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ABSTRACT Due to the powerful ability of data fitting, deep neural networks have been applied in a wide

range of applications in many key areas. However, in recent years, it was found that some adversarial samples

easily fool the deep neural networks. These input samples are generated by adding a few small perturbations

based on the original sample, making a very significant influence on the decision of the target model in the

case of not being perceived. Image segmentation is one of the most important technologies in the medical

image and automatic driving field. This paper mainly explores the security of deep neural network models

based on the image segmentation tasks. Two lightweight image segmentation models on the embedded

device suffered from the white-box attack by using local perturbations and universal perturbations. The

perturbations are generated indirectly by a noise function and an intermediate variable so that the gradient

of pixels can be propagated unlimitedly. Through experiments, we find that different models have different

blind spots, and the adversarial samples trained for a single model have no transferability. In the end, multiple

models are attacked by our joint learning. Finally, under the constraint of low perturbation, most of the pixels

in the attacked area have been misclassified by both lightweight models. The experimental result shows that

the proposed adversary is more likely to affect the performance of the segmentation model compared with

the FGSM.

INDEX TERMS Adversarial samples, image segmentation, joint learning, multi-model attack, perturbations.

I. INTRODUCTION

Recently, deep neural networks have been widely applied in

various fields, including computer vision, speech recognition,

natural language processing and robotics [1]. Deep neural

networks are characterized by learning appropriate low-level

features from the data rather than relying on handwriting to

explicitly program them, which requires less human inter-

vention [2]. Generally, image segmentation technology is

the most fun part of computer vision and the basis of all

other image processing methods. The quality of image seg-

mentation technology will affect the effect of subsequent

processing to a large extent. In the field of computer vision,

semantic image segmentation is an essential method of scene

understanding that can be used for autonomous driving, video
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surveillance and robotics [3]. Moreover, in the era of artificial

intelligence (AI), most computer vision techniques are based

on image segmentation, and research on image segmenta-

tion techniques has been underway for decades. From early

graphics processing algorithms to deep learning algorithms,

thanks to the development of hardware, the improvement of

computing capacity, and the generation ofmassive image data

in the information society [4].

With the development of deep learning algorithms, com-

puter vision technology represented by image segmentation

has once again entered people’s field of vision. Image seg-

mentation algorithms based on deep learning are constantly

being proposed [5]. Compared with traditional image seg-

mentation algorithms, deep neural networks exhibit the state-

of-the-art performance in image segmentation tasks that rely

on large amounts of image data. But it also has some prob-

lems. Recent studies found that deep neural networks are
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easily attacked by some adversarial samples [6]. Especially

in the field of computer vision, well-designed image distur-

bances can lead to neural network mistakes such as confusing

a cat with a computer. This is because the network may not be

able to properly classify natural inputs, although this is almost

identical to the previously correctly categorized example [1]

Adversarial sample raises doubts about the use of DNNs in

safety-critical applications. Also, it allows malicious agents

to attack systems that use neural networks [7].

Specifically, the adversarial examples enable the network

to make arbitrary incorrect predictions by adding intention-

ally perturbed inputs with small magnitude adversariial per-

turbation [8]. Therefore, the security issue of the deep neural

network model has attracted a lot of attention in the field of

safety and security. At present, the research on the adversarial

examples mainly focuses on the task of image classifica-

tion. With the full application in these fields, confrontational

attacks have become an essential topic in the study of seman-

tic segmentation systems. This problem has recently attracted

a lot of attention and various analyses for understanding

adversarial examples have been proposed [9]. For example,

it has been suggested that another type of random noise can be

added to the input in image preprocessing, and retraining has

been proposed to detect adversarial examples when used to

defend and classify images [10]. However, these defenses are

vulnerable to attacks of other types of attacks or have higher

input costs [11].

Therefore, in this paper, we investigate two lightweight

image segmentation models on the embedded device that are

attacked by using local perturbations and universal pertur-

bations. Generally, the perturbations are generated indirectly

by a noise function and an intermediate variable so that the

gradient of pixel noise points can be propagated unlimitedly.

Our main contributions are summarized as follows:

1. We first introduced the non-linear adversarial samples

generationmethod avoidingmiss gradient from truncating the

pixel values in the adversarial images.

2. Then, the perturbations for the local source domain

and the universal perturbations on image segmentation are

proposed. And a comparison of the advantages and disadvan-

tages of the two methods in the adversarial attack was made.

