

targeted attacks between the ResNet-50 model trained on 

four datasets of CASIA-WebFace, MS-Celeb-1M, 

VGGFace2, and IMDb-Face [101]. They defined the goal of 

the attack as to generate adversarial examples from the source 

images and planned to obtain face embedding representations 

of source images closer to those of target images than the 

distance threshold of the FR systems. Accordingly, they 

computed the Euclidean distance of normalized deep features 

to obtain ROC curves and identified distance thresholds for 

judging whether a pair of source/target images is positive or 

negative. In this study, the attack is defined as a success (hit) 

when the embedding distance between the source image and 

target is less than the threshold. Authors used Fast Target 

Gradient Sign Method (FTGSM) [41] and Iterative Target 

Gradient Sign Method (ITGSM) [41] to generate label-level 

adversarial examples and FFM and FIM to generate feature-

level adversarial examples. Being more effective in terms of 

the transferability, authors selected FIM as the baseline 

method and further improved it by incorporating the 

transferability enhancement methods [86]–[88]. Created 

strong baseline method was then compared with the proposed 

DFANet method. Based on the comparisons, the authors 

verified the superiority of the DFANet method and that most 

of the successful hit rates of adversarial examples generated 

by this approach could be improved to approximately 90% 

between the four deep FR models. 

Garofalo et al. [89] utilized the Facescrub dataset [102] 

for their in-depth evaluation, as this dataset offers a high 

quantity of identities and samples per identity. They 

described the strength of the authenticator by false negative 

rate (FNR), false positive rate (FPR), and classification error 

(CE). Experimental results demonstrated that with the most 

successful attack, an impressive mean CE of 40.11% could 

be achieved, which was an increase in mean authentication 

error of almost 37% over the not targeted system, while the 

mean FPR increase was shown to be over 40%. In addition, 

the most successful attack deployment showed to lead to the 

CE of 51.23% on the test set, making the face authentication 

system entirely useless. 

Chatzikyriakidis et al. [81] evaluated the proposed P-

FGVM method on two CNN-based face classifiers: (1) a 

simple architecture model and (2) a fine-tuned model with 

transfer learning based on the pre-trained VGG-Face CNN 
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descriptor, using the VGG-16 architecture [43]. They 

calculated the mean structural similarity index (MSSIM) 

between the de-identified and original facial images as well 

as the 𝐿𝐿2 norm of the adversarial perturbation as the metrics 

for measuring the visual quality of the results. Comparing 

with the baseline I-FGVM and I-FGSM methods, against the 

face classifiers described above and on a subset of the 

CelebA dataset, the authors demonstrated that the proposed 

method could produce de-identified images that are much 

closer to the original ones while having better 

misclassification error than the competing methods (3% and 

1.7% increase in misclassification rate as compared with I-

FGVM and I-FGSM methods, respectively).  

Kwon et al. [82] considered the FaceNet recognition 

system as the target model; they trained their method on 

VGGFace2 and tested it on the LFW dataset. Authors 

evaluated the efficiency of the proposed method by 

measuring the attack success rate (SR) of the enemy 

classifier, the accuracy of the friend classifier, and the 
average distortion, demonstrating the values of 92.2%, 

91.4%, and 64.22, respectively. Reporting such values, they 

claimed that the objectives of their work were achieved 

successfully.  

Sharif et al. [76] evaluated their adversarial example 

generation method in both digital-environment and physical-

realizability experiments. They measured the SR of the attack 

as the fraction of attempts to achieve the goal. To compute 

statistics that generalize beyond individual images, they 

performed each attack on three images of each subject and 

reported the mean SR across those images. In digital-

environment experiments, attacking different DNNs under 

the white-box scenario, the attacker was able to dodge 

recognition or impersonate targets in almost all attempts with 

the mean SR of 100%. In Physical-realizability experiments, 

where subjects were asked to wear eyeglass frames and their 

images captured thereafter, the first three authors participated 

and for each of them, five sessions were considered. In the 

first session, the subjects did not wear the eyeglass frames, 

and non-adversarial images were classified correctly, with 

the mean probability of the correct class across the 

classification attempts above 0.85. In the second and third 

sessions, they wore eyeglass frames to attempt dodging 

against DNNs. The mean probability assigned to the subjects' 

class dropped remarkably from above 0.85 to less than 0.03, 

considering different cases. This was equivalent to achieving 

SRs of 100% (except for one experiment which resulted in an 

SR of 97.22%). In the fourth and fifth sessions, the subjects 

wore frames to attempt impersonation against DNNs. 

