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Abstract: Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains.
However, the existence of adversarial examples raises our concerns in adopting deep learning to safety-critical applications. As a result,

we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as im-
ages, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the
success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples

and the countermeasures against adversarial examples, for three most popular data types, including images, graphs and text.
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1 Introduction

Deep neural networks (DNN) have become increas-
ingly popular and successful in many machine learning
tasks. They have been deployed in different recognition
problems in the domains of images, graphs, text and
speech, with remarkable success. In the image recogni-
tion domain, they are able to recognize objects with near-
human level accuracyl: 2. They are also used in speech
recognitionBl, natural language processingl4l and for play-
ing gamesls.

Because of these accomplishments, deep learning tech-
niques are also applied in safety-critical tasks. For ex-
ample, in autonomous vehicles, deep convolutional neur-
al networks (CNNs) are used to recognize road signsl6l.
The machine learning technique used here is required to
be highly accurate, stable and reliable. But, what if the
CNN model fails to recognize the “STOP” sign by the
roadside and the vehicle keeps going? It will be a danger-
ous situation. Similarly, in financial fraud detection sys-
tems, companies frequently use graph convolutional net-
works (GCNs)l7l to decide whether their customers are
trustworthy or not. If there are fraudsters disguising their
personal identity information to evade the company’s de-
tection, it will cause a huge loss to the company. There-
fore, the safety issues of deep neural networks have be-
come a major concern.

In recent years, many works(® 8 9 have shown that
DNN models are vulnerable to adversarial examples,
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which can be formally defined as — “Adversarial ex-
amples are inputs to machine learning models that an at-
tacker intentionally designed to cause the model to make
mistakes”. In the image classification domain, these ad-
versarial examples are intentionally synthesized images
which look almost exactly the same as the original im-
ages (see Fig.1), but can mislead the classifier to provide
wrong prediction outputs. For a well-trained DNN image
classifier on the MNIST dataset, almost all the digit
samples can be attacked by an imperceptible perturba-
tion, added on the original image. Meanwhile, in other
application domains involving graphs, text or audio, sim-
ilar adversarial attacking schemes also exist to confuse
deep learning models. For example, perturbing only a
couple of edges can mislead graph neural networks/'%, and
inserting typos to a sentence can fool text classification or
dialogue systems[lll. As a result, the existence of ad-
versarial examples in all application fields has cautioned
researchers against directly adopting DNNs in safety-crit-
ical machine learning tasks.

To deal with the threat of adversarial examples, stud-

x+
x sgn (V.J (6, x,)) esgn (V,J (6, x, )
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3% confidence

Fig.1 By adding an unnoticeable perturbation, “ panda” is
classified as “gibbon” (Image credit: Goodfellow et al.l%)
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ies have been published with the aim of finding counter-
measures to protect deep neural networks. These ap-
proaches can be roughly categorized to three main types:
1) Gradient maskingl'? 13 Since most attacking al-
gorithms are based on the gradient information of the
classifiers, masking or obfuscating the gradients will con-
fuse the attack mechanisms. 2) Robust optimization/!4: 19];
These studies show how to train a robust classifier that
can correctly classify the adversarial examples. 3) Ad-
versary detection(l6; 17]: The approaches attempt to check
whether a sample is benign or adversarial before feeding
it to the deep learning models. It can be seen as a meth-
od of guarding against adversarial examples. These meth-
ods improve DNN's resistance to adversarial examples.

In addition to building safe and reliable DNN models,
studying adversarial examples and their countermeasures
is also beneficial for us to understand the nature of DNNs
and consequently improve them. For example, adversari-
al perturbations are perceptually indistinguishable to hu-
man eyes but can evade DNN's detection. This suggests
that the DNN's predictive approach does not align with
human reasoning. There are works[% 18] to explain and in-
terpret the existence of adversarial examples of DNNs,
which can help us gain more insight into DNN models.

In this review, we aim to summarize and discuss the
main studies dealing with adversarial examples and their
countermeasures. We provide a systematic and compre-
hensive review on the start-of-the-art algorithms from im-
ages, graphs and text domain, which gives an overview of
the main techniques and contributions to adversarial at-
tacks and defenses.

The main structure of this survey is as follows: In Sec-
tion 2, we introduce some important definitions and con-
cepts which are frequently used in adversarial attacks and
their defenses. It also gives a basic taxonomy of the types
of attacks and defenses. In Sections 3 and 4, we discuss
main attack and defense techniques in the image classific-
ation scenario. We use Section 5 to briefly introduce some
studies which try to explain the phenomenon of ad-
versarial examples. Sections 6 and 7 review the studies in
graph and text data, respectively.

2 Definitions and notations

In this section, we give a brief introduction to the key
components of model attacks and defenses. We hope that
our explanations can help our audience to understand the
main components of the related works on adversarial at-
tacks and their countermeasures. By answering the fol-
lowing questions, we define the main terminology:

1) Adversary's goal (Section 2.1.1)

What is the goal or purpose of the attacker? Does he
want to misguide the classifier's decision on one sample,
or influence the overall performance of the classifier?

2) Adversary's knowledge (Section 2.1.2)

What information is available to the attacker? Does
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he know the classifier's structure, its parameters or the
training set used for classifier training?

3) Victim models (Section 2.1.3)

What kind of deep learning models do adversaries usu-
ally attack? Why are adversaries interested in attacking
these models?

4) Security evaluation (Section 2.2)

How can we evaluate the safety of a victim model
when faced with adversarial examples? What is the rela-
tionship and difference between these security metrics
and other model goodness metrics, such as accuracy or
risks?

2.1 Threat model

2.1.1 Adversary's goal

1) Poisoning attack versus evasion attack

Poisoning attacks refer to the attacking algorithms
that allow an attacker to insert/modify several fake
samples into the training database of a DNN algorithm.
These fake samples can cause failures of the trained clas-
sifier. They can result in the poor accuracyl!¥), or wrong
prediction on some given test samples(l%. This type of at-
tacks frequently appears in the situation where the ad-
versary has access to the training database. For example,
web-based repositories and “honeypots” often collect mal-
ware examples for training, which provides an opportun-
ity for adversaries to poison the data.

In evasion attacks, the classifiers are fixed and usu-
ally have good performance on benign testing samples.
The adversaries do not have authority to change the clas-
sifier or its parameters, but they craft some fake samples
that the classifier cannot recognize. In other words, the
adversaries generate some fraudulent examples to evade
detection by the classifier. For example, in autonomous
driving vehicles, sticking a few pieces of tapes on the stop
signs can confuse the vehicle's road sign recognizerl20l,

2) Targeted attack versus non-targeted attack

In targeted attack, when the victim sample (z,y) is
given, where z is feature vector and y € ) is the ground
truth label of z, the adversary aims to induce the classifi-
er to give a specific label t € ) to the perturbed sample
2’. For example, a fraudster is likely to attack a financial
company's credit evaluation model to disguise himself as
a highly credible client of this company.

If there is no specified target label ¢ for the victim
sample x, the attack is called non-targeted attack. The
adversary only wants the classifier to predict incorrectly.
2.1.2 Adversary’s knowledge

1) White-box attack

In a white-box setting, the adversary has access to all
the information of the target neural network, including its
architecture, parameters, gradients, etc. The adversary
can make full use of the network information to carefully
craft adversarial examples. White-box attacks have been
extensively studied because the disclosure of model archi-
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tecture and parameters helps people understand the
weakness of DNN models clearly and it can be analyzed
mathematically. As stated by Tramer et al.l2l, security
against white-box attacks is the property that we desire
machine learning (ML) models to have.

2) Black-box attack

In a black-box attack setting, the inner configuration
of DNN models is unavailable to adversaries. Adversaries
can only feed the input data and query the outputs of the
models. They usually attack the models by keeping feed-
ing samples to the box and observing the output to ex-
ploit the model's input-output relationship, and identity
its weakness. Compared to white-box attacks, black-box
attacks are more practical in applications because model
designers usually do not open source their model para-
meters for proprietary reasons.

3) Semi-white (gray) box attack

In a semi-white box or gray box attack setting, the at-
tacker trains a generative model for producing adversari-
al examples in a white-box setting. Once the generative
model is trained, the attacker does not need victim mod-
el anymore, and can craft adversarial examples in a
black-box setting.
2.1.3 Victim models

We briefly summarize the machine learning models
which are susceptible to adversarial examples, and some
popular deep learning architectures used in image, graph
and text data domains. In our review, we mainly discuss
studies of adversarial examples for deep neural networks.

1) Conventional machine learning models

For conventional machine learning tools, there is a
long history of studying safety issues. Biggio et al.[22 at-
tack support vector machine (SVM) classifiers and fully-
connected shallow neural networks for the MNIST data-
set. Barreno et al.?3] examine the security of SpamBayes,
a Bayesian method based spam detection software. In
[24], the security of Naive Bayes classifiers is checked.
Many of these ideas and strategies have been adopted in
the study of adversarial attacks in deep neural networks.

2) Deep neural networks

Different from traditional machine learning tech-
niques which require domain knowledge and manual fea-
ture engineering, DNNs are end-to-end learning al-
gorithms. The models use raw data directly as input to
the model, and learn objects' underlying structures and
attributes. The end-to-end architecture of DNNs makes it
easy for adversaries to exploit their weakness, and gener-
ate high-quality deceptive inputs (adversarial examples).
Moreover, because of the implicit nature of DNNs, some
of their properties are still not well understood or inter-
pretable. Therefore, studying the security issues of DNN
models is necessary. Next, we will briefly introduce some
popular victim deep learning models which are used as
“benchmark” models in attack/defense studies.

a) Fully-connected neural networks (FC)

Fully-connected neural networks are composed of lay-

ers of artificial neurons. In each layer, the neurons take
the input from previous layers, process it with the activa-
tion function and send it to the next layer; the input of
first layer is sample z, and the (softmax) output of last
layer is the score F'(x). An m-layer fully connected neur-
al network can be formed as

2O =gz 20D oWl Y.

One thing to note is that, the back-propagation al-
OF (x;0)
00

descent effective in learning parameters. In adversarial

gorithm helps calculate , which makes gradient

learning, back-propagation also facilitates the calculation

OF (x:0)

of the term: , representing the output’s response

to a change in input. This term is widely used in the
studies to craft adversarial examples.

b) Convolutional neural networks

In computer vision tasks, convolutional neural net-
worksl!l is one of the most widely used models. CNN
models aggregate the local features from the image to
learn the representations of image objects. CNN models
can be viewed as a sparse-version of fully connected neur-
al networks: Most of the weights between layers are zero.
Its training algorithm or gradients calculation can also be
inherited from fully connected neural networks.

c) Graph convolutional networks (GCN)

The work of graph convolutional networks introduced
by Kipf and Welling!!l became a popular node classifica-
tion model for graph data. The idea of graph convolution-
al networks is similar to CNN: It aggregates the informa-
tion from neighbor nodes to learn representations for each
node v, and outputs the score F(v, X) for prediction:

HO =Xx; H"Y =g(AHYW)
where X denotes the input graph's feature matrix, and A
depends on graph degree matrix and adjacency matrix.

d) Recurrent neural networks (RNN)

Recurrent neural networks are very useful for tack-
ling sequential data. As a result, they are widely used in
natural language processing. The RNN models, especially
long short term memory based models (LSTM)H, are able
to store the previous time information in memory, and
exploit useful information from previous sequence for
next-step prediction.

