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Abstract

We propose an adversarial defense method that achieves

state-of-the-art performance among attack-agnostic adver-

sarial defense methods while also maintaining robustness

to input resolution, scale of adversarial perturbation, and

scale of dataset size. Based on convolutional sparse cod-

ing, we construct a stratified low-dimensional quasi-natural

image space that faithfully approximates the natural im-

age space while also removing adversarial perturbations.

We introduce a novel Sparse Transformation Layer (STL)

between the input image and the first layer of the neural

network to efficiently project images into our quasi-natural

image space. Our experiments show state-of-the-art perfor-

mance of our method compared to other attack-agnostic ad-

versarial defense methods in various adversarial settings.

1. Introduction

Existing defense mechanisms against adversarial attacks,

although able to achieve robustness in certain adversarial

settings, are still unable to achieve true robustness to all ad-

versarial inputs. The most effective existing defense meth-

ods modify the network training process to improve robust-

ness against adversarial examples [18, 24, 51, 34]. How-

ever, they are trained to defend a specified attack for a speci-

fied model, limiting their real-world applications and claims

of robustness to all adversarial inputs. Ideally, our defense

mechanism should be attack agnostic and model agnostic.

Instead of modifying the network and training process,

another line of existing methods achieve the desired prop-

erty of being attack-agnostic and model-agnostic by mod-

ifying adversarial inputs to resemble clean inputs [12, 16,

36, 54, 40, 46, 32, 43]. However, these methods show weak-

nesses in other adversarial settings such as being unable to

handle larger perturbations, unable to simultaneously han-

dle many different resolutions, and not scalable to large

datasets.

In this paper, we present an input-transformation based

defense method that achieves state-of-the-art performance

when compared to previous attack-agnostic and model-

agnostic defense methods. Moreover, our method is also
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Figure 1: Comparison of feature extraction between natural

image space and our learned quasi-natural image space. In

the natural image space, a neural network trained from natu-

ral images may assign different labels to the adversarial ex-

ample and the clean image, since they can be far from each

other in the feature space. After projection to the quasi-

natural image space, they tend to lie closely together in the

feature space.

far more simultaneously robust to scale of attack pertur-

bation, a variety of different input resolutions, and dataset

scale. We achieve our high level of robustness by project-

ing both clean and adversarially attacked input images into

a low-dimensional quasi-natural image space that faithfully

approximates the natural image space while also removing

adversarial perturbations so that adversarial examples will

be close to their original inputs in feature space.

We construct the quasi-natural image space in an unsu-

pervised manner using a convolutional dictionary learning-

based [4, 22, 8, 53] method, and we project the input im-

ages into our quasi-natural image space by introducing a

novel Sparse Transformation Layer (STL) between the in-

put and first layer of the network. We can further enhance

the robustness of our pipeline by retraining a classifier on

the quasi-natural images.

Experimentally, we demonstrate that our method
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achieves a significant robustness improvement in a vari-

ety of different adversarial settings compared with state-

of-the-art attack-agnostic defense methods. We also show

that our quasi-natural image space is able to provide a bet-

ter blend of preservation of image details and ability to

remove adversarial perturbations compared to other input-

transformation-based adversarial defense methods.

In summary, our contributions are:

• We propose a novel and effective attack-agnostic ad-

versarial defensive method that uses a novel Sparse

Transformer Layer to transform images so that cor-

responding clean and adversarial images lie close to-

gether both in our quasi-natural image space and fea-

ture space.

• We demonstrate that our defense method achieves

state-of-the-art performance among attack-agnostic

adversarial defense methods.

• Compared to previous state-of-the-art, our defense

method is far more capable of effectively handling a

variety of image resolutions, large and small image

perturbations, and large-scaled datasets.

• Among image-transformation-based adversarial de-

fenses, our image projection onto quasi-natural image

space achieves the best blend of image detail preserva-

tion and ability to remove adversarial perturbations.

2. Related Works

Adversarial Attacks Adversarial attacks are inputs that

are intentionally slightly perturbed to fool machine learning

models. Szegedy et al. [49] first introduce adversarial exam-

ples and generate them with the box-constrained L-BFGS

method. Goodfellow et al. [18] propose an efficient single

step attack called FGSM based on network linearity. Ku-

rakin et al. [25] apply FGSM iteratively and propose BIM.

DeepFool [33] finds the smallest perturbation crossing the

model decision boundary. CW [7] solves an optimization

problem which minimizes both the objective function and

difference between adversarial and clean images. Liu et

al. [27] generate strongly transferable adversarial examples

with an ensemble-based approach. Non-gradient based at-

tacks such as one pixel attack [47] and Zoo [9] do not re-

quire knowledge of network parameters and architecture.

Adversarial Defense via Network Modification This

type of defense aims to improve the robustness of the tar-

get model against adversarial examples. The most com-

mon method is adversarial training [18, 24, 51, 34] which

adds adversarial examples into training data. This class of

methods effectively enhances robustness to the adversari-

ally trained attacks but has poor generalizability to unknown

attacks. Other methods like feature squeezing [55], network

distillation [39], region-based classifier [6] and saturating

networks [35] modify the learning strategy based on gra-

dient masking [38] and smooth the decision boundary, but

they are still vulnerable to black-box attacks [7, 37].

