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ABSTRACT Many researchers have incorporated deep neural networks (DNNs) with reinforcement learning

(RL) in automatic trading systems. However, such methods result in complicated algorithmic trading

models with several defects, especially when a DNN model is vulnerable to malicious adversarial samples.

Researches have rarely focused on planning for long-term attacks against RL-based trading systems. To neu-

tralize these attacks, researchers must consider generating imperceptible perturbations while simultaneously

reducing the number of modified steps. In this research, an adversary is used to attack an RL-based trading

agent. First, we propose an extension of the ensemble of the identical independent evaluators (EIIE) method,

called enhanced EIIE, in which information on the best bids and asks is incorporated. Enhanced EIIE was

demonstrated to produce an authoritative trading agent that yields better portfolio performance relative to that

of an EIIE agent. Enhanced EIIEwas then applied to the adversarial agent for the agent to learn when and how

much to attack (in the form of introducing perturbations).In our experiments, our proposed adversarial attack

mechanisms were> 30%more effective at reducing accumulated portfolio value relative to the conventional

attack mechanisms of the fast gradient sign method (FSGM) and iterative FSGM, which are currently more

commonly researched and adapted to compare and improve.

INDEX TERMS Reinforcement learning, adversarial attack.

I. INTRODUCTION

Portfolio management is a long-standing field of research.

The use of rule-based algorithms (e.g., in automatic trad-

ing) has enabled effective performance in portfolio manage-

ment. With the increasing prevalence of deep learning, many

researchers have leveraged neural network–based models to

obtain better performance. Reinforcement learning (RL) has

recently been used to solve portfolio management tasks.

These methods perform excellently, but they carry vul-

nerabilities under certain conditions. Researchers associate

automated trading with high volatility. Automated trading

systems can use preprogrammed rules when a stock price falls

below a predefined threshold. Because these algorithmsmake

decisions based on historical data, they may bemore sensitive
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to movements in prices, which means that a given strategy

may let investors quickly move in and out of the market due

to sudden price movements.

Besides, deep neural network (DNN) models have been

proven to be vulnerable to adversarial samples. Adversarial

samples generated by attackers can cause serious malfunc-

tions in DNN models. Such malfunctions occur from the

addition of malicious perturbations on the input data; such

additions have been widely studied in object recognition

tasks. A well-trained DNN model will be misled into mis-

classifying an image with a high level of confidentiality on

account of the presence of imperceptible adversarial sam-

ples. Many researchers have applied attack methods to image

classification tasks. The loss of the victim model entails a

loss on applications after images are misclassified. If the vic-

tim model constitutes a trading strategy, the adversary aims

to make the trading strategy perform poorly (e.g., to yield
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low returns). Thus, the corresponding loss incurred by the

trading strategy is larger than that incurred from classification

models.

Recent studies have increasingly applied attack mecha-

nisms to advanced neural network–based models, such as

RL models. Most studies on attacks have investigated the

application of RL models through the direct use of tra-

ditional attack mechanisms, such as the fast gradient sign

method (FGSM) [1]. However, a critic network must be

present to evaluate how much reward is reduced by per-

turbations made at a current time step after a sequence of

interactions; such evaluation allows the model to be updated

and to learn well. If a critic network is absent, then the adver-

sary must attempt to attack in the absence of an evaluation,

which makes the adversary liable to adopting a suboptimal

attack method. In addition, scholars have identified many

other challenges in attack RL models due to these models’

differences in architecture and training processes compared

with traditional adversarial attacks on supervised classifica-

tion algorithms.

First, the traditional supervised model aims to output a

specific answer according to a given input. The goal of the

attack is thus to dupe the supervised model into predicting

a wrong answer with high confidence. By contrast, the RL

agent interacts with the environment: the agent’s actions

change the state of an environment, and the agent subse-

quently receives a sequence of observations. The tasks of RL

algorithms are much more complicated than those of tradi-

tional supervised models, and the training process is based

on interactions. Thus, the goal of the attacker is to mislead

the agent not only to act inappropriately but also to act with

less efficiency than the agent otherwise would in the absence

of an attack. Second, a key requirement for the attacker is that

perturbations from the attack be as slight as possible for the

attack to be imperceptible to a human user in supervised tasks.

Similarly, in relation to an RL agent, the attacker should not

only produce small adversarial samples but must also reduce

the number ofmodified steps. This is because the victim agent

more easily detects an attackwith a larger number ofmodified

steps.

In this paper, we aimed to prove the vulnerability of RL

models in portfolio management. Because previous works

on attack RL models have failed to provide suitable solu-

tions to addressing RL model vulnerabilities, we propose

using an RL-based adversarial attack method against a victim

model; this method yields a well-trained RL trading system

for portfolio management. We believe that both classifiers

and well-performing RL agents can be vulnerable to artificial

intelligence attackers. The main architecture of our method is

identical to that of multi-agent RL, where an attack agent is

adopted to attack the victim agent. Specifically, the adversary

places fake orders for < 0.0001% of the price of the original

clean orders, causing the victim model to perform poorly

with respect to the standard three evaluation metrics. The

figure 1 shows that an adversary decides on the timing and

intensity of the attack based on the data that it examines

FIGURE 1. Example of our proposed RL-based adversarial trading agent.

during a given period. Consider the case of a single evalu-

ation metric, where the accumulated portfolio value (APV)

is defined as the difference between the final and initial

portfolio values. After negligible perturbation is added to the

original volume data, the APV of the victim agent decreases

(from 1.0523 to 0.0371 in the example illustrated in Fig. 1).

Our victim model was inspired by the ensemble of identical

independent evaluators (EIIE) networks proposed in 2017,

which is well known for its ability to yield high returns com-

pared with traditional trading methods [2]. We extended this

framework by adding volume information to improve perfor-

mance, and we termed this modified method enhanced EIIE.

Furthermore, we ensured that the environment in enhanced

EIIE is as similar as possible to a real financial market.

Therefore, we actively selected assets with the largest trading

volumes in the market as the expected components of the

investment portfolio. Every state in enhanced EIIE contains

two elements: the price and volume of the five best ticks.

We aimed to execute the least possible number of attacks on

states in enhanced EIIE. We did so by adding ‘‘fake’’ orders

to limit orders within the five best ticks, which were to be

canceled at the next time step. Consequently, enhanced EIIE

malfunctions, which causes the loss of capital.

Our major contributions are as follows:

• We propose a cutting-edge method for simultaneously

analyzing adversarial attacks on RL models and the

trading strategy adopted.

• We proved that even a well-performing portfolio man-

agement agent has some security vulnerabilities.

• To our knowledge, we are the first to attack an RL trad-

ing system with RL-based adversarial attack algorithms.

• We proved that attacks on an RL trading strategy result

in a greater loss than do attacks on strategies based on

classification models. This is because, in the case of

attacks, investors in an RL trading system lose their cap-

ital, whereas investors in a classification model system

only incur a loss from the misclassification of images.

II. RELATED WORK

In this section, we review the abundant literature related

to our work. We first discuss traditional methods and deep
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learning algorithms that are used to solve portfolio manage-

ment problems in finance. Subsequently, we review studies

on traditional adversarial attack techniques that are used to

solve classification tasks.

A. ADVERSARIAL ATTACKS IN CLASSIFICATION

TASKS AND RL MODELS

Machine learning and deep learning techniques have recently

been adopted in various fields, such as natural language pro-

cessing and computer vision. Although deep learning models

perform well in many fields, weaknesses remain in DNNs

when they are applied to image classification tasks; these

weaknesses were first found in 2013 [3]. Although these

models are highly accurate, they are susceptible to very

small perturbations to images that are almost imperceptible

to the human user. This phenomenon has attracted the atten-

tion of other researchers working on adversarial attacks and

deep learning security. After these discoveries were made,

researchers discussed the fragility of machine learning and

deep learning models.

Pioneering attack methods all feature a one-step attack,

meaning that the victim model must be successfully attacked

in only one step. For example, Szegedy et al. introduced the

box-constrained L-BFGS. In this method, the aim is to find

an adversarial sample that is similar to the input data, where

this adversarial sample leads to the model making poor deci-

sions [3]. The FGSM is a nontargeted gradient-based attack

algorithm that is designed to attack classifiers by computing

the sign of the gradient [1], [4], [5]. Until now, many studies

have used the FGSM architecture as an experimental control

group or have attempted to invent algorithms based on this

architecture [6], [7]. A study revealed that one-step attacks are

unlikely conducted to yield an optimal decision; thus, one-

step-attack methods have been refined into methods where

many steps are iterated to obtain the optimal perturbation [8].