2.2 Security evaluation

We also need to evaluate the model's resistance to ad-
versarial examples. “Robustness” and “adversarial risk”
are two terms used to describe this resistance of DNN
models to one single sample, and the total population, re-
spectively.

2.2.1 Robustness
Definition 1. Minimal perturbation: Given the classi-
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fier F and data (z,y), the adversarial perturbation has
the least norm (the most unnoticeable perturbation):

Omin = arg min ||§]| s.t. F(x+96) £ y.
5

Here, || - || usually refers to [, norm.
Definition 2. Robustness: The norm of minimal per-
turbation:

r(@, F) = [[6min|]-

Definition 3. Global robustness: The expectation of
robustness over the whole population D:

p(F)= E r(z,F).

z~D

The minimal perturbation can find the adversarial ex-
ample which is most similar to = under the model F'.
Therefore, the larger r(z, F) or p(F) is, the adversary
needs to sacrifice more similarity to generate adversarial
samples, implying that the classifier F' is more robust or
safe.

2.2.2 Adversarial risk (loss)

Definition 4. Most-adversarial example: Given the
classifier ' and data z, the sample x4, with the largest
loss value in z’s e-neighbor ball:

Tado = arg max L(z' | F) st. ||z’ —z|| <e

T

Definition 5. Adversarial loss: The loss value for the
most-adversarial example:

Ladv (x) - L(Iadv) = max [,(9, [El, y)

[z’ —z||<e

Definition 6. Global adversarial loss: The expecta-
tion of the loss value on x4, over the data distribution
D:

Radw(F)= E max

!

LB e L0, y). (1)

The most-adversarial example is the point where the
model is most likely to be fooled in the neighborhood of
. A lower loss value Lq4, indicates a more robust model
F.
2.2.3 Adversarial risk versus risk

The definition of adversarial risk is drawn from the
definition of classifier risk (empirical risk):

R(F)= B L0,7,).

Risk studies a classifier's performance on samples from
natural distribution D. Whereas, adversarial risk from (1)
studies a classifier's performance on adversarial example

z'. Tt is important to note that =’ may not necessarily fol-
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low the distribution D. Thus, the studies on adversarial
examples are different from these on model generaliza-
tion. Moreover, a number of studies reported the relation
between these two properties25-28]. From our clarification,
we hope that our audience get the difference and relation
between risk and adversarial risk, and the importance of
studying adversarial countermeasures.

2.3 Notations

With the aforementioned definitions, Table 1 lists the
notations which will be used in the subsequent sections.

Table 1 Notations

Notations Description
x Victim data sample
x! Perturbed data sample
) Perturbation

B. (I) lp-distance neighbor ball around x with radius €

D Natural data distribution
| | . | |p lp norm
i Sample Z's ground truth label

Target label ¢

Set of possible labels. Usually we assume there are m
labels

Classifier whose output is a label: C(z) =y

DNN model which outputs a score vector: F((z) € [0, 1]™

N 9 Q<

Logits: last layer outputs before softmax:

F(z) = softmax(Z(z))

Activation function used in neural networks

Q

0 Parameters of the model F’

L Loss function for training. We simplify L(F'(x),y)in the
form L£(0,x,y).

3 Generating adversarial examples

In this section, we introduce main methods for gener-
ating adversarial examples in image classification domain.
Studying adversarial examples in the image domain is
considered to be essential because: 1) Perceptual similar-
ity between fake and benign images is intuitive to observ-
ers, and 2) image data and image classifiers have simpler
structure than other domains, like graph or audio. Thus,
many studies concentrate on attacking image classifiers as
a standard case. In this section, we assume the image
classifiers refer to fully connected neural networks and
convolutional neural networks[ll. The most common data-
sets used in these studies include 1) handwritten letter
images dataset MNIST, 2) CIFARI10 object dataset and
3) ImageNet?9. Next, we go through some main methods
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used to generate adversarial image examples for evasion
attack (white-box, black-box, grey-box, physical-world at-
tack), and poisoning attack settings. Note that we also
summarize all the attack methods in Table A in Appendix A.

3.1 White-box attacks

Generally, in a white-box attack setting, when the
classifier C' (model F) and the victim sample (z,y) are
given to the attacker, his goal is to synthesize a fake im-
age x’ perceptually similar to original image = but that
can mislead the classifier C to give wrong prediction res-
ults. It can be formulated as

find ' satisfying ||z — z|| < ¢, such that C(x') =t # y

where || - || measures the dissimilarity between z’ and =,
which is usually [, norm. Next, we will go through main
methods to realize this formulation.

3.1.1 Biggio’s attack

Biggio et al.22] firstly generates adversarial examples
on MNIST data set targeting conventional machine learn-
ing classifiers like SVMs and 3-layer fully-connected neur-
al networks.

It optimizes the discriminant function to mislead the
classifier. For example, on MNIST dataset, for a linear
SVM classifier, its discriminant function g(z) = (w, z)+ b,
will mark a sample x with positive value g(z) > 0 to be in
class “3”, and z with g(z) <0 to be in class “not 3”. An
example of this attack is in Fig.2.

r

»

5 10 15 20 25 5 10 15 20 25

Predicted as “3” Predicted as “not 3”

Fig.2 Biggio's attack on SVM classifier for letter recognition
(Image credit: Biggio et al.[22])

Suppose we have a sample x which is correctly classi-
fied to be “3”. For this model, Biggio's attack crafts a
new example z’ to minimize the discriminant value g(z’)
while keeping ||z’ — z||1 small. If g(z) is negative, the
sample is classified as “not 3”, but 2’ is still close to z, so
the classifier is fooled. The studies about adversarial ex-
amples for conventional machine learning models[1% 22, 24],
inspired studies on safety issues of deep learning models.
3.1.2 Szegedy's limited-memory BFGS (L-BFGS)

attack

The work of Szegedy et al.l¥l is the first to attack deep
neural network image classifiers. They formulate their op-
timization problem as a search for minimal distorted ad-

versarial example z’, with the objective:

min ||z — 2’| |3 )
st. C(z')=t and 2’ €[0,1]™. @

Szegedy et al. approximately solve this problem by in-
troducing the loss function, which results the following
objective:

min ¢||z — 2'[|3 + £(0,2',t), st. ' €[0,1]™.

In the optimization objective of this problem, the first
term imposes the similarity between z’ and z. The second
term encourages the algorithm to find z’ which has a
small loss value to label ¢, so the classifier C' will be very
likely to predict 2’ as t. By continuously changing the
value of constant ¢, they can find an ' which has minim-
um distance to x, and at the same time fool the classifier
C. To solve this problem, they implement the L-BFGS[30l
algorithm.

3.1.3 Fast gradient sign method (FGSM)

Goodfellow et al.l” introduced an one-step method to

fast generate adversarial examples. Their formulation is

' =z +esgn(ViL(0,7,y)), non-target

' =z —esgn(ViL(0,x,t)), targetont.

For targeted attack setting, this formulation can be
seen as a one-step of gradient descent to solve the problem:

min L£(0,2',t)

, , (3)
st. ||2" — z||eo <€ and 2’ €[0,1]™.

The objective function in (3) searches the point which
has the minimum loss value to label ¢ in z's e-neighbor
ball, which is the location where model F' is most likely
to predict it to the target class ¢. In this way, the one-
step generated sample z’ is also likely to fool the model.
An example of FGSM-generated example on ImageNet is
shown in Fig. 1.

Compared to the iterative attack in Section 3.1.2,
FGSM is fast in generating adversarial examples, be-
cause it only involves calculating one back-propagation
step. Thus, FGSM addresses the demands of tasks that
need to generate a large amount of adversarial examples.
For example, adversarial training3!, uses FGSM to pro-
duce adversarial samples for all samples in training set.
3.1.4 DeepFool

In DeepFoolB2, the authors study a classifier F's de-
cision boundary around data point x. They try to find a
path such that z can go beyond the decision boundary, as
shown in Fig.3, so that the classifier will give a different
prediction for z. For example, to attack o (true label is
digit 4) to digit class 3, the decision boundary is de-
scribed as F3={z:F(x)s — F(xz)s =0}. We denote
f(z) = F(z)sa — F(x)3 for short. In each attacking step, it
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linearizes the decision boundary hyperplane using Taylor
expansion F5={z : f(x)=~ f(x0)+{(Vaf(z0) - (x—m0))=0},
and calculates the orthogonal vector w from zo to plane
F4. This vector w can be the perturbation that makes xg
go beyond the decision boundary F3;. By moving along
the vector w, the algorithm is able to find the adversarial
example z( that is classified to class 3.

A

Fig.3 Decision boundaries: the hyperplane Foo (Fe or Fs3)
separates the data points belonging to class 4 and class 1 (class 2
or 3). The sample z( crosses the decision boundary Fs, so the
perturbed data xj, is classified as class 3. (Image credit: Moosavi-
Dezfooli et al.[32])

The experiments of DeepFool32 shows that for com-
mon DNN image classifiers, almost all test samples are
very close to their decision boundary. For a well-trained
LeNet classifier on MNIST dataset, over 90% of test
samples can be attacked by small perturbations whose [
norm is below 0.1 where the total range is [0, 1]. This
suggests that the DNN classifiers are not robust to small
perturbations.

3.1.5 Jacobian-based saliency map attack

Jacobian-based saliency map attack (JSMA)B3] intro-
duced a method based on calculating the Jacobian mat-
rix of the score function F. It can be viewed as a greedy
attack algorithm by iteratively manipulating the pixel
which is the most influential to the model output.

The authors used the Jacobian matrix Je(z) =

OF(z) _ {aFj ()

o Frs }ixj to model F(z)'s change in re-
sponse to the change of its input x. For a targeted attack
setting where the adversary aims to craft an z’ that is
classified to the target class ¢, they repeatedly search and
manipulate pixel z; whose increase (decrease) will cause
Fy(z) to increase or decrease )., Fj(z). As a result, for
z, the model will give it the largest score to label ¢.
3.1.6 Basic iterative method (BIM)/Projected
gradient descent (PGD) attack

The basic iterative method was first introduced by
Kurakin et al.15 31 Tt is an iterative version of the one-
step attack FGSM in Section 3.1.3. In a non-targeted set-
ting, it gives an iterative formulation to craft x’:
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xTo = X, .’Et+1 = Clipz,s(-’ft + asgn(vl‘c(07 ‘rt’ y)))

Here, Clip denotes the function to project its argu-
ment to the surface of z's e-neighbor ball Bc(z):
{2’ : ||#’ — x||oo < €}. The step size « is usually set to be
relatively small (e.g., 1 unit of pixel change for each
pixel), and step numbers guarantee that the perturba-

tion can reach the border (e.g., step = £ 10). This iter-
o

ative attacking method is also known as projected gradi-
ent method (PGD) if the algorithm is added by a ran-
dom initialization on x, used in work [14].