3. Through experiments, we show that this adversarial

learning on the deep neural network for image segmentation

task is not transferable, so a kind of adversarial attack method

based on multi-model joint learning is proposed.

The remainder of the paper is organized as follows.

Section II briefly introduces the related work of image

segmentation and adversarial learning. Following that,

we expound the non-linear adversarial samples generation

method for perturbations to source domain and the uni-

versal perturbations on image segmentation in section III.

Then we analyze the non-transferability of adversarial

samples between different models and propose the joint

learning method for multi-model attack in section IV.

Section V illustrates and discusses the experimental results.

Finally, section VI concludes the paper.

II. RELATED WORK

A. ADVERSARIAL EXAMPLES

Although the performance of deep neural architectures in

challenging visual classification benchmarks was impressive,

these classifiers were highly susceptible to perturbations.

In [12], the authors firstly generated small perturbations on

the images in terms of the image classification problem.

They made CNNs predict a wrong label with high confidence

while these additive perturbations stay almost imperceptible

to human eyes. Goodfellow et al. [13] and Kurakin et al. [14]

define these misclassified samples as adversarial examples

and explained that they are ‘‘inputs of machine learning

models that an attacker has intentionally designed to cause

the model to make a mistake’’. Such carefully crafted pertur-

bations can be formed by using a gradient-based optimizer

to search for a nearby image [10] and estimated by solving

an optimization problem [15]. By assuming that the loss

function can be linearized around the current data point at

each iteration, [16] proposed a simple algorithm to compute

the minimal adversarial perturbation. However, without using

gradients, the authors in [17] trained a network to generate

adversarial examples for a particular target model.

If the adversary succeeds in causing any error at all,

the attacks are called untargeted. On the contrary, the attacks

are targeted when the adversary succeeds in causing the

model to predict a specific incorrect class. The transferability

of both untargeted and targeted adversarial examples was

studied in [18] and ensemble-based approaches to generate

adversarial examples with stronger transferability was pro-

posed. Moosavidezfooli, Seyed Mohsen, et al [19] proposed

a systematic algorithm for computing universal perturba-

tions, and show that state-of-the-art deep neural networks

are highly vulnerable to such perturbations. The attacks that

instead reprogram the target model to perform a task cho-

sen by the attacker—without the attacker needing to spec-

ify or compute the desired output for each test-time input

was introduced in [20]. Further, [7] showed the adversarial

examples for machine learning systems also exist in the

physical world. In addition to machine learning, adversar-

ial attacks have contributed to other areas [21]–[23]. Also,

recent studies show that adversarial examples can be applied

to the real worlds, such as object recognition system [41],

controllable voice system [24] and traffic sign recognition

system [25]. Zeng et al. proposed a novel audio detection

approach to determine whether audio is an adversarial exam-

ple [26]. Xiao et al. designed a malware detection scheme

with Q-learning for a mobile device to derive the optimal

offloading rate.

B. SEMANTIC SEGMENTATION

Semantic image segmentation denotes a dense prediction

task that which requires high-level features to represent each

pixel of the image and assign a class label. Deep learning

based methods perform best in semantic segmentation

tasks [4], [28], [29], [30]. Yu, F. and Koltun, V. developed

a new convolutional network module that is specifically
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designed for dense prediction, increasing the accuracy of

state-of-the-art semantic segmentation systems [30]. In [31],

the authors proposed that feature maps from middle or early

layers are also used by skip-connections to compensate for

the low resolution of high-level features. Encoder-decoders

[31]–[33] are another widely used framework. Long et al.

introduced FCN-8s for the VGG16 model in [28], which

can be divided into an encoder part and a decoder part.

The encoder part is used to transform a given image into

a low-resolution semantic representation and the decoder

part in charge of increasing the localization accuracy and

yielding the final semantic segmentation at the resolution of

the input image. On the basis of FCN, SegNet [31] introduced

a joint encoder-decoder model which is one of the earliest

effective segmentation models. Following SegNet, ENet [33]

also designed an encoder-decoder model with few layers to

reduce computing costs.