Considering different cases, more than 87.87% of the images 

collected in these sessions were misclassified by DNNs (with 

the mean probabilities of the targets greater than 0.75). 

In [91], Sharif et al. assessed dodging and impersonation 

attacks against VGG-Face and OpenFace models.  In the 

evaluation stage, they reported the accuracies of DNNs and 

SRs of the attacks. Using AGNs, in the digital domain all 

attempts succeeded with a mean SR of 100% in all dodging 

cases and greater than 88% in all impersonation attacks. In 

physical-realizability experiments, for dodging attacks, 

authors reported the AGNs' SR of 81% and 100% in the worst 

and best cases, respectively, and the mean probability 

assigned to the correct class of 0.40 and 0.01, 

correspondingly. For impersonation attacks, they reported 

the AGNs' SR of 53% and the mean probability assigned to 

the target of 0.22.  

Zhou et al. [92] examined the effectiveness of their 

proposed technique against the FaceNet model on the LFW 

dataset. They used 𝐿𝐿2 distance to weight the distance between 

two feature vectors generated by their model, and adopted the 

threshold 1.242 over the LFW dataset. In this way, a pair of 

faces with distance below the threshold were recognized as 

from the same person, otherwise two distinct individuals. The 

authors observed that the original distances, i.e., the distance 

between the embedding of the attacker and the victim before 

launching the attack, were all above the threshold. Hence, an 

authentication system could recognize that there was not a 

victim in the corresponding photo. On the other hand, the 

algorithm could result in adversarial examples that 

theoretically make distances fall below the threshold. In this 

work, theoretical distance means the distance between the 

calculated adversarial example and the victim. More 

importantly, the authors demonstrated that the attacker could 

indeed implement those adversarial examples by using the 

proposed device and consequently fool the authentication 

system. They verified this by measuring the distances after 

the attack that got below the threshold. 

Shen et al. [78] conducted extensive experiments on the 

CusFace [78] and LFW datasets and against FaceNet, 

SphereFace, and dlib models. Authors generated adversarial 

examples using FGSM and VLA methods, separately. On the 

FaceNet model, they demonstrated that for the non-targeted 

attacks in physical scenarios, VLA could significantly 

improve the SR over the FGSM. For targeted attacks, 

however, the proposed method could achieve a reasonable 

SR. Experimental results explained that the region-level 

color areas in perturbation frames generated by the VLA are 

more robust helping to obtain more effective adversarial 

examples. Generated adversarial examples were also used to 

evaluate with other face recognizers of SphereFace and dlib. 

The results of FGSM indicated that the attack SR against dlib 

and SphereFace is less than that against FaceNet, as FGSM 

is a white-box approach and the adversarial examples 

targeting FaceNet may not fit for other recognizers. 

However, as the VLA is agnostic to face recognizers, it could 

exhibit a similar performance against the three recognizers.  

Nguyen et al. [55] evaluated their approach against 

FaceNet, SphereFace, and one commercial-off-the-shelf FR 

system and confirmed the models' vulnerability to the light 

projection attacks. They used a similarity score threshold 

corresponding to FAR of 0.01% to determine if the attack is 

successful or not. Conducting impersonation and obfuscation 
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experiments on live subjects and against the FaceNet system, 

the authors reported the highest SRs of 93.3% and 100%, 

respectively. This is while the lowest SR values were 

achieved against the commercial-off-the-shelf FR system, 

indicating the more vulnerability of the deep FR systems 

against generated attacks. 

Komkov and Petiushko [80] evaluated the success and 

characteristics of the attacks in fixed and variable conditions. 

On the CASIA-WebFace dataset, they verified that their 

approach could easily confuse the LResNet100E-IR Face ID 

model. As the evaluation metrics, they explored baseline 

similarity and final similarity which they defined as cosine 

similarity between ground truth embedding and embedding 

for a photo with a hat, and cosine similarity between ground 

truth embedding and embedding for a photo with an 

adversarial sticker, respectively. In experiments with the 

fixed condition, they observed that adversarial stickers could 

significantly reduce the similarity to the ground truth class. 