This BIM (or PGD) attack heuristically searches the
samples =’ which have the largest loss value in the [
ball around the original sample x. This kind of adversari-
al examples are called “most-adversarial” examples: They
are the sample points which are most aggressive and
most-likely to fool the classifiers, when the perturbation
intensity (its [, norm) is limited. Finding these adversari-
al examples is helpful to find the weaknesses of deep
learning models.

3.1.7 Carlini & Wagner's attack

Carlini and Wagner's attack34 counterattacks the de-
fense strategyll?l which were shown to be successful
against FGSM and L-BFGS attacks. C&W's attack aims
to solve the same problem as defined in L-BFGS attack
(Section 3.1.2), namely trying to find the minimally-dis-
torted perturbation (2).

The authors solve the problem (2) by instead solving:

min ||z — 2'||3 +¢- f(2,t), st. 2’ €[0,1]™

where f is defined as f(z',t) = (max;z; Z(x'); — Z(z')e) ™.
Minimizing f(z',t) encourages the algorithm to find an z’
that has larger score for class ¢t than any other label, so
that the classifier will predict =’ as class ¢. Next, applying
a line search on constant ¢, we can find the x’ that has
the least distance to x.

The function f(z,y) can also be viewed as a loss func-
tion for data (z,y): It penalizes the situation where there
are some labels ¢ with scores Z(z); larger than Z(z),. It
can also be called margin loss function.

The only difference between this formulation and the
one in L-BFGS attack (Section 3.1.2) is that C&W's at-
tack uses margin loss f(z,t) instead of cross entropy loss
L(z,t). The benefit of using margin loss is that when
C(z') = t, the margin loss value f(z’,t) =0, the algor-
ithm will directly minimize the distance from z’ to z.
This procedure is more efficient for finding the minimally
distorted adversarial example.

The authors claim their attack is one of the strongest
attacks, breaking many defense strategies which were
shown to be successful. Thus, their attacking method can
be used as a benchmark to examine the safety of DNN
classifiers or the quality of other adversarial examples.
3.1.8 Ground truth attack

Attacks and defenses keep improving to defeat each
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other. In order to end this stalemate, the work of Carlini
et al.19 tries to find the “provable strongest attack”. It
can be seen as a method to find the theoretical minim-
ally-distorted adversarial examples.

This attack is based on Reluplex36], an algorithm for
verifying the properties of neural networks. It encodes the
model parameters F' and data (z,y) as the subjects of a
linear-like programming system, and then solve the sys-
tem to check whether there exists an eligible sample z’ in
z's neighbor B(x) that can fool the model. If we keep re-
ducing the radius € of search region B.(x) until the sys-
tem determines that there does not exist such an z’ that
can fool the model, the last found adversarial example is
called the ground truth adversarial example, because it
has been proved to have least dissimilarity with x.

The ground-truth attack is the first work to seriously
calculate the exact robustness (minimal perturbation) of
classifiers. However, this method involves using a satis-
fiability modulo theories (SMT) solver (a complex al-
gorithm to check the satisfiability of a series of theories),
which will make it slow and not scalable to large net-
works. More recent worksB”: 381 have improved the effi-
ciency of ground-truth attack.

3.1.9 Other [, attacks

Previous studies are mostly focused on I3 or lo norm-
constrained perturbations. However, there are other pa-
pers which consider other types of [, attacks.

1) One-pixel attackB9 studies similar problem as in
Section 3.1.2, but constrains the perturbation’s lp norm.
Constraining lp norm of the perturbation z’ — z will lim-
it the number of pixels that are allowed to be changed.
Their work shows that: On dataset CIFAR10, for a well-
trained CNN classifier (e.g., VGG16, which has 85.5% ac-
curacy on test data), most of the testing samples (63.5%)
can be attacked by changing the value of only one pixel
in a non-targeted setting. This also demonstrates the poor
robustness of deep learning models.

2) EAD: Elastic-net attackl) also studies a similar
problem as in Section 3.1.2, but constrains the perturba-
tions I and ls norm together. As shown in their experi-
mental work[4!l, some strong defense models that aim to
reject loo and Iz norm attacks(4 are still vulnerable to the
l1-based Elastic-net attack.

3.1.10 Universal attack

Previous methods only consider one specific targeted
victim sample xz. However, the work [42] devises an al-
gorithm that successfully mislead a classifier's decision on
almost all testing images. They try to find a perturba-
tion § satisfying:

1) o]l <

2) IP’( Cx+0)#C(z)) <1-0.

This formulation aims to find a perturbation ¢ such
that the classifier gives wrong decisions on most of the
samples. In their experiments, for example, they success-

fully find a perturbation that can attack 85.4% of the test

samples in the ILSVRC 2012143 dataset under a ResNet-
15202 classifier.

The existence of “universal” adversarial examples re-
veals a DNN classifier’s inherent weakness on all of the
input samples. As claimed in work [42], it may suggest
the property of geometric correlation among the high-di-
mensional decision boundary of classifiers.

3.1.11 Spatially transformed attack

Traditional adversarial attack algorithms directly
modify the pixel value of an image, which changes the
image's color intensity. Spatial attackl44 devises another
method, called a spatially transformed attack. They per-
turb the image by doing slight spatial transformation:
They translate, rotate and distort the local image fea-
tures slightly. The perturbation is small enough to evade
human inspection but can fool the classifiers. One ex-
ample is in Fig.4.

0 5 10 15 20 25
Classified as “3”

0 5 10 15 20 25
Classified as “5”

Fig. 4 Top part of digit “5” is perturbed to be “thicker”. For
the image which was correctly classified as “5”, after distortion is
now classified as “3”.

3.1.12 Unrestricted adversarial examples

Previous attack methods only consider adding un-
noticeable perturbations into images. However, the work
[45] devised a method to generate unrestricted adversari-
al examples. These samples do not necessarily look ex-
actly the same as the victim samples, but are still legitim-
ate samples for human eyes and can fool the classifier.
Previous successful defense strategies that target perturb-
ation-based attacks fail to recognize them.

In order to attack given classifier C, Odena et al.[0]
pretrained an auxiliary classifier generative adversarial
network (AC-GAN), so they can generate one legitimate
sample x from a noise vector 20 from class y. Then, to
craft an adversarial example, they will find a noise vec-
tor z mear 29, but require that the output of AC-GAN
generator G(z) be wrongly classified by victim model C.
Because z is near 20 in latent space of the AC-GAN, its
output should belong to the same class y. In this way, the
generated sample G(z) is different from z, misleading clas-
sifier F, but it is still a legitimate sample.

3.2 Physical world attack

All the previously introduced attack methods are ap-
plied digitally, where the adversary supplies input im-
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ages directly to the machine learning model. However,
this is not always the case for some scenarios, like those
that use cameras, microphones or other sensors to re-
ceive the signals as input. In this case, can we still at-
tack these systems by generating physical-world ad-
versarial objects? Recent works show such attacks do ex-
ist. For example, the work [20] attached stickers to road
signs that can severely threaten autonomous car’s sign re-
cognizer. These kinds of adversarial objects are more de-
structive for deep learning models because they can dir-
ectly challenge many practical applications of DNN, such
as face recognition, autonomous vehicle, etc.
3.2.1 Exploring adversarial examples in physical
world

In the work [15], the authors explore the feasibility of
crafting physical adversarial objects, by checking wheth-
er the generated adversarial images (FGSM, BIM) are
“robust” under natural transformation (such as changing
viewpoint, lighting, etc). Here, “robust” means the craf-
ted images remain adversarial after the transformation.
To apply the transformation, they print out the crafted
images, and let test subjects use cellphones to take pho-
tos of these printouts. In this process, the shooting angle
or lighting environment are not constrained, so the ac-
quired photos are transformed samples from previously
generated adversarial examples. The experimental results
demonstrate that after transformation, a large portion of
these adversarial examples, especially those generated by
FGSM, remain adversarial to the classifier. These results
suggest the possibility of physical adversarial objects
which can fool the sensor under different environments.
3.2.2 Eykholt's attack on road signs

The work [20], shown in Fig.5, crafts physical ad-
versarial objects, by “contaminating” road signs to mis-
lead road sign recognizers. They achieve the attack by
putting stickers on the stop sign in the desired positions.

The author’s approach consist of: 1) Implement ;-
norm based attack (those attacks that constrain
[|#" — z||1) on digital images of road signs to roughly find

Fig. 5 Attacker puts some stickers on a road sign to confuse an
autonomous vehicle’s road sign recognizer from any viewpoint
(Image credit: Eykholt et al.[20])
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the region to perturb (I; attacks render sparse perturba-
tion, which helps to find attack location). These regions
will later be the location of stickers. 2) Concentrating on
the regions found in step 1, use an l>-norm based attack
to generate the color for the stickers. 3) Print out the
perturbation found in Steps 1 and 2, and stick them on
road sign. The perturbed stop sign can confuse an
autonomous vehicle from any distance and viewpoint.
3.2.3 Athalye's 3D adversarial object

In the work [47], authors report the first work which
successfully crafted physical 3D adversarial objects. As
shown in Fig.6, the authors use 3D-printing to manufac-
ture an “adversarial” turtle. To achieve their goal, they
implement a 3D rendering technique. Given a textured
3D object, they first optimize the object’s texture such
that the rendering images are adversarial from any view-
point. In this process, they also ensure that the perturba-
tion remains adversarial under different environments:
camera distance, lighting conditions, rotation and back-
ground. After finding the perturbation on 3D rendering,
they print an instance of the 3D object.

[ Classified as turtle [l Classified as rifle [l Classified as other

Fig. 6 Image classifier fails to correctly recognize the
adversarial object, but the original object can be correctly
predicted with 100% accuracy (Image credit: Athalye et al.l47))

3.3 Black-box attacks

3.3.1 Substitute model

The work [48] was the first to introduce an effective
algorithm to attack DNN classifiers, under the condition
that the adversary has no access to the classifier's para-
meters or training set (black-box). An adversary can only
feed input x to obtain the output label ¥ from the classifi-
er. Additionally, the adversary may have only partial
knowledge about: 1) the classifier's data domain (e.g.,
handwritten digits, photographs, human faces) and 2) the
architecture of the classifier (e.g., CNN, RNN).

The authors in the work [48] exploits the “transferab-
ility” (Section 5.3) property of adversarial examples: a
sample x’ can attack I, it is also likely to attack F%,
which has similar structure to Fi. Thus, the authors in-
troduce a method to train a substitute model F’ to imit-
ate the target victim classifier F', and then craft the ad-
versarial example by attacking substitute model F’. The
main steps are below:

1) Synthesize substitute training dataset
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Make a “replica” training set. For example, to attack
a victim classifier for hand-written digits recognition task,
make an initial substitute training set by: a) requiring
samples from test set; or b) handcrafting samples.