A benchmark suite and large-scale dataset to train and test

approaches for pixel-level and instance-level semantic label-

ing were introduced in [34]. Since then, many lightweight

image segmentation models for street scene understanding

task in autonomous driving road traffic scenes have been

proposed [35]–[40], and they are committed to exploit-

ing the model to evaluate road traffic images on embed-

ded devices. Yang et al. proposed to concatenate multiple

atrous-convolved features using different dilation rates into

a final feature representation in a dense way [37]. Yu et al.

proposed a discriminative feature network to handle the intra-

class inconsistency problem [38]. A fast and efficient spatial

pyramid neural network for semantic segmentation of high

resolution images under resource constraints was introduced

in [39]. A fast and real time segmentation convolutional

neural network on embedded devices with low memory was

proposed in [40]. Xie et al. [41] proposed dense adversary

generation for segmentation and detection so that the per-

turbations can be transferred across networks with different

training data, based on different architectures, and even for

different recognition tasks.

III. METHODOLOGY

The traditional methods of image segmentation [1], [3], [8]

are based on the FGSM method [14]. Arnab et al. [1] ana-

lyzed the effect of different network architectures, model

capacity and multi-scale processing under FGSM. In [3],

Static target segmentation and dynamic target segmentation

are attacked by image-dependent perturbations and universal

perturbations. These works once again proved the effective-

ness of FGSM. The researchers explore the potential effects

that spatial context information and spatial consistency have

on benign and adversarial examples in segmentation models

by FGSM in [8]. All of the above studies use FGSM by

default because FGSM is an easy method to implement for

image segmentation tasks. Although other latest generation

methods such as the DeepFool method, JSMA, Carlini and

Wagner method have achieved great success in adversarial

image classification, it is still a complicated task to apply

these methods to the semantic segmentation. In this section,

we first analyze some shortcomings of the traditional FGSM

method [14] in generating adversarial samples for image

segmentation tasks. Then our non-linear generation method

for adversarial image is put forward. Afterward, we introduce

the perturbations based on the local source domain and the

universal perturbations for adversarial attacks, respectively.

The analysis and explanation for the comparison of the two

methods are displayed in experimental results.

A. NON-LINEAR ADVERSARIAL SAMPLES GENERATION

The traditional iterative updating formula of FGSM is shown

in equation (1). Where I indicates the original image while

L
(

f
(

Iadvt ; θ
)

, y
)

represents the loss function loss function

between model output f
(

Iadvt ; θ
)

and label y. clip(I , ǫ) func-

tion ensures that the perturbations added iteratively are not

too large to cause a large distortion of the image generated

in the previous step. Meanwhile, it makes sure that the pixel

values of the updated image remain within the domain of def-

inition. Nevertheless, this also brings two disadvantages. It’s

the clip(I , ǫ) function that results in the inadequate learning

of the pixels whose values near the minimum (0) and the

maximum (255). This situation is somewhat similar to the

RELU activation function in neural networks, where the back

propagation of the gradient is blocked in some regions of the

activation function.

Iadv0 = I

Iadvt+1 = clip(Iadvt +α · sign(∇Iadvt
L

(

f
(

Iadvt ; θ
)

, y
)

), ǫ) (1)

Goodfellow et al. [13] found that the linear models also

show obvious vulnerability to the adversarial samples. The

linearity in the high dimensional space is enough to cause the

adversarial sample. The converse also applies: using linear

functions to construct adversarial samples is not sufficient to

find all the blind spots of the target deep learning model. The

use of non-linear functions to change the sample may help

these highly over-fitted models explore the sample space that

was not involved during their training stage.

On account of the analysis and thinking above, we try to

attack the deep learning model with non-linear function for

the generation of adversarial samples. The shape of tanh func-

tion in the interval [−1.5, 1.5], as shown in Fig. 1. Most of the

function values close to the origin present an approximately

linear form. The values of the functions from both sides away

from the original show non-linear properties. No matter how

the input changes, the output always stays within the range

[−1, 1]. Any perturbations will not affect the next iteration,

when the original image is normalized to [−1,1].

Our non-linear adversarial sample generation and iteration

method is shown in equation (2).

Iadv0 = I

Iadvt+1 = tanh(Wt ⊙ Iadvt + ξt )

ǫt+1 = Iadvt+1 − I (2)
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FIGURE 1. The shape of tanh function in the interval [−1.5, 1.5]. Most of
the function values close to the origin presents an approximate linear
form. The values of the functions from both sides away from the origin
show non-linear properties. No matter how the input changes, the output
always stays within the range [−1, 1].

whereWt indicates the scaling transformationmatrix for pixel

values while ξt represents the offset of the pixel values in

t ′th step iteration. ǫt is the purterbations between adversarial

image and original image. Our perturbations bring about from

non-linear function with the intermediate variablesWt and ξt .