In experiments with various conditions, where the robustness 

of the proposed approach to different shooting conditions 

aimed to be examined, although final similarity demonstrated 

to increase in each case/condition, the attack observed to 

work and almost all final similarities were shown to be less 

than the baseline similarities.  

Pautov et al. [93] evaluated their method against ArcFace 

on CASIA-WebFace dataset and photos of the first and 

second authors of this work. They showed that with their 

simple attacking technique they could deceive the FR system 

in the digital and physical worlds. Experimental results 

demonstrated that though the similarity of the embedding 

corresponding to the photo of the attacker with an applied 

patch with ground truth class can reach just slightly below 

the similarity of that embedding with desired class, the FR 

model could not recognize the attacker as the ground truth 

class. Authors also discovered that the position of a patch, as 

well as its size, dramatically affects the success of the attack 

in the physical domain.  

Dabouei et al. [83] evaluated the performance of the 

proposed FLM and GFLM methods for the white-box attack 

scenario. They trained the FaceNet model on VGGFace2 and 

CASIA-WebFace datasets and assessed its performance on 

the CASIA-WebFace dataset. The authors defined several 

experiments to investigate the importance of different 

regions of the face. From the results, they observed that with 

the attacks guided through these methods, the SR of more 

than 99.86% could be achieved. The computation time of 

these algorithms found to be noticeable too. The average time 

of generating adversarial faces for the FLM and GFLM was 

observed to be 125 and 254 milliseconds respectively, which 

is considerably shorter than the computation time of stAdv 

[84] (27.177 seconds on average).  

Song et al. [94] examined the proposed method by training 

the model on CASIA-WebFace and evaluating it on LFW 

datasets. They compared their approach with stAdv and 

GFLM methods and observed that a satisfactory attack SR 

could be archived via their proposed method. Overall, the 

authors demonstrated the excellent performance of 𝐴𝐴3𝐺𝐺𝐺𝐺 by 

a set of evaluation criteria in physical likeness, similarity 

score, and accuracy of recognition on different target faces. 

Deb et al. [56] quantified the effectiveness of their 

proposed adversarial example generation methods via attack 

SR and structural similarity index (SSIM). Authors trained 

AdvFaces on CASIA-WebFace and tested it on the LFW. 

They found that in comparison with the state-of-the-art 

adversarial example generation methods of FGSM, PGD, 𝐴𝐴3𝐺𝐺𝐺𝐺, and GFLM, AdvFaces can generate adversarial faces 

similar to the test images to be matched against the gallery 

images. While evading the state-of-the-art FR models 

(FaceNet, SphereFace, ArcFace) and two commercial-off-

the-shelf machers (COTS-A and COTS-B), generated images 

were demonstrated to attain attack SRs as high as 97.22% and 

24.30% for obfuscation and impersonation attacks, 

respectively. They reported the structural similarities 

between adversarial and test images along with the time taken 

to generate a single adversarial image and demonstrated that 

with their proposed AdvFaces method, a computation time of 

0.01 seconds and MSSIM of 0.95 and 0.92 could be achieved 

for obfuscation and impersonation attacks, respectively. 

Reported SSIM values and computation time were 

respectively higher and lower than those achieved by the 

other methods revealing the superiority of the AdvFaces 

method over them. Different evaluation metrics that were 

utilized in the reviewed studies are presented in the last 

column of Table I.  

C.  COMPARISON OF DIFFERENT ADVERSARIES ON 
ATTRIBUTES 

This section compares different adversarial example 

generation techniques in terms of attack attributes of 

capacity, specificity, transferability, and kind of employed 

perturbation. 

1) THE CAPACITY  

Table II. summarizes two primary attribute information, i.e., 

the capacity and the specificity of the attack methods. 