Adversarial Defense via Input Transformation Input-

transformation defenses aim to remove adversarial pertur-

bation transforming inputs before feeding them to the target

network. Some previous methods treat adversarial pertur-

bation as high frequency noise and resort to traditional de-

noising methods to smooth small perturbations. [12, 16]

study the effect of JPEG compression on removing adver-

sarial noise. Osadchy et al. [36] apply a set of filters such

as median filter and averaging filter to remove perturbation.

Guo et al. [20] test five transformations and find total varia-

tion minimization and image quilting obtain good defensive

performance. These denoising methods only fix small per-

turbations and suffer from information loss.

More recently, other works have tried to purify adversar-

ial images through generative models. Meng et al. [32] pro-

pose a two-pronged defense mechanism and use a denoising

auto-encoder to remove adversarial perturbation on MNIST

digits [26]. Song et al. [46] transform adversarial images

into clean images using PixelCNN [42]. Although they

achieve good performance on small datasets, these methods

do not scale well to higher-resolution or larger datasets.

Pixel manipulation methods are also used to remove

small adversarial perturbations. Xie et al. [54] utilize ran-

dom resizing and padding to mitigate adversarial effects.

Prakash et al. [40] locally corrupt adversarial images by re-

distributing pixel values via a process we term pixel deflec-

tion. However, these methods suffer when they encounter

perturbations that are not extremely small.

Most similar to our method is D3 [29], which denoises

adversarial images by replacing patches with a sparse com-

bination of natural images patches. Further discussion of

D3 is reserved for Section 4.

Convolutional Dictionary Learning Convolutional

sparse representations are a form of sparse representation

learning [31] with a dictionary that has a structure that is

equivalent to convolution with a set of linear filters [17, 4].

It is widely and successfully used in signal processing and

computational imaging [19, 28, 41, 56, 57, 44]. Many

efficient algorithms [22, 4, 8, 53, 11] have been developed

to solve this problems. Sung et al. also recently introduced

a method that used a deep neural network to learn sparse

dictionaries for 3D point clouds [48].

3. Approach

3.1. Method Overview

Let X be the image space and Y be the label space.

fθ(·) : X → Y is a classifier parameterized by θ. Given
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the classifier fθ(·) and a clean image x0, an adversarial ex-

ample xadv = x0 + η is an image slightly different from

x0 but confuses f :

d(xadv,x0) < ǫ but fθ(xadv) 6= fθ(x0), (1)

where d(·, ·) is a distance function between the clean and

adversarial images. ǫ is the perturbation scale which is often

set to a small number to get almost imperceptible difference

between xadv and x0.

Adversarial examples xadv are fabricated images and

usually lie out of the natural image manifold. This may

cause the network trained from natural images, even with

adversarial data augmentation, to map xadv far away from

x0 (Figure 1 Left). Our idea is thus to recover x0 as much

as possible by projecting xadv to the natural image mani-

fold. However, parameterizing the true natural image mani-

fold is practically infeasible. We instead leverage manifold

learning to build a low-dimensional space that approximates

the natural image space, which we dub the quasi-natural

space P in this paper. Along with P , there is a transforma-

tion T that maps an image (natural or spoofed) to P . We

require that T satisfies the following constraints:

1. fθ(T (xadv)) = fθ(T (x0)) = yx0
;

2. d(T (xadv), T (x0)) ≪ ǫ.

Condition 1 requires that the classifier f assigns the same

groundtruth label to xadv and x0, which is our final goal.

To guarantee Condition 1, other than learning f to optimize

classification accuracy, we also introduce Condition 2 (Fig-

ure 1 Right). Condition 2 requires that xadv and x0 should

be situated closely in P , so that we can learn a quite smooth

function f satisfying Condition 1. This is important since

our f is a neural network, and learning a smoother map

would endow the it better generalization power.

We take an unsupervised approach to build the quasi-

natural image space. This space is constructed by stitching

multiple low-dimensional linear subspaces together. Prac-

tically, we cluster the training data into a few groups and

we learn a linear subspace for each group by convolutional

sparse coding algorithm [22, 11]. With this quasi-natural

space constructed, we are able to project any image to this

space by the sparse transformation layer introduced in Sec-

tion 3.2, which will remove a significant amount of adver-

sarial perturbations. Then in this quasi-natural image space

we can retrain a classifier to allow robust prediction over

adversarial examples (Section 3.5).

3.2. Sparse Transformation Layer (STL)

Given a classification network f , we add a Sparse Trans-

formation Layer (STL) between the input image and the first

layer of f . This STL layer projects the input (adversarial or

clean) onto a quasi-natural space, which removes nuisances

including adversarial perturbations in the appearance.