⊙ denotes the element-wise multiplication between the scal-

ing matrix and the adversarial image. Therefore, Wt and ξt
have the same size as I . In each iteration, W and ξ are

calculated based on the adversarial samples generated in the

previous step:

Wt+1 = Wt − α · ∇WtL(f
(

Iadvt ; θ
)

, yadv)

ξt+1 = ξt − α · ∇ξtL(f
(

Iadvt ; θ
)

, yadv) (3)

In Eq. (3), θ is the parameters of the attacking model which

kept constant during adversarial learning. L is the loss func-

tion which minimize the predicted value of the ground-truth

class and maximize the predicted value of the a class. L is

composed of two terms in our attacking task, one is the cross

entropy between the attack class and the adversarial class,

the other is the amplitude of the perturbations.

L
(

f
(

Iadv; θ
)

, yadv
)

=C
(

f
(

Iadv; θ
)

, yadv, ω
)

+ λ ‖ǫt‖2

ωi = (ptari − min
c
pci )/(maxc

pci − min
c
pci )

(4)

where C denotes the cross entropy between predicted value

f
(

Iadv; θ
)

and the adversarial label yadv. ω is a weight matrix

for the attacking regions, where ωi is defined as the weight of

pixel i which is determined by the proportion of the predicted

value of the target class with respect to the predicted value of

other classes. Higher ωi indicate that the pixel is hard to be

attacked.

In our method, the role of tanh function is similar to that

of non-linear activation function in neural networks. The

RELU activation function in convolutional neural network is

to reduce the amount of computation and increase the sparsity

of the network, thus ensuring the generalization ability of

the neural network and avoiding over-fitting on training data.

There is no over-fitting problem in our adversarial-attack

task, and it will be fatal to the target model even if only

one adversarial sample exists. Moreover, the computational

complexity of the adversarial learning process is insignificant

compared with that of neural network. Therefore, the use of

non-linear activation function and intermediate variables W

and ξ can enrich our exploration of adversarial sample space

without affecting the computational complexity.

B. ADVERSARIAL PERTURBATIONS TO LOCAL SOURCE

DOMAIN

Image segmentation is to divide the image into several spe-

cific regions and to predict the proposals of interest. At the

same time, each pixel in the image is expected to be correctly

classified. The purpose of our attack is to fool the neural

network model with the adversarial samples, so that some

regions which are originally classified correctly can be mis-

takenly identified as another class. The image segmentation

based on convolutional neural network labels every pixel

during training, and the predicted feature map has the same

size as the original image.

When attacking a model, the first step is to determine the

target class to be attacked and the adversarial class, and then

add the perturbations on the local source domain φt inferred

from the model. The Eq. (5) tells the procedure. φt is a

matrix of the same size as the original image where the values

of the target regions are 1 otherwise 0. It is used to select

the target regions in the original image and the predicted

featuremap. φ̄t denotes logical non-operation of each element

in φt .

Iadvt+1 = tanh
(

Wt ⊙ Iadvt + ξt

)

⊙ φt + Iadvt ⊙ φ̄t (5)

The purpose of the local domain attack is to minimize

the cross-entropy between the predicted probability of the

ground-truth class and the adversarial class whilemaximizing

the cross-entropy between the predicted probability of the

attacked class and the ground-truth class on the local source

domain pixels. As described in Eq. (6), f d (Iadv; θ ) represents

the predictions on the source domain. ygt and yadv are the

labels of the ground-truth and the adversarial images. The

ultimate optimization objective can be inferred as the differ-

ence between the log-probability of the target class and the

adversarial class.

C = C
(

f d
(

Iadv; θ
)

, yadv
)

− C
(

f d
(

Iadv; θ
)

, ygt
)

=
∑

i
ωilog

ptari
(

Iadv; θ
)

padvi

(

Iadv; θ
) (6)

The pseudo-code of adversarial perturbations to the local

source domain is described in Algorithm 1. Each iteration

does not update all the perturbation matrices, because the

variables of the source domain variable φt is different at each

step. Even so, the noise variables of the overlapping source

domains will be updated emphatically due to their robustness

to perturbations than other domains.
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Algorithm 1 Adversarial Perturbations to Local Source

Domain

Input: An image Iadv0 = I from the dataset

Output: Final adversarial image IadvT

begin
Initialization:

Normalize the values of Iadv0 to [−1, 1]

Init W0 ∼ u(−1.01, 1.01), ξ0 ∼ u(−0.01, 0.01)

For t = 0,1, . . . ,T − 1, do

Infer f (Iadvt ; θ )