Regarding the capacity attribute, we found that most of the 

attack generation techniques are white-box attacks. In the 

scenario of black-box attacks, focusing on CNN model 

orientation, Dong et al. [72] considered a black-box 

decision-based attack setting and demonstrated that their 

approach could converge fast and fool the target model with 

fine distortions. In [85] an operative black-box adversarial 

attack was generated against commercial APIs and further 

step was taken exploring the transferability of feature-level 

adversarial examples against deep CNN-based FR models 

(Section IV-B.1). Goodman et al. [90] proposed the Advbox 

toolbox, which showed its ability to support black-box 

attacks against FR systems. Regarding physical attacks 

orientation, authors in [78] proposed the VLA against black-

box FR systems. Nguyen et al. [55] focused on real-time 

light projection-based attacks considering both white- and 
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TABLE II 

COMPARISON OF DIFFERENT ADVERSARIAL ATTACKS ON CAPACITY AND 

SPECIFICITY ATTRIBUTES 

Representative study Adversarial capacity Adversarial Specificity 

[71] None None 
[72] Black-box Both 

[85] Black-box Targeted 

[89] White-box Non-targeted 
[81] White-box Targeted 

[82] White-box Targeted 

[90] Both  Both  
[76], [91] White-box Both 

[92] White-box Both 

[78] Black-box Both 
[55] Both Both 

[80] White-box Non-targeted 

[93] White-box Both 
[83] White-box Non-targeted 

[94] White-box Targeted 

[56] Black-box Both  

black-box attack settings. In geometry-oriented attacks, Deb 

et al. [56] demonstrated that faces generated by the AdvFaces 

adversarial face synthesis method could evade several black-

box contemporary face-matching techniques while achieving 

unprecedented attack SRs. 

2) THE SPECIFICITY 

Considering the specificity of adversarial example 

generation techniques, Table II. represents that most attack 

methods are both targeted and non-targeted. Hence, the 

generalization is practically considered regarding this 

attribute. In the scenario of non-targeted attacks, which are 

easier to implement, Garofalo et al. [89] concentrated on the 

poisoning attack design, Komkov and Petiushko [80] 

focused on the evasion purpose of paper sticker projection 

on the hats, and Dabouei et al. [83] prioritized the speed of 

their landmark-based adversarial example generation 

algorithm. 

3) THE TRANSFERABILITY 

The transferability of attack methods was explored by some 

studies [56], [80], [85], [91]. Zhong and Deng [85] explored 

the vulnerability of CNN-based FR models to transferable 

attacks. They observed that their proposed DFANet technique 

could enhance the transferability of existing attack methods. 

Sharif et al. [91] found that attacks against the OpenFace 

architecture could successfully fool the VGG architecture in 

only a limited number of attempts (10–12%), whereas 

dodging against VGG can lead to successful dodging against 

OpenFace in at least 63% of attempts. They also argued that 

the generated universal attacks could transfer between 

architectures with similar success. Komkov and Petiushko 

[80] demonstrated that a paper sticker’s projection on the hat 

with their proposed reproducible AdvHat method could 

easily confuse Face ID model LResNet100E-IR. They 

expressed that the proposed method is transferable to other 

Face ID models, taken from InsightFace Model Zoo7, which 

 
7 https://github.com/deepinsight/insightface/wiki/Model-Zoo 

have different architectures, loss functions, and datasets for 

training in comparison to the LResNet100E-IR. Deb et al. 

[56] verified that faces generated with their AdvFaces 

adversarial face synthesis method are model-agnostic and 

transferable and can evade several black-box new face 

matching techniques. 

4) THE PERTURBATION 

Though universal perturbations make it easier to create 

adversaries in real-world applications, all except one 

reviewed attack methods in this paper have demonstrated to 

generate image-specific perturbations. In [89], authors 

generated universal dodging with a small number of 

eyeglasses that many subjects can use to evade recognition. 

This is despite the fact that universal perturbation generation 

against FR models seems to be a potential research path and 

is worth investing some time to avoid noise reformation any 

time input samples are altered (Section VI-D). 

V. DEFENSE AGAINST ADVERSARIAL EXAMPLES 

As novel approaches for crafting adversarial examples are 

proposed, research is also directed to confront adversaries 

aiming to moderate their consequence on a target deep 

network's performance. Accordingly, several defense 

strategies have been defined to increase the security of at-risk 

FR models. 

A. DEFENSE OBJECTIVES 

The objectives of defense strategies could be generally 

categorized into the following: 

Model architecture preservation is a primary 

consideration when constructing any defense techniques 

against adversarial examples. With this objective, the 

minimal alteration should be exerted on model architectures. 

Accuracy maintenance is a primary factor considered to 

keep the classification outputs almost unaffected. 

Model speed conservation is another factor that should 

not be affected during testing with the deployment of defense 

techniques on large datasets. 