2) Training the substitute model

Feed the substitute training dataset X into the vic-
tim classifier to obtain their labels Y. Choose one substi-
tute DNN model to train on (X,Y) to get F'. Based on
the attacker’s knowledge, the chosen DNN should have
similar structure to the victim model.

3) Dataset augmentation

Augment the dataset (X,Y) and retrain the substi-
tute model F’ iteratively. This procedure helps to in-
crease the diversity of the replica training set and im-
prove the accuracy of substitute model F”’.

4) Attacking the substitute model

Utilize the previously introduced attack methods, such
as FGSM to attack the model F’. The generated ad-
versarial examples are also very likely to mislead the tar-
get model F', by the property of “transferability”.

What kind of attack algorithm should we choose to
attack substitute model? The success of substitute model
black-box attack is based on the “transferability” prop-
erty of adversarial examples. Thus, during black-box at-
tack, we choose attacks that have high transferability,
like FGSM, PGD and momentum-based iterative
attacks19].

3.3.2 ZOO: Zeroth order optimization based black-
box attack

Different from the work in Section 3.3.1 where an ad-
versary can only obtain the label information from the
classifier, the work [50] assume the attacker has access to
the prediction confidence (sscore) from the victim classifi-
er's output. In this case, there is no need to build the
substitute training set and substitute model. Chen et al.
give an algorithm to “scrape” the gradient information
around victim sample x by observing the changes in the
prediction confidence F(z) as the pixel values of = are
tuned.

Equation (4) shows for each index 4 of sample z, we
add (or subtract) x; by h. If h is small enough, we can
scrape the gradient information from the output of F(-)
by

OF (x) _ F(x+he) — F(x — hey)
ol o : (4)

Utilizing the approximate gradient, we can apply the
attack formulations introduced in Sections 3.1.3 and
3.1.7. The attack success rate of ZOO is higher than sub-
stitute model (Section 3.3.1) because it can utilize the in-
formation of prediction confidence, instead of solely the
predicted labels.

3.3.3 Query-efficient black-box attack

Previously introduced black-box attacks require lots of

input queries to the classifier, which may be prohibitive

in practical applications. There are some studies on im-
proving the efficiency of generating black-box adversarial
examples via a limited number of queries. For example,
the authors in work [51] introduced a more efficient way
to estimate the gradient information from model outputs.
They use natural evolutional strategies(52l, which sample
the model’s output based on the queries around z, and es-
timate the expectation of gradient of F' on x. This pro-
cedure requires fewer queries to the model. Moreover, the
authors in work [53] apply a genetic algorithm to search
the neighbors of benign image for adversarial examples.

3.4 Semi-white (grey) box attack

3.4.1 Using generative adversarial network (GAN)
to generate adversarial examples

The work [54] devised a semi-white box attack frame-
work. It first trained a GANDB3 targeting the model of in-
terest. The attacker can then craft adversarial examples
directly from the generative network.

The authors believe the advantage of the GAN-based
attack is that it accelerates the process of producing ad-
versarial examples, and makes more natural and more un-
detectable samples. Later, Deb’s grey box attack[56l uses
GAN to generate adversarial faces to evade face recogni-
tion software. Their crafted face images appear to be
more natural and have barely distinguishable difference
from target face images.

3.5 Poisoning attacks

The attacks we have discussed so far are evasion at-
tacks, which are launched after the classification model is
trained. Some works instead craft adversarial examples
before training. These adversarial examples are inserted
into the training set in order to undermine the overall ac-
curacy of the learned classifier, or influence its prediction
on certain test examples. This process is called a poison-
ing attack.

Usually, the adversary in a poisoning attack setting
has knowledge about the architecture of the model which
is later trained on the poisoned dataset. Poisoning at-
tacks frequently applied to attack graph neural network,
because of the GNN's specific transductive learning pro-
cedure. Here, we introduce studies that craft image pois-
oning attacks.

3.5.1 Biggio's poisoning attack on SVM

The work [19] introduced a method to poison the
training set in order to reduce SVM model's accuracy. In
their setting, they try to figure out a poison sample x.
which, when inserted into the training set, will result in
the learned SVM model F,, having a large total loss on
the whole validation set. They achieve this by using in-
cremental learning technique for SVMSsP7, which can
model the influence of training sample on the learned
SVM model.
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A poisoning attack based on procedure above is quite
successful for SVM models. However, for deep learning
models, it is not easy to explicitly figure out the influ-
ence of training samples on the trained model. Below we
introduce some approaches for applying poisoning at-
tacks on DNN models.

3.5.2 Koh's model explanation

Koh and Liang's explanation study( introduce a
method to interpret deep neural networks: How would
the model's predictions change if a training sample were
modified? Their model can explicitly quantify the change
in the final loss without retraining the model when only
one training sample is modified. This work can be natur-
ally adopted to poisoning attacks by finding those train-
ing samples that have large influence on model’s predic-
tion.

3.5.3 Poison frogs

“Poison frogs” [ introduced a method to insert an ad-
versarial image with true label to the training set, in or-
der to cause the trained model to wrongly classify a tar-
get test sample. In their work, given a target test sample
x¢, whose true label is y;, the attacker first uses a base
sample zp, from class y,. Then, it solves the objective to
find z':

2’ = arg min||Z(z) — Z(wt)Hg + Bllx — mng

After inserting the poison sample z’ into training set,
the new model trained on Xiyqin + {2} will classify z’ as
class yp, because of the small distance between =’ and xy.
Using a new trained model to predict x¢, the objective of
2’ forces the score vector of ; and 2’ to be close. Thus,
2’ and z; will have the same prediction outcome. In this
way, the new trained model will predict the target sample
x¢ as class yp.

4 Countermeasures against adversarial
examples

In order to protect the security of deep learning mod-
els, different strategies have been considered as counter-
measures against adversarial examples. There are basic-
ally three main categories of these countermeasures:

1) Gradient masking/Obfuscation

Since most attack algorithms are based on the gradi-
ent information of the classifier, masking or hiding the
gradients will confound the adversaries.

2) Robust optimization

Re-learning a DNN classifier's parameters can in-
crease its robustness. The trained classifier will correctly
classify the subsequently generated adversarial examples.

3) Adversarial examples detection

Study the distribution of natural/benign examples, de-
tect adversarial examples and disallow their input into
the classifier.
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4.1 Gradient masking/Obfuscation

Gradient masking/Obfuscation refers to the strategy
where a defender deliberately hides the gradient informa-
tion of the model, in order to confuse the adversaries,
since most attack algorithms are based on the classifier's
gradient information.

4.1.1 Defensive distillation

“Distillation”, first introduced by Hinton et al.l%, is a
training technique to reduce the size of DNN architec-
tures. It fulfills its goal by training a smaller-size DNN
model on the logits (outputs of the last layer before soft-
max).

The work [12] reformulate the procedure of distilla-
tion to train a DNN model that can resist adversarial ex-
amples, such as FGSM, Szegedy's L-BFGS attack or
DeepFool. They design their training process as:

1) Train a network F' on the given training set (X,Y")
by setting the temperature! of the softmax to T'.

2) Compute the scores (after softmax) given by F(X),
again evaluating the scores at temperature 7'

3) Train another network Fy using softmax at temper-
ature T on the dataset with soft labels (X, F(X)). We
refer the model F} as the distilled model.

4) During prediction on test data Xy (or adversari-
al examples), use the distilled network F} but use soft-
max at temperature 1, which is denoted as Fy.

Carlini and Wagner4 explain why this algorithm
works: When we train a distilled network F at temperat-
ure T and test it at temperature 1, we effectively cause
the inputs to the softmax to become larger by a factor of
T. Let us say T = 100, the logits Z(-) for sample = and its
neighbor points z’ will be 100 times larger, which will res-
ult the softmax function Fi(-) = softmax(Z(-),1) output-
ting a score vector like (e,e,---,1— (m —1)e, €, ¢),
where the target output class has a score extremely close
to 1, and all other classes have scores close to 0. In prac-
tice, the value of € is so small that its 32-bit floating-
point value for computer is rounded to 0. In this way, the
computer cannot find the gradient of score function FY,
which inhibits the gradient-based attacks.

4.1.2 Shattered gradients

Some studies, such as [61, 62], try to protect the mod-
el by preprocessing the input data. They add a non-
smooth or non-differentiable preprocessor g(-) and then
train a DNN model f on g(X). The trained classifier
f(g(+)) is not differentiable in term of x, causing the fail-
ure of adversarial attacks.

For example, Thermometer encoding(6!l uses a prepro-

INote that the softmax function at a temperature T means:
23
erT

softmax(x,T); = ——, where 1 =0,2,--- | K — 1.

v/
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cessor to discretize an image's pixel value z; into a I-di-
mensional vector 7(z;). (e.g., when [ =10, 7(0.66) =
1111110000). The vector 7(z;) acts as a “thermometer”
to record the pixel z;'s value. A DNN model is later
trained on these vectors. Another work [62] studies a
number of image processing tools, such as image crop-
ping, compressing, total-variance minimization and super-
resolutionl63l, to determine whether these techniques help
to protect the model against adversarial examples. All
these approaches block up the smooth connection
between the model's output and the original input
samples, so the attacker cannot easily find the gradient

OF (z)

for attacking.
4.1.x3 Stochastic/Randomized gradients

Some defense strategies try to randomize the DNN
model in order to confound the adversary. For instance,
we train a set of classifiers s = {F; :t =1,2,--- ,k}. Dur-
ing evaluation on data x, we randomly select one classifi-
er from the set s and predict the label y¥. Because the ad-
versary has no idea which classifier is used by the predic-
tion model, the attack success rate will be reduced.

Some examples of this strategy include the work [64],
who randomly drop some neurons of each layer of the
DNN model, and the work [65], who resize the input im-
ages to a random size and pad zeros around the input im-
age.

4.1.4 Exploding & vanishing gradients

Both PixelDefend(66! and Defense-GANI67 suggest us-
ing generative models to project a potential adversarial
example onto the benign data manifold before classifying
them. While PixelDefend uses PixelCNN generative mod-
ell68] Defense-GAN uses a GAN architecturell. The gen-
erative models can be viewed as a purifier that trans-
forms adversarial examples into benign examples.

Both of these methods consider adding a generative
network before the classifier DNN, which will cause the
final classification model be an extremely deep neural net-
work. The underlying reason that these defenses succeed
is because: The cumulative product of partial derivatives

L (x)
ox

tremely small or irregularly large, which prevents the at-

from each layer will cause the gradient to be ex-

tacker accurately estimating the location of adversarial
examples.
4.1.5 Gradient masking/Obfuscation methods are
not safe

In the work Carlini and Wagner's attack[34, they show
the method of “Defensive Distillation” (Section 4.1.1) is
still vulnerable to their adversarial examples. In the study
[13], the authors devised different attacking algorithms to
break gradient masking/obfuscation defending strategies
(Sections 4.1.2 — 4.1.4).

The main weakness of the gradient masking strategy
is that: It can only “confound” the adversaries; it cannot
eliminate the existence of adversarial examples.