Infer the source domain φt from f (Iadvt ; θ )

Update the adversarial image with Eq. (2)

Infer f (Iadvt+1; θ )

Compute loss L with Eq. (4) and Eq. (6)

Update Wt and ξt with Eq. (3)
End

Update the adversarial image Iadvt with Eq. (2)

Maps the pixel values in IadvT to the range [0, 255]

end

C. UNIVERSAL PERTURBATIONS ON IMAGE

SEGMENTATIONS

Fig. 2 shows a presentation of two sets of local source domain

attacks. The two images on the left are respectively the seg-

mentation results of the original image by FastSCNN [40]

and ESPNet (The predictions of ESPNet [39] includes the

background class but FastSCNN does not). The two images

on the right are respectively the segmentation results of the

adversarial images by these two models. In the above two

pictures, we attack cars (blue) as road (pink) while the pedes-

trians (red) are attacked as the vegetation (green) in the below.

FIGURE 2. This is a presentation of two sets of local source domain
attacks. In the above two pictures, we attack cars (blue) as road (pink)
while the pedestrians (red) are attacked as the vegetation (green) in the
below. When the source domain is a convex set, the perturbations added
is easy to attack the model. But when the source domain is irregularly
shaped, this attack affects the classification of adjacent pixels, especially
where there are other non-target classes embedded in.

When the source domain is a convex set, the perturbations

added is easy to attack the model. But when the source

domain is irregularly shaped, this attack affects the classi-

fication of adjacent pixels, especially where there are other

non-target classes embedded in. This result is actually due

to the fact that image segmentation based on a convolutional

neural network is not a pixel to pixel task. Each neuron in a

convolutional neural network has a receptive field. Each pixel

on the predicted feature map is mapped from this particular

region of the original image. When perturbations are added

to the source domain, it affects not only the predicted value

of the target region, but also that of the adjacent region.

In image convolution, the pixels on the next featuremap are

obtained by the interaction between the convolution kernel

and the region of the same size. With the increase of the depth

of convolutional layers, the corresponding receptive field of

the pixels on the feature map of each layer also increases. The

change of pixels in the receptive field of each feature point

will affect the predicted value of it. The pixels in the source

domain and the pixels in the non-source domain may belong

to the same receptive field.

In order to make the source and non-target regions more

cohesive in the attack result and not have a great impact on

the boundary, we try to use universal perturbations to attack

the model. Universal perturbations can learn the relationship

between pixels, making the prediction in the source domain

more false and the prediction in the non-source domain more

real.

In the universal perturbations attack, Eq. (2) is still used to

update the adversarial samples. In addition, we focus on the

overall cross-entropy between the adversarial target and the

whole image rather than the cross-entropy of the local source

domain. We use Eq. (4) directly to update our loss function,

where the part of the source domain in yadv is changed from

the ground-truth ygt . Although we are running a white box

attack, suppose that we cannot access the structure of the

model and the ground truth labels, by default we cannot get

the model structure and ground-truth labels. Here, we use

the network prediction of the original sample image Iadv0 as

ground-truth ygt , which is the confidence result of the model.

On this basis, we can find the place where the model is

easy to attack. Eq. (7) illustrates the relationship between i’th

feature and ygt . Eq. (8) demonstrates the relationship between

yadv and ygt

ygt = argmax
c

fc

(

Iadv0 ; θ
)

(7)

yadvi,j =

{

clsadv, if (i, j) ∈ ϕ0

y
gt
i,j, ohterwise

(8)

The procedure of our universal perturbations to attack the

image segmentation task is illustrated in Algorithm 2.

IV. JOINT LEARNING FOR MULTI-MODEL ATTACK

Fig. 3 shows an illustration of the non-transferability of the

adversarial attack methods. The image on the top left shows

the result of an adversarial attack on the FastSCNN model

(pedestrians to vegetation) using the universal perturbations

method. The image on the top right is the result of the same

adversarial attack (the same adversarial image input) on the

ESPNet model. The image on the bottom left shows the

result of an adversarial attack on the ESPNet model (cars to

the road) using the universal perturbationsmethod. The image
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Algorithm 2 Universal Perturbations on Image

Segmentations

Input: An image Iadv0 = I from the dataset

Output: Final adversarial image IadvT

begin
Initialization:

Read an image Iadv0 = I from the dataset

Normalize the pixel values to [−1, 1]

Init W0 ∼ u(−1.01, 1.01), ξ0 ∼ u(−0.01, 0.01)