Let the projection of x be T (x) (assume that x is an im-

age of C channels). The projection in our STL layer follows

from the Convolutional Sparse Coding algorithm [11]. This

algorithm learns a dictionary in a convolutional manner by

solving the following optimization problem:

minimize
{fi,c},{zi}

1

2

C∑

c=1

‖xc − T (x)c‖
2
2 + λ

K∑

i=1

‖zi‖1

subject to T (x)c =
K∑

i=1

fi,c ⊗ zi

‖fi,c‖
2
2 = 1, 1 ≤ i ≤ K, 1 ≤ c ≤ C

(2)

where ⊗ indicates the convolution operator, C is the number

of input channels, K is the number of filters for each input

channel, fi,c|i=1,...,K;c=1,...,C denotes a set of filters, and

zi|i=1,...,K are the feature maps for each filter.

Different from standard sparse coding, which learns a

dictionary and code for the whole image, as shown by [50],

Problem (2) learns to reconstruct image patches by local

dictionaries and codes. Here, the local dictionary contains

the set of filters fi,c, and local codes are stored in the fea-

ture map zi. The convolution operation in the constraint

essentially computes the linear combination of local filters.

In vanilla sparse coding, a small set of bases are selected to

reconstruct the image. Similarly, in the convolutional sparse

coding formulation, a small set of filters should be selected

to reconstruct a local patch. To achieve the filter selection

goal, we have to enforce the feature map zi to be sparse by

adding the ℓ1 regularization term.

In practice, we prefer to use a small number of filters.

This forces filters to learn major and expressive local pat-

terns on the natural image manifold. Moreover, from our

observation, having too many filters may cause extra fil-

ters to learn high frequency components, which can be used

to reconstruct arbitrary image patches including adversarial

perturbation that should be removed.

3.3. Learning Filters and Feature Maps

Plugging the constraint in Problem (2) into the objective

function, we see that Problem (2) is biconvex in fi,c and zi.

To solve this biconvex problem, we alternate between (1)

learning shared filters from clean images, and (2) learning

sparse feature maps for each input image with fixed filters.

Next we briefly introduce these two stages.

Dictionary Learning. Given feature maps, Problem (2)

becomes convex in fi,c. To solve this problem efficiently,

we transform to the Fourier domain [52] and use ADMM

algorithm as the solver following the framework of [11].

Sparse feature map (code) learning. Given fixed filters

{fi,c}, our objective function is again a convex optimiza-
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Figure 2: Pipeline of our defensive method. We first feed an image to a pre-trained Denoising Auto-Encoder and find the

cluster the image should belong to. Then we select the dictionary corresponding to the selected cluster and jointly optimize

the sparse feature maps and filters in this dictionary. In this way, we can project the input to the quasi-natural image space.

tion problem in zi. The problem is also known as Convolu-

tional Basis Pursuit DeNoising (CBPDN) [10] and we use

ADMM algorithm [3] to solve it.

3.4. Stratified QuasiNatural Image Space

Due to the high inherent variation of natural images, it

is hard to well reconstruct all images using just a small

dictionary. However, as we discussed at the end of Sec-

tion 3.2, we also do not want to employ a too big dictionary,

because the big dictionary will span an excessively high-

dimensional space, inevitably covering a significant amount

of non-natural images. This would reduce the power of our

algorithm to filter out adversarial perturbations.

To circumvent the challenge, we split the data manifold

into several regions and learn an individual small dictio-

nary for each region. In this way, each image is still recon-

structed by a small dictionary, but we can still reconstruct

all images well using their corresponding dictionaries.

In practice, we partition the image space by clustering

natural image samples based on their perceptual features.

Generative models can learn perceptual features by recon-

struction loss. In particular, we find that Denoising Auto-

Encoder (DAE) [2] fits the adversarial setting well because

it is trained with noisy input and the feature extraction pro-

cess can modestly tolerate input noise. Specifically, we train

a DAE on both natural images and their noise-perturbed ver-

sions (Gaussian noise). In practice we find that the original

image and adversarial attacked version usually live closely

in the latent space learned by DAE. We then use the K-

means algorithm to cluster training data [13].

The clusters allow us to partition the natural image man-

ifold. Given an arbitrary input image (adversarial or clean),

we can obtain its latent features from the DAE and find the

k-nearest neighbors in the training image dataset. Then we

vote for the cluster the image should belong to. Once we

have found the cluster, we can either update the filters and

features maps for dictionary learning, or compute the pro-

jection of the image for classification network training/test.

3.5. Classifier Training in the QuasiNatural Space

To train a classifier for image categorization, we map all

the clean training images to P . We simply use their recon-

structed version T (x0) to train a user-selected classification

network (e.g., AlexNet). To perform defense at test time, we

apply the trained classifier on the T -transformed version of

the testing image (clean or adversarial).

After projection to P , T (xadv) and T (x0) share close

perceptual and semantic features. Therefore, decisions

made in this quasi-natural space P tend to be more reliable

for adversarial examples compared to the original space.
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4. Discussion

In this section, we discuss our unique advantages over

existing adversarial defenses and then analyze possible rea-

sons behind the effectiveness of our method against popular

gradient-based attack methods.

Relationship With Existing Methods In contrast to ad-

versarial learning methods [18, 24, 51] that rely on direct

knowledge of the attack method and model type, our algo-

rithm only relies on the clean training data at hand. Built

without any explicit prior knowledge of the attacker, our

design does not overfit to any specific attack strategy and

tends to be a generic tool.