These basic attack algorithms have been extended in newer

attack algorithms, such as Deepfool [9], the Carlini–Wagner

attack [10], and JSMA [11]; in these extended methods,

the adversary can allocate perturbations in multiple steps.

In addition, most of the aforementioned traditional adver-

sarial attackmechanisms have focused on classification tasks.

However, the applicability of adversarial attacks extends far

beyond classification tasks alone. The recurrent neural net-

work, autoencoder (AE), variational autoencoder (VAE), and

generative adversarial network were designed to undertake

different tasks. Many studies have also proven that these

models are vulnerable to adversaries despite their outstanding

performance [12]–[14]. Besides, all current models based on

neural network architectures are vulnerable to adversaries.

RL, in which the best action is found through interactions

with the environment, has been applied to many tasks. The

literature on RL security has increased with the widening

of RL applications. In RL, the adversarial attack is any

perturbation that potentially results in the agent receiving

less reward or being more likely to undertake the worst

possible action. The adversary can target any component of

the Markov decision process (MDP). First, the adversary

may choose to perturb rewards by either attacking rewards

directly [15]–[17] or attacking other indirect parts of the RL

training process [18], [19]. Second, the adversary can target

the agent of RL models. Indirect methods include having the

adversary execute the following tasks: adding perturbations

to states or the environment [20], [21], controlling another

adversarial agent in the same environment as the one the

original agent was under [22], attacking observations by

modifying the sensory data [23], introducing high-confidence

perturbations to the environment, and modifying the environ-

ment by perturbing states or by manipulating environmental

dynamics [21], [24]. Although the RL agent can be attacked

in many ways, most studies have applied traditional but sub-

optimal attack mechanisms against the agent. In our literature

review, we noted a paucity of research on adversarial attacks

against RL. Such paucity has been due to the difference

between RL and other neural networks with respect to train-

ing processes. Therefore, the literature on attacks against RL

models does not provide a solution to our problem.

In this section, we provide the detail description of our

problem definition in digital domain attack, and then extend

the formulation in order to generate a robust adversarial

examples for physical domain attack. Let x denote an clean

input image and ytrue denote the corresponding ground-truth

label, given a classifier C : C(x) = y that outputs the predic-

tion label of the input. To generate an adversarial example

xadv = x + ρ, which is human-imperceptible from x but

deceives the classifier, i.e.C(xadv) 6= ytrue, the objective func-

tion can be written as the following optimization problem:

argmin
xadv

L(C(xadv), ytarget ), s.t. ‖xadv − x‖p ≤ ǫ (1)

where J (.) is the cross-entropy loss of the classifier, and

ytarget is the target label which differs from the original label.

In general, the distance between the adversarial example and

the corresponding clean image needs to satisfy the Lp-norm

bound, where p can be 0, 1, 2 or ∞. The above optimiza-

tion can be relaxed by using the corresponding Lagrangian-

relaxed form:

argmin
ρ

L(C(xadv), ytarget ) + λ|ρ‖p (2)

where λ is a hyper-parameter controlling the strength of the

distance penalty term |ρ‖p.

In the case of anti-spoofing, the C mentioned above

becomes a simple binary classifier and the goal of the attacker

is to fool the anti-spoofing model with the adversarial spoof-

ing image, i.e. ytarget = true. For the attacker, it’s natural

to craft the target images by adding perturbations on the

spoofing images, since the real image doesn’t have sufficient

clueswith the information of the decision of the victimmodel.

In the digital domain, let x̂ denote a spoofing image and the

adversarial spoofing image xadv = x̂+ρ is fed into the victim

model directly, where adversarial noise ρ can be found by

solving the optimization problem in Eq. (2). In the physical

domain attack, the adversarial spoofing images need to go
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through another rebroadcast-recapture procedure before the

model’s final decision. For the purpose of synthesizing robust

adversarial example in the physical domain, we followed

the Expectation Over Transformation (EOT) algorithm [12]

to generate the adversarial examples that remain adversar-

ial over a chosen transformation distribution T . Therefore,

the new optimization problem can be rewritten as:

argmin
ρ

Er∼T[L(C(r(xadv)), ytarget )] + λ|ρ‖p (3)

where r(.) denotes the rebroadcast-recapture procedure and

T denotes the set of transformations such as random rotation,

translation, or addition of noise, which the adversarial pertur-

bation ρ needs to be robust to.

In the above equation, the face detection and face recog-

nition module are not considered and the crafted adversar-

ial spoofing image may not be accepted in the whole face

authentication procedure. Thus, we added extra constraints

in the above equation to generate the adversarial perturbation

which considered both the face recognition and anti-spoofing

module, the optimization problem can be rewritten as:

argmin
ρ

Er∼T[L(fs(r(xadv)), ytarget )] + λ|ρ‖p,

s.t. fd (r(xadv)) = 1, fr (r(xadv)) = lx̂ (4)

where fs denotes the output of the spoofing module, fd denote

the output of the face detection module, fr denotes the out-

put of the face recognition module. For the face detector,

fd (.) = 1 stands for the real face (and 0 for non-face). For

the face recognition module, fr (.) = lx̂ stands for the correct

identity for the image x̂. In the anti-spoofingmodule, fs(.) = 1

denotes the input image is a real person (and 0 for spoofing

image). The attack is successful when fs(r(xadv)) = 1 subject

to the two constraints.

White-box Adversarial Morphing Attack In the morphing

attack, the target of the attacker is to generate displacement

fields for the images and remap the vectorized images and

fields back to form the morphing attack images, which can

be expressed as:

xd = remap(x, (1x,1y)) (5)

where (1x,1y) denotes the corresponding displacement

field of the clean image x, and the remap(·) function generate

the deformed image xd according to the displacement field

and input image.

Under the white-box adversarial morphing attack settings,

we assume that the attacker has complete knowledge of the

victim model and can get access to the model parameters.

Therefore, the attack can generate a unique displacement

field for each image by back-propagating the classifier errors

through the model parameters.

To generate the displacement field for each individual

attack image, we propose a model architecture which is

shown in figure(). The architecture of our model is simi-

lar to U-Net [38], it can be decomposed as an extraction

path on the left and reconstruction path on right. In detail,

each convolution layer has a kernel size of 3 × 3 with

stride 2 for downsampling, following by a rectified linear

unit (ReLU) or hyperbolic tangent (Tanh) activation function.

In the extraction path, each component or block extracts

the essential and complicated features of the input image.

In the reconstruction path, the components or blocks aim to

construct the displacement field according to the extracted

information of the input image. However, much information

has lost due to the dimensionality reduction of each layer

in the extract path. Hence, the feature map of each level in

the extract path concatenates with its corresponding level

in the reconstruct path, and then as the input of the next

layer. At the end of our architecture, since we found that the

displacement field generated from our model will decompose

the structure of the image, therefore, the Gaussian Smoothing

layer will be applied to the displacement field before adding

to the image.

Similar to adversarial noise attack, in order to solve the

optimization problem in the anti-spoofing scenario by adapt-

ing the proposed morphing attack method, the deformed

image should be human-imperceptible and deceives the

spoofing detection model. Therefore, a constraint is applied

to limit the movement of pixels for the optimization problem

in Eq. (1), which can be reformulated as:

argmin
xd

L(C(xd ), ytarget ) + ‖(1x,1y)‖22 (6)

In the end, the extra constraints of the face detection and

face recognition model are needed to be consider, the opti-

mization problem can be written as:

argmin
xd

L(C(xd ), ytarget ) + ‖(1x,1y)‖22,

s.t. fd (r(xd )) = 1, fr (r(xd )) = lx̂ (7)

By limiting the classification loss and the amount of move-

ment made by the morphing process, the model can learn to

generate the appropriate displacement field for the morphing

attack image, and the constraints of face detection and face

recognition can also be solved easily by limiting the amount

of displacement field.

B. PORTFOLIO MANAGEMENT TASKS WITH TRADITIONAL

AND DEEP LEARNING METHODS

In this section, we review the literature on portfolio manage-

ment. Portfolio management has been studied for decades.