Infer f (Iadv0 ; θ )

Infer the source domain φ0 from f (Iadv0 ; θ )

Infer ygt and yadv from φ0

For t = 1, . . . ,T , do
Update the adversarial image with Eq. (5)

Infer f (Iadvt ; θ )

Compute loss L with Eq. (4) and Eq. (8)

Update Wt and ξt with Eq. (3)
End

Update the adversarial image Iadvt with Eq. (2)

Maps the pixel values in IadvT to the range [0, 255]

End

FIGURE 3. This is an illustration of the non-transferability of the
adversarial attack methods. The two images above respectively are the
segmentation results of the FastSCNN model and ESPNet model with the
same adversarial image for FastSCNN as input. The two images below
respectively are the segmentation results of the ESPNet model and
FastSCNN model with the same adversarial image for ESPNet as input.

on the bottomright is the result of the same adversarial attack

on the FastSCNN model. It can be concluded from this set of

crossover experiments that adversarial samples inferred from

a single model are likely to be an ineffective attack on another

model.

Due to the difference in the network structure, even with

the same output, it is difficult to ensure that the calcula-

tion process is consistent when generating adversarial sam-

ples. A comparison of the two outputs of the ESPNet and

FastSCNNwith the same noise image input is shown in Fig. 4.

The noise image is the same size as the original image, with

the pixel value set to 0 (−1 for model input) for all locations

except the 100×100 pixels around the center point set to 255

(1 for model input). Interestingly, ESPNet and FastSCNN

respond differently to such a noisy image, even though they

FIGURE 4. This is a comparison about the two outputs of the ESPNet and
FastSCNN with the same noise image input. Compared with ESPNet,
FastSCNN can still maintain relatively complete local features.

can correctly classify the same original image in the dataset.

The prediction of FastSCNN seems to be consistent with the

appearance of the pixels around the center point in the noise

image, while the prediction of ESPNet seem to be irregular

that it is difficult to directly find its relationship to the pixels

in noise image.

To unlock the secrets of adversarial learning in white box

attacks, a comparison of the gradient of the variable ξ and

the perturbations ǫ between ESPNet and FastSCNN during

the adversarial learning stage will be discussed. The gradients

and perturbations in the training process are visualized with

their relative magnitude:

M = (M − min(M ))/(max(M ) − min(M )) × 255 (9)

whereM indicates the matrix of grads or perturbations.

Fig. 5 visualizes the gradients and perturbations from

attacking the pedestrians and bicycles to vegetation. The gra-

dient images are generated at step 30 of the adversarial learn-

ing, while the perturbation images are generated at the last

step. The gradients or perturbations at the higher brightness

is higher than that at the lower brightness. It is obvious that the

perturbations learned from FastSCNN are more concentrated

in the specific target region than that from ESPNet. It’s hard

to discriminate the exact shape of the perturbations generated

FIGURE 5. This is a comparison about the gradient of the variable ξ and
the perturbations ǫ of ESPNet and FastSCNN during the adversarial
learning stage. It is obvious that the perturbations learned from FastSCNN
are more concentrated in a specific target region than that from ESPNet.
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FIGURE 6. A comparison between proposed method and FGSM under local source domain attacks and universal attacks on two models in
the 50-step iterative generation of adversarial images. We attacked ESPNet and FastSCNN separately, and then did a joint attack on both
models. Segmentation accuracy, ratios of segmentation accuracy, attacking accuracy and perturbations per pixel are used to measure the
performance of the two methods. The figures of the first row to the fourth row are respectively the performance on segmentation accuracy,
ratios of segmentation accuracy, attacking accuracy and perturbations per pixel. The figures of the first column to the third column
respectively indicate the attacks on ESPNet, the attacks one FastSCNN and joint attacks on both models.

for ESPNet, which seems to focus on the overall features of

the image.

The main reason for this difference is that the two networks

have completely different architectures. Massively dilated

convolutions are used in ESPNet and the maximum dilation

rate is 16. This leads to a rapid increase in receptive field.

In addition to this, the combination of a multi dilation rate

cause a gradient on the predicted feature map to be prop-

agated back to regions of different scales on the original

image. FastSCNN did not use dilated convolution, and it only

fused the features of two resolutions. Comparedwith ESPNet,

it paid more attention to the local features of the image.