Recent attack-agnostic defense methods use genera-

tive models to transform images into a low-dimensional

space [32, 46, 43]. We choose not to use a network to build

our low-dimensional space, since the generative network it-

self is vulnerable to adversarial attacks. Another disadvan-

tage of these methods is that the limited expressive power of

generative models restricts the domain of these methods to

datasets small in resolution and scale such as MNIST [26]

and CIFAR-10 [23]. Pixel manipulation methods [40, 54]

can work on large datasets, but they only achieve good per-

formance under extremely small perturbations. Our method

works uniquely well on large adversarial perturbation, com-

plicated datasets, and higher resolutions.

The D3 algorithm proposed in [29] is the most simi-

lar to ours. It replaces noisy adversarial image patches

by a sparse combination of natural image patches. How-

ever, our method provides several advantages. First, D3

reconstructs images poorly on low-resolution datasets like

CIFAR-10 [23]. Second, the size of the natural patch dic-

tionary is very large (10K-40K) while we only need a small

number of filters (typically 64). The large size of their patch

dictionary has two main drawbacks: the excessive number

of dictionary elements may lead the dictionary to learn high

frequency components, which can be used to wrongly re-

construct adversarial perturbations, and the generic dictio-

nary elements are not as expressive as ours, so D3 generates

images that are not as sharp as ours as verified in our exper-

iments.

Robustness to Gradient-Based Attacks There are two

main concepts behind the effectiveness of our method

against gradient-based attacks: (1) Gradient Obfuscation:

Obtaining the numerical gradient of the STL is likely to be

challenging, because the output of the STL is the solution to

a non-convex optimization problem (has the argmin form

of the input image). Without the gradient of the STL, de-

signing gradient-based attack becomes difficult. (2) High-

frequency Perturbation Removal: Existing gradient-based

attack mechanisms often introduce high-frequency pertur-

bations. With a small dictionary and the sparsity constraint

in Problem (2), the learned filters tend to be quite smooth

(Figure 2), which could filter out the high-frequency pertur-

bation patterns.

5. Experiments

In this section, we first introduce our experimental set-

tings, and then show a quantitative and qualitative compar-

ison with other attack-agnostic adversarial defenses. We

demonstrate that our method outperforms the state-of-the-

art. Lastly, we perform an analysis of the intrinsic trade-off

between projection image quality and defense robustness of

transformation-based defenses.

5.1. Settings

We conduct experiments on CIFAR-10 [23], Ima-

geNet [14], and ImageNet-10, where we manually choose

10 coarse-grained classes from the whole dataset, e.g. bird,

car, cat, etc. Every class contains 8000 training and 2000

testing images.

We evaluate our method on VGG-16 [45] and ResNet-

50 [21] to defend against FGSM [18], BIM [25], Deep-

Fool [33], and CW [7]. We constrain the perturbation scale

‖η‖2 = ‖xadv−x0‖
‖x0‖

to 0.04 (FGSM-0.04) and 0.08 (FGSM-

0.08) for FGSM and to 0.04 for BIM, DeepFool, and CW.

By default, we set the filter number K = 64, filter size

S = 8, and sparse constraint λ = 0.2. We first downsample

images to 32×32 to train a DAE, and split the latent space to

4 clusters for CIFAR-10 and ImageNet-10, and 10 clusters

for ImageNet.

5.2. Adversarial Defense

We evaluate the defensive effectiveness of our method of

retraining a classifier on quasi-natural images and then pro-

jecting adversarial examples onto the quasi-natural image

space as described in Section 3.5.

Classification accuracy comparison results are in Table

1 for CIFAR-10, Table 2 for ImageNet-10 and Table 3 for

ImageNet. In Table 1 and Table 2 we follow our setting as

described in Section 5.1. In Table 3 we follow the experi-

mental setting in [20] and [29]. Although we compare with

other methods in their preferred resolution and datasets for a

fair comparison, we note that one of the unique advantages

of our method is that it performs well in various resolutions

(in our experiments, from 32 to 224), while others can only

work on a limited range of resolutions.

Comparison results show that our method significantly

improves the classification robustness against unknown

black-box attacks and outperforms state-of-the-art methods

in most types of attacks with a large margin. Moreover, our

retrained model achieves high accuracy on clean data and is

comparable to the clean model, which means we preserve

rich fine details that allow the network to learn discrimina-

tive features. Furthermore, we also compare our method
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Adv TVM Quilting TVM+Quilting PDeflect STL (Ours) CleanD3

Figure 3: Qualitative comparison of image reconstruction results on ImageNet. The first column is input the adversarial

examples generated by FGSM [18] attack with L2 dissimilarity 0.08. The last column is the corresponding clean images.

Visually, our method outperforms others on removing adversarial perturbations and keeping input details. D3 refers to [29]

and PDeflect refers to [40].