Fundamental to finance, portfolio management involves opti-

mizing the allocation of a holder’s wealth across a large set

of assets. Scholars have formulated various techniques to

improve portfolio management. The portfolio management

problem can be formulated as a sequential decision problem,

and existing methods for solving this problem draw either

on mean-variance theory [25] or capital growth theory [26].

The mean-variance theory aims to achieve a balance between

risk and expected return, and capital growth theory aims to

maximize the expected return of the portfolio.

The aim of algorithms is typically to maximize cumula-

tive return; such algorithms can be classified into several
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categories: traditional strategies, momentum strategies, con-

trarian strategies, pattern-finding algorithms, meta learning

methods, and machine learning and deep learning mecha-

nisms. Specifically, traditional strategies involve no knowl-

edge: this strategy merely involves holding on to the best

assets until the end [27]. Momentum strategies tend to follow

the expected return of the optimal strategy, and these strate-

gies often correspond to capital growth theory [28], [29].

Pattern-finding algorithms extract information from financial

historical data and predict the market distribution, with the

ultimate aim of optimizing the portfolio value based on the

predicted distribution [30]. These aforementioned algorithms

only employ one strategy. However, meta learning meth-

ods employ many strategies [31]. Because of the impressive

advances in neural networks, machine learning, and deep

learning, these methods have broadly replaced traditional

feature extraction optimization algorithms in solving finan-

cial problems [32], [33]. However, basic algorithms lever-

aging machine learning and deep learning learn the task

using supervised data, which are likely unable to capture

market uncertainty. Researchers have thus used RL to solve

this problem [34]–[36]. In RL, the trading agent acts after

observing historical financial data. Subsequently, the agent

receives a reward from the environment that reinforces good

decisions and penalizes bad ones, thus helping the agent

learn. To improve the performance of combinatorial learning

in reinforcement learning, in addition to achieving investment

goals, effective information must be collected. Many studies

have attempted to add trading strategies or conditions to

models, such as enabling agents to sell short [37], capture

more market news [38], or decline trading risks [39].

[37] proposed a method that allows agent short selling

in addition to long buying and selling. Apart from basic

market data, [38] used financial data and market news to

solve the problems of data heterogeneity and environmental

uncertainty. Our proposed enhanced EIIE added volume of

information, which affects the trading decisions of agents.

When selecting portfolios in real life, investors must also

consider risk management. The impact of risk on actual trans-

actions must be considered. Unlike our enhanced EIIE, which

focuses on investment gains and losses, [39] added a risk

control item to the reward function to ensure that risks when

trading are considered in the model. Our proposed attack

method can affect the portfolio management model, cause

losses, or even cause the victim model to lose the ability to

manage risk.

To increase performance in portfolio management

problems, some studies have proposed algorithms for com-

parison [40]. [40] applied three advanced reinforcement

learning algorithms, namely Deep deterministic policy gradi-

ent (DDPG), proximal policy optimization (PPO), and policy

gradient (PG), to portfolio management. They proposed the

adversarial trainingmethod, which not only improves training

efficiency but also proves that the agent based on the PG

algorithm can outperform UCRP. In the present research,

we proposed a related algorithm based on PG to attack the

portfolio management model. In a later section, we discuss

portfolio management strategies that are employed as the

victim model and that also takes the form of an online

stochastic batch learning scheme [2].

The findings of these studies collectively suggest that the

portfolio management problem is not too difficult to solve;

this means that algorithmic portfolio allocation can yield

profits with relative ease. However, we believe that the train-

ing process has intrinsic deficiencies. This belief motivated

us in terms of proving that trading systems are (easily) ren-

dered useless when an adversarial attack adds imperceptible

perturbations to the trading information.

III. PRELIMINARIES

In this paper, we aimed to attack a financial market by intro-

ducing a narrow range of perturbations to the volume of a

given set of investment objectives. These perturbations cause

a collapse in most automatic trading systems. The ultimate

objective is for our attack costs to bemuch lower than those of

other investors; under the best circumstances, our method can

even seize the opportunity to conduct inverse operations. The

entire system comprises two parts: the victim agent and our

proposed attack agent (Figure 2). The goal of the enhanced

EIIE victimmodel is to maximize portfolio value with respect

to 11 fixed underlying assets; the model does so by assigning

weights to these assets, where these weights determine how

much is invested in a given asset. In opposition to the victim

model, the adversary tries to add perturbations on the states

of the victim agent by learning from the evaluations made by

the victim model.

FIGURE 2. System overview.

A. PROBLEM DEFINITION

The attack process can be modeled as an MDP with finite

time steps and a deterministic policy, which is adopted by the

attacker. The overall framework is similar to that of multi-

agent RL, but the two policies are not in a zero-sum game.

We denote the adversary and victim as A and V respectively.

The MDP M = (S, (AA,AV ),T , (RA,RV )) comprises the

following: a state set S, joint state transition function T ,
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victim model action set AV , victim model reward RV , adver-

sary action set AA, and reward for the adversary RA. The state

set S ∈ {SA,AV ,RV } comprises states from the financial

market SA, the actions of the victim model, and the reward

of the victim model. T : SA × AA → 1(SA), where 1(SA)

is a probability distribution on SA. The reward function RAt :

SAt × AA × SAt+1 → R for time step t depends on the current

state, the action of the adversary, and the subsequent state.

At each time step t , the adversary selects an action aAt ∈ A

according to both the observation of state sAt ∈ S and a policy.

The policy π : S × A → [0, 1] represents the probability

distribution of state-action pairs where π(a|x) is defined as

the probability that the agent under a given policy chooses

action a when observing state x.

We did not include states from the victim model SV

because these states comprise a subset of SA. States from

the financial market SA ∈ {pc, ph, pl, v, ω} are represented

in terms of the closing price pc, highest price ph, lowest price

pl , volume v of the five best bids and asks, and the remaining

attack volume ω of the 11 assets within 1 minute. The first

four elements of SA are states of the victim model, and each

action of the victim model AVt = wt ∈ {0, 1} constitutes the

portfolio weight of a given asset. wt = πV (st ,wt−1) denotes

the action made by policy πV given a set of observations and

given the previous action at time step t . The victim model

produces a portfolio vector wt at the end of period t . The

job of the victim model is to maximize the final portfolio

value, which is equivalent to maximizing the average accu-

mulated return R. Thus, we can also formulate the portfolio

management problem as anMDP, where wealth is continually

relocated across numerous assets.

In summary, the victim model constitutes the environment

of the attack agent. Given current observations of a market

and a trading strategy that reflects the state sAt , our goal is

to learn a policy πA(sA) by minimizing the reward from the

victim agent; this policy governs which action is taken aAt
(attack or do not attack).

• Environment: The attack environment is constructed

by the victim agent and is detailed in the following

section.

• State sAt ∈ SA: The state comprises the actions and

rewards of the victim agent and the market information.

τ : S × A → S is the state transition function that exists

to generate the next state from the current state-action

pair.

• Action at = δt : Let a
A
t ∈ A denote the action at time

step t . After observing information from the market and

the actions of the victim model, the attack agent decides

whether and how aggressively to attack.

• Reward rA: The reward function is defined as a negative

value of the reward from the victim agent. Specifically,

where γ ∈ [0, 1) is the discount factor.

rAt = −

T
∑

i=0

γ (i−t)r(s′i, ai) (8)

We made some basic assumptions for the enhanced EIIE

victim model and for the adversaries. These assumptions are

required to make the attack technique realistic. The assump-

tions for the enhanced EIIE victim model are as follows:

• Assumption 1: The capital that the enhanced EIIE vic-

tim decides to put into the market exerts no influence

on the market. Thus, because the agent’s actions have

no market impact, other investors do not alter their deci-

sions upon observing the actions of the enhanced EIIE

victim.We assumed this because we used historical data,

which cannot be changed, to train the enhanced EIIE

victim model.

• Assumption 2: For all assets, liquidity is sufficiently

high for every order to be fulfilled immediately at the last

price for there to be no unsettled position. In addition,

buy or sell orders remain unchanged; these orders form

the portfolio weight and are placed in the market by the

enhanced EIIE victim.

The assumptions for adversaries are as follows.