4.2 Robust optimization

Robust optimization methods aim to improve the clas-
sifier’s robustness (Section 2.2) by changing DNN model’s
manner of learning. They study how to learn model para-
meters that can give promising predictions on potential
adversarial examples. In this field, the works majorly fo-
cus on: 1) learning model parameters 6* to minimize the
average adversarial loss: (Section 2.2.2)

0" =arg min E max L£(0,2',y) (5)

8co a~D ||z/—x||<c

or 2) learning model parameters 6* to maximize the
average minimal perturbation distance: (Section 2.2.1)

0" =arg max E min ||z’ — z||. (6)
bce a~D C(z')#y

Typically, a robust optimization algorithm should
have a prior knowledge of its potential threat or poten-
tial attack (adversarial space D). Then, the defenders
build classifiers which are safe against this specific attack.
For most of the related works(® 14 151 they aim to defend
against adversarial examples generated from small [,
(specifically loc and l2) norm perturbation. Even though
there is a chance that these defenses are still vulnerable
to attacks from other mechanisms, (e.g., spatial
attack44), studying the security against I, attack is fun-
damental and can be generalized to other attacks.

In this section, we concentrate on defense approaches
using robustness optimization against [, attacks. We cat-
egorize the related works into three groups: 1) regulariza-
tion methods, 2) adversarial (re)training and 3) certified
defenses.

4.2.1 Regularization methods

Some early studies on defending against adversarial
examples focus on exploiting certain properties that a ro-
bust DNN should have in order to resist adversarial ex-
amples. For example, Szegedy et al.l8l suggest that a ro-
bust model should be stable when its inputs are distorted,
so they turn to constrain the Lipschitz constant to im-
pose this “stability” of model output. Training on these
regularizations can sometimes heuristically help the mod-
el be more robust.

1) Penalize layer's Lipschitz constant

When Szegydy et al.® first claimed the vulnerability
of DNN models to adversarial examples, they suggested
adding regularization terms on the parameters during
training, to force the trained model be stable. It sugges-
ted constraining the Lipschitz constant Lj between any
two layers:

vV, 8, ||he(z; Wi) — hi(z + 6 Wi)|| < Li|d]|

so that the outcome of each layer will not be easily
influenced by the small distortion of its input. The work
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Parseval networks(0? formalized this idea, by claiming
that the model's adversarial risk (5) is right dependent on
this instability Ly:

erED Eadv(x) S Q:LEJD £($)+

max _|L(F(x'),y) — L(F(x),y)]] <

o~D |2’ —||<e

x~D

K
E_ L(x)+ X [ s
k=1

where ), is the Lipschitz constant of the loss function.
This formula states that during the training process,
penalizing the large instability for each hidden layer can
help to decrease the adversarial risk of the model, and
consequently increase the robustness of model. The idea
of constraining instability also appears in the study [70]
for semi-supervised, and unsupervised defenses.

2) Penalize layer's partial derivative

The study [71] introduced a deep contractive network
algorithm to regularize the training. It was inspired by
the contractive autoencoder!™, which was introduced to
denoise the encoded representation learning. The deep
contractive network suggests adding a penalty on the
partial derivatives at each layer into the standard back-
propagation framework, so that the change of the input
data will not cause large change on the output of each
layer. Thus, it becomes difficult for the classifier to give
different predictions on perturbed data samples.
4.2.2 Adversarial (re)training

1) Adversarial training with FGSM

Goodfellow's FGSM attackl?l were the first to suggest
feeding generated adversarial examples into the training
process. By adding the adversarial examples with true la-
bel (z’,y) into the training set, the training set will tell
the classifier that 2’ belongs to class y, so that the
trained model will correctly predict the label of future ad-
versarial examples.

In the work [9], they use non-targeted FGSM
(Section 3.1.3) to generate adversarial examples z’ for the
training dataset:

2 = x4 esgn(V.L(0, 2,7)).

By training on benign samples augmented with ad-
versarial examples, they increase the robustness against
adversarial examples generated by FGSM.

The scalaed adversarial trainingl!® changes the train-
ing strategy of this method so that the model can be
scaled to larger dataset such as ImageNet. They suggest
using batch normalization[™! will improve the efficiency of
adversarial training. We give a short sketch of their al-
gorithm in Algorithm 1.

The trained classifier has good robustness on FGSM
attacks, but is still vulnerable to iterative attacks. Later,
the study [21] argues that this defense is also vulnerable
to single-step attacks. Adversarial training with FGSM
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will cause gradient obfuscation (Section 4.1), where there
is an extreme non-smoothness of the trained classifier F
near the test sample x. Refer to Fig.7 as an illustration of
the non-smooth property of FGSM trained classifier.

Algorithm 1. Adversarial training with FGSM by
batches

Randomly initialize network F'

Repeat

1) Read minibatch B = {z',--- 2™} from training set
7m§dv}
for corresponding benign examples using current state of
the network F.

3) Update B’ = {xlyy, -, aFy,, z" T . 2™}

Do one training step of network F' using minibatch B’

2) Generate k adversarial examples {zl,,,- -

until training converged.

2) Adversarial training with PGD

The PGD adversarial training(l4 suggests using projec-
ted gradient descent attack (Section 3.1.6) for adversari-
al training, instead of using single-step attacks like
FGSM. The PGD attacks (Section 3.1.6) can be seen as a
heuristic method to find the “most adversarial” example:

Tadw = arg max L(z', F) (7)
2/ €Bc(x)

in the ls ball around z: B(z). Here, the most-adversarial
example Tq4, is the location where the classifier F' is most
likely to be misled. When training the DNN model on
these most-adversarial examples, it actually solves the
problem of learning model parameters 6 that minimize
the adversarial loss (5). If the trained model has small
loss value on these most-adversarial examples, the model
is safe at everywhere in z's neighbor ball B.(x).

One thing to note is: This method trains the model
only on adversarial examples, instead of a mix of benign
and adversarial examples. The training algorithm is
shown Algorithm 2.

The trained model under this method demonstrates
good robustness against both single-step and iterative at-
tacks on MNIST and CIFARI10 dataset. However, this
method involves an iterative attack for all the training
samples. Thus, the time cost of this adversarial training
will be k (using k-step PGD) times as large as the time
cost for natural training, and as a consequence, it is hard
to scale to large datasets such as ImageNet.

3) Ensemble adversarial training

Ensembler adversarial training2!! introduced their ad-
versarial training method which can protect CNN models
against single-step attacks and also apply to large data-
sets such as ImageNet.

Their main approach is to augment the classifier’s
training set with adversarial examples crafted from other
pre-trained classifiers. For example, if we aim to train a
robust classifier F', we can first pre-train classifiers F, Fb,
and F3 as references. These models have different hyper-
parameters with model F'. Then, for each sample =, we
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Fig. 7 Illustration of gradient masking for adversarial training
via FGSM. It plots the loss function of the trained classifier
around = on the grids of gradient direction and another
randomly chosen direction. We can see that the gradient poorly
approximates the global loss. (Image credit: Tramer et al. 2])

use a single-step attack FGSM to craft adversarial ex-
amples on Fi, Fy and Fs to get xl,,, 224,, 25 4,. Because
of the transferability property (Section 5.3) of the single-
step attacks across different models, zl,,, z2,,, ©3,, are
also likely to mislead the classifier F', which means these
samples are a good approximation for the “most ad-
versarial” example (7) for model F on z. Training on
these samples together will approximately minimize the
adversarial loss in (5).

This ensemble adversarial training algorithm is more
time efficient than the methods in Sections 1 and 2, since
it decouples the process of model training and generating
adversarial examples. The experimental results show that
this method can provide robustness against single-step at-
tacks and black-box attacks on ImageNet dataset.

4) Accelerate adversarial training

While it is one of the most promising and reliable de-
fense strategies, adversarial training with PGD attack[14
is generally slow and computationally costly.

The work [74] propose a free adversarial training al-
gorithm which improves the efficiency by reusing the
backward pass calculations. In this algorithm, the gradi-

M—;(Sﬁ) and the gradient of
0L(x +9,0)
00

ent of the loss to input:

the loss to model parameters: can be com-

puted together in one back propagation iteration, by
sharing the same components of chain rule. Thus, the ad-
versarial training process is highly accelerated. The free
adversarial training algorithm is shown in Algorithm 3.

In the work [75], the authors argue that when the
model parameters are fixed, the PGD-generated ad-
versarial example is only coupled with the weights of the
first layer of DNN. It is based on solving a Pontryagin's
maximal principle(’8l. Therefore, this work [75] invents an
algorithm you only propagate once (YOPO) to reuse the
gradient of the loss to the model's first layer output
0L(x +0,0)

071 (x)
YOPO avoids a large amount of times it access the gradi-

during generating PGD attacks. In this way,

ent and therefore reduces the computational cost.
Algorithm 2. Adversarial training with PGD
Randomly initialize network F
Repeat
1) Read minibatch B = {z!,---
2) Generate m adversarial examples {zl,,, -

,2"™} from training set
) mgtliv}
by PGD attack using current state of the network F'
3) Update B' = {wlg,,- - ,all,}
Do one training step of network I’ using minibatch B’
until training converged
Algorithm 3. Free adversarial training
Randomly initialize network F'
Repeat
1) Read minibatch B = {z!,--- ,2™} from training set
2)fori=1,---,mdo
2.1) Update model parameter 6
go < IE(z,y)GB [VG‘C'(:E + 6.y, 0)]
Jadv < VaL(x +0,y,6)
0+ 60— age
2.2) Generate adversarial examples
0+ 0+ €-sgn(gadv)
d + clip(d, —¢, €)

3) Update minibatch B with adversarial examples
x+0

until training converged
4.2.3 Provable defenses

Adversarial training has been shown to be effective in
protecting models against adversarial examples. However,
this is still no formal guarantee about the safety of the
trained classifiers. We will never know whether there are
more aggressive attacks that can break those defenses, so
directly applying these adversarial training algorithms in
safety-critical tasks would be irresponsible.

As we mentioned in Section 3.1.8, the ground truth
attack3 was the first to introduce a Reluplex algorithm
to seriously verify the robustness of DNN models: When
the model F' is given, the algorithm figures out the exact
value of minimal perturbation distance r(x; F'). This is to
say, the classifier is safe against any perturbations with
norm less than this r(x; F'). If we apply Reluplex on the
whole test set, we can tell what percentage of samples are
absolutely safe against perturbations less than norm ro.
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In this way, we gain confidence and reduce the expected
risk when building DNN models.

The method of Reluplex seeks to find the exact value
of r(x; F) that can verify the model F's robustness on z.
Alternately, works such as [77-79], try to find trainable
“certificates” C(z; F') to verify the model robustness. For
example, in the work [79], the authors calculate a certific-
ate C(z, F') for model F' on z, which is a lower bound of
minimal perturbation distance: C(z, F) <r(z,F). As
shown in Fig.8, the model must be safe against any per-
turbation with norm limited by C(z, F'). Moreover, these
certificates are trainable. Training to optimize these certi-
ficates will grant good robustness to the classifier. In this
section, we shall briefly introduce some methods to design
these certificates.