B. DEFENSE STRATEGIES 

Generally, the defense strategies against the adversarial 

attacks can be divided into three categories: (1) altering the 

training during learning, e.g., by injecting adversarial 

examples into training data or incorporating altered input 

throughout testing, (2) changing networks, e.g., by changing 

the number of layers, subnetworks, loss, and activation 

functions, and (3) supplementing the primary model by 

external networks  to associate in classifying unseen samples. 

The methodologies in the first category are not concerned 

with the learning models. However, the other two categories 

directly deal with the NNs themselves. The difference 

between 'changing' a network and 'supplementing' a network 

by external networks is that the former changes the original 

https://github.com/deepinsight/insightface/wiki/Model-Zoo
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deep network architecture/parameters during training. 

Simultaneously, the latter keeps the original model intact and 

attaches external model(s) to it in testing. The taxonomy of 

the described categories is also displayed in Fig. 8. The 

remainder of this section is organized consistent with this 

taxonomy. 

 

FIGURE 8. A general categorization of adversarial detection methods 
aimed at defending FR systems against adversarial attacks. 

 

1) ALTERING TRAINING/TEST INPUT 

Agarwal et al. [13] presented an efficient adversarial 
detection method to identify an image-agnostic universal 

perturbation. This method operates on (1) the pixel values 

and (2) the projections obtained from principal component 

analysis (PCA) features, as test inputs which are coupled 

with SVM classifier to detect perturbations. The proposed 
solution is considered in the first category due to flattening, 

hence alters the training database's images to form a row 

vector used either as the pixel values or dimensionally 

reduced vectors. The authors evaluated the effectiveness of 

this approach by two perturbation algorithms, universal 

perturbation, and a variant of it, called fast feature fool [103]. 

Doing experiments with three different databases, MEDS, 

PaSC, and Multi-PIE [104], and four different DNN 

architectures, VGG-16, GoogLeNet, ResNet-152 [45], and 

CaffeNet [105], they showed that more straightforward 

approaches, such as the one proposed, can yield higher 

detection rates for image-agnostic adversarial perturbation. 

Another research [106] proposed a defense strategy based on 

an ensemble of classification from domain transformed input 
data. According to this approach, input images are 

transformed into a grayscale format, cropped, and rotated to 

pass the classifier, the predictions of which assembled to 

create the ensemble decision. The goal of this research was 

to discover a method that does not necessitate any retraining. 

On the VGGface2 dataset, experiments showed that domain 

transformation is useful to suppress the impact of adversarial 

attacks on face verification tasks.   
2) CHANGING THE NETWORK 

Goswami et al. [14] proposed two defense algorithms: (1) an 

adversarial perturbation detection algorithm, which utilizes 

the CNN intermediate filter responses, and (2) a mitigation 

algorithm, which incorporates a specific dropout technique. 

In the former, authors compared the patterns of the in-

between representations for original images with 

corresponding distorted images at each layer. They applied 

the differences of the two patterns to train a classifier that can 
categorize an unseen input as an original/distorted image. In 

the latter, they selectively dropped out the most affected filter 

responses of a CNN model, i.e., filter responses for in-

between layers that reflect the most sensitivity towards noisy 

data to lessen the impact of adversarial noise. Subsequently, 

they made a comparison with unaffected filter maps. Using 

the VGG-Face and LightCNN networks, authors assessed 

the detection and mitigation algorithms according to a cross-

database protocol; they performed training only with the 

Multi-PIE database and accomplished testing MEDS, PaSC, 

and MBGC [107] databases. Across all distortions on the 

three databases, it was shown that the proposed detection 

algorithm maintains high true-positive rates even at low 

false-positive rates, which are desirable for the system. Also, 

it was observed that by discarding a certain fraction of the 

most affected in-between representations with the proposed 

mitigation algorithm, better recognition outputs could be 

achieved.  

In another study, a blockchain security mechanism is 

presented to protect against FR models' attacks [108] 

presented. Traditional blocks of any deep learning models, 

such as CNNs, are converted into blocks similar to the 

blockchain blocks to offer fault-tolerant access in a 

distributed setting. In this way, tampering in one specific 

component alerts the entire system and easily detects 'any' 

probable alteration. Experiments revealed the proposed 

network's resilience to both the deep learning model and the 

biometric template, using Multi-PIE and MEDS databases.  