• Assumption 1: When the adversary is trained,

we assume that the enhanced EIIE victim follows a

fixed stochastic policy πV and that this policy produces

decisions that are consistent with the victim model

stored with the best-performing weights. In some sys-

tems where safety is paramount, the standard research

process is to validate and subsequently freeze the attack

model to ensure that the victimmodel does not change its

decision process due to retraining. Thus, having attacks

be directed at a fixed model is a realistic design for both

research and real-world applications.

• Assumption 2: The perturbations, which are fake

orders, are not matched at the next time step. In other

words, these orders are canceled before they are

matched. Adversaries face a trade-off between the cost

and success rate of attacks. If these orders are matched,

then attack costs are large.

IV. ENVIRONMENT AND VICTIM MODEL

In this section, we describe our enhanced EIIE victim model,

which draws on that of Jiang et al. [2]. The elements of the

model are the learning target, design of states, actions, reward

function, and policy network.

A. INPUT DATA AND LEARNING TARGET

We actively selected the expected components of the port-

folio, and the input data fed into the victim model pertain to

historical prices and the volume of the five best bids and asks.

The input data is processed into an input tensor X of the shape

(f ,m, n) where f = 13 is the total feature number, m = 15 is

the window size, and n = 11 is the number of non-cash assets.

As mentioned, price data are used to calculate y, and doing

so can lead to the change in total portfolio value for a given

period. We used the closing price of all underlying assets.

This price is denoted as pit , i ∈ A, t ∈ T , which represents the

price of the ith asset at the period tth that together comprise y.
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Cash is a special asset; the agent decides how much cash to

invest in assets. Because y is important for the agent to act,

we defined y as the relative change in prices, as follows.

yt =
pct

pct−1

= [1,
pc1,t

pc1,t−1

, · · · ,
pc11,t

pc11,t−1

]T (9)

Our aim was for the victim agent to learn how to maximize

the final portfolio value by observing how the prices pc, ph,

and pl map onto y. Besides, the portfolio changes are calcu-

lated as follows, where Pt is the current portfolio value and

the portfolio value at the initial time step in the period is set

to be one P0 = 1. Specifically,

P = P0

T
∏

t=1

yt · wt−1 (10)

where wt−1 is the portfolio weight after rebalancing.

Rebalancing is a necessary step for the financial trading

process because price changes with time. Thus, the allo-

cated original weight w′
t−1 at time step t − 1 necessarily

changes at the subsequent time step t due to changes in price.

For the weight to remain unchanged, some assets must be

bought or sold. Specifically,

P′
t = Pt · c

N
∑

i=1

|w′
t−1 − wt−1| (11)

where c is the transaction cost, which we set to 0.25%.

B. RL ENVIRONMENT AND AGENT

Scholars have believed that the information required to aid the

agent in decision-making is concealed in asset prices. In par-

ticular, the scholar who formulated the EIIE believed that

historical prices roughly represent the environment. However,

raw price data are still difficult for the agent to process. Thus,

the scholar who formulated the EIIE adopted subsampling

and a history cut-off mechanism that included feature extrac-

tion, asset selection, and partial data from a recent number

of periods. However, we believe that the volume of best bids

and asks also constitutes rich data. We formulated a new

feature extraction method based on this belief. In this method,

we added volume data, allowing the expectations of other

investors in the market to be observed. To make the victim

model under the attack mechanism credible, we decided to

add this volume of data into the training feature to improve

the performance of the victim agent.

The agent’s goal is to reallocate the wealth across assets

through buying or selling these assets; such reallocation

depends heavily on the difference between the portfolio

weights wt−1 and wt . Because wt−1 is the unchangeable

historical decision, the agent’s action pertains only to the

allocation of wt .

Because of the RL architecture, after a current action aVt =

wt is executed, the agent receives a reward r
V
t for the present

time step; this action affects the subsequent state sVt+1, and

this reward affects the subsequent action aVt+1 = wt+1.

This influence is due to wt−1 being considered as part of the

environment, wherewt−1 is added to the states for the implied

impact factor to be included; this addition helps the agent

make better decisions. Thus, the state at time step t includes

a pair comprising Xt and wt−1, which represent the external

state and internal state, respectively. Xt comprises the price

data set (pct , p
h
t , p

l
t ) and the volume vt of the five best bids

and asks. Specifically,

sVt = (Xt ,wt−1), where Xt = ((pct , p
h
t , p

l
t ), vt ) (12)

C. REWARD FUNCTION

The goal of the victim agent is to maximize the final portfolio

value PV at the end of the time step; this maximization is

equivalent to the maximization of the logarithmic accumu-

lated return RV . Specifically,

RV (s1, a1, · · · , sT , aT ) =
1

T
ln
PVT

P0

=
1

T

T
∑

t=1

ln(yt · · ·wt−1)

=
1

T

T
∑

t=1

rt (13)

D. POLICY NETWORK

1D-CNN is the main type of the neural network for forming

the policy function, where, as defined in Equation (12), a port-

folio vector w is output given some input data. As mentioned,

the input data include those on the volume of the five best

bids and asks. In a real financial market, the trading strategies

of investors depend not only on prices in the previous few

minutes but also on other indicators, such as the volume of

the five best bids and asks. Thus, we used the concept of

the original paper, but our trading agent acts closer to how

a real trader does. In this architecture, the last hidden layer

is the scores for 11 asset and cash positions. Subsequently,

the cash position and the asset scores are concatenated to

output portfolio weights through the softmax activation func-

tion layer. Having the same design as the policy network

in [2], the network for n assets functions independently while

parameters are shared among these streams. These streams

can thus be construed as being independent, and they behave

like a host of many identical smaller networks separately

observing and allocating the assets. The only interactions

between these small networks occur through the softmax

function because it is necessary to ensure that all allocation

weights are not smaller than zero and that the sum of these

weights does not exceed one. The formulator of this method

called this mechanism identical independent evaluators and

termed its topology feature EIIE.

Our enhanced EIIE is based on the aforementioned archi-

tecture and has been experimentally demonstrated to per-

form better than the EIIE does. The architecture shared by

EIIE and enhanced EIIE is illustrated in Figure 3. This net-

work is implemented mainly by convolution neural networks.
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FIGURE 3. The architecture of Enhanced EIIE.

The input of the network can be divided into two parts. The

first part is the price data represented by the tensor 3×n×m.

This tensor comprises the closing, highest, and lowest prices

of n = 11 assets over the past m = 15 periods. The second

part is volume data, represented by the tensor 10 × n × m.

This tensor holds the volume of the five best bids and asks.

Price data and volume data are fed into the 1D-CNN, in turn,

to have the agent learn their different representations. Also,

the weight of the stream from the volume data goes through

an amplifying layer before concatenation. In the amplifying

layer, we aim to strengthen the influence of volume data.

Many traditional trading strategies make decisions that are

based only on historical prices, and the agent must thus

precisely predict the future price to yield a profit. By con-

trast, in our method, the trading agent makes decisions using

the aforementioned volume data; in doing so, the agent can

observe the actions of potential investors and can make rapid

decisions as a result. This is because the volume of the five

best bids and asks reflects the future expectations of investors.

Subsequently, volume data and price data are concatenated,

and the concatenated stream is fed into the dense layer and

1D-convolution layer. The cash is then added before a soft-

max layer is applied to output weights. In the entire feature

map, the first dimension of the neural network layer is set to

be 1 to isolate each row up until the softmax layer.

V. ADVERSARY

In this section, we detail the workings of a greedy adver-

sary and an RL-based adversary. The learning target, reward

function, actions, and policy network are identical for both

adversaries; only their state spaces slightly differ.

A. PERTURBATIONS

In our work, we define the noisy state observation sV
′

t of the

perturbed enhanced EIIE victim model under attack as the

sum of the clean state sVt and the perturbation pattern δt .

sV
′

t = sVt + δt (14)

The enhanced EIIE state that can be perturbed comprises

price data and the volume of the five best bids and asks.

However, price data cannot be reasonably perturbed because

real-time changes in prices stem from different matched

transaction results. Lower movements in prices indicate more

capital put into the market. Thus, an investor that perturbs

price data incurs a much higher cost relative to other investors

in the market. In the subsequent subsections, we detail why

we chose to perturb volume data.

TABLE 1. Basic adversary attributes.