Table 1: CIFAR-10 classification accuracy for adversarial

examples on VGG-16 after defense by methods in compari-

son. All methods are trained and tested on their transformed

data. “Clean” means accuracy of transformed clean data on

each method. “STL” denotes STL transformation with a

single universal set of filters. “STL (cluster)” denotes STL

filters are chosen through latent space clustering.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.9298 0.5816 0.6523 0.1803 0.1760 0.0936

MagNet[32] 0.9206 0.7393 0.8552 0.7707 0.8770 0.8594

PixelDefend[46] 0.9041 0.8316 0.8799 0.8515 0.8827 0.8845

STL 0.9002 0.8515 0.8732 0.8754 0.8838 0.8880

STL (cluster) 0.9011 0.8567 0.8715 0.8803 0.8890 0.8904

with the widely used adversarial training [24] and show that

we achieve better results on unknown attacks (Appendix B).

5.3. White Box Attacks

Our defense is designed primarily for black/grey-box at-

tacks, and like other methods, is highly susceptible to white-

box attacks, especially on ImageNet [14]. Nevertheless,

we show that our method is significantly less susceptible

to the white-box attack Backward Pass Differentiable Ap-

proximation (BPDA) on CIFAR-10 [1]. BPDA specifically

targets defenses in which the gradient does not optimize

the loss; this is the case for our method since our STL

is non-differentiable. Table 4 shows that although our de-

fense accuracy is hurt by obfuscated gradient-based attacks,

Table 2: ImageNet-10 classification accuracy for adver-

sarial examples on VGG-16 after defense by methods in

comparison at resolution 64 (Table 2.A) and 128 (Table

2.B). All methods are trained and tested on their trans-

formed data by their defense method. Here Crop-Ens de-

notes Crop+TVM+Quilting in [20] and PD-Ens denotes

PD+R-CAM+DWT in [40].

Table 2.A Resolution 64.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.8665 0.2816 0.3080 0.1883 0.0811 0.0751

TVM[20] 0.7555 0.5997 0.6930 0.7156 0.7210 0.7187

Quilting[20] 0.7741 0.7304 0.7418 0.7642 0.7646 0.7662

Crop-Ens[20] 0.7508 0.6968 0.7221 0.7369 0.7401 0.7304

PD-Ens[40] 0.8250 0.6634 0.7607 0.7903 0.7955 0.7813

STL 0.8438 0.7275 0.8002 0.8164 0.8163 0.8058

STL (cluster) 0.8421 0.7514 0.8038 0.8103 0.8221 0.8122

Table 2.B Resolution 128.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.8991 0.2123 0.2409 0.1790 0.0584 0.0504

TVM[20] 0.8567 0.7302 0.8181 0.8183 0.8221 0.8101

Quilting[20] 0.8354 0.7612 0.7914 0.8048 0.8164 0.8093

Crop-Ens[20] 0.8382 0.7640 0.7969 0.8033 0.8071 0.7955

PD-Ens[40] 0.8603 0.6740 0.8011 0.8273 0.8320 0.8262

STL 0.8784 0.7202 0.8308 0.8320 0.8560 0.8449

STL (cluster) 0.8721 0.7421 0.8356 0.8385 0.8494 0.8421

it is much more robust than other defenses with this phe-

nomenon on CIFAR-10 dataset.

On ImageNet [14], all defense methods in their case

study ([20] and [54]) get 0% defense accuracy. Under the
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Table 3: Top-1 ImagetNet classification accuracy for adver-

sarial examples on ResNet-50 after defense by methods in

comparison. We follow experimental settings in [20] and

[29] where all attacks are in an average normalized L2-

dissimilarity of 0.06. All methods are trained and tested

on their transformed data.

Defense Clean FGSM BIM DeepFool CW UAP

No Defense 0.761 0.107 0.012 0.010 0.019 0.133

quilt[20] 0.701 0.655 0.656 0.652 0.641 -

TVM+quilt[20] 0.724 0.657 0.658 0.658 0.640 -

Crop-Ens[20] 0.721 0.667 0.670 0.671 0.635 -

D3 (40K-5)[29] 0.718 0.686 - 0.631 - 0.715

D3 (10K-5)[29] 0.708 0.683 - 0.646 - 0.703

D3 (10K-4)[29] 0.690 0.671 - 0.648 - 0.689

PD-Ens[40] 0.719 0.637 0.633 0.638 0.643 0.667

STL (cluster) 0.721 0.693 0.678 0.685 0.677 0.712

Table 4: Backward Pass Differentiable Approximation

(BPDA) [1] attack results on CIFAR-10, VGG-16. All

methods are attacked at distance L∞ = 0.031. Defenses

denoted with ∗ propose combining adversarial training.

Defense SAP [15] TE [5] LID [30] PD [46] MagNet [32] STL STL (cluster)

Accuracy 0.00 0.00* 0.05 0.09* 0.10 0.38* 0.42*

same settings, our defense accuracy similarly collapses to

1%. We further analyze our method’s robustness to other

simple custom-made white-box attacks with full knowl-

edge of our model (including dictionary coefficients) in Ap-

pendix C.

5.4. Input Transformation Effectiveness

Since STL has a strong reconstruction capacity, the pro-

jected images still faithfully preserve information from the

input data space. This is a useful property since it allows us

to use a vanilla model to partially defend against adversarial

examples when we are not able train our own classifier on

quasi-natural images due to limitations such as access to the

entire dataset.