A

Fig. 8 Derived certificate C(§, F) is a lower bound of minimal
perturbation distance p(x, F'). Model is safe in C(§, F) ball.

1) Lower bound of minimal perturbation

Hein and Andriushchenkol™ derive a lower bound
C(z, F) for the minimal perturbation distance of F' on z
based on Cross-Lipschitz theorem:

max min{min Zy(x) — Zi(x)

o i — e IVZ,() - VZ.@]
z/ €Be(x)

The detailed derivation can be found in their work of
[79]. Note that the formulation of C(x, F) only depends
on I and z, and it is easy to calculate for a neural net-
work with one hidden layer. The model F' thus can be
proved to be safe in the region within distance C(z, F).
Training to maximize this lower bound will make the
classifier more robust.

2) Upper bound of adversarial loss

The works proposed by Raghunathan et al./ and
Wong and Kolter[™8 aim to solve the same problem. They
try to find an upper bound U(z, F') which is larger than
adversarial loss Lo (2, F):

Ladv(z) = max {rgfu;c Zi(z') — Zy(z)}
st. 2’ € Be(x). (8)

@ Springer

Recall that we introduced in Section 2.2.2, the func-
tion max;xy Z;(z') — Zy(z') is a type of loss function
called margin loss.

The certificate U(xz,F) acts in this way: If
U(z, F) < 0, then adversarial loss L£(z, F') < 0. Thus, the
classifier always gives the largest score to the true label y
in the region Bc(z), and the model is safe in this region.
To increase the model’s robustness, we should learn para-
meters that have the smallest U/ value, so that more and
more data samples will have negative U values.

The work proposed by Raghunathan et al.[’”] uses in-
tegration inequalities to derive the certificate and use
semi-definite programming (SDP)BY to solve the certific-
ate. In contrast, the work of Wong and Kolter[™ trans-
forms the problem (8) into a linear programming prob-
lem and solves the problem via training an alternative
neural network. Both methods only consider neural net-
works with one hidden layer. There are also studies of
Raghunathan et al.Bl and Wong et al.®2 which im-
proved the efficiency and scalability of these algorithms.

Furthermore, distributional adversarial training(s3l
combine adversarial training and provable defense togeth-
er. They train the classifier by feeding adversarial ex-
amples which are sampled from the distribution of worst-
case perturbation, and derive the certificates by studying
the Lagrangian duality of adversarial loss.

4.3 Adversarial example detection

Adversarial example detection is another main ap-
proach to protect DNN classifier. Instead of predicting
the model’s input directly, these methods first distin-
guish whether the input is benign or adversarial. Then, if
it can detect the input is adversarial, the DNN classifier
will refuse to predict its label. In the work [16], they sort
the threat models into 3 categories that the detection
techniques should deal with:

1) A zero-knowledge adversary only has access to the
classifier F's parameter, and has no knowledge of the de-
tection model D).

2) A perfect-knowledge adversary is aware of the mod-
el F, and the detection scheme D and its parameters.

3) A limited-knowledge adversary is aware the model
F and the detection scheme D, but does not have access
to D's parameter. That is, this adversary does not know
the model's training set.

In all three of these threat settings, the detection tool
is required to correctly classify the adversarial examples,
and have low possibility of misclassifying benign ex-
amples. Next, we will go through some main methods for
adversarial example detection.

4.3.1 An auxiliary model to classify adversarial
examples

Some works focus on designing auxiliary models that
aim to distinguish adversarial examples from benign ex-
amples. The study [84] train a DNN model with
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|Y| = K + 1 labels, with an additional label for all ad-
versarial examples, so that network will assign adversari-
al examples into the K 4 1 class. Similarly, the work of
Gong et al.l®% trains a binary classification model to dis-
criminate all adversarial examples apart from benign
samples, and then trains a classifier on recognized benign
samples.

The work [86] proposed a detection method to con-
struct an auxiliary neural network D which takes inputs
from the values of hidden nodes A of the natural trained
classifier. The trained detection classifier D : H — [0, 1] is
a binary classification model that distinguishes adversari-
al examples from benign ones by the hidden layers.

4.3.2 Using statistics to distinguish adversarial
examples

Some early works heuristically study the differences in
the statistical properties of adversarial examples and be-
nign examples. For example, in the study [87], the au-
thors found adversarial examples place a higher weight on
the larger (later) principle components where the natural
images have larger weight on early principle components.
Thus, they can split them by principled component ana-
lysis (PCA).

In the work [84], the authors use a statistical test:
maximum mean discrepancy (MMD) testl¥ which is
used to test whether two datsets are drawn from the
same distribution. They use this testing tool to test
whether a group of data points are benign or adversarial.
4.3.3 Checking the prediction consistency

Other studies focus on checking the consistency of the
sample z's prediction outcome. They usually manipulate
the model parameters or the input examples themselves,
to check whether the outputs of the classifier have signi-
ficant changes. These are based on the belief that the
classifier will have stable predictions on natural examples
under these manipulations.

The work [89] randomizes the classifier using
Dropoutl®l, If these classifiers give very different predic-
tion outcomes on z after randomization, this sample z is
very likely to be an adversarial one.

The work [17] manipulates the input sample itself to
check the consistency. For each input sample x, the au-
thors reduce the color depth of the image (e.g., one 8-bit
grayscale image with 256 possible values for each pixel
becomes a 7-bit with 128 possible values), as shown in
Fig.9. The authors hypothesize that for natural images,
reducing the color depth will not change the prediction
result, but the prediction on adversarial examples will
change. In this way, they can detect adversarial ex-
amples. Similar to reducing the color depth, the work [89]
also introduced other feature squeezing methods, such as
spatial smoothing.
4.3.4 Some attacks

detections

The study [16] bypassed 10 of the detection methods
which fall into the three categories above. The feature

which evade adversarial

olololoo]o]o]6
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Fig.9 Images from MNIST and CIFAR10. From left to right,
the color depth is reduced from 8&8-bit, 7-bit, -, 2-bit,1-bit.
(Image credit: Xu et al.[l7])

squeezing methods were broken by Sharma and Chenl9l],
which introduced a “stronger” adversarial attack.

The authors in work [16] claim that the properties
which are intrinsic to adversarial examples are not very
easy to find. They also gave several suggestions on future
detection works:

1) Randomization can increase the required attacking
distortion.

2) Defenses that directly manipulate on raw pixel val-
ues are ineffective.

3) Evaluation should be down on multiple datasets be-
sides MNIST.

4) Report false positive and true positive rates for de-
tection.

5) Evaluate using a strong attack. Simply focusing on
white-box attacks is risky.

5 Explanations for the existence of
adversarial examples

In addition to crafting adversarial examples and de-
fending them, explaining the reason behind these phe-
nomena is also important. In this section, we briefly in-
troduce the recent works and hypotheses on the key ques-
tions of adversarial learning. We hope our introduction
will give our audience a basic view on the existing ideas
and solutions for these questions.

5.1 Why do adversarial examples exist?

Some original works such as Szegedy's L-BFGS
attack®], state that the existence of adversarial examples
is due to the fact that DNN models do not generalize well
in low probability space of data. The generalization issue
may be caused by the high complexity of DNN model
structures.

However, in the work [9], even linear models are also
vulnerable to adversarial attacks. Furthermore, in the
work [14], they implement experiments to show that an
increase in model capacity will improve the model robust-
ness.

Some insight can be gained about the existence of ad-
versarial examples by studying the model's decision
boundary. The adversarial examples are almost always
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close to decision boundary of a natural trained model,
which may be because the decision boundary is too
flat92, too curved[®3, or inflexible[®4].

Studying the reason behind the existence of adversari-
al examples is important because it can guide us in
designing more robust models, and help us to understand
existing deep learning models. However, there is still no
consensus on this problem.

5.2 Can we build an optimal classifier?

Many recent works hypothesize that it might be im-
possible to build optimally robust classifier. For example,
the study [95] claim that adversarial examples are inevit-
able because the distribution of data in each class is not
well-concentrated, which leaves room for adversarial ex-
amples. In this vein, the work [96] claims that to im-
prove the robustness of a trained model, it is necessary to
collect more data. Moreover, the authors in work [25] sug-
gest, even if we can build models with high robustness, it
must take cost of some accuracy.

5.3 What is transferability?

Transferability is one of the key properties of ad-
versarial examples. It means that the adversarial ex-
amples generated to target one victim model also have a
high probability of misleading other models.

Some works compare the transferability between dif-
ferent attacking algorithms. In the work [31], the authors
claim that in ImageNet, single step attacks (FGSM) are
more likely to transfer between models than iterative at-
tacks (BIM) under same perturbation intensity.

The property of transferability is frequently utilized in
attacking techniques in black-box setting8l. If the model
parameters are veiled to attackers, they can turn to at-
tack other substitute models and enjoy the transferabil-
ity of their generated samples. The property of transfer-
ability is also utilized by defending methods as in the
work [87]: Since the adversarial examples for model A are
also likely to be adversarial for model B, adversarial
training using adversarial examples from B will help de-
fend A.

6 Graph adversarial examples

Adversarial examples also exist in graph-structured
datall0; 97, Attackers usually slightly modify the graph
structure and node features, in an effort to cause the
graph neural networks (GNN) to give wrong prediction
for node classification or graph classification tasks. These
adversarial attacks therefore raise concerns on the secur-
ity of applying GNN models. For example, a bank needs
to build a reliable credit evaluation system where their
model should not be easily attacked by malicious manipu-
lations.
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There are some distinct difference between attacking
graph models and attacking traditional image classifiers:

1) Non-independence. Samples of the graph-struc-
tured data are not independent: Changing one's feature or
connection will influence the prediction on others.

2) Poisoning attacks. Graph neural networks are
usually performed in a transductive learning setting: The
test data are also used to train the classifier. This means
that we modify the test data, the trained classifier is also
changed.

3) Discreteness. When modifying the graph struc-
ture, the search space for adversarial example is discrete.
Previous gradient methods to find adversarial examples
may be invalid in this case.

Below are the methods used by some successful works
to attack and defend graph neural networks.

6.1 Definitions for graphs and graph mod-
els

In this section, the notations and definitions of the
graph structured data and graph neural network models
are defined below. A graph can be represented as
G ={V,&}, where V is a set of N nodes and £ is a set of
M edges. The edges describe the connections between the
nodes, which can also be expressed by an adjacency mat-
rix A € {0,1}V*¥, Furthermore, a graph G is called an
attributed graph if each node in V is associated with a d-
dimensional attribute vector z, € R%. The attributes for
all the nodes in the graph can be summarized as a mat-
rix X € RY*? the i-th row of which represents the at-
tribute vector for node v;.