In order to attack both models simultaneously, we use joint

optimization to narrow the gap between them. For the same

original picture and the output of two different models, a uni-

fied ground truthmap should be formulated. The ground-truth

is determined by two predictions at first, as can be seen

in Eq. 10:

ygt = argmax
c

(max(f 1c

(

Iadv0 ; θ1
)

, f 2c

(

Iadv0 ; θ2
)

)) (10)
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TABLE 1. A comparison between proposed method and FGSM under local source domain attacks and universal attacks on two models of the final
adversarial images in test set.

The label of the adversarial sample is still modified by

ground-truth label. The pixels are set to the classes whose

predicted value is the maximum of both predictions. The

adversarial labels yadv are still changed from ygt as Eq. 8. The

cross entropy in Eq. 4 consists of two predictions correspond-

ing to the two models, as shown in Eq. 11:

C =C
(

f 1
(

Iadv; θ
)

, yadv, ω
)

+C
(

f 2
(

Iadv; θ
)

, yadv, ω
)

ωi = (ptari − min
c
M c
i )/(maxc

M c
i − min

c
M c
i )

M c
i =max

(

p
1,c
i , p

2,c
i

)

(11)

where p
1,c
i and p

2,c
i respectively indicate the two predictions

of FastSCNN and ESPNet at the i’th pixel and the c’th

channel.

In the previous section, the adversarial attacking methods

based on the local source domain and universal perturbations

were introduced. Both of these methods can be combined

with the joint learning method proposed in this section to

carry out a joint local attack and joint universal attack.

V. EXPERIMENTS

We evaluated our proposed attacking method on the valida-

tion set of the Cityscapes dataset [34], and report its per-

formance in this section. Cityscapes dataset is comprised of

a large, diverse set of stereo video sequences recorded in

streets from 50 different cities. The main subset of it consists

of a training set with 2990 images, a validation set with

500 images and a test set with 1525 images. We mainly

attacked 500 urban images in the validation set. White box

attacks are used by default, so that there is no access to the

model weights and ground truth labels.

Actually, three attacks were implemented, respectively:

misclassifying pedestrians, riders, motorcycles and bicycles

as the vegetation, misclassifying cars, truck, buses and trains

as the road, as well as misclassifying the cars, trucks, buses

and trains to the building. We did the attacks using the pro-

posed method compared with the FGSM method [14] on the

FastSCNN [40], ESPNet [39] and a combination of them. The

performance of the two methods is evaluated by the attack-

ing accuracy and the perturbations per pixel. The attacking

accuracy is defined as the ratio of the number of pixels in the

target source domain misclassified as the adversarial class to

the number of the total number of pixels in the target source

domain. The perturbations per pixel is defined as the average

value of the absolute value of the pixel difference between

the adversarial image and the original image at all pixels

in the image. Towards the attacks on the local source domain,

the average is calculated only for the pixels in the source

domain.

During the adversarial learning, each image was input

with the size 512 × 1024. When doing the FGSM attack,

the pixels are normalized to [0,1] and then be preprocessed

to the formats of the model input. When attacking with our

nonlinear method, the image pixels are all first normalized to

[−1,1] to fit the range of the tanh function. Our experimen-

tal simulation platform is a desktop with a NVIDIA GTX-

2080 GPU (2944 CUDA cores, 8 GB Total Memory). Adam

optimizer was used to minimize the cost function mentioned

in Sec. III. Each image was updated with 50 steps. And the

learning rate to each intermediate variable is 0.01.

Fig. 6 shows a comparison between the proposed method

and FGSM under local source domain attacks and univer-

sal attacks on two models in the iterative generation of

adversarial images. We attacked ESPNet and FastSCNN
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FIGURE 7. Adversarial attacks on local source domain: (a) FastSCNN: Attacks of car, truck, bus and train to road; (b) ESPNet: Attacks of car, truck, bus
and train to building; (c) Both models: Attacks of person, rider, motorcycle and bicycle to vegetation.

separately, and then did a joint attack on both models.

Segmentation accuracy, ratios of segmentation accuracy,

attacking accuracy and perturbations per pixel are used to

measure the performance of the twomethods. In each case we

carried out three attacks: attacks of person, rider, motorcycle

and bicycle to vegetation, attacks of car, truck, bus and train

to road, and attacks of car, truck, bus and train to the building.

Segmentation accuracy refers to the accuracy of the target

class under the ground truth labels. Its value is the ratio of the

number of correct classification in the original class pixels

to the pixel value of the original class pixels in the ground

truth. For an adversarial attack task, the lower segmentation

accuracy reflects the superior performance of the adversary.