Hence, we also evaluate the accuracy of using STL to

project adversarial examples of a vanilla model that was

pre-trained only on clean data. To perform the defense, we

simply project the input into quasi-natural space and feed

the projected image back into the vanilla model.

We compare with other input-transformation methods

applied to attacked vanilla models in Table 5 for CIFAR-10,

Table 6 for ImageNet-10 and Table 7). Qualitative com-

parisons of our input transformations are shown in Figure 4

for CIFAR-10 and Figure 3 for ImageNet. More results are

in Appendix E.

Under relatively large perturbations (e.g. FGSM-0.08),

all competing methods fail to successfully overcome adver-

sarial attacks while our method significantly outperforms

them. On slightly perturbed adversarial examples (e.g.

DeepFool and CW), we achieve a strong defense and also

maintain accuracy on clean data. We see that our method

Adv MagNet PD STL (Ours) Clean

Figure 4: Qualitative comparison on CIFAR-10 [23] with

MagNet [32] and PixelDefend (PD) [46]. The first col-

umn is adversarial images generated by FGSM [18] with

L2-dissimilarity = 0.08. The last column is corresponding

clean images. We can observe that MagNet cannot fully

remove adversarial perturbation, while PixelDefend over-

smooths images, causing large information loss and some-

times introducing colorful artifacts.

Table 5: CIFAR-10 classification accuracy of transformed

clean and adversarial examples on the attacked vanilla

VGG-16 model.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.9298 0.5816 0.6523 0.1803 0.1760 0.0936

MagNet[32] 0.9035 0.6145 0.6521 0.4312 0.6535 0.4845

PixelDefend[46] 0.8526 0.6810 0.7329 0.7729 0.7414 0.7579

STL 0.8285 0.7099 0.7487 0.7462 0.7854 0.7765

STL (cluster) 0.8360 0.7103 0.7547 0.7531 0.7959 0.7906

can effectively defend against adversarial attacks even us-

ing a vanilla clean model.

5.5. Tradeoff Between Quality and Robustness

In transformation-based adversarial defenses, we typi-

cally aim to remove adversarial perturbations while preserv-

ing useful details. However, this is hard to achieve, as im-

portant details and adversarial perturbations are usually re-

moved together. Thus, we examine the inherent trade-off

between transformation quality and defensive robustness in

our method.

In our method, the key parameter controlling the pro-

jection quality is the sparsity constraint weight λ: a

larger λ causes more blurry results. We gradually in-
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Table 6: ImageNet-10 classification accuracy of trans-

formed clean and adversarial examples on an attacked

vanilla VGG-16 model at resolution 64 (Table 6.A) and 128

(Table 6.B).

Table 6.A Resolution 64.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.8665 0.2816 0.3080 0.1883 0.0811 0.0751

TVM[20] 0.8172 0.3403 0.4744 0.6595 0.6943 0.6823

Quilting[20] 0.6318 0.4541 0.5312 0.5696 0.5436 0.5563

Crop-Ens[20] 0.5590 0.4570 0.5328 0.5369 0.5429 0.5320

PD-Ens[40] 0.7946 0.3388 0.5526 0.6568 0.6919 0.6827

STL 0.7925 0.5472 0.6825 0.7245 0.7562 0.7414

STL (cluster) 0.8017 0.5729 0.6914 0.7234 0.7652 0.7521

Table 6.B Resolution 128.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.8991 0.2123 0.2409 0.1790 0.0584 0.0504

TVM[20] 0.8591 0.2568 0.4386 0.6586 0.6360 0.6129

Quilting[20] 0.8149 0.3903 0.5889 0.6434 0.6242 0.5922

Crop-Ens[20] 0.7730 0.4622 0.6447 0.6876 0.7060 0.6888

PD-Ens[40] 0.8789 0.2333 0.4286 0.7221 0.7359 0.7272

STL 0.8654 0.4552 0.6418 0.7332 0.7308 0.7212

STL (cluster) 0.8759 0.4733 0.6606 0.7323 0.7301 0.7432

Table 7: Top-1 ImageNet classification accuracy of trans-

formed clean and adversarial examples on an attacked

vanilla ResNet-50 model.

Defense Clean FGSM-0.08 FGSM-0.04 BIM DeepFool CW

No Defense 0.7613 0.0862 0.1140 0.0131 0.0106 0.0201

TVM[20] 0.6205 0.3123 0.4256 0.4923 0.5232 0.5012

Quilting[20] 0.4168 0.3787 0.3865 0.3823 0.3859 0.3783

Crop-Ens[20] 0.6432 0.4623 0.5546 0.5965 0.6023 0.5980

PD-Ens[40] 0.6821 0.3846 0.5691 0.6089 0.6220 0.6371

STL 0.6728 0.5348 0.6032 0.6253 0.6233 0.6158

STL (cluster) 0.6921 0.5588 0.6053 0.6348 0.6468 0.6220

crease λ and explore this trade-off (Figure 5). We de-

note Acc(x) as the accuracy on the vanilla model of in-

put x. Higher Acc(T (x0)) means higher transformation

quality because the projected images still preserve useful

information. Small ‖Acc(T (x0))−Acc(T (xadv))‖ means

the clean and adversarial examples are similar in feature

space. The decision can be robust if both Acc(T (x0))
and Acc(T (xadv)) are high. In Figure 5, we see that as

λ increases, Acc(T (x0)) decreases and the gap between

Acc(T (x0)) and Acc(T (xadv)) shrinks.