Su et al. [109] proposed a deep Residual Generative 

Network (ResGN) to clean adversarial perturbations for face 

verification. They suggested an innovative training 

framework composed of ResGN, VGG-Face, and FaceNet; 

they presented a joint of three losses: a pixel loss, a texture 

loss, and a verification loss, to optimize ResGN parameters. 

The VGG-Face and FaceNet networks contribute to the 

learning procedure by providing texture and verification 

losses, respectively, hence, improve the verification 

performance of cleaned images fundamentally. The 

empirical results validated the effectiveness of the proposed 

method on the LFW benchmark dataset. Zhong and Deng 

[75] offered to recover the local smoothness of the 

representation space by integrating a margin-based triplet 

embedding regularization (MTER) term into the 

classification objective so that the acquired model learns to 
resist adversarial examples. The regularization term consists 

of a two-phase optimization that detects probable 

perturbations and punishes those using a large margin in an 

iterative approach. Experimental outcomes on CASIA-

WebFace, VGGFace2, and MS-Celeb-1M demonstrated that 

the proposed method elevates network robustness against 

both feature-level and label-level adversarial attacks in deep 

FR models. 

According to the concept of feature distance spaces 

explored in [110], Massoli et al. [111] proposed a detection 

approach based on the trajectory of internal representations, 

i.e., hidden layers’ neuron activation, also known as deep 
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features. They argued that the representations of adversarial 

inputs follow a different evolution for genuine inputs. 
Specifically, they collected deep features during the forward 

step of the target model, applied average pooling over deep 

features to achieve a single features vector at each selected 

layer, and computed the distance between each vector and 

the class centroid of each class at each layer, to acquire an 

embedding that represents the trajectory of the input image 

in the features space. Such a trajectory was finally fed to a 

binary classifier or adversarial detector. As the adversarial 

detector, two different architectures of a multilayer 
perceptron (MLP) and a long-short term memory (LSTM) 

network were considered in this work. The authors 

conducted the experiments on the VGGFace2 dataset and the 

state-of-the-art Se-ResNet-50 [52]. To assess the efficiency 

of the proposed approach, they showed the receiving 

operating characteristics (ROC) curves from the adversarial 

detection considering targeted and non-targeted attacks for 

each architecture. They reported the area under the curve 

(AUC) values relative to each attack. Accordingly, the AUC 

values were very close for the targeted attacks, whereas, in 

the case of non-targeted attacks, the LSTM performance was 

shown to be considerably better than the MLP. 

Recently, Kim et al. [112] proposed a low-power, highly 

secure always-on FR processor for verification applications 

on mobile devices. This processor operates based on three 

key features of (1) a branch net-based early stopping FR 

(BESF) method to prevent adversarial attacks and consume 

low power, (2) a unified processing element (PE) for point- 
and depth-wise convolutions with layer fusion to reduce 

external memory access and (3) a noise injection layer (NIL) 

incorporated between bottleneck layers to make the network 

more robust against adversarial attacks with lower external 

memory access. They demonstrated that under the FGSM 

and PGD, BESF could result in high recognition accuracies 

while reducing the average power consumption significantly. 

They also showed that the PE reduces the external memory 

access, and the NIL could further lessen the FGSM and PGD 

attack SRs. Overall, this processor resulted in 95.5% FR 

accuracy in the Labeled Faces in the LFW dataset.  

3) SUPPLEMENTING EXTERNAL NETWORK 

Xu et al. [113] proposed a feature squeezing strategy that 

moderates the search space available to an adversary by 

coalescing samples correspond to different feature vectors in 
the original space into a single sample. Adding two external 

models to the classifier network, they explored two feature 

squeezing approaches by (1) decreasing the color bit depth 

of each pixel and (2) spatial smoothing. Goswami et al.  [14] 

expressed that this approach is simple and operative for high-

resolution images with detailed data; however, it may not be 

operational for low resolution cropped faces frequently used 

in FR settings. In [114], an open-source Python-based 

toolbox, termed as SmartBox, is proposed to benchmark the 

function of adversarial attack detection and mitigation 

algorithms against FR models. The detection approaches 

included in this toolbox are: ‘Detection via Convolution 

Filter Statistics,’ ‘PCA-based detection,’ ‘Artifacts 

Learning’ and ‘Adaptive’ Noise Reduction,’ which are 

respectively considered in ‘Changing the Network,’ 

‘Altering Training/Test Input,’ and ‘Supplementing External 

Networks’ defense categories. We put this study under the 

‘Supplementing External Networks’ category since it covers 

the last two and hence, the majority of SmartBox detection 

methods.  