B. SYSTEM DEFINITION

Asmentioned in the literature review, attacks can be classified

into several categories depending on the goal. Table 1 details

the attributes of our adversary architecture. Because the

adversary can decide whether a certain class should be output

in a classification problem, traditional adversarial attacks can

be classified into two main types by specificity: targeted

attacks and non-targeted attacks. In our case, our problem is

a continuous portfolio management problem where no finite

actions can be chosen as the target. Thus, the objective of

the adversary is to confuse the agent’s decision-making pro-

cess to minimize the agent’s reward. Because our adversary

has no right to obtain the parameters of the victim model,

this attack is a black-box attack. The adversary designs an

attack method using what little available knowledge it has

and evades the EIIE based on the transferability property

of adversarial samples. Such an attacker behavior implies

that an adversarial sample that attacks a model successfully

can also attack other similar models even when different

data sets are used. By contrast, most studies on attacks have

focused on classification tasks where the goal is either to

elicit misclassification or reduce the confidence level of the

victimmodel. In our study, because our victimmodel is an RL

agent, the goal of the adversary is simply to reduce the final

expected accumulated reward. Because the adversary is an

RL-based algorithm and our data are continuous trading data,

the adversary must undergo many steps, depending on the

attack frequency, that culminates in the decision of whether

to attack. This approach by the adversary has advantages

and disadvantages: the adversary is helped by its ability to

diversify attacks in multiple steps, which may increase attack

performance, but is hindered by the substantial difficulty in

learning the optimal attack strategy.

As for RL classification, the adversary has many choices

as to its method of attack, which can be any element in the
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MDP (s, a, r, p). Hence, the adversary can target states,

rewards, the environment, or the policy. In our study, we target

rewards by perturbing the state space.

C. ENVIRONMENT AND AGENT

In our study, the environment is an enhanced EIIE victim

model. The adversary is allowed black-box access to states

and actions sampled from the victimmodelπV , and the victim

model is not allowed to obtain information pertaining to, for

example, model weights or activation functions. The goal

is to find an attack policy that can maximize the expected

reward over a sequence of state–action pairs S = {sAt , a
A
t }.

In our setting, T was set to be 15. For the RL architecture,

an adversary that can perturb more steps is more likely to

greatly reduce the reward of the victimmodel. If the adversary

perturbs the state at time step t , where sVt = sV
′

t , the action aVt
of the victim agent becomes aV

′

t due to different states.This

action may then reduce the instantaneous reward rVt ; such

actions from a sequence of interactions decrease the final

accumulated reward. Specifically,

π∗
A = argmaxπA{ES∼p(S|πA)

T
∑

t=1

r(sAt , a
A
t )} (15)

At a higher level, the accumulated reward
∑T

t=1 r(s
A
t , a

A
t )

weighs the terms of the sum, and the parameters of the policy

are updated to have a policy that better produces state-action

pairs that yield a greater accumulated reward. Greedy attacks

and RL attacks are the two ideas underlying our formulation

of attacks on the victim agent. Table 2 presents a comparison

between enhanced EIIE and the adversary in RL attacks.

TABLE 2. Interactions between enhanced EIIE and the attack agent.

For both greedy attacks and RL attacks, the state is

unchanged if the adversary chooses to leave the state unper-

turbed. If the adversary decides to attack, the state changes

to sA
′
, which is equivalent to the original state with the

perturbation added. Specifically,

π (sA, aA, rA) =

{

sA, if aA = 0

sA
′
, if aA > 0

sA
′
= sA + argmin

δs
‖δ‖ (16)

where aA = 0 and 1 represent a nonattack and attack,

respectively.

The two attackmethods slightly differ in their states, which

we detail as follows.

D. STATES AND ACTIONS

In a greedy attack, the attacker decides when and how much

perturbation is to be added; this decision depends only on

price and volume data. As mentioned, for adversarial attacks

to be applied on an RL agent, some conditions must be

fulfilled. First, the perturbation must be imperceptible for the

adversary to remain undetected by the victim agent. Thus,

we set the two constraints of (1) a maximum attack volume

ρ and (2) a total attack volume of
∑T

t=1 δt at each time

step δt . If the total perturbation exceeds the constraint value,

all the perturbations that exceed the constrained value will be

set as 0.

sA
′

t =

{

sAt + δt , if
∑T

t=1 δt <= ρ

sAt , if
∑T

t=1 δt >= ρ
(17)

Because of this design, the greedy adversary learns the

optimal attack strategy with difficulty. The greedy adversary

decides on its perturbations based only on price data and vol-

ume data; the adversary does not know how much more per-

turbations it can add. This adversary is, as its name implies,

greedy because the adversary only cares about minimizing

the instantaneous portfolio value. The adversary’s decision-

making process does not take a global view, which means that

it may miss a possible optimal attack strategy of unleashing

all perturbations at the last moment. Thus, we propose an

RL attack strategy with more state information, which is

the remaining attack volume ω. The total maximum attack

volume is denoted as µ. Thus, the states are price data,

volume data, and remaining attack volume; specifically, sAt =

(Xt ,wt+1, ω), where Xt = ((pc, ph, pl), v). Per the setting

described in the previous paragraph, perturbations are still

clipped when the limitation ρ is exceeded. The action of both

adversaries is the extent of perturbations δ = aA × max(v),

where aA ∈ (0, 1). With the information of the remaining

attack volume, the adversary’s decision-making process is a

continuous one, where the adversary takes a global viewwhen

allocating the attack volume.

E. REWARD FUNCTION AND POLICY NETWORK

The objective of the victim model is to maximize the final

APV at the end of period T . The objective of the adver-

sary is to elicit the worst performance in the victim model

(i.e., to minimize the victim’s portfolio value). Intuitively,

the adversary can be trained by allowing it to learn from

evaluations of the victim model. In such a training process,

the reward of the adversary rA can be defined as the negative

absolute value of the reward rV obtained by the victimmodel.

RA(sA1 , a
A
1 , · · · , s

A
T , a

A
T ) = −RV (sV1 , a

V
1 , · · · , s

V
T , a

V
T )

= −
1

T

T
∑

t=1

(rVt − b) (18)
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Intuitively, E[RA|s, aA, πA] can be maximized by estimat-

ing ▽E . The adversary agent can generate τ from p(θ |φ) by

differentiating the expected return with respect to φ, which is

the parameter determining the distribution over θ .

▽φEφ =
1

N

N
∑

n=1

▽φ(log p(θ |φ))R(τ ) (19)

Because the victim policy remains fixed, the two-policy

Markov game is reduced to a one-player MDP Ma =

(S,Aa,Ta,Ra), which the attacker must solve. The state space

of the adversary includes states, actions, and the rewards of

the victim. The action space holds those adversarial perturba-

tions that differ from the state and action spaces of the victim

policy. In other words, the victim can be construed as the

environment of the attacker policy.

T A(sA, aA) = T (s, aA, aV ) (20)

RA(sA, aA) = −RV (sV , aV ) (21)

The training process of the adversary is detailed in

Algorithm 1. For the training process of the adversary, some

necessary input variables are predefined, and the training

variable θ is initialized. At every iteration, states of the vic-

tim model and the adversary are initialized, and the remain

attack volume is set as the maximum remaining attack vol-

ume µ. Subsequently, at each time step, the adversary may

decide whether to add perturbations δ at the next state v

by observing the current clean state. Before adding these

perturbations at the next state, the adversary checks whether

their attacks have exceeded the maximum attack volume,

as stated in Equation (17). After the remaining attack vol-

ume is calculated, perturbations that the adversary has made

will be added to the next state. The enhanced EIIE victim

then allocates portfolio weights aV by observing the per-

turbed states. The negative value of enhanced EIIE rewards

constitutes the adversary’s reward, which will be fed into

the model. After the aforementioned series of interactions,

the tuple (sAt , a
A
t , r

A
t ) is stored in the buffer. This process

is repeated several times for the adversary agent to attempt

various strategies, and the corresponding samples are used to

update the agent.

The adversary faces some limitations in our method, which

pertain to the accessibility of adversaries, how much adver-

saries can affect the victim model, and the attacking ability of

the adversary. These limitations are detailed as follows.

• We defined the attack method as a black-box attack,

which means that the attacker can interact with the target

model, with some limitations.

• The adversary cannot change the functioning of the

victim’s policy, whichmeans that the victimmodel func-

tions only with the pre-trained weight.