The goal of node classification is to learn a function
g :V — Y that maps each node to one class in ), based
on a group of labeled nodes in G. One of the most suc-
cessful node classification models is graph convolutional
network (GCN)[7l. The GCN model keeps aggregating the
information from neighboring nodes to learn representa-
tions for each node v,

HY = x; H'") =(AHOW)

where o is a non-linear activation function, the matrix A
A=D%AD 3, A=A+1Iy, and
Dii => y Aij. The last layer outputs the score vectors of
each node for prediction: H{™ = F(v, X).

is  defined as

6.2 Zugner's greedy method

In the work of Zugner et al.[l%, they consider attack-
ing node classification models, graph convolutional net-
works[”l, by modifying the nodes connections or node fea-
tures (binary). In this setting, an adversary is allowed to
add/remove edges between nodes, or flip the feature of
nodes with limited number of operations. The goal is to
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mislead the GCN model which is trained on the per-
turbed graph (transductive learning) to give wrong pre-
dictions. In their work, they also specify three levels of
adversary capabilities: they can manipulate 1) all nodes,
2) a set of nodes A including the target victim z, and 3)
a set of nodes A which does not include target node z. A
sketch is shown in Fig. 10.

[] [:] s Target node
Perturbation

[

[:] »\Attacker node

i Train node classification model

Target gets
misclassified

Fig. 10 Adding an edge to alter the prediction of graph
convolutional network (Image credit: Zugner et al.[10])

Similar to the objective function in Carlini and Wagn-
erB34 for image data, they formulate the graph attacking
problem as a search for a perturbed graph G’ such that
the learned GCN classifier Z* has the largest score mar-

gin:
max In(Z, (vo,G")) — In(Z; (vo, G")). 9)

The authors solve this objective by finding perturba-
tions on a fixed, linearized substitute GCN classifier Gsup
which is trained on the clean graph. They use a heuristic
algorithm to find the most influential operations on graph
Gsub (e.g., removing/adding the edge or flipping the fea-
ture which can cause largest increase in (9)). The experi-
mental results demonstrate the adversarial operations are
also effective on the later trained classifier Z*.

During the attacking process, the authors also impose
two key constraints to ensure the similarity of the per-
turbed graph to the original one: 1) the degree distribu-
tion should be maintained, and 2) two positive features
which never happen together in GG should also not hap-
pen together in G’. Later, some other graph attacking
works (e.g., [98]) suggest the eigenvalues/eigenvectors of
the graph Laplacian matrix should also be maintained
during attacking, otherwise the attacks are easily detec-
ted. However, there is still no firm consensus on how to
formally define the similarity between graphs and gener-
ate unnoticeable perturbation.

6.3 Dai's RL method: RL-S2V

Different from Zugner's greedy method, the work of
Dai et al.ll introduced a reinforcement learning method
to attack the graph neural networks. This work only con-

siders adding or removing edges to modify the graph
structure.

In the work's setting of [97], a node classifier F
trained on the clean graph G =@ is given, node classi-
fier F' is unknown to the attacker, and the attacker is al-
lowed to modify m edges in total to alter F's prediction
on the victim node vg. The authors formulate this attack-
ing mission as a Q-Learning gamel®, with the defined
Markov decision process as below:

1) State. The state s; is represented by the tuple
(G® vg), where G® is the modified graph with ¢ iterat-
ive steps.

2) Action. To represent the action to add/remove
edges, a single action at time step ¢ is a; € V x V, which
means the edge to be added or removed.

3) Reward. In order to encourage actions to fool the
classifier, we should give positive reward if vo's label is
altered. Thus, the authors define the reward function as:
r(s¢,a:) =0,¥Vt =1,2,--- ,m — 1, and for the last step:

(1, if O(we,G™) £y
T(8m, am) = { —1, if C(vo,G™) =y.

4) Termination. The process stops once the agent
finishes modifying m edges.

The Q-learning algorithm helps the adversary have
knowledge about which actions to take (add/remove
which edge) on the given state (current graph structure),
in order to get largest reward (change F's output).

6.4 Graph structure poisoning via meta-
learning

Previous graph attack works only focus on attacking
one single victim node. Meta learning attack[10% attempt
to poison the graph so that the global node classification
performance of GCN can be undermined and made al-
most useless. Their approach is based on meta
learning(19l], which is traditionally used for hyperparamet-
er optimization, few-shot image recognition, and fast rein-
forcement learning. In the work [100], they use meta
learning technique which takes the graph structure as the
hyperparameter of the GCN model to optimize. Using
their algorithm to perturb 5% edges of a CITESEER
graph dataset, they can increase the misclassification rate
to over 30%.

6.5 Attack on node embedding

Node embedding attack[!02] studies how to perturb the
graph structure in order to corrupt the quality of node
embedding, and consequently hinder subsequent learning
tasks such as node classification or link prediction. Spe-
cifically, they study DeepWalk[103l as a random-walk
based node embedding learning approach and approxim-
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ately find the graph which has the largest loss of the
learned node embedding.

6.6 ReWatt: Attacking graph classifier via
rewiring

The ReWatt method®8] attempts to attack the graph
classification models, where each input of the model is a
whole graph. The proposed algorithm can mislead the
model by making unnoticeable perturbations on graph.

In their attacking scheme, they utilize reinforcement
learning to find a rewiring operation a = (vi,v2,v3) at
each step, which is a set of 3 nodes. The first two nodes
were connected in the original graph and the edge
between them is removed in the first step of the rewiring
process. The second step of the rewiring process adds an
edge between the nodes vi and v3, where w3 is con-
strained to be within 2-hops away from wv;. Some
analysis(% show that the rewiring operation tends to keep
the eigenvalues of the graph's Laplacian matrix, which
makes it difficult to detect the attacker.

6.7 Defending graph neural networks

Many works have shown that graph neural networks
are vulnerable to adversarial examples, even though there
is still no consensus on how to define the unnoticeable
perturbation. Some defending works have already ap-
peared. Many of them are inspired by the popular de-
fense methodology in image classification, using adversari-
al training to protect GNN models[194 105 which provides
moderate robustness.

7 Adversarial examples in audio and
text data

Adversarial examples also exist in DNN's applications
in audio and text domains. An adversary can craft fake
speech or fake sentences that mislead the machine lan-
guage processors. Meanwhile, deep learning models on au-
dio/text data have already been widely used in many
tasks, such as Apple Siri and Amazon Echo. Therefore,
the studies on adversarial examples in audio/text data
domain also deserve our attention.

As for text data, the discreteness nature of the inputs
makes the gradient-based attack on images not applic-
able anymore and forces people to craft discrete perturba-
tions on different granularities of text (character-level,
word-level, sentence-level, etc). In this section, we intro-
duce the related works in attacking NLP architectures for
different tasks.

7.1 Speech recognition attacks

Carlini and Wagner[196] studies to attack state-of-art

speech-to-text transcription network, such as
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DeepSpeechll97. In their setting, when given any speech
waveform x, they can add an inaudible sound perturba-
tion § that makes the synthesized speech x + J be recog-
nized as any targeted desired phrase.

In their attacking work, they limited the maximum
decibels (dB) on any time of the added perturbation
noise, so that the audio distortion is unnoticeable.
Moreover, they inherit the C & W's attack method34 on
their audio attack setting.

7.2 Text classification attacks

Text classification is one of main tasks in natural lan-
guage processing. In text classification, the model is de-
vised to understand a sentence and correctly label the
sentence. For example, text classification models can be
applied on IMDB dataset for characterizing user’s opin-
ion (positive or negative) on the movies, based on their
provided reviews. Recent works of adversarial attacks
have demonstrated that text classifiers are easily mis-
guided by adversaries slightly modifying the texts'
spelling, words or structure.

7.2.1 Attack word embedding

The work [108] considers to add perturbation on the
word embeddingll, so as to fool a LSTMIM classifier.
However, this attack only considers perturbing the word
embedding, instead of original input sentence itself.

7.2.2 Manipulate words, letters

The work HotFlip[ll considers to replace a letter in a
sentence in order to mislead a character-level text classifi-
er (each letter is encoded to a vector). For example, as
shown in Fig. 11, altering a single letter in a sentence al-
ters the model’s prediction on its topic. The attack al-
gorithm manages to achieve this by finding the most-in-
fluential letter replacement via gradient information.
These adversarial perturbations can be noticed by hu-
man readers, but they don't change the content of the
text as a whole, nor do they affect human judgments.

South Africa’s historic Soweto township marks its

100th birthday on Tuesday in a mood of optimism.
57% World

South Africa’s historic Soweto township marks its

100th birthday on Tuesday in a mooP of optimism.
95% Sci/Tech

Fig.11 Replace one letter in a sentence to alter a text
classifier’ s prediction on a sentence’ s topic (Image credit:
Ebrahimi et al.[l1])

The work [110] considers to manipulate the victim
sentence on word, phrase level. They try adding, remov-
ing or modifying the words and phrases in the sentences.
In their approach, the first step is similar to HotFlip[tl.
For each training sample, they find the most-influential
letters, called “hot characters”. Then, they label the
words that have more than 3 “hot characters” as “hot
words”. “Hot words” composite “hot phrases”, which are
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most-influential phrases in the sentences. Manipulating
these phrases is likely to influence the model’s prediction,
so these phrases composite a “vocabulary” to guide the
attacking. When an adversary is given a sentence, he can
use this vocabulary to find the weakness of the sentence,
add one hot phrase, remove a hot phrase in the given sen-
tence, or insert a meaningful fact which is composed of
hot phrases.

DeepWordBug!!ll and TextBugger[}!2l are black-box
attack methods for text classification. The basic idea of
the former is to define a scoring strategy to identify the
key tokens which will lead to a wrong prediction of the
classifier if modified. Then they try four types of “imper-
ceivable” modifications on such tokens: swap, substitu-
tion, deletion and insertion, to mislead the classifier. The
latter follows the same idea, and improves it by introdu-
cing new scoring functions.

The works of Samanta and Mehtall13l, Tyyer et al.[l14]
start to craft adversarial sentences that grammarly cor-
rect and maintain the syntax structure of the original
sentence. Samanta and Mehtalll3l achieve this by using
synonyms to replace original words, or adding some
words which have different meanings in different context.
On the other hand, Iyyer et al.l'4 manage to fool the
text classifier by paraphrasing the structure of sentences.

Witbrock[!13] conducts sentence and word paraphras-
ing on input texts to craft adversarial examples. In this
work, they first build a paraphrasing corpus that con-
tains a lot of word and sentence paraphrases. To find an
optimal paraphrase of an input text, a greedy method is
adopted to search valid paraphrases for each word or sen-
tence from the corpus. Moreover, they propose a gradi-
ent-guided method to improve the efficiency of greedy
search. This work also has significant contributions in
theory: They formally define the task of discrete ad-
versarial attack as an optimization problem on a set func-
tion and they prove that the greedy algorithm ensures a

1
1 — — approximation factor for CNN and RNN text clas-
e

sifiers.

7.3 Adversarial examples in other NLP
tasks

7.3.1 Attack on reading comprehension systems

In the work [116], the authors study whether Reading
Comprehension models are vulnerable to adversarial at-
tacks. In reading comprehension tasks, the machine learn-
ing model is asked to answer a given question, based on
the model's “understanding” from a paragraph of an art-
icle. For example, the work [116] concentrates on Stan-
ford Question Answering Dataset (SQuAD), in which sys-
tems answer questions about paragraphs from Wikipedia.