While most of the current defense methods either assume 

prior knowledge of specific attacks or may not operate well 
on complex models due to their underlying assumptions, a 

new window was opened to adversarial detection techniques 

by leveraging the interpretability of DNNs [15]. Tao et al. 

[15] proposed a detection technique called Attacks meet 

Interpretability (AmI) in the context of FR practice. This 

technique features an innovative bi-directional 

correspondence inference amongst face attributes and 

internal neurons, using attribute-level mutation and neuron 

strengthening/weakening. More precisely, critical neurons 

for individual attributes are identified, and the activation 

values are enhanced to amplify the reasoning part of the 

computation. In contrast, other neurons’ activation values are 

weakened to suppress the uninterpretable part. Employing 

three different datasets, VGG-Face, LFW, and CelebA, AmI 

applied to VGG-Face, with seven different kinds of attack. 

Extensive experiments represented that the proposed 

technique could successfully detect adversarial samples with 

a true-positive rate of 94% on average, which is significantly 

higher than what was achieved with the state-of-the-art 

reference technique, called feature squeezing [113]. 

Similarly, the FPR of the AmI technique, is lower than the 

reference work, demonstrating its high effectiveness in this 

endeavor. A general overview of different adversarial 

example detection approaches, along with their category, is 

provided in Table III. 

VI. CHALLENGES AND DISCUSSION 

Although several adversarial example generation methods 

and defense strategies have been proposed and developed in 

FR's realm, various problems and challenges need to be 

addressed. This section summarizes the potential challenges 

that threaten this field. We categorize the challenges into four 

groups based on the literature reviewed above. 

A. PARTICULARIZATION/SPECIFICATION OF 
ADVERSARIAL EXAMPLES 

As described in this study, several image-, face-, and feature- 

level adversarial example generation methods have been 

proposed to fool FR systems; however, these methods are 

challenging to construct a generalized adversarial example 

and can only achieve good performance in a certain 

evaluation metrics. These evaluation metrics are mainly 

divided into three categories: The SR to generate adversarial 

examples, the robustness of the FR models, and specific 

attributes of the attacks, such as the perturbation amount and  
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TABLE III 

ADVERSARIAL EXAMPLE DETECTION APPROACHES 

Representative 

study 

Defense 

strategies 
Description 

[13] Altering 

training/test 
input 

Image pixels + PCA + SVM 

[106] Altering 

training/test 
input 

An ensemble of classification 
results from domain transformed 
(grayscale, cropped and rotated) 

input data 

[14] Changing the 
network 

Filter responses of CNN; dropout 
of filter responses 

[108] Changing the 

network 

Conversion of traditional blocks 

of deep learning models into 
blocks similar to the blocks in the 

blockchain 

[109] Changing the 
network 

Design of ResGN model + 
employment of a pixel loss, a 

texture loss, and a verification 

loss for parameter optimization 
[75] Changing the 

network 

Integration of MTER term into 

the classification objective for 
detection and punishment of 
perturbations 

[111] Changing the 

network 

Exploration of the adversary’s 

evolution by tracking the 
trajectory of deep features 

representations 
[112] Changing the 

network 

Design of a low-power and 

highly secure always-on FR 

processor 
[113] Supplementing 

external 

network(s) 

Feature squeezing strategies of 

(1) pixel’s color bit depth 

decreasing and (2) spatial 
smoothing via the addition of two 

external models to the classifier 

[114] Supplementing 
external 

network(s) 

SmartBox toolbox 

[15] Supplementing 
external 

network(s) 

Bi-directional correspondence 
inference amongst face attributes 

and internal neurons via AmI 

technique 
[115] Supplementing 

external 

network(s) 

Defending black-box FR 

classifiers via iterative adversarial 
image purifiers 

degree of the transferability. To explain briefly, the SR of an 

attack, known as the most direct and effective evaluation 

criterion, is inversely proportional to the magnitude of 

perturbations. The robustness of FR models is related to the 

classification accuracy. The better the design of the FR 

model, the less it is vulnerable to adversarial examples. 