We additionally propose a metric to measure this trade-

off. Specifically, we use PSNR between T (xadv) and

x0 to measure reconstruction quality. For each method

in comparison, let a0 = Acc(T (x0)) and aadv =
Acc(T (xadv)), then we associate it with a characteristic in-

terval [min(a0, aadv),max(a0, aadv)] to represent its over-

all prediction quality. Apparaently, a strong method should

have an interval that is short (good robustness) and high

(good accuracy). We plot a 2D PSNR vs. prediction quality

map, where the top right corner indicates highest robust-

ness and prediction quality. In Figure 6, we show compar-

ison results of occupied regions on this map. Our method

achieves both the highest PSNR and most preferable charac-
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Figure 5: Intrinsic tradeoff between image reconstruction

quality and defensive robustness. (a). Transformation re-

sults of each corresponding λ. (b). Accuracy of T (xadv

and T (x0) on attacked vanilla model. (Setting: FGSM-

0.08, ImageNet-10, VGG-16, resolution 64).
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Figure 6: The PSNR, Acc(T (xadv)) and Acc(T (x0))
of different methods (Setting: FGSM-0.08, ImageNet-10,

VGG-16, resolution 64). For both axes, the higher number

the better. And less difference between Acc(T (xadv)) and

Acc(T (x0)) means higher robustness.

teristic interval, demonstrating its superior ability to achieve

robustness, accuracy, and maintain image quality.

6. Conclusion

We have proposed a novel state-of-the-art attack-

agnostic adversarial defense method with additional in-

creased robustness to input resolution, perturbation scale,

and dataset scale. Inspired by convolutional sparse cod-

ing, we design a novel sparse transformation layer (STL) to

project the inputs to a low-dimensional quasi-natural space,

wherein a retrained classifier can make more reliable deci-

sions. We evaluate the proposed method on CIFAR-10 and

ImageNet and show that our defense mechanism provide

state-of-the-art results. We have also provided an analysis

of the trade-off between the projection image quality and

defense robustness.

Acknowledgements We thank Bo Li for providing key

discussions on white box attacks.

11454



References

[1] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradi-

ents give a false sense of security: Circumventing defenses

to adversarial examples, 2018. In ICML.

[2] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized de-

noising auto-encoders as generative models, 2013. In NIPS.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-

tributed optimization and statistical learning via the alternat-

ing direction method of multipliers. Foundations and Trends

in Machine Learning, 3(1):1–122,, 2010.

[4] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional

sparse coding, 2013. In CVPR.

[5] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. Ther-

mometer encoding: One hot way to resist adversarial exam-

ples. In International Conference on Learning Representa-

tions(ICLR), 2018.

[6] X. Cao and N. Z. Gong. Mitigating evasion attacks to deep

neural networks via region-based classication, 2017. In Pro-

ceedings of the 33rd Annual Computer Security Applications

Conference. ACM.

[7] N. Carlini and D. A. Wagner. Towards evaluating the robust-

ness of neural networks, 2017. 2017 IEEE Symposium on

Security and Privacy (SP).

[8] R. Chalasani, J. C. Principe, and N. Ramakrishnan. A fast

proximal method for convolutional sparse coding, 2013. In

IJCNN.

[9] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo:

Zeroth order optimization based black-box attacks to deep

neural networks without training substitute models, 2017.

arXiv preprint arXiv:1708.03999.

[10] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic

decomposition by basis pursuit. SIAM J. Sci. Comput.,

20(1):31–61, 1998.

[11] B. Choudhury, R. Swanson, F. Heide, G. Wetzstein, and

W. Heidrich. Consensus convolutional sparse coding, 2017.

In ICCV.

[12] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen,

M. E. Kounavis, and D. H. Chau. Keeping the bad guys out:

Protecting and vaccinating deep learning with jpeg compres-

sion, 2017. arXiv preprint arXiv:1705.02900.

[13] A. David and S. Vassilvitskii. k-means++: The advantages of

careful seeding, 2007. Proceedings of the eighteenth annual

ACM-SIAM symposium on Discrete algorithms.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F. fei Li.

Imagenet: A large-scale hierarchical image database, 2009.

In CVPR.

[15] G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kos-

saifi, A. Khanna, Z. C. Lipton, and A. Anandkumar. Stochas-

tic activation pruning for robust adversarial defense. In In-

ternational Conference on Learning Representations(ICLR),

2018.

[16] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy. A study of

the effect of jpg compression on adversarial images, 2016.

CoRR, abs/1608.00853.

[17] C. Garcia-Cardona and B. Wohlberg. Convolutional dictio-

nary learning: A comparative review and new algorithms,

2018. arXiv preprint arXiv:1709.02893.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples, 2014. CoRR,

abs/1412.6572.

[19] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang.

Convolutional sparse coding for image super-resolution,

2015. In ICCV.

[20] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Coun-

tering adversarial images using input transformations, 2018.