• The attacker can only add perturbations on those states

that interact with the agent and the environment; the

attacker cannot change the values of actions and rewards.

We crafted adversarial samples by adding impercepti-

ble adversarial perturbation to maximize the loss of the

Algorithm 1 Deterministic Policy Gradient-Like Agent for

Victim Policy and RL Attack Policy

Input: state of victim model sV , state of adversary sA,

training iterations M , attack magnitude constraint ǫ, remain

attack volume ω, experience buffer D

Output: attack policy θ

1: Initialize training variables θ

2: for i = 1, 2, . . . ,M do

3: Receive initial state of victim model sVt =

{pct , p
h
t , p

l
t , vt }

4: Receive initial state of adversary sAt =

{pct , p
h
t , p

l
t , vt , ωt }

5: Initialize the remain attack volume ω as the maxi-

mum remain attack volume µ

6: for t = 1 to T do

7: Adversary select action aAt = πA(s
A
t )

8: Check if attack volume exceeds maximum attack

volume

aAt = clip(aAt , a
A
t , ǫ · max(vt )) (22)

9: Calculate the remain attack volume ωt based on

the action of the adversary and add it to the state

ωt = ωt−1 − aAt−1 (23)

10: Add perturbations that the adversary made to

clean state

SV
′

t+1 = SVt+1 + aAt (24)

11: victim policy select action aVt = πV (S
V ′

t+1)

12: Evaluate victim policy and get reward rVt
13: Feed negative reward of victim policy as adver-

sary’s reward rAt = −rVt
14: Store (sAt , a

A
t , r

A
t ) in experience buffer D

15: if i mod N = 0 then

16: Update the network:

▽θJ ≈
1

N

∑

j

▽θπA(s
Aj)▽aAR

A(sj, aA, aV )|aA=π(sAj)

(25)

17: Set D as empty

18: end if

19: end for

20: end for

original model. Attackers can choose frommany construction

techniques to make the most appropriate trade-off between

attack success rate and computational cost. For our task,

the system to be attacked is a trading strategy. Such an attack

carries a very high computational cost compared with attacks

in other image classification tasks. Thus, we aimed to lower

the computational cost. Specifically, in our setting, after the

adversary decides the attack volume δt , this attack volume

is added to the volume of the five best bids and asks at the
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subsequent time step vt+1. The total volume is then can-

celed before the volume is matched to eliminate attack costs.

This process can feasibly be applied under the 2016 trading

mechanism but not under the present-day continuous trading

mechanism. In the present-day mechanism, there a strong

probability exists that limit orders with a reasonable price will

be matched. The agent must then bear risks to be matched

where the orders with prices near to the strike price havemore

opportunities to be matched.

F. ADVERSARIAL ATTACKS ON RL MODELS

Adversarial attackers against an RL model have employed

the FGSM on deep Q-networks or the asynchronous advan-

tage actor-critic (A3C) method. These methods are applied

because they all have a function for estimating the most

suitable action for the attacker to add perturbations with an

explicit target. However, our victim network has no estima-

tion network. Thus, we applied an RL agent as the attacker,

and this attack agent observes the victim policy for a period

to decide whether to attack.

The main idea underlying the FGSM is finding the weak-

ness in the model gradient to conduct a one-step attack. The

FGSM has been widely applied to computer vision classifica-

tion models. The perturbation η is generated to attack fragile

linear models. The perturbation obeys the following identity.

η = ǫ(▽xJ (ψ, x, y)) (26)

whereψ, x, y are the parameters, input, and the training target

of the victim model, respectively. ǫ controls how much per-

turbations are produced, and J (ψ, x, y) is the cost of training

the victim model.

However, the FGSM is not always effective in all models.

Scholars have thus proposed I-FGSM as an alternative iter-

ative approach. I-FGSM generates perturbations in several

steps to increase the likelihood of a successful attack; the total

perturbation in I-FGSM is equal to that in a one-step FGSM.

Recently, researchers have successfully used the FGSM and

I-FGSM to attack RL agents. Thus, we used these algorithms

as baselines in our experiments.

If an investor wishes to mislead other investors by placing

fake orders, the quantity of fake orders may be potentially

large. Generally, in the settings of attack classification mod-

els, only one or very few pixels are perturbed; however,

trading models are impossible to attack by placing only

one or very few orders. Thus, we limited the total perturbed

volume of the five best bids and asks made by the adversary

to be 0.0001% of the total trading volume. An adversary is

likely to succeed if it attacks when prices fluctuate drastically

because it will be less abnormal when the action of the

victim model changes. Thus, the extent of perturbations is

much larger (albeit still small) during periods when prices

fluctuate drastically. The portfolio value of the victim model

then decreases after a series of attacks.

VI. EXPERIMENTAL RESULTS

To demonstrate the performance of our model, we designed

five experiments. In the first experiment, we demonstrated

the attack performance of our proposed attackmechanisms by

evaluating it against traditional attack methods; these attacks

were applied to three portfolio management strategies, whose

pre- and post-attack portfolio performance levels were com-

pared. In the second experiment, we observed the relation-

ship between attack scale and attack performance. We also

applied the same attack architecture to three data sets because

we expected adversaries to perform well on various data

sets. To supplement the verification of our proposed method,

we conducted the experiment with two additional data sets.

They were the stock market data of the top 20 companies in

the S&P 500 from Quandl and the data of euro cross rates

with six other major currencies from Forex Academy.

A. DATA SETS AND EXPERIMENTAL SETTINGS

Before introducing the experiments, we describe the experi-

mental settings, the data sets used, and the evaluation metrics

used.

1) ASSET SELECTION

In the first and second experiments, assets were selected

from all 11 underlying assets listed in Table 3. To meet the

risk management requirements for major holdings in mutual

funds, we selected the assets with the largest trading volumes

in 2016, where a larger trading volume indicates greater

market liquidity. Of the 11 assets, two belonged to exchange-

traded funds (ETFs), and the remaining nine were stocks.

In the fourth experiment, we selected the top 20 companies

from the S&P 500 index. To prove that our proposed attack

model can be used in the foreign exchange market, we per-

formed the fifth experiment.

TABLE 3. Asset selection in the first experiment.

2) DATA DESCRIPTION AND PREPROCESSING

The experimental data set comprised data drawn from the

trade books and display books published by the Taiwan Stock

Exchange (TWSE). Trade books mainly record trading infor-

mation, and we used them to calculate price data and present

book list information pertaining to the buy and sell side;

furthermore, we extracted volume data from them. The fourth
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experimental data set was daily equity data from Quandl,

which records a large amount of transaction information.

We selected the stock market data of the top 20 companies

in the S&P 500 index to be the assets in the experiment.

We collected the daily foreign exchange market data from

Forex Academy for the fifth experiment. These data contain

cross exchange rates between the euro and the other six

currencies.

We preprocessed the raw data. Price data were normalized

to a narrow range by dividing the first closing price in the

training window, per Equation 27.

pc =
pc

pc0
, ph =

ph

pc0
, pl =

pl

pc0
(27)

Volume data were obtained by first summing the volume

of five best bids and asks within 1 min for all matched and

unmatched orders that we selected and then normalizing this

sum by dividing the sum with the maximum volume in the

training window, per Equation 28.

v =
v

max(v)
(28)

3) EXPERIMENTAL SETTINGS

Because trends vary between periods, we conducted a rolling-

train test to ensure that the enhanced EIIE model performs

well under various conditions. The rolling windows were set

to be 3 months for training and 2 months for testing. The

present rolling window was then shifted to 1 month to obtain

the subsequent rolling window until the end of the test. For

the adversary, the rolling window was set to be the training

period. Also, we set the rollingwindows to 3 years for training

and 2 years for testing in the fourth experiment. The rolling

window in the final experiment was set to 2 years for training

and 1 year for testing.

4) EVALUATION METRICS

To reveal the performance of the adversaries and enhanced

EIIE model, we used three evaluation metrics that are com-

monly used for financial investments. The first is APV, whose

definition is written in Equation 29. The initial value for each

asset was set to be 1.

APVt =
Pt

P0
(29)

The second is maximum drawdown (MDD), which indi-

cates downside risk over a given period. The MDD is defined

as the maximum observed loss from a high point Vh to a low

point Vl of the portfolio before a new peak is attained; this

definition is written in Equation 30.