It is not enough to evaluate the adversarial performance

only by the segmentation accuracy, because some adversaries

perform very well at the target pixels, but at the same time

will affect the classification accuracy at the non-target pixels,

resulting in the overall decrease in the global segmenta-

tion accuracy. In order to make the evaluation system more

perfect, we introduced ratios of accuracy which indicate the

segmentation accuracy of the target pixels to the segmentation

accuracy of the non-target pixels. If an adversary reduces the

classification accuracy of the adversarial image at the target

pixel, but keeps the classification accuracy at the non-target

pixel higher, the adversary is efficient. In addition, the success

rate is also an important criterion for the performance of

the adversary. It is the ratio of the number of pixels suc-

cessfully attacked as the target class to the total number

of pixels in the attacked area. The perturbations per pixel

indicates the average of the absolute value of the perturbation

attached to each pixel in the target area and the values range

from 0 to 255.

The values of all the curves in Fig. 6 are obtained by

averaging over all the test images within a 50-step iteration

of the attack. The values in Tab. 1 show the final results after

iterations corresponding to the Fig.8. From the perspective

of segmentation accuracy, whether attacking the ESPNet,

FastSCNN or the joint model, the proposed method reduces

the segmentation accuracy more than the FGSM method.

which is the same in both local and universal attackingmodes.
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FIGURE 8. Adversarial attacks with universal perturbations: (a) FastSCNN: Attacks of car, truck, bus and train to building; (b) ESPNet: Attacks of person,
rider, motorcycle and bicycle to vegetation; (c) Both models: Attacks of car, truck, bus and train to road.

The conclusion is true in both local attacks and universal

attack cases. Joint attacks have a greater impact on model

accuracy than separate attacks. From the view of the ratios

of accuracy, the curves are almost identical to those of seg-

mentation accuracy, even for the values. This indicates that

neither the FGSM nor the proposed method has much effects

on the accuracy of the non-target area. From the pixel suc-

cess rate, except that the proposed method ended up about

two percentage points lower than FGSM in the case of the

local attacks on the ESPNet, the proposed method is superior

than FGSM in most cases (different models, different attack

modes). For the comparison of the perturbations, the final

perturbations obtained by both the proposed method and

FGSM converge to very small values in universal attacks.

In the case of a local attack, the final perturbation value of

the proposed method is 1.4 pixels higher than that of FGSM.

It can be seen from the trend of the curve that there should be

room for the perturbation value to decline after subsequent

learning. One or two pixels are almost imperceptible to the

human eyes. It can be concluded from the overall analysis

that the proposed adversary is more likely to affect the perfor-

mance of the segmentation model, compared with the FGSM

method.

Fig. 7 and Fig. 8 respectively show the adversarial images

and generation process of perturbed image by the proposed

adversary. The perturbed image is normalized to between

0 and 255, so the very dark (negative perturbation) and the

very bright (positive perturbation) pixels in the image are

where the perturbation is large.

VI. CONCLUSION

Recent studies found that deep neural networks are easily

attacked by some adversarial samples. Image segmentation

is the most basic part of computer vision and the basis

of all other image processing methods. The attack on the

image segmentation task causes us to think about the poten-

tial security problems in the deep learning system. This

paper introduced the non-linear adversarial samples genera-

tion method avoiding miss gradient from truncating the pixel

values in the adversarial images. Then, the perturbations for
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the local source domain and the universal perturbations on

image segmentations a joint learning method are proposed

for the multi-model attack. Due to the different network

structures, the twomodels have different sizes of the receptive

fields, resulting in different blind spots and weaknesses of the

model. Experimental results show that the proposed method

can attack FastSCNN model and ESPNet model effectively.

The transferable attacks based on multiple models are still the

focus of future research.

However, the proposed method has some shortcomings.

Because the proposed method needs to calculate the values

of each perturbation matrix and then map back to the pixel

space, the time-consuming process can lead to a slow or even

non-convergence of the adversarial images when the model

encounters a complex graphic structure. Further, the proposed

approach is limited to white box attacks. During a joint attack,

the gradient of each model must be accessible. Therefore,

in future research, it is necessary to explore the common

structure between the image and the model, which is of great

significance not only for the attacks but also for the defense of

themodels. It is also necessary to apply other latest generation

methods such as the DeepFool method, JSMA, Carlini and

Wagner method to adversarial image segmentation tasks. It is

possible to change the values of just a few pixels to make a

big difference in the structure of the predicted map.
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