The authors successfully degrade the intelligence of
the state-of-art reading comprehension models on SQuAD
by inserting adversarial sentences. As shown in Fig.12,

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play in
a Super Bowl at age 39. The past record was held by
John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXII?”

Original Prediction:

Prediction under adversary: Jeff Dean

Fig. 12 By adding an adversarial sentence which is similar to
the answer, the reading comprehension model gives a wrong
answer (Image credit: Jia and Liang[!16])

the inserted sentence (blue) looks similar to the question,
but does not contradict the correct answer. This inserted
sentence is understandable for human reader but con-
fuses the machine a lot. As a result, the proposed attack-
ing algorithm reduced the performance of 16 state-of-art
reading comprehension models from average 75% F1 score
(accuracy) to 36%.

Their proposed algorithm AddSent shows a four-step
operation to find adversarial sentence.

1) Fake question: What is the name of the quarter-
back whose jersey number is 37 in Champ Bowl XXXIV?

2) Fake answer: Jeff Dean.

3) Question to declarative form: Quarterback Jeff
Dean is jersey number 37 in Champ Bowl XXXIV.

4) Get grammarly correct: Quarterback Jeff Dean had
jersey number 37 in Champ Bowl XXXIV.
7.3.2 Attack on neural machine translation

The work [117] studies the stability of machine learn-
ing translation tools when their input sentences are per-
turbed from natural errors (typos, misspellings, etc) and
manually crafted distortions (letter replacement, letter re-
order). The experimental results show that the state-of-
arts translation models are vulnerable to both two types
of errors, and suggest adversarial training to improve the
model’s robustness.

Seq2Sickl!!8] tries to attack seq2seq models in neural
machine translation and text summarization. In their set-
ting, two goals of attacking are set: to mislead the model
to generate an output which has on overlapping with the
ground truth, and to lead the model to produce an out-
put with targeted keywords. The model is treated as a
while-box and the authors formulate the attacking prob-
lem as an optimization problem where they seek to solve
a discrete perturbation by minimizing a hinge-like loss
function.

7.4 Dialogue generation

Unlike the tasks above where success and failure are
clearly defined, in the task of dialogue, there is no unique
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appropriate response for a given context. Thus, instead of
misleading a well-trained model to produce incorrect out-
puts, works about attacking dialogue models seek to ex-
plore the property of neural dialogue models to be in-
terfered by the perturbations on the inputs, or lead a
model to output targeted responses.

In the study [119], the authors explore the over-sensit-
ivity and over-stability of neural dialogue models by us-
ing some heuristic techniques to modify original inputs
and observe the corresponding outputs. They evaluate
the robustness of dialogue models by checking whether
the outputs change significantly after the modifications
on the inputs but do not consider targeted outputs. They
also investigate the effects that take place when retrain-
ing the dialogue model using these adversarial examples
to improve the robustness and performance of the under-
lying model.

In the work [120], the authors try to find trigger in-
puts which can lead a neural dialogue model to generate
targeted egregious responses. They design a search-based
method to determine the word in the input that maxim-
izes the generative probability of the targeted response.
Then, they treat the dialogue model as a white-box and
take advantage of the gradient information to narrow the
search space. Finally they show that this method works
for "normal" targeted responses which are decoding res-
ults for some input sentences, but for manually written
malicious responses, it hardly succeeds.

The work [121] treats the neural dialogue model as a
black-box and adopts a reinforcement learning frame-
work to effectively find trigger inputs for targeted re-
sponses. The black-box setting is stricter but more realist-
ic, while the requirements for the generated responses are
properly relaxed. The generated responses are expected to
be semantically identical to the targeted ones but not ne-
cessarily exactly match with them.

8 Adversarial examples in
miscellaneous tasks

In this section, we summarize some adversarial at-
tacks in other domains. Some of these domains are safety-
critical, so the studies on adversarial examples in these
domains are also important.

8.1 Computer vision beyond image classi-
fication

1) Face recognition

The work [122] seek to attack face recognition models
on both a digital level and physical level. The main vic-
tim model is based on the architecture of Parkhi et al.[123],
which is a 39-layer DNN model for face recognition tasks.
The attack on the digital level is based on traditional at-
tacks, like Szegedy's L-BFGS method (Section 3.1.2).

@ Springer

Beyond digital-level adversarial faces, they also suc-
ceed in misleading face recognition models on physical
level. They achieve this by asking subjects to wear their
3D printed sunglasses frames. The authors optimize the
color of these glasses by attacking the model on a digital
level: by considering various adversarial glasses, the most
effective adversarial glasses are used for attack. As shown
in Fig.13, an adversary wears the adversarial glasses and
successfully fool the detection of victim face recognition
system.

Fig. 13 An adversary (left) wears a pair of adversarial glasses
and is recognized as a movie-star, Milla Jovovich (Image credit:
Sharif et al.[122])

2) Object detection and semantic segmentation

There are also studies on semantic segmentation and
object detection models in computer vision(l24 125 In
both semantic segmentation and object detection tasks,
the goal is to learn a model that associates an input im-
age = with a series of labels Y = {yi,y2, - ,yn}. Se-
mantic segmentation models give each pixel of z a label
yi, so that the image is divided to different segments.
Similarly, object detection models label all proposals (re-
gions where the objects lie).

The attacks in [124] can generate an adversarial per-
turbation on = which can cause the classifier to give
wrong prediction on all the output labels of the model, in
order to fool either semantic segmentation or object de-
tection models. The attacks[!?’l finds that there exists
universal perturbation for any input image for semantic
segmentation models.

8.2 Video adversarial examples

Most works concentrate on attacking static image
classification models. However, success on image attacks
cannot guarantee that there exist adversarial examples on
videos and video classification systems. The work [126]
uses GANDBS to generate a dynamic perturbation on video
clips that can mislead the classification of video classifiers.

8.3 Generative models
The work [127] attacks the variational autoencoder

(VAE)[128] and VAE-GAN[2). Both VAE and VAE-GAN
use an encoder to project the input image z into a lower-
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dimensional latent representation z, and as well a de-
coder to reconstruct a new image & from z. The recon-
structed image should maintain the same principle se-
mantics as the original image.

In the setting of attack[!27], the authors aim to slightly
perturb the input image z fed to encoder, which will
cause the decoder to generate image fgec(fenc(z)) having
different meaning from the input z. For example, in
MNIST dataset, the input image is “1”, and the recon-
structed image is “0”.

8.4 Malware detection

The existence of adversarial examples in safety-critic-
al tasks, such as malware detection, should be paid much
attention. The work [130] built a DNN model on the
DREBIN dataset/[!31, which contains 120000 Android ap-
plication samples, where over 5000 are malware samples.
The trained model has 97% accuracy, but malware
samples can evade the classifier if attackers add fake fea-
tures to them. Some other works, Hu and Tanl!32 and
Anderson et al.!33] consider using GANs[53 to generate
adversarial malware.

8.5 Fingerprint recognizer attacks

Fingerprint recognition systems are also one of the
most safety-critical fields where machine learning models
are adopted. While, there are adversarial attacks under-
mining the reliability of these models. For example, fin-
gerprint spoof attacks copy an authorized person’s finger-
print and replicate it on some special materials such as li-
quid latex or gelatin. Traditional fingerprint recognition
techniques especially minutiae-based models fail to distin-
guish the fingerprint images generated from different ma-
terials. The works of Chugh et al.[134 135 design a modi-
fied CNN to effectively detect this fingerprint spoof at-
tack.

8.6 Reinforcement learning

Different from classification tasks, deep reinforcement
learning (RL) aims to learn how to perform some human
tasks, such as play Atari 2600 games? or play Golsl. For
example, to play an Atari game Pong, (Fig.14(a)), the
trained model takes input from the latest images of game
video (state Y z), and output a decision to move up or
down (action Y y). The learned model can be viewed as a
rule (policy Y. m9) to win the game (reward Y L£(6,z,v)).
A simple sketch can be: = BN y, which is in parallel to
classification tasks: z %> y. The RL algorithms are
trained to learn the parameters of 7.

The RL attack(37 shows deep reinforcement learning
models are also vulnerable to adversarial examples. Their

(a) Action taken: up
original input

|
(b) Action taken: down
adversarial input

Fig. 14 Left figure: the brick takes correct actions to go up to
catch the ball. Right figure: the current state is perturbed by
changing one pixel. The policy gives an incorrect command to go
down. (Image credit: Huang et al.[136])

approach is inherited from FGSMUl, to take one-step
gradient on the state x (latest images of game video) to
craft a fake state x’. The policy's decision on z’ can be
totally useless to achieve the reward. Their results show
that a slight perturbation on RL models' state, can cause
large difference on the models' decision and performance.
Their work show Deep Q Learning®!, TRPO[I37 and
A3CH38] are all vulnerable to their attacks.

9 Conclusions

In this survey, we give a systemic, categorical and
comprehensive overview on the recent works regarding
adversarial examples and their countermeasures, in mul-
tiple data domains. We summarize the studies from each
section in the chronological order as shown in Fig.B in
Appendix B, because these works are released with relat-
ively high frequency in response to one another. The cur-
rent state-of-the-art attacks will likely be neutralized by
new defenses, and these defenses will subsequently be cir-
cumvented. We hope that our work can shed some light
on the main ideas of adversarial learning and related ap-
plications in order to encourage progress in this field.
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Appendix

A. Dichotomy of attacks

Table A Dichotomy of attacks

Attack Publication Similarity Attacking capability ~ Algorithm Apply domain
L-BFGS (8] lo White-box Iterative Image classification
FGSM 9] loo,lo White-box Single-step Image classification
Deepfool [32] lo White-box Iterative Image classification
JSMA [33] lo White-box Iterative Image classification
BIM [31] loo White-box Iterative Image classification
C&W [34] lo White-box Iterative Image classification
Ground truth [35] lo White-box SMT solver Image classification
Spatial [44] Total variation White-box Iterative Image classification
Universal [125] loo, l2 White-box Iterative Image classification
One-Pixel [39] lo White-box Iterative Image classification
EAD [40] I1 + 12,15 ‘White-box Iterative Image classification
Substitute [48] lp Black-box Iterative Image classification
ZOO [50] lp Black-box Iterative Image classification
Biggio [19] lo Poisoning Tterative Image classification
Explanation [58] lp Poisoning Iterative Image classification
Zugner's [10] Degree distribution, coocurrence Poisoning Greedy Node classification
Dai's [97] Edges Black-box RL Node & Graph classification
Meta [100] Edges Black-box RL Node classification
C&W [106] max dB White-box Iterative Speech recognition
Word embedding [108] lp White-box One-step Text classification
HotFlip [11] letters White-box Greedy Text classification
Jia & Liang [116] letters Black-box Greedy Reading comprehension
Face recognition [122] physical ‘White-box Iterative Face recognition
RL attack [137] Iy White-box RL

@ Springer
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B. Dichotomy of defenses
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Fig. B Dichotomy of defenses
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