MDD =
Vh − Vl

Vh
(30)

The third is the Sharpe ratio (SR), which indicates the risk–

return relationship. The SR is defined as the average returnRp
that was earned in excess of the risk-free rate Rf per unit of

volatility σp; this definition is written in Equation 31.

SR =
E[Rp − Rf ]

σp
(31)

B. OUR ADVERSARIES COMPARED WITH

TRADITIONAL ATTACK MECHANISMS

In the first part of this experiment, we demonstrated that

enhanced EIIE outperforms EIIE under the original setting

stipulated by the EIIE’s formulators. These twomethods were

compared with the traditional uniform constant rebalanced

portfolios (UCRP) management method. The UCRP holds a

portfolio that consists of a bucket of equally-weighted assets

until the end of time. The differences between enhanced EIIE

and EIIE are their features and model architectures. To ensure

an impartial comparison between the two models, we trained

EIIE with only price data and tuned the hyperparameters

while maintaining the original settings for window size and

training epochs. Enhanced EIIE was trained with both price

and volume data.

FIGURE 4. Comparison of the UCRP, EIIE, and enhanced EIIE. (a) One case
where enhanced EIIE outperforms its counterparts. (b) One case where
enhanced EIIE outperforms EIIE and is outperformed by the UCRP.

The figure 4 presents a comparison of the UCRP, EIIE,

and enhanced EIIE. To make the price trend more obvious,

we summed minute-level portfolio values into a 30-min port-

folio value. Of the eight rolling models in total, we selected

two that performed most differently to illustrate our find-

ings. As indicated in Figure 4 (a), EIIE and the UCRP

performed similarly and were outperformed by enhanced

EIIE. Because the performancewas indicated by accumulated

return, the agent can maintain an excellent performance if it

profits greatly in the middle periods and does not make too

many losses during the later period. Most agents did so in the
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TABLE 4. APV of trading agents and adversaries.

eight rollings. The second case is indicated in Figure 4 (b),

the UCRP outperformed enhanced EIIE and EIIE at few

instances in all eight rolling results. Thus, enhanced EIIE

still outperformed EIIE overall. Although these cases are

presented with the 30-min portfolio value, both the enhanced

EIIE and the adversary act every minute.

Because enhanced EIIE performed well, we applied vari-

ous attackmechanisms to it. The left side of Table 4 shows the

performance of trading agents and the UCRP, which act every

minute. EIIE performed worse in the first and seventh rolling

models than the UCRP did, but enhanced EIIE also failed

to outperform EIIE in the three rolling models. Although

enhanced EIIE has more features fed to it, it did not perform

the best in all periods. Such performance suggests that it is

well trained, meaning it can be a victim model of adversaries.

Thus, we compared four attack mechanisms, as indicated

on the right side of Table 4. As mentioned in Chapter 3,

to prove that our attack mechanisms outperform traditional

attack methods, such as the FGSM and I-FGSM, we con-

ducted experiments for every rolling model. The attributes

of the FGSM and I-FGSM are such that both methods have

a 100% attack success rate, meaning that attacks necessar-

ily succeed if weaknesses are present in a neural network.

I-FGSM, because it can add perturbations iteratively, reduced

portfolio value more than the FGSM did. Our proposed

adversaries also reduced portfolio value to approximately

0.92 without incurring transaction costs. However, in a real

trading scenario, every single movement in position incurs

a transaction cost. Also, our adversaries have learned to let

the victim agent change portfolio weights drastically over

many time steps for the agent to incur large transaction costs.

Thus, our proposed two adversaries could reduce the portfolio

value of the enhanced EIIE victim to almost the minimum

value of 0, at a 0.25% transaction cost. For all rolling periods,

the RL adversary performedworse in only one training period

relative to the greedy adversary. This was because the RL

adversary knows the attack volume that is left, which allows

it to allocate the remaining amount. By contrast, the greedy

adversary, having no access to such knowledge, only realizes

that it has run out of attack volumes when the interaction

concludes, making the greedy adversary allocate attacks less

effectively than its RL counterpart does. The FGSM and

I-FGSM reduced the portfolio value by 0.3842 and 0.4023 on

average, respectively. Greedy and RL attacks performed sim-

ilarly, reducing the portfolio value by 0.99 on average.

In the whole training period, we recorded the current port-

folio value Pt at each time step. The focus in the portfolio

management problem is the APV at the last time step. Thus,

wemultiplied all values in the series, per Equation 32, to com-

pare the final performance of the four attack methods.

Pf =

n
∏

t=1

Pt , P0 = 1 (32)

Figure 5(a) illustrates the APVs associated with enhanced

EIIE, the FGSM, I-FGSM, greedy attack, and RL attack.

Enhanced EIIE had a final portfolio value of > 1, which

decreased to almost 0.2 under traditional attacks and to

almost 0 (the lower bound of the portfolio value) under greedy

and RL attacks. Furthermore, throughout the entire period,

I-FGSM outperformed the FGSM, and greedy attack outper-

formed the RL attack. Because RL-based attacks performed

much better than traditional attacks did, we also presented

the results for only enhanced EIIE under traditional attacks

in Figure 5(b). Specifically, the FGSM and I-FGSMmade the

enhanced EIIE victim agent lose considerable capital when

the victim agent allowed the portfolio value to drop; the

FGSM and I-FGSM could do so because they learn how to

add perturbations based on the gradient of the target model.
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FIGURE 5. Example of APV comparison at first rolling. (a) APVs of
enhanced EIIE, traditional attacks, and RL-based attacks.
(b) Partial-observation APVs of only enhanced EIIE and traditional attacks.

FIGURE 6. Relation between price and perturbation at second rolling.

We subsequently used a case to observe how the adversary

decides on when and how fiercely to attack. Figure 6 presents

the perturbations made by the RL adversary as well as the

closing price. The x axis represents the time step, the left

y axis represents the closing price of the given attacked

target, and the right y-axis represents the number of fake

orders being placed in the market. The figure next to the

main figure represents the volume of the five best asks and

bids before and after the attack. Figure 6 illustrates the rela-

tionship between price trend and perturbations for asset code

2884 from May 1 to June 30. In this case, the adversary

only adds perturbations in ask orders. On May 5, 2016, when

the closing price dropped sharply, the adversary placed a

large quantity of ask orders in the first half of time steps,

strongly indicating that someone believes that the asset price

will start rising. This large quantity was also attributable to

an adversary choosing to add perturbations to other assets,

where the adversary aims to deceive investors into making a

suboptimal decision. The adversary thus induced the trading

agent to change its decision. When the price of the asset

begins falling at this time step, the enhanced EIIE victim

makes a loss due to this attack, and more fake orders with

small lots are placed in the following period of decrease.

During this period, the enhanced EIIE victim also changes

its decision when the closing price is close to the global

minimum value in the entire time step. It changes the asset

weight to approximately 0.2. Due to the attack, the enhanced

EIIE victim sets relatively high price weights on this asset and

sells lots at a relatively low price. Nevertheless, the enhanced

EIIE victim is still influenced to set different weights with

nonperturbed noise; this is because the performance of every

asset changes not only depending on the perturbations added

to that asset but also on changes in the weights of other assets.

C. RELATIONSHIP BETWEEN ATTACK PERFORMANCES

AND THE EXTENT OF PERTURBATIONS

This experiment demonstrated the relationship between

attack volume and portfolio value. In a classification problem,

the adversary is tasked with attacking the victim model with

very perturbations. Greater perturbations necessarily result in

a less accurate victimmodel. Specifically, because the trading

volume is highly influential in a financial market, attacks are

more likely to succeed when more limit orders are placed.

Our strategy was to place a small quantity of limit orders

and subsequently cancel them before they are matched.

Despite the fact that we only needed to take on the risk

of being matched, if the limit orders being placed in the

market were too large, the attacker would be detected by

investors. This complicated our task. For the classification

task, the adversary’s only objective is to deceive the classi-

fier; however, we needed to attack the market without being

detected by the trading agent and by other investors.

We limited the total maximum attack volume to 0.0001%,

0.00005%, 0.000025%, and 0.000001% of the training set

(Table 5). For example, if, in a period, the total volume of the

five best bids and asks is 60 billion, the maximum attack vol-

ume is 60,000. In other words, the average maximum attack

volume for each batch, each asset, each training window, and

for each bid and ask was 1 lot of stocks.