In ICLR.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition, 2017. In CVPR.

[22] F. Heide, W. Heidrich, and G. Wetzstein. Fast and exible

convolutional sparse coding, 2015. In CVPR.

[23] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian

institute for advanced research).

[24] A. Kurakin, I. Goodfellow, and S. Bengio. Adversar-

ial machine learning at scale., 2016. arXiv preprint

arXiv:1611.01236.

[25] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial ex-

amples in the physical world. CoRR, abs/1607.02533, 2016.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition., 1998. Pro-

ceedings of the IEEE, 86(11):22782324.

[27] Y. Liu, X. Chen, C. Liu, and D. X. Song. Delving into trans-

ferable adversarial examples and black-box attacks. CoRR,

abs/1611.02770, 2016.

[28] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang. Image fusion

with convolutional sparse representation, 2016. IEEE Signal

Process. Lett.

[29] S.-M. M.-Dezfooli, A. Shrivastava, and O. Tuzel. Divide,

denoise, and defend against adversarial attacks, 2018. arXiv

preprint, arXiv:1802.06806v1.

[30] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema,

G. Schoenebeck, M. E. Houle, D. Song, and J. Bailey. Char-

acterizing adversarial subspaces using local intrinsic dimen-

sionality. In International Conference on Learning Repre-

sentations(ICLR), 2018.

[31] J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image

and vision processing. Foundations and Trends in Computer

Graphics and Vision, 8(2-3):85–283, 2014.

[32] D. Meng and H. Chen. Magnet: A two-pronged defense

against adversarial examples, 2017. In CCS.

[33] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-

fool: A simple and accurate method to fool deep neural net-

works, 2016. In CVPR.

[34] T. Na, J. H. Ko, and S. Mukhopadhyay. Cascade adversar-

ial machine learning regularized with a unified embedding,

2018. In ICLR.

[35] A. Nayebi and S. Ganguli. Biologically inspired protec-

tion of deep networks from adversarial attacks, 2017. arXiv

preprint arXiv:1703.09202.

[36] M. Osadchy, J. Hernandez-Castro, S. Gibson, O. Dunkel-

man, and D. Perez-Cabo. No bot expects the deepcaptcha!

introducing immutable adversarial examples with applica-

tions to captcha, 2017. In IEEE Transactions on Information

Forensics and Security.

11455



[37] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,

and A. Swami. Practical black-box attacks against machine

learning, 2017. In ACM Asia Conference on Computer and

Communications Security,.

[38] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. To-

wards the science of security and privacy in machine learn-

ing, 2016. arXiv preprint arXiv:1611.03814.

[39] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami.

Distillation as a defense to adversarial perturbations against

deep neural networks, 2016. 2016 IEEE Symposium on Se-

curity and Privacy (SP).

[40] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer.

Deecting adversarial attacks with pixel deection, 2018. In

CVPR 2018.

[41] T. M. Quan and W.-K. Jeong. Compressed sensing re-

construction of dynamic contrast enhanced mri using gpu-

accelerated convolutional sparse coding, 2016. In ISBI.

[42] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma.

Pixelcnn++: Improving the pixelcnn with discretized lo-

gistic mixture likelihood and other modifications, 2017.

arXiv:1701.05517.

[43] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-gan:

Protecting classifiers against adversarial attacks using gener-

ative models, 2018. In ICLR.

[44] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Ma-

sia. Convolutional sparse coding for high dynamic range

imaging. Computer Graphics Forum, 35(2):153–163, 2016.

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition, 2014. arXiv

preprint arXiv:1409.1556.

[46] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman.

Pixeldefend: Leveraging generative models to understand

and defend against adversarial examples, 2018. In ICLR.

[47] J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for

fooling deep neural networks. CoRR, abs/1710.08864, 2017.

[48] M. Sung, H. Su, R. Yu, and L. Guibas. Deep functional

dictionaries: Learning consistent semantic structures on 3d

models from functions. arXiv preprint arXiv:1805.09957,

2018.

[49] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. J. Goodfellow, and R. Fergus. Intriguing properties of neu-

ral networks, 2014. In ICLR.

[50] I. Tosic and P. Frossard. Dictionary learning. IEEE Signal

Process. Mag., 28(2):27–38, 2011.

[51] F. Tramr, A. Kurakin, N. P. abd D. Boneh, and P. D. Mc-

Daniel. Ensemble adversarial training: Attacks and de-

fenses., 2018. In ICLR.

[52] B. Wohlberg. Efficient convolutional sparse coding. 2014

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 7173–7177, 2014.

[53] B. Wohlberg. Efcient convolutional sparse coding, 2014. In

ICASSP.

[54] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. Mitigating

adversarial effects through randomization. In International

Conference on Learning Representations, 2018.

[55] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detect-

ing adversarial examples in deep neural networks, 2018.

In Network and Distributed Systems Security Symposium

(NDSS).

[56] H. Zhang and V. Patel. Convolutional sparse coding-based

image decomposition, 2016. In BMVC.

[57] H. Zhang and V. M. Patel. Convolutional sparse and low-

rank coding-based rain streak removal, 2017. In WACV.

11456