Regarding the attacks’ attributes, too small perturbations on 

the original examples are difficult to construct adversarial 

examples, whereas too large perturbations are easily 

distinguished by human eyes. Therefore, a balance between 

constructing adversarial examples and the human visual 

system should be achieved. On the other hand, within a 

certain perturbation range, the transfer rate of adversarial 

examples is proportional to the magnitude of adversarial 

perturbations, i.e., the greater perturbations to the original 

example, the higher the transfer rate of the constructed 

adversarial examples.  Considering these facts, the amount 

of perturbation to be considered on the original images, and 

the design of model architecture becomes critical.  

Similarly, the variations in imaging conditions 

investigated in different works are narrower than can be 

encountered in practice. i.e., they are happened to be in 

controlled lighting, distance, etc. These conditions could be 

applied to some practical cases (e.g., an FR system deployed 

within a building). However, other practical scenarios are 

more challenging, needing the attacks to be tolerant of a 

more extensive range of imaging conditions.  

These matters inhibit the defenders from designing 

generalized detection techniques and encourage them to 

propose efficient defenses against confined attacks. To 

overcome such challenges, a comprehensive experimental 

setup should be considered, possibly via scheming a standard 

platform as a benchmark setup setting, so that all evaluation 

metrics are measured simultaneously to report the efficiency 

of generated adversarial examples. Also, the research space 

should be focused more on (1) the amount of perturbation to 

be considered on the original images, (2) the design of FR 

models’ architectures to be targeted, and (3) the level of 

transferability of generated adversarial examples. As 

demonstrated in Table II, the vulnerability of existing FR 

models to adversarial attacks in a black-box manner has been 

studied less, revealing the lack of transferability exploration. 

B. INSTABILITY OF FR MODELS 

Though the introduction of deep FR systems has brought 

benefits, it has increased the attack surface of such systems. 

Implementing image distortion-based adversarial attacks, for 

example, a substantial loss in the performance of deep 

learning-based systems observed, compared with the 

application of shallow learning-based commercial-off-the-

shelf matchers for the same evaluation data. Accordingly, the 

integration of only those architectures that are robust against 

evasion is strongly advocated. The need to develop robust 

models to increase adversarial examples' generalizability has 

been expressed in the previous paragraph, along with other 

influencing factors. However, this obligation is restated 

separately to emphasize its importance when taking steps 

toward generating more black-box attacks. In these 

circumstances, security concerns for developing more robust 

FR models will be raised. 

C. DEVIATION FROM THE HUMAN VISION SYSTEM  

Adversarial attacks on vision systems exploit the fact that 

systems are sensitive to small changes in images to which 

humans are not. It will be a good idea to develop algorithms 

that reason images more similar to humans. In particular, 

those approaches that classify images based on their 

attributes rather than on their pixels' intensities may become 

more practical. Such approaches may train classifiers to 

recognize the presence or absence of describable aspects of 

visual appearances, like gender, race, age, and hair color, and 

extract and compare high-level visual features, or traits, of a 

face image that are insensitive to pose, illumination, 

expression, and other imaging conditions.  
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Profound regard to human vision physiology may open 

another window to research space as well. For example, the 

VLA manifested a successful implementation of physical 

adversarial attacks, in the design of which an attempt was 

made to emulate the human visual system.  

D. IMAGE-AGNOSTIC PERTURBATION GENERATION  

The existing adversarial example generation methods are 

remarkably demonstrated to be image-agnostic, and the lack 

of universal perturbation generation against FR models is 

strongly noticed. An FR model's capability to attack different 

target faces simultaneously would be the by-product of 

generating universal perturbations, which is an essential 

concern in numerous studies that have been conducted in this 

regard. 

VII. CONCLUSION  

This article presented a comprehensive survey in the course 

of adversarial attacks against intelligent deep FR systems. 

Despite the outstanding performance of advanced FR 

models, they have been vulnerable to imperceptible 

adversarial input images that lead them to modify their 

outputs entirely. This fact has opened a new window to 

numerous recent contributions to devise adversarial attacks 

and countermeasures in the FR systems. This article 

reviewed these contributions, mainly concentrating on the 

most effective and inspiring works in the literature. A 

taxonomy of existing attack and defense methods is proposed 

based on different criteria. We also discussed current 

challenges and potential solutions in adversarial examples 

targeting FR models. Hope this work can shed some light on 

the key concepts to encourage progress in the future. 
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