The three attack scales performed similarly (difference ≈

0.0001). From Table 5, the perturbations generated by the

FGSM and I-FGSM at different attack scales were such that

victim model accuracy was inversely related to perturbation

size. Our proposed adversaries could reduce the portfolio

value to approximately 0.9185 at no transaction cost and to

0.0361 at a 0.25% transaction cost.

D. ATTACKS ON VARIOUS DATA SETS —

STOCK DATA FROM TWSE

In this experiment, we applied greedy and RL attacks

to different data sets. As mentioned, the assets used in
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TABLE 5. Average attack performance at perturbation limitations of 0.0001%, 0.00005%, 0.000025%, and 0.000001%.

experiment 1 and 2 were selected from all underlying assets.

To prove that the attack architecture can be applied to various

portfolios, we selected two more buckets of assets to form

the portfolio; all assets belonged to stocks. All assets in the

first and second buckets were electronic and semiconductor

stocks, respectively. Because the electronic and semiconduc-

tor industries dominate Taiwan’s economy, many investors

invest in these stocks on the TWSE.

We also evaluated performance in terms of APV. However,

portfolio value does not reflect risk, whereas the MDD and

SR do. In general, a good portfolio has a high APV, low

MDD, and high SR. Thus, an effective adversary not only

reduces portfolio value but also induces large fluctuations in

different portfolios. Thus, in this experiment, we analyzed the

APV, MDD, and SR of the portfolio comprising assets from

electronic stocks and semiconductor stocks.

Table 6 lists the MDD and SR but not APV of five mod-

els in eight periods. Enhanced EIIE outperformed EIIE and

UCRP with respect to APV in 20 of 24 stocks, and the

greedy attack performed better than the RL attack did in only

one period for harming APV. We trained enhanced EIIE to

perform best with respect to APV but not MDD or SR. Thus,

enhanced EIIE may yield poorer performance in MDD and

SR than in APV. In our experiments, enhanced EIIE had a

fairly poor MDD in the absence of attacks; this means that

the fluctuation and drawdown are small and that the return at

each time step is relatively steady. Attacks result in large fluc-

tuations in APV. Both greedy and RL attacks reduced MDD

performance to almost its worst possible level (MDD = 1),

reducing MDD performance more than the traditional attack

methods did. Specifically, when MDD = 1, the lowest port-

folio value before a new high is approximately 0. This result

indicates that adversaries adopted the strategy of letting prices

drop. Specifically, after fake orders are placed in the mar-

ket, we expect that investors will be influenced into making

suboptimal decisions. Through these transactions, the price

of assets change, and the portfolio value decreases while

investors are unaware of the attack.

A larger (i.e., better performing) SR means that profit

is yielded under more acceptable risks. The average SR of

UCRP and EIIE in eight rollings were 0.0223 and 0.0311,

respectively (not presented in Table 6). Enhanced EIIE out-

performed EIIE and UCRP in 18 of the 24 rollings. The

attacks considerably reduced SR in all periods due to the

damage done toAPV andMDD. Specifically, attacks increase

risk and lower returns, making SR low (i.e., very undesir-

able). Similar to their performance in the aforementioned

experiments, the FGSM and I-FGSM consistently hurt SR

(average SR after the attack: −0.0563) and performed much

better than our two adversaries did (average SR after the

attack: −0.5099).

E. ATTACKS ON VARIOUS DATA SETS —

STOCK DATA FROM QUANDL

To examine the vulnerability of RL models in portfolio man-

agement in front of the RL-based adversarial attackmethod in

othermajor stockmarkets, we further tested them by using the

daily data of the top 20 S&P 500 stocks from 2010 to 2017.

The data fields include the opening, highest, lowest, and

closing prices and the daily trading volume.We used this data

set to conduct the experiment, which was evaluated using the

three metrics described on p.11, section VI A, subsection 4.

We formed our testing portfolios over 2013–2017 with

five nonoverlapping 1-year periods. Table 7 summarizes the

results of the UCRP (the baseline method), Enhanced EIIE

(the victim model), and the victim model after RL attack in

terms of the three evaluation metrics.

As indicated in Table 7, the RL-attack of the top 20 S&P

500 portfolio yielded pronounced results for all three metrics

in every test period. All the APVs decreased to < 1 (i.e., had

negative returns) after the attack. The effects of the portfolios’

value were large across all testing periods. The MDD results

provide insight into the success of the attack. For example,

the MDD of 0.9920 in 2014 was the key reason for the

portfolio losing nearly all its value. The Sharpe ratios were

all negative after the attack, and the smaller absolute values
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TABLE 6. MDD and SR of trading agents and adversaries with different data sets.

TABLE 7. Experimental results of top 20 stocks S&P 500 portfolios (c = 0.25%).

reflected the high volatility of the portfolios. Overall, our RL

attack was effective and yielded clear results.

F. ATTACKS ON VARIOUS DATA SETS — FOREIGN

EXCHANGE DATA

In addition to the equity portfolios, we investigated foreign

exchange portfolios. This experiment involved the daily euro

cross rates with six other major currencies, such as the US

dollar, Australian dollar, and Canadian dollar, from 2008 to

2020. The data fields, control methods, and observed indica-

tors were the same as those of the top 20 S&P 500 experiment.

For the foreign exchange portfolios, the decreases in APVs

were not as severe as those in the equity portfolios. However,

the APVs decreased in all testing periods after the attack.
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TABLE 8. Experimental results of foreign exchange portfolios (c = 0.25%).

Although the MDD results were not as perfect as the APV

results, the post-attack MDDs of more than half of the test-

ing periods increased. Similarly, the Sharpe ratios of the

portfolios decreased in the victim model in all the testing

periods except the first one. In summary, the RL attack was

effective overall on the foreign exchange portfolios, although

the effects were not as noticeable as those on the equity

portfolios.

The RL attack was effective in general, with clear results

on the equity portfolios. The different natures of the two asset

classes may have caused the differences in effectiveness. Fur-

ther investigation of the relationship between the properties of

asset classes might improve model effectiveness.

VII. CONCLUSION

We proposed two RL-based attack methods, greedy and RL

attacks, to attack an RL portfolio management model. Many

researchers have formulated attacks on classification models,

but few have investigated the vulnerability of RL models.

With our attack architecture, the adversary can learn when

and to what extent perturbations should be added. Our archi-

tecture also results in no costs being incurred from attack-

ing the portfolio management model. To make perturbations

imperceptible, we limited the total attack volume to 0.0001%

of the total trading volume. Thus, the adversary learns how to

precisely allocate perturbations to most effectively minimize

the final portfolio value.

To prove that our adversaries perform well, we used

2016 trading data provided by the TWSE to train both the

enhanced EIIE model and the adversaries. The experimental

results demonstrated that our proposed approaches performed

better than traditional attack methods did with respect to the

APV, SR, andMDD. Compared with the FGSM and I-FGSM,

both greedy and RL attacks performed 40%, 50%, and 80%

better with respect to APV, SR, and MDD, respectively. The

last two experiments proved that our attack method can be

applied to the S&P 500 and foreign exchange markets.

Our main contributions are listed as follows.

• We demonstrated the vulnerability of an RL agent in

portfolio management. An attack may cause the trading

strategy to collapse, constituting an opportunity for the

attacker to profit.

• Because of the RL architecture, our greedy attack, and

RL attack systems can learn when and to what extent

perturbations should be added; traditional attack systems

cannot learn these two pieces of knowledge (on scale and

timing) simultaneously.

• As far as we know, ours is the first study to use RL-based

attack algorithms to attack a portfolio management

model in the financial market.
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Further research is warranted, especially considering the

catastrophic consequences of such attacks. In this study,

we only focused on the severity of attacks in the financial

market. In the future, researchers should make the trading

model more robust by having the model learn how to defend

against such attacks. In addition, the performance levels of

our models only depend on the evaluation of the victim

model. If other attack evaluation methods are considered,

the performance can be improved. Furthermore, different

matching mechanisms may require different attack methods.

The 2016 matching mechanism features the call auction, but

the present-daymechanism features continuous trading. If the

same attack architecture is applied to continuous trading, fake

orders are highly likely to be matched